KR102142774B1 - High strength steel plate for structure with a good seawater corrosion resistive property and method of manufacturing thereof - Google Patents

High strength steel plate for structure with a good seawater corrosion resistive property and method of manufacturing thereof Download PDF

Info

Publication number
KR102142774B1
KR102142774B1 KR1020180136846A KR20180136846A KR102142774B1 KR 102142774 B1 KR102142774 B1 KR 102142774B1 KR 1020180136846 A KR1020180136846 A KR 1020180136846A KR 20180136846 A KR20180136846 A KR 20180136846A KR 102142774 B1 KR102142774 B1 KR 102142774B1
Authority
KR
South Korea
Prior art keywords
less
strength
steel
present
structural steel
Prior art date
Application number
KR1020180136846A
Other languages
Korean (ko)
Other versions
KR20200053342A (en
Inventor
박진호
이주연
유승호
김봉주
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020180136846A priority Critical patent/KR102142774B1/en
Priority to CN201980073445.3A priority patent/CN112969809B/en
Priority to EP19883204.0A priority patent/EP3878996A4/en
Priority to PCT/KR2019/015124 priority patent/WO2020096398A1/en
Priority to JP2021524195A priority patent/JP7332692B2/en
Priority to US17/291,823 priority patent/US20210388458A1/en
Publication of KR20200053342A publication Critical patent/KR20200053342A/en
Application granted granted Critical
Publication of KR102142774B1 publication Critical patent/KR102142774B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 중량%로, C: 0.03% 이상 0.1% 미만, Si: 0.1% 이상 0.8% 미만, Mn: 0.3% 이상 1.5% 미만, Cr: 0.5% 이상 1.5% 미만, Cu: 0.1% 이상 0.5% 미만, Al: 0.01% 이상 0.08% 미만, Ti: 0.01% 이상 0.1% 미만, Ni: 0.05% 이상 0.1% 미만, Nb: 0.002% 이상 0.07% 미만, P: 0.03% 이하, S: 0.02% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, 미세조직이, 면적분율로, 베이나이트 20% 이상, 폴리고날 페라이트 및 침상 페라이트가 합계로 80% 미만, 그 외 기타상으로서 펄라이트 및 MA가 10% 미만인 고강도 구조용강 및 그 제조방법을 제공한다.The present invention is by weight, C: 0.03% or more and less than 0.1%, Si: 0.1% or more and less than 0.8%, Mn: 0.3% or more and less than 1.5%, Cr: 0.5% or more and less than 1.5%, Cu: 0.1% or more and 0.5% Less than, Al: 0.01% or more and less than 0.08%, Ti: 0.01% or more and less than 0.1%, Ni: 0.05% or more and less than 0.1%, Nb: 0.002% or more and less than 0.07%, P: 0.03% or less, S: 0.02% or less, High-strength structure containing residual Fe and unavoidable impurities, microstructure, area fraction, bainite 20% or more, polygonal ferrite and acicular ferrite in total less than 80%, pearlite and MA as other phases less than 10% Provided is a molten steel and its manufacturing method.

Description

내해수 특성이 우수한 고강도 구조용강 및 그 제조방법{HIGH STRENGTH STEEL PLATE FOR STRUCTURE WITH A GOOD SEAWATER CORROSION RESISTIVE PROPERTY AND METHOD OF MANUFACTURING THEREOF}High-strength structural steel with excellent seawater resistance and its manufacturing method{HIGH STRENGTH STEEL PLATE FOR STRUCTURE WITH A GOOD SEAWATER CORROSION RESISTIVE PROPERTY AND METHOD OF MANUFACTURING THEREOF}

본 발명은 해안가의 건축 구조용강 또는 선박 내부의 밸러스트 탱크 및 관련 부속기기 등과 같이 해수에 의한 부식 가속화 환경에서 우수한 부식 저항성을 갖는 구조용강 및 그 제조방법에 관한 것이다.The present invention relates to structural steel having excellent corrosion resistance in a corrosion-accelerated environment caused by seawater, such as a structural structural steel on the shore or a ballast tank and related accessories inside a ship, and a manufacturing method thereof.

