JP5459035B2 - Durability judgment method for coated steel - Google Patents

Durability judgment method for coated steel Download PDF

Info

Publication number
JP5459035B2
JP5459035B2 JP2010094604A JP2010094604A JP5459035B2 JP 5459035 B2 JP5459035 B2 JP 5459035B2 JP 2010094604 A JP2010094604 A JP 2010094604A JP 2010094604 A JP2010094604 A JP 2010094604A JP 5459035 B2 JP5459035 B2 JP 5459035B2
Authority
JP
Japan
Prior art keywords
steel
durability
test
corrosion potential
coated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010094604A
Other languages
Japanese (ja)
Other versions
JP2011226827A (en
Inventor
正次 村瀬
雅仁 金子
俊幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010094604A priority Critical patent/JP5459035B2/en
Publication of JP2011226827A publication Critical patent/JP2011226827A/en
Application granted granted Critical
Publication of JP5459035B2 publication Critical patent/JP5459035B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

本発明は、塗装あるいはラインニングで防食した鋼部材における塗装あるいはラインニングの劣化を簡易に判定する被覆鋼材の耐久性判定方法に関する。   The present invention relates to a method for determining the durability of a coated steel material that easily determines deterioration of coating or linening in a steel member that has been anticorrosive by painting or linening.

大気、海洋・河川環境、土壌中で使用される代表的な鋼部材として、鋼矢板、鋼管杭、鋼管矢板、H形鋼、鋼管などが挙げられ、基礎構造や橋梁、建築物、港湾、空港、道路などのインフラストラクチャー用に広く普及している。   Typical steel members used in the atmosphere, ocean / river environment, and soil include steel sheet piles, steel pipe piles, steel pipe sheet piles, H-shaped steel, steel pipes, etc., foundation structures, bridges, buildings, harbors, airports Widely used for road and other infrastructure.

これらの構造物は50〜100年の使用を前提として設計、施工され、大部分は塗装などの有機被覆層によって防食されている。現在は性能の優れた防食塗装が普及しているが、未だ防食性能が鋼構造物の耐用年数と同期したものは開発されておらず、防食塗装の寿命を正確に予測して今後、寿命を迎える防食層の補修などで、鋼構造物の維持・管理費を増加させないようにすることが重要である。   These structures are designed and constructed on the assumption that they will be used for 50 to 100 years, and most of them are protected by organic coating layers such as paint. Although anti-corrosion coatings with excellent performance are currently in widespread use, no anti-corrosion performance that has synchronized with the service life of steel structures has been developed yet. It is important not to increase the maintenance and management costs of steel structures by repairing the anticorrosive layer.

現在、防食塗装の寿命判定にASTMD610−68に規格化される方法が用いられているが、塗装鋼表面上に発生した錆が徐々に広がって錆発生面積率が一定の値、橋の場合は5〜10%になれば寿命と判定する塗装鋼材の錆判定方法であって、塗装鋼材の寿命を推定するものではない。   Currently, the method standardized to ASTM D610-68 is used to determine the life of anticorrosion coating, but the rust generated on the coated steel surface gradually spreads and the rust generation area ratio is a constant value, in the case of a bridge If it becomes 5 to 10%, it is a method for judging rust of a coated steel material that is judged to be a life, and does not estimate the life of the coated steel material.

また、特許文献1は、被覆金属の寿命を予測する方法として、塗膜に塗膜下の錆が通過できる孔が生じるまでの時間を寿命とし、当該寿命を使用後の早期の段階で予測することを提案している。被覆鋼材に電圧を印加して、塗膜に孔が生じた時の電流値を予め求めておき、塗装初期における電流値が当該電流値となるまでの時間を外挿して求めて被覆金属の寿命を予測することを特徴とする。   In addition, Patent Document 1 describes, as a method for predicting the life of a coated metal, the time until a hole in which a rust under the coating can pass is formed in the coating film, and the lifetime is predicted at an early stage after use. Propose that. Applying a voltage to the coated steel, pre-determining the current value when holes occur in the coating film, extrapolating the time until the current value at the initial stage of coating becomes the current value, and calculating the life of the coated metal It is characterized by predicting.

特公平6−100570号公報Japanese Patent Publication No. 6-100570

ところで、有機被覆層の劣化に関して以下に述べるような知見が得られている。   By the way, the following knowledge about the deterioration of the organic coating layer has been obtained.