금속의 부식은 염분과 같이 물에 잘 녹는 이온형태의 무기물질이 많을 경우 촉진되는 것이 일반적이며, 특히 염소 이온(Cl-)과 같이 부식을 촉진시키는 성질이 있는 이온이 있을 경우 매우 빠른 부식이 일어난다. 따라서 평균 3.5% NaCl을 포함하고 있는 해수환경에서 금속은 매우 빠른 속도로 부식이 일어나기 때문에, 해수에 인접한 구조물, 해수 환경에서 운항하는 선박 등 다양한 조건에서 부식이 문제되고 있다.Corrosion of metals is generally facilitated if there are many soluble ions in the form of an inorganic substance in water, such as salt, in particular chloride ions - very rapid erosion takes place if there are ions which have properties that promote corrosion, such as (Cl) . Therefore, in a seawater environment containing an average of 3.5% NaCl, corrosion occurs at a very fast rate in metal, and thus, corrosion is problematic in various conditions such as structures adjacent to seawater and ships operating in the seawater environment.

이에 따라, 여러 종류의 방식처리로 부식을 억제하는 기술이 제안되고 있다. 그러나 이러한 방식처리의 방식연한은 20~30년 수준에 불과하기 때문에 소재 자체의 내식성이 확보되지 않을 경우 끊임없이 유지보수 비용이 발생한다. 즉, 구조물의 내구성을 50년 이상 장기간으로 증대시키고, 구조물 운용기간 중 각종 방식비용을 저감하기 위해서는 소재 자체의 내식성 강화가 필수적으로 요구된다.Accordingly, a technique for suppressing corrosion by various types of anticorrosive treatments has been proposed. However, since the anti-corrosion period of such anti-corrosion treatment is only 20 to 30 years, maintenance costs are constantly incurred if the corrosion resistance of the material itself is not secured. That is, in order to increase the durability of the structure for a long period of 50 years or more and to reduce various anti-corrosion costs during the operation period of the structure, it is essential to strengthen the corrosion resistance of the material itself.

강재의 내해수성을 향상시키는 원소 중 가장 효과적인 원소로서, 크롬(Cr)과 구리(Cu)가 있다. 크롬과 구리는 부식 환경에 따라서 다른 역할을 하며, 적합한 비율을 첨가하면 해수에 의한 부식 가속화 환경에서도 우수한 내식 효과를 발휘할 수 있다. 그러나 크롬의 경우 산성환경에서 큰 효과를 발휘하지 못하고, 구리의 경우 주조 과정에서 주조균열을 유발하기 때문에, 고가의 니켈을 일정수준 이상으로 첨가해야 한다는 문제점이 있다. 그러나 강산 이외의 대부분의 환경에서 크롬은 내식성 향상 효과가 있으며, 최근 연속주조기술의 발전으로 구리 첨가강의 주조결함 방지를 위한 최소 니켈 첨가량이 감소하고 있고, 이에 고가의 니켈 첨가량을 줄여 제품의 원가를 감소시키는 것이 가능하게 되었다.Among the elements that improve the water resistance of steel materials, chromium (Cr) and copper (Cu) are the most effective elements. Chromium and copper play different roles depending on the corrosive environment, and adding an appropriate ratio can exert excellent corrosion resistance even in an environment in which corrosion is accelerated by seawater. However, since chromium does not exert a great effect in an acidic environment and copper causes casting cracking during the casting process, there is a problem in that expensive nickel must be added to a certain level or more. However, in most environments other than strong acid, chromium has an effect of improving corrosion resistance, and the recent development of continuous casting technology has reduced the minimum amount of nickel added to prevent casting defects in copper-added steel, thereby reducing the cost of products by reducing the amount of expensive nickel added. It became possible to reduce.