1.まず、有機被覆層の劣化は有機被覆層の端部あるいは被覆層ののりが悪い部分(鋼部材のエッジ部分など)や、外力を受けて傷がついた部分から劣化がスタートする。これらは、一応の対策を打つものの、不可避的あるいは偶発的に発生するものであり、回避が困難である。   1. First, the deterioration of the organic coating layer starts from the edge of the organic coating layer or a portion where the coating layer is poorly glued (such as an edge portion of a steel member) or a portion damaged by external force. Although these measures are taken for the time being, they are inevitably or accidentally generated and are difficult to avoid.

2.端部、傷部の周辺で鋼面が露出すると、その部位より鋼材の腐食がスタートする。これら腐食反応は、露出部のみで起きるだけではなく周囲の有機被覆層の健全部へも影響を及ぼす。   2. When the steel surface is exposed around the edges and scratches, corrosion of the steel material starts from that part. These corrosion reactions not only occur only in the exposed part, but also affect the healthy part of the surrounding organic coating layer.

3.鋼材の露出した部位では腐食に関わる、鉄の溶解反応(アノード反応)およびカソード反応を生じる。カソード反応の一部は周囲の有機被覆層下の鋼表面で起きるので、カソード反応生成物が接着劣化を引き起こす。(傷部周囲以外でもこの反応は有機被覆層下で起きるがその速度は極めて緩慢で、傷部や端部での劣化速度は数倍大きい。)
4.このような現象を防止するには、有機被覆層下でのカソード反応の抑制が有効である。有機被覆層下でのカソード反応は、端部や傷部での鋼が露出した部位に比較して電位が相対的に貴な電位を示すことから起きる現象であるが、この電位差が基本的に有機被覆層の劣化を起こし、電位差が大きなほど劣化が早い。
3. In the exposed part of the steel material, an iron dissolution reaction (anode reaction) and a cathodic reaction related to corrosion occur. Since part of the cathode reaction occurs on the steel surface under the surrounding organic coating layer, the cathode reaction product causes adhesion degradation. (Although this reaction takes place under the organic coating layer other than around the wound, the rate is very slow and the deterioration rate at the wound and the edge is several times greater.)
4). In order to prevent such a phenomenon, it is effective to suppress the cathode reaction under the organic coating layer. The cathodic reaction under the organic coating layer is a phenomenon that occurs because the potential shows a relatively noble potential compared to the exposed part of the steel at the edges and scratches. The organic coating layer deteriorates, and the larger the potential difference, the faster the deterioration.

しかしながら、このような知見をもとに被覆鋼材の寿命を推定する方法は未だ提案されていない。特許文献1記載の方法は被覆鋼材に電圧を印加した場合の電流値の変化より孔が生じた時の電流値を外挿して求めなければならず、電流値の変化と塗膜劣化の相関を塗膜や腐食に関する種々のデータを解析して求めておくことが必要とされる。   However, a method for estimating the life of the coated steel material based on such knowledge has not yet been proposed. The method described in Patent Document 1 must be obtained by extrapolating the current value when a hole is generated from the change in the current value when a voltage is applied to the coated steel material, and the correlation between the change in the current value and the coating film deterioration is obtained. It is necessary to analyze and obtain various data relating to the coating film and corrosion.

なお、塗装や有機ライニングの寿命の推定方法として、暴露試験が良く用いられるが結果が得られるまでに長い時間を要し、また暴露の促進試験といえども一定時間を必要とする。   In addition, although an exposure test is often used as a method for estimating the life of a coating or an organic lining, it takes a long time to obtain a result, and a certain time is required even in an accelerated exposure test.

そこで、本発明は、鋼構造物の防食に使用される塗装やライニングにおける性能の優劣を短時間で判定する方法を提供することを目的とする。   Then, an object of this invention is to provide the method of determining the superiority or inferiority of the performance in the coating and lining used for corrosion prevention of a steel structure in a short time.

本発明の課題は以下の手段で達成可能である。
1.被覆鋼材の耐久性評価方法であって、湿性環境中で、試験材と基準材について被覆鋼材としての腐食電位と裸鋼材としての腐食電位をそれぞれ求め、(1)式を満たす場合は、試験材は基準材と比較して耐久性に優れるとし、(2)式を満たす場合は、試験材は基準材と比較して耐久性に劣ると判定することにより、これらの腐食電位比較して試験材の基準材に対する塗装の耐久性の良否を判定することを特徴とする被覆鋼材の耐久性判定方法。
ΔE≦ΔE´(1)
ΔE>ΔE´(2)
これらの式において、ΔE=E1−E2、ΔE´=E1´−E2´ (ただしΔE´>0)、E1:評価しようとする試験材の被覆鋼材としての腐食電位、E2:評価しようとする試験材における裸鋼材の腐食電位、E1´:被覆層の耐久性が既知の基準材の被覆鋼材としての腐食電位、E2´:被覆層の耐久性が既知の基準材における裸鋼材の腐食電位 E1<E2の場合には、この限りではなく耐久性に優れると判断する。
2.前記湿性環境は塩素イオン濃度0.1mol/L以上の水溶液で、前記試験材のうち被覆鋼材の場合は清浄化した鋼表面に10〜100μmの有機被覆層を形成した被覆鋼材でることを特徴とする請求項1記載の被覆鋼材の耐久性判定方法。
The object of the present invention can be achieved by the following means.
1. A durability evaluation method of coating steel, in moist environment, for the test material and the reference material obtains the corrosion potential of the corrosion potential and the bare steel as coated steel respectively, when satisfying the formula (1), the test material test and excellent durability as compared to the reference material, if it meets the expression (2), the test material by determining a poor durability in comparison with the reference material, and compares these corrosion potential A method for judging the durability of a coated steel material, comprising: judging whether the durability of coating with respect to a reference material is good or bad.
ΔE ≦ ΔE ′ (1)
ΔE> ΔE ′ (2)
In these equations, ΔE = E1−E2, ΔE ′ = E1′−E2 ′ (where ΔE ′> 0), E1: Corrosion potential of the test material to be evaluated as a coated steel material, E2: Test to be evaluated E1 ': Corrosion potential of the reference material with known durability of the coating layer as a coated steel material, E2': Corrosion potential of the bare steel material with reference material of which the durability of the coating layer is known E1 < In the case of E2, it is not limited to this and it is judged that the durability is excellent.
2. The wet environment has a chlorine ion concentration of 0. In 0 1 mol / L or more aqueous solutions, for coating steel of the test material according to claim 1, wherein the Oh Rukoto coated steel material to form an organic coating layer of 10~100μm steel surface was cleaned A method for judging the durability of coated steel.

本発明によれば、有機被覆鋼材の優劣の判定が短期間で可能となり、産業上極めて有用である。   According to the present invention, it is possible to determine the superiority or inferiority of an organic coated steel material in a short period of time, which is extremely useful industrially.

腐食電位の測定方法を説明する模式図。The schematic diagram explaining the measuring method of a corrosion potential. 腐食電位差ΔEとクロスカット部からの剥離幅の関係を示す図。The figure which shows the relationship between corrosion potential difference (DELTA) E and the peeling width | variety from a crosscut part.

本発明は試験材の被覆性能を既に被覆性能の耐久性が判明している基準材と比較して、その優劣を判断するもので、湿性環境中で、試験材と基準材について、被覆鋼材としての腐食電位と裸鋼材としての腐食電位をそれぞれ求め、これらの腐食電位を比較して判断することを特徴とする。以下の説明で、被覆鋼材は塗装された鋼材、裸鋼材は塗装される鋼材とする。   The present invention judges the superiority or inferiority of the covering performance of the test material compared to the reference material whose durability of the covering performance is already known. In a humid environment, the test material and the reference material are coated steel materials. The corrosion potential of the steel and the corrosion potential of the bare steel material are obtained, and these corrosion potentials are compared and judged. In the following description, it is assumed that the coated steel material is a painted steel material, and the bare steel material is a painted steel material.

本発明では、試験材の被覆鋼材としての腐食電位をE1、前記試験材の裸鋼材の腐食電位をE2、試験材と耐久性を比較しようとする基準材の被覆鋼材としての腐食電位をE1´、前記基準材の裸鋼材の腐食電位をE2´として、これらの関係が(1)式を満たす場合は、試験材の被覆性能は基準材のそれと比較して耐久性に優れると判定する。(2)式を満たす場合は、試験材の被覆性能は基準材と比較して耐久性に劣ると判定する。   In the present invention, the corrosion potential of the test material as a coated steel material is E1, the corrosion potential of the bare steel material of the test material is E2, and the corrosion potential of the reference material to be compared with the test material is E1 ′. When the corrosion potential of the bare steel material of the reference material is E2 ′ and these relationships satisfy the equation (1), it is determined that the covering performance of the test material is superior to that of the reference material. When the formula (2) is satisfied, it is determined that the covering performance of the test material is inferior to the reference material in terms of durability.