한편 내해수 특성이 우수한 강재와 관련해서는 종래 기술로서 특허문헌 1, 2 및 3 이 제안된바 있다. 특허문헌 1 은 성분계 및 제조조건을 제어하여 강판의 미세조직을 제어하는 것을 제시하고 있으나, 저온조직 함량이 적을 경우(20%미만) 강도 확보에 어려움이 있으며, Ni 함량을 0.05% 이하로 규정하여 주조 시 주조결함이 다량 발생할 우려가 있다. 특허문헌 2 의 경우 Al 이 0.1% 이상 첨가되어 제강 공정에서 조대한 산화성 개재물이 형성되고 압연 시 개재물이 부서져 길게 늘어서는 연신 개재물이 발생하고 그로 인해 공공 형성이 조장되어 국부부식 저항성이 저해되는 문제가 있다. 또한 특허문헌 3 의 경우와 같이 W 가 첨가될 경우 연주성 결함 발생의 우려와 함께 조대 석출물 생성으로 인한 갈바닉 부식 우려가 있으며, 공냉으로 인한 조직 조대화로 강도 하락의 우려가 있다. On the other hand, with respect to steel materials having excellent seawater resistance, Patent Documents 1, 2 and 3 have been proposed as prior art. Patent Document 1 proposes to control the microstructure of the steel sheet by controlling the component system and manufacturing conditions, but it is difficult to secure the strength when the low-temperature tissue content is low (less than 20%), and the Ni content is regulated to be 0.05% or less. When casting, there is a possibility that casting defects may occur. In the case of patent document 2, a 0.1% or more Al is added to form a coarse oxidative inclusion in the steelmaking process, and an elongated stretch inclusion is generated when the inclusion is broken during rolling, thereby causing formation of voids, thereby inhibiting local corrosion resistance. have. In addition, as in the case of Patent Document 3, when W is added, there is a fear of galvanic corrosion due to generation of coarse precipitates along with the fear of occurrence of performance defects, and there is a fear of strength drop due to coarsening of the tissue due to air cooling.

따라서 특허문헌 1 내지 3 에 따른 구조용강에서는 자체적으로 해수 내식성과 강도를 확보하기에 어려움이 있다.Therefore, in the structural steels according to Patent Documents 1 to 3, it is difficult to secure seawater corrosion resistance and strength by itself.

한국 공개특허공보 제10-2011-0076148호Korean Patent Publication No. 10-2011-0076148 한국 공개특허공보 제10-2011-0065949호Korean Patent Publication No. 10-2011-0065949 한국 공개특허공보 제10-2004-0054272호Korean Patent Publication No. 10-2004-0054272

본 발명은 성분계 및 제조조건의 최적화를 통해 강판 표면의 부식특성 및 미세조직을 제어함으로써, 강판의 강도 특성을 향상시키고 부식속도를 최소화하여 강판 자체의 해수환경 내부식 특성이 우수한 강판 및 이를 제조하는 방법을 제공하고자 한다.The present invention improves the strength properties of the steel sheet and minimizes the corrosion rate by controlling the corrosion properties and microstructure of the steel sheet surface through optimization of the component system and manufacturing conditions, thereby producing steel sheets having excellent corrosion resistance properties in the seawater environment of the steel sheets and manufacturing them. I want to provide a method.

한편, 본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 과제는 본 명세서의 내용 전반으로부터 이해될 수 있을 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 부가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.In addition, the subject of this invention is not limited to the above-mentioned content. The subject matter of the present invention will be understood from the entire contents of the present specification, and those skilled in the art to which the present invention pertains will have no difficulty in understanding the additional subject matter of the present invention.