ΔE≦ΔE´ (1)
ΔE>ΔE´ (2)
これらの式において、ΔE=E1−E2、ΔE´=E1´−E2´ (但し、ΔE´>0)、
試験材において有機被覆層を付与した場合の電位が、裸鋼材の電位よりも卑(E1<E2)で、有機被覆層下と鋼材部分の極性が逆転すると、基本的に電位差に起因する劣化がおき難い場合と判断されるので、基準材との比較においてではなく絶対的に耐久性に優れるものとする。例えば、被覆層中にZnやアルミニウムなど犠牲防食作用が働くものを含有している場合である。
ΔE ≦ ΔE ′ (1)
ΔE> ΔE ′ (2)
In these equations, ΔE = E1−E2, ΔE ′ = E1′−E2 ′ (where ΔE ′> 0),
When the organic coating layer is applied to the test material, the potential is lower (E1 <E2) than the potential of the bare steel material, and the polarity due to the potential difference basically deteriorates when the polarity of the steel coating portion and the organic coating layer is reversed. Since it is determined that it is difficult to occur, it is absolutely superior in durability rather than in comparison with the reference material. For example, this is a case where the coating layer contains a material that has a sacrificial anticorrosive action such as Zn or aluminum.

一般の塗装では、概ねΔE>0を示すものが大部分であり、この値を示すものの中から基準となる塗装系を選択するのが良い。   In general coating, most of them show ΔE> 0, and it is preferable to select a reference coating system from those showing this value.

また、鋼材に塗装を施すとともに電気防食を併用する場合には、裸鋼材の腐食電位E2として、電気防食などによる裸鋼材の電位を用いる。   In addition, when the steel material is coated and the electric corrosion prevention is used in combination, the electric potential of the bare steel material due to the electric corrosion prevention or the like is used as the corrosion potential E2 of the bare steel material.

通常、鋼材の電気防食には、1.外部電源方式によるもの、2.Zn、Al、Mgなどの犠牲陽極による流電陽極法があるが、いずれの場合でも裸鋼材がこれらによって到達する電位をE2として採用してよい。通常、鋼材は−850mVより卑な電位で防食されるので、E2は鋼材の腐食電位よりかなり卑な値をとる。本発明を実施する場合、腐食電位は以下に述べる方法で測定することが好適である。   Usually, for the anticorrosion of steel, 1. By external power supply method There is a galvanic anode method using a sacrificial anode such as Zn, Al, Mg, etc. In any case, the potential reached by the bare steel material by these may be adopted as E2. Normally, steel is corrosion-protected at a potential lower than -850 mV, so E2 takes a value much lower than the corrosion potential of steel. When practicing the present invention, the corrosion potential is preferably measured by the method described below.

図1に有機被覆鋼材の腐食電位を測定する方法の一例を示す。容器1aに試験片2と試験溶液を入れて、参照電極3と飽和KCl溶液を入れた容器1bとの間をコック10を取り付けた塩橋4で連結し、試験片2の腐食電位を電位差計5で測定する(図1(a))。   FIG. 1 shows an example of a method for measuring the corrosion potential of an organic coated steel material. A test piece 2 and a test solution are put in a container 1a, and a reference bridge 3 and a container 1b containing a saturated KCl solution are connected by a salt bridge 4 to which a cock 10 is attached, and the corrosion potential of the test piece 2 is measured by a potentiometer. 5 (FIG. 1 (a)).

腐食電位は試験片2を、1.塗装の耐久性を評価する試験材(被覆鋼材)、2.1の試験材の裸鋼材(非被覆鋼材)、3.塗装の耐久性を試験材と比較するための基準材(被覆鋼材)、4.3の基準材の裸鋼材(非被覆鋼材)として、それぞれについて測定する。   For the corrosion potential, test piece 2 is 2. Test material for evaluating the durability of coating (coated steel material), 2.1 Bare steel material (uncoated steel material) of the test material of 2.1 Measurement is made for each of the reference materials (coated steel materials) for comparing the durability of the coating with the test materials as bare steel materials (non-coated steel materials) of 4.3.

試験片2は、被覆鋼材または非被覆鋼材のいずれであっても、試験材の対象面積(測定面9)以外をシール剤6(被覆鋼材の場合は、塗膜より厚くする)で覆って、測定面9から保護管8で覆ったリード線7を引き出して電位差計5に繋ぐ。   Whether the test piece 2 is a coated steel material or an uncoated steel material, cover the test material other than the target area (measurement surface 9) with a sealant 6 (in the case of a coated steel material, thicker than the coating film), The lead wire 7 covered with the protective tube 8 is pulled out from the measurement surface 9 and connected to the potentiometer 5.

試験片2が試験材または基準材における被覆鋼材の場合、有機被覆層の厚みが厚いと絶縁が高くなりその腐食電位の測定は困難となる。腐食電位の測定が短期間で可能なように有機被覆層の厚みを鋼材側にある第一層および第2層までの10〜100μmとする。   In the case where the test piece 2 is a coated steel material as a test material or a reference material, if the thickness of the organic coating layer is thick, the insulation becomes high and the measurement of the corrosion potential becomes difficult. The thickness of the organic coating layer is 10 to 100 μm from the first layer and the second layer on the steel material side so that the corrosion potential can be measured in a short period.

10μm未満では、被覆層にピンホールが生じやすく、鋼の腐食電位を計測することができない。一方、100μm超えでは、腐食電位の計測が困難になる。鋼材の表面粗度によっては、ピンホールができやすくなるので、10〜100μmの範囲内で適正な膜厚を選択することが必要である。被覆層の厚みは電磁膜厚計などで簡易に測定できる。   If it is less than 10 μm, pinholes are likely to occur in the coating layer, and the corrosion potential of steel cannot be measured. On the other hand, if it exceeds 100 μm, it is difficult to measure the corrosion potential. Depending on the surface roughness of the steel material, pinholes are likely to be formed. Therefore, it is necessary to select an appropriate film thickness within a range of 10 to 100 μm. The thickness of the coating layer can be easily measured with an electromagnetic film thickness meter or the like.

容器1a内で試験片2を浸漬する測定溶液は、塩素イオンが0.01mol/L未満では、腐食電位の測定が困難になるため、0.01mol/L以上の塩素イオンを含有するものを用いる。ここで1mol/Lは1L中の溶液中に1molの塩素イオンを含むことを示す。   The measurement solution for immersing the test piece 2 in the container 1a uses a solution containing 0.01 mol / L or more of chlorine ions because the measurement of the corrosion potential becomes difficult if the chlorine ions are less than 0.01 mol / L. . Here, 1 mol / L indicates that 1 mol of chlorine ions is contained in the solution in 1 L.

溶液中の塩素イオン濃度の上限は特に規定しないが、使用される環境を勘案して選択することが好ましい。塩素イオンと対になる陽イオンは、特に定めないが、1価イオン(ナトリウム、リチウム、カリウム)が好ましい。イオンの水和半径が2価イオンでは大きくなり、有機被覆層中に拡散しがたいためである。   The upper limit of the chlorine ion concentration in the solution is not particularly defined, but is preferably selected in consideration of the environment in which it is used. The cation paired with the chlorine ion is not particularly limited, but monovalent ions (sodium, lithium, potassium) are preferable. This is because the hydration radius of ions is large for divalent ions and is difficult to diffuse into the organic coating layer.

試験片2が試験材または基準材における裸鋼材の場合、鋼材表面を清浄化する。被覆鋼材や鋼構造物で塗装される部位は予め清浄化処理(ブラスト処理や酸洗、研磨、など)が施され、付着物や酸化スケールの付着状態によって、腐食電位の測定値が変わってしまうためである。更に実施例にて本発明を詳細に説明する。   When the test piece 2 is a bare steel material in the test material or the reference material, the steel material surface is cleaned. Sites to be coated with coated steel or steel structures are pre-cleaned (blasting, pickling, polishing, etc.), and the measured value of the corrosion potential varies depending on the state of deposits and oxide scale. Because. Further, the present invention will be described in detail with reference to examples.

(裸鋼材の製造)
表1に示す成分組成の鋼材(鋼材No.1〜7)を、0.5mmφのスチールボールを用いたショットブラストにて、表面の酸化層および汚染層を取り除き、さらにエメリー研磨紙(#500、#800、#1200)により、表面を研磨し清浄化処理とした。鋼材の大きさは50mm×70mm×板厚とした。
(被覆鋼材の製造)
これらの鋼材(鋼材No.1〜7)の片面に、1層目としてエポキシ系下地下塗塗料(商品名:関西ペイント社製ミリオンプライマー)、変性エポキシ系下塗塗料(商品名:関西ペイント社製エスコNB)、ジンクリッチプライマー(商品名:関西ペイント社製SDジンク)のいずれかの下塗り塗料を塗装した。塗装厚みは、各塗料について60μmとし、上層(2層目)にはフタル酸系塗料を100μmの厚さで塗装して被覆鋼材とし、その平面中央部に長さ30mm×幅1mmの鋼面に達する傷を入れた。
(Manufacture of bare steel)
Steel materials (steel materials Nos. 1 to 7) having the composition shown in Table 1 were subjected to shot blasting using 0.5 mmφ steel balls to remove the surface oxide layer and contamination layer, and further emery polished paper (# 500, The surface was polished and cleaned by # 800, # 1200). The size of the steel material was 50 mm × 70 mm × plate thickness.
(Manufacture of coated steel)
On one side of these steel materials (steel materials Nos. 1 to 7), an epoxy-based primer coating (trade name: Million Prime manufactured by Kansai Paint Co., Ltd.) and a modified epoxy primer coating (trade name: ESCO manufactured by Kansai Paint Co., Ltd.) as the first layer. NB) and a zinc rich primer (trade name: SD zinc manufactured by Kansai Paint Co., Ltd.) were applied. The coating thickness is 60 μm for each paint, and the upper layer (second layer) is coated with a phthalic acid paint at a thickness of 100 μm to form a coated steel material. Put a wound to reach.