본 발명의 일 측면에 따른 고강도 구조용강은 중량%로, C: 0.03% 이상 0.1% 미만, Si: 0.1% 이상 0.8% 미만, Mn: 0.3% 이상 0.9% 이하, Cr: 1.2% 이상 1.5% 미만, Cu: 0.1% 이상 0.5% 미만, Al: 0.01% 이상 0.08% 미만, Ti: 0.01% 이상 0.1% 미만, Ni: 0.05% 이상 0.1% 미만, Nb: 0.002% 이상 0.07% 미만, P: 0.03% 이하, S: 0.02% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, 미세조직이, 면적분율로, 베이나이트 20% 이상, 폴리고날 페라이트 및 침상 페라이트가 합계로 80% 미만, 그 외 기타상으로서 펄라이트 및 MA가 10% 미만이다.High-strength structural steel according to an aspect of the present invention, by weight, C: 0.03% or more and less than 0.1%, Si: 0.1% or more and less than 0.8%, Mn: 0.3% or more and 0.9% or less, Cr: 1.2% or more and less than 1.5% , Cu: 0.1% or more and less than 0.5%, Al: 0.01% or more and less than 0.08%, Ti: 0.01% or more and less than 0.1%, Ni: 0.05% or more and less than 0.1%, Nb: 0.002% or more and less than 0.07%, P: 0.03% Hereinafter, S: 0.02% or less, including residual Fe and unavoidable impurities, the microstructure is an area fraction, 20% or more of bainite, polygonal ferrite and acicular ferrite are less than 80% in total, pearlite as other phases And MA is less than 10%.

상기 고강도 구조용강에서 C 는 0.03% 이상 0.09% 미만으로 포함될 수 있다.In the high-strength structural steel, C may be included in an amount of 0.03% or more and less than 0.09%.

상기 고강도 구조용강에서 Si 는 0.2% 이상 0.8% 미만으로 포함될 수 있다.In the high-strength structural steel, Si may be included in 0.2% or more and less than 0.8%.

상기 고강도 구조용강에서 Cu 는 0.1% 이상 0.45% 미만으로 포함될 수 있다.In the high-strength structural steel, Cu may be included in an amount of 0.1% or more and less than 0.45%.

상기 고강도 구조용강은 500MPa 이상의 항복강도, 600MPa 이상의 인장강도를 가질 수 있다.The high-strength structural steel may have a yield strength of 500 MPa or more, and a tensile strength of 600 MPa or more.

본 발명의 다른 일 측면에 따른 고강도 구조용강의 제조방법은 중량%로, C: 0.03% 이상 0.1% 미만, Si: 0.1% 이상 0.8% 미만, Mn: 0.3% 이상 0.9% 이하, Cr: 1.2% 이상 1.5% 미만, Cu: 0.1% 이상 0.5% 미만, Al: 0.01% 이상 0.08% 미만, Ti: 0.01% 이상 0.1% 미만, Ni: 0.05% 이상 0.1% 미만, Nb: 0.002% 이상 0.07% 미만, P: 0.03% 이하, S: 0.02% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 1000℃ 이상 1200℃ 이하의 온도에서 재가열하는 단계; 재가열한 상기 슬라브를 750℃ 이상 950℃ 이하의 마무리 압연 온도로 열간압연하는 단계; 및 압연된 강판을 750℃ 이상의 냉각개시온도에서 400~700℃의 냉각종료온도까지 10℃/sec 이상의 냉각 속도로 냉각하는 단계; 를 포함한다.Method of manufacturing a high-strength structural steel according to another aspect of the present invention is by weight, C: 0.03% or more and less than 0.1%, Si: 0.1% or more and less than 0.8%, Mn: 0.3% or more and 0.9% or less, Cr: 1.2% or more Less than 1.5%, Cu: 0.1% or more and less than 0.5%, Al: 0.01% or more and less than 0.08%, Ti: 0.01% or more and less than 0.1%, Ni: 0.05% or more and less than 0.1%, Nb: 0.002% or more and less than 0.07%, P : 0.03% or less, S: 0.02% or less, re-heating the slab containing the residual Fe and unavoidable impurities at a temperature of 1000°C or more and 1200°C or less; Hot rolling the reheated slab to a finishing rolling temperature of 750°C or higher and 950°C or lower; And cooling the rolled steel sheet at a cooling rate of 10° C./sec or more from a cooling start temperature of 750° C. or higher to a cooling end temperature of 400 to 700° C.; It includes.