20mm×20mmの大きさに切り出した試験材の表面に、10μm〜100μmまでの厚みで上記下塗り塗料のいずれかで塗装を施した。この試験材に1mmφの銅線をはんだにより固定し、裏面および塗装面を10mm×10mm残し周囲をシリコン系シール剤にてシールした。裸鋼材についても同様に処理して腐食電位測定用の試験材とした。尚、上述した被覆鋼材のうち、鋼材No.4に対し、塗装を施したものを基準材(被覆性能を判定する際に基準となる既知の鋼材と塗料種の組み合わせ)とし、その他の鋼材(No.1、2、3、5、6、7)に塗装を施したものを試験材とした。
(腐食電位の測定方法)
上述した被覆鋼材および裸鋼材について図1に示す測定法で、裸鋼材の場合には2時間後の腐食電位を、被覆層付きの場合には72時間後の腐食電位を測定した。0.01mol/L〜0.5mol/LのNaCl溶液を使用した。基準材はいずれもΔE‘>0を満たしている。
(暴露試験方法)
本発明の作用効果を検証するため、暴露試験として塩水噴霧試験を行った。腐食試験用の試験材を、塩水噴霧試験機 (5%NaCl溶液、35℃)に、30日入れ、試験材回収後欠陥部からの剥離幅を測定し、最大の剥離幅を剥離幅と定義した。
(試験結果)
表2に試験材の腐食電位の測定結果および塩水噴霧試験におけるクロスカット部からの剥離幅の測定結果を示す。表2において系列1は、エポキシ系下地下塗塗料を各種鋼材に用いた場合であり、系列2は変性エポキシ系下塗塗料を各種鋼材に用いた場合、系列3はジンクリッチプライマーを各種鋼材に用いた場合である。
The surface of the test material cut into a size of 20 mm × 20 mm was coated with any of the above-mentioned undercoat paints with a thickness of 10 μm to 100 μm. A 1 mmφ copper wire was fixed to the test material with solder, and the back and painted surfaces were left 10 mm × 10 mm, and the periphery was sealed with a silicon-based sealant. The bare steel material was treated in the same manner as a test material for measuring the corrosion potential. Of the above-described coated steel materials, the steel material No. 4 is a reference material (a combination of a known steel material and a paint type used as a reference when judging coating performance), and other steel materials (No. 1, 2, 3, 5, 6, 7) was used as a test material.
(Measurement method of corrosion potential)
With respect to the above-described coated steel material and bare steel material, the corrosion potential after 2 hours was measured in the case of the bare steel material, and the corrosion potential after 72 hours was measured in the case of having the coating layer. A 0.01 mol / L to 0.5 mol / L NaCl solution was used. All the reference materials satisfy ΔE ′> 0.
(Exposure test method)
In order to verify the effect of the present invention, a salt spray test was conducted as an exposure test. Put the test material for the corrosion test in a salt spray tester (5% NaCl solution, 35 ° C) for 30 days, measure the peel width from the defective part after collecting the test material, and define the maximum peel width as the peel width did.
(Test results)
Table 2 shows the measurement result of the corrosion potential of the test material and the measurement result of the peel width from the crosscut portion in the salt spray test. In Table 2, series 1 is the case where epoxy base coat is used for various steel materials, series 2 is when modified epoxy base coat is used for various steel materials, and series 3 is a zinc rich primer used for various steel materials. Is the case.

表3に基準材の腐食電位の測定結果および塩水噴霧試験におけるクロスカット部からの剥離幅の測定結果を示す。基準材はエポキシ系下地下塗塗料(系列1と同様)と鋼材4との組み合わせ(基準1)、または変性エポキシ系下塗塗料(系列2と同様)と鋼材4との組み合わせ(基準2)とした。   Table 3 shows the measurement result of the corrosion potential of the reference material and the measurement result of the peel width from the crosscut portion in the salt spray test. The reference material was a combination of epoxy base coating (same as series 1) and steel 4 (reference 1), or a combination of modified epoxy base coating (similar to series 2) and steel 4 (standard 2).

図2は表2、3の結果を図示したもので、ΔEとクロスカットからの剥離幅の関係を示す。試験材の3種類のうち、系列3(ジンクリッチプライマー)の場合は、ΔEがΔE<0すなわちE1<E2となっている。E1≦E2を満たすので、基準材の基準1、2よりも耐久性が良いと判定される。   FIG. 2 illustrates the results of Tables 2 and 3, and shows the relationship between ΔE and the width of separation from the crosscut. Of the three types of test materials, in the case of series 3 (zinc rich primer), ΔE is ΔE <0, that is, E1 <E2. Since E1 ≦ E2 is satisfied, it is determined that the durability is better than the standards 1 and 2 of the reference material.

塩水噴霧試験でもクロスカットからの剥離幅が他の系列に比較して著しく小さくて、塗装耐食性の良いことが認められた。   In the salt spray test, it was confirmed that the peel width from the cross cut was remarkably small compared to other series, and the coating corrosion resistance was good.

系列1および系列2の場合は、基準材(基準1、2)を境に、ΔE>ΔE‘の範囲で、塗装耐久性が悪い判定される。塩水噴霧試験でもクロスカットからの剥離幅が大きくなって塗装耐食性の悪いことが認められた。上述したように、本発明による判定結果の有効性が塩水噴霧試験結果により実証された。   In the case of the series 1 and the series 2, the coating durability is determined to be poor in the range of ΔE> ΔE ′ with the reference material (references 1 and 2) as a boundary. In the salt spray test, it was confirmed that the peeling width from the cross cut was large and the coating corrosion resistance was poor. As described above, the effectiveness of the determination result according to the present invention was proved by the salt spray test result.

1a、1b 容器
2 試験片
3 参照電極
4 塩橋
5 電位差計
6 シール剤
7 リード線
8 保護管
9 測定面
10 コック
DESCRIPTION OF SYMBOLS 1a, 1b Container 2 Test piece 3 Reference electrode 4 Salt bridge 5 Potentiometer 6 Sealing agent 7 Lead wire 8 Protective tube 9 Measuring surface 10 Cock

Claims (2)

被覆鋼材の耐久性評価方法であって、湿性環境中で、試験材と基準材について被覆鋼材としての腐食電位と裸鋼材としての腐食電位をそれぞれ求め、(1)式を満たす場合は、試験材は基準材と比較して耐久性に優れるとし、(2)式を満たす場合は、試験材は基準材と比較して耐久性に劣ると判定することにより、これらの腐食電位比較して試験材の基準材に対する塗装の耐久性の良否を判定することを特徴とする被覆鋼材の耐久性判定方法。
ΔE≦ΔE´(1)
ΔE>ΔE´(2)
これらの式において、ΔE=E1−E2、ΔE´=E1´−E2´ (ただしΔE´>0)、E1:評価しようとする試験材の被覆鋼材としての腐食電位、E2:評価しようとする試験材における裸鋼材の腐食電位、E1´:被覆層の耐久性が既知の基準材の被覆鋼材としての腐食電位、E2´:被覆層の耐久性が既知の基準材における裸鋼材の腐食電位 E1<E2の場合には、この限りではなく耐久性に優れると判断する。
A durability evaluation method of coating steel, in moist environment, for the test material and the reference material obtains the corrosion potential of the corrosion potential and the bare steel as coated steel respectively, when satisfying the formula (1), the test material test and excellent durability as compared to the reference material, if it meets the expression (2), the test material by determining a poor durability in comparison with the reference material, and compares these corrosion potential A method for judging the durability of a coated steel material, comprising: judging whether the durability of coating with respect to a reference material is good or bad.
ΔE ≦ ΔE ′ (1)
ΔE> ΔE ′ (2)
In these equations, ΔE = E1−E2, ΔE ′ = E1′−E2 ′ (where ΔE ′> 0), E1: Corrosion potential of the test material to be evaluated as a coated steel material, E2: Test to be evaluated E1 ': Corrosion potential of the reference material with known durability of the coating layer as a coated steel material, E2': Corrosion potential of the bare steel material with reference material of which the durability of the coating layer is known E1 < In the case of E2, it is not limited to this and it is judged that the durability is excellent.
前記湿性環境は塩素イオン濃度0.1mol/L以上の水溶液で、前記試験材のうち被覆鋼材の場合は清浄化した鋼表面に10〜100μmの有機被覆層を形成した被覆鋼材でることを特徴とする請求項1記載の被覆鋼材の耐久性判定方法 The wet environment has a chlorine ion concentration of 0. In 0 1 mol / L or more aqueous solutions, for coating steel of the test material according to claim 1, wherein the Oh Rukoto coated steel material to form an organic coating layer of 10~100μm steel surface was cleaned A method for judging the durability of coated steel .
JP2010094604A 2010-04-16 2010-04-16 Durability judgment method for coated steel Expired - Fee Related JP5459035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094604A JP5459035B2 (en) 2010-04-16 2010-04-16 Durability judgment method for coated steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010094604A JP5459035B2 (en) 2010-04-16 2010-04-16 Durability judgment method for coated steel