본 발명에 따르면 해수 분위기에서 강판 자체의 내식성이 향상되고, 500MPa 이상의 항복강도, 600MPa 이상의 인장강도를 가지는 강도 특성이 우수한 구조용 강판을 제공할 수 있다.According to the present invention, the corrosion resistance of the steel sheet itself is improved in a seawater atmosphere, and a structural steel sheet having excellent strength characteristics having a yield strength of 500 MPa or more and a tensile strength of 600 MPa or more can be provided.

본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.The various and beneficial advantages and effects of the present invention are not limited to the above, and will be more readily understood in the course of describing specific embodiments of the present invention.

도 1 은 발명강을 현미경으로 관찰한 사진으로서, (a) 는 표면, (b) 는 두께방향 1/4t 부분, (c) 는 두께방향 1/2t 부분을 관찰한 사진이다.1 is a photograph of the invention steel observed by a microscope, (a) is a surface, (b) is a thickness direction 1/4t portion, (c) is a thickness direction 1/2t portion observation.

이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한 본 발명의 실시 형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공하는 것이다.Hereinafter, preferred embodiments of the present invention will be described. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. In addition, embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.

본 발명자들은 구조용강 자체의 내식성을 향상시키기 위한 방법에 대해 깊이 연구하였고, 그 결과 크롬, 구리 등의 함량을 적절히 제어하고, 재가열 온도, 마무리 압연 온도, 냉각종료 온도, 냉각속도 등의 제조조건을 최적화함으로써 미세조직을 제어하면, 우수한 내해수 특성 및 강도 특성을 확보할 수 있음을 확인하고, 본 발명을 완성하였다.The present inventors have studied in depth the method for improving the corrosion resistance of the structural steel itself, and as a result, appropriately control the content of chromium and copper, and manufacture conditions such as reheating temperature, finish rolling temperature, cooling end temperature, cooling rate, etc. By controlling the microstructure by optimizing, it was confirmed that excellent seawater resistance and strength properties could be secured, and the present invention was completed.

이하 본 발명의 일 측면에 따른 고강도 구조용강에 대하여 자세히 설명한다.Hereinafter, a high-strength structural steel according to an aspect of the present invention will be described in detail.

[고강도 구조용강][High strength structural steel]

먼저 본 발명의 일 측면에 따른 고강도 구조용강의 성분계에 대해 설명한다. 본 발명의 일 측면에 따른 고강도 구조용강은 중량%로, C: 0.03% 이상 0.1% 미만, Si: 0.1% 이상 0.8% 미만, Mn: 0.3% 이상 0.9% 이하, Cr: 1.2% 이상 1.5% 미만, Cu: 0.1% 이상 0.5% 미만, Al: 0.01% 이상 0.08% 미만, Ti: 0.01% 이상 0.1% 미만, Ni: 0.05% 이상 0.1% 미만, Nb: 0.002% 이상 0.07% 미만, P: 0.03% 이하, S: 0.02% 이하, 잔부 Fe 및 불가피한 불순물을 포함한다. 이하 각 합금원소의 단위는 중량%이다.First, a component system of high strength structural steel according to an aspect of the present invention will be described. High-strength structural steel according to an aspect of the present invention, by weight, C: 0.03% or more and less than 0.1%, Si: 0.1% or more and less than 0.8%, Mn: 0.3% or more and 0.9% or less, Cr: 1.2% or more and less than 1.5% , Cu: 0.1% or more and less than 0.5%, Al: 0.01% or more and less than 0.08%, Ti: 0.01% or more and less than 0.1%, Ni: 0.05% or more and less than 0.1%, Nb: 0.002% or more and less than 0.07%, P: 0.03% Hereinafter, S: 0.02% or less, the balance Fe and unavoidable impurities are included. Hereinafter, the unit of each alloy element is% by weight.

탄소(C): 0.03% 이상 0.1% 미만Carbon (C): 0.03% or more but less than 0.1%

C 는 강도를 향상시키기 위해 첨가되는 원소로써, 그 함량을 증가시키면 소입성을 향상시켜 강도를 향상시킬 수 있지만, 첨가량이 증가함에 따라 전면부식 저항성을 저해하고, 탄화물 등의 석출을 조장하므로 국부부식 저항성에도 일부 영향을 미친다. 전면부식 및 국부부식 저항성 향상을 위해서는 C 함량을 줄여야 하지만 그 함량이 0.03% 미만이면 구조용강 용도 재료로서의 충분한 강도를 확보하기가 어렵고, 0.1% 이상일 경우 용접성을 열화시켜 용접 구조물용강으로 바람직하지 않다. 따라서 본 발명에서 상기 C 함량을 0.03% 이상 0.1% 미만으로 제한할 수 있다. 한편 내식성의 관점에서 C 함량이 0.09% 미만일 수 있으며, 경우에 따라서는 주조균열을 더욱 향상시키고 탄소당량을 줄이기 위해서 상기 C 함량은 0.08% 미만일 수 있다.C is an element added to improve the strength, and if its content is increased, the quenching property can be improved to improve the strength, but as the amount added increases, the corrosion resistance of the front surface is inhibited and precipitation of carbides and the like is promoted. Resistance also has some effect. In order to improve the resistance to front corrosion and local corrosion, the C content must be reduced, but if the content is less than 0.03%, it is difficult to secure sufficient strength as a structural steel use material, and when it is 0.1% or more, weldability is deteriorated, making it undesirable as a steel for welding structures. Therefore, in the present invention, the C content may be limited to 0.03% or more and less than 0.1%. Meanwhile, in terms of corrosion resistance, the C content may be less than 0.09%, and in some cases, the C content may be less than 0.08% in order to further improve casting cracking and reduce carbon equivalent.

실리콘(Si): 0.1% 이상 0.8% 미만Silicon (Si): 0.1% or more but less than 0.8%

Si 는 탈산제로 작용할 뿐만 아니라 강의 강도를 증가시키는 역할을 발휘하는 원소로서, 그 효과가 발휘되기 위해서는 0.1% 이상 필요하다. 또한, Si 는 전면부식 저항성의 향상에 기여하기 때문에 함량을 증가시키는 것이 유리하나, 상기 Si의 함량이 0.8% 이상일 경우 인성 및 용접성을 저해하고 압연 시 스케일의 박리를 어렵게 하여 스케일에 의한 표면결함 등을 유발한다. 따라서 본 발명에서 상기 Si 함량을 0.1% 이상 0.8% 미만으로 제한할 수 있다. 한편 경우에 따라서는 내식성 향상을 위해 Si 함량을 0.2% 이상으로 제한할 수 있다.Si is an element that not only acts as a deoxidizing agent but also exerts a role of increasing the strength of steel, and is required at least 0.1% in order to exhibit its effect. In addition, Si is advantageous to increase the content because it contributes to the improvement of the corrosion resistance of the front surface, but when the Si content is more than 0.8%, toughness and weldability are inhibited and surface peeling due to scale is difficult due to difficulty in peeling of the scale during rolling. Causes Therefore, in the present invention, the Si content may be limited to 0.1% or more and less than 0.8%. Meanwhile, in some cases, in order to improve corrosion resistance, the Si content may be limited to 0.2% or more.

망간(Mn): 0.3% 이상 0.9% 이하Manganese (Mn): 0.3% or more and 0.9% or less

Mn 은 인성을 저하시키지 않으면서 고용강화를 통해 강도를 상승시키는데 유효한 성분이다. 그러나 과량 첨가할 경우, 부식 반응 시 강재 표면의 전기화학 반응 속도를 상승시킴으로써 내식성을 하락시키기도 한다. 상기 Mn 이 0.3% 미만으로 첨가될 경우에는 구조용 강재의 내구성 확보가 어려운 문제가 있다. 반면, 상기 Mn 함량이 증가하면 소입성이 증가하여 강도가 증가되나, 0.9% 초과로 첨가되면 제강공정에서 슬라브 주조 시 두께 중심부에서 편석부가 크게 발달되고, 용접성이 저하되며, 이와 더불어 강판 표면의 내식성을 하락시키는 문제점이 있다. 따라서 본 발명에서 상기 Mn 함량을 0.3% 이상