Publications (2)

Publication Number Publication Date
JP2011226827A JP2011226827A (en) 2011-11-10
JP5459035B2 true JP5459035B2 (en) 2014-04-02

Family

ID=45042348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094604A Expired - Fee Related JP5459035B2 (en) 2010-04-16 2010-04-16 Durability judgment method for coated steel

Country Status (1)

Country Link
JP (1) JP5459035B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568732B (en) * 2015-01-09 2018-04-20 南京钢铁股份有限公司 A kind of experimental provision and test method of quick measure reinforcement corrosion speed
JP6565623B2 (en) * 2015-11-13 2019-08-28 日本製鉄株式会社 Method for determining the life of surface treated steel
CN105973795B (en) * 2016-06-17 2019-01-18 南京钢铁股份有限公司 A kind of simple combination electrode of Experiment in Erosive Electrochemistry

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2938758B2 (en) * 1994-07-08 1999-08-25 株式会社日立製作所 Method for evaluating corrosion resistance of metal material, method for designing highly corrosion-resistant alloy, method for diagnosing corrosion state of metal material, and method for operating plant
JP4245165B2 (en) * 2004-11-17 2009-03-25 明星工業株式会社 Anticorrosion coating for metal, anticorrosion coating, composite coating, and metal anticorrosion method

Also Published As

Publication number Publication date
JP2011226827A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
Katayama et al. Long-term atmospheric corrosion properties of thermally sprayed Zn, Al and Zn–Al coatings exposed in a coastal area
JP5206386B2 (en) Corrosion promotion test method and corrosion amount prediction method for organic coated steel for civil engineering
Kainuma et al. Corrosion protection of steel members using an Al-Zn base sacrificial anode and fiber sheet in an atmospheric environment
Simões et al. An environmentally acceptable primer for galvanized steel: formulation and evaluation by SVET
Yue et al. Corrosion prevention by applied coatings on aluminum alloys in corrosive environments
Nazarov et al. Scanning Kelvin Probe assessment of steel corrosion protection by marine paints containing Zn-rich primer
JP5510352B2 (en) Pre-corrosion cross-section prediction method for heavy anti-corrosion coated steel materials, strength deterioration prediction method for heavy anti-corrosion coating structures, management method for heavy anti-corrosion coating structures
JP5459035B2 (en) Durability judgment method for coated steel
Yang et al. Atmospheric corrosion protection method for corroded steel members using sacrificial anode of Al-based alloy
Kannan et al. Performance of a magnesium-rich primer on pretreated AA2024-T351 in selected laboratory and field environments: conversion coating pretreatments
McMahon et al. Mitigation of intergranular cracking in Al-Mg Alloys via Zn-based electrode potential control in sodium chloride solution
JP5413293B2 (en) Corrosion accelerated test method for heavy anti-corrosion coated steel
Schmidt et al. Corrosion protection assessment of barrier properties of several zinc-containing coating systems on steel in artificial seawater
Posdorfer et al. Corrosion protection by the organic metal polyaniline: results of immersion, Volta potential and impedance studies
Tomachuk et al. Anti-corrosion performance of Cr+ 6-free passivating layers applied on electrogalvanized steel
Arya et al. Service life of reinforced concrete (RC) systems with cement-polymer-composite (CPC) coated steel rebars
Ebrahimi et al. Galvanic corrosion risk assessment of bolt materials in contact with ASTM A1010 steel bridges
JP4343570B2 (en) Steel base material and base material adjustment method
JP5510358B2 (en) Method for determining anticorrosion property of anticorrosion coated steel material and method for producing anticorrosion coated steel material
JP5742259B2 (en) Coated steel for marine / river environment and manufacturing method thereof
Callaghan Direct to metal anti-corrosion coatings
JP3165263U (en) Steel corrosion protection structure
Wang et al. Assessing performance of painted carbon and weathering steels in an industrial atmosphere
Knudsen et al. Repair coatings for TSA
Syrek et al. Thermally sprayed coatings for corrosion protection of offshore structures operating in submerged and splash zone conditions

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R150 Certificate of patent or registration of utility model

Ref document number: 5459035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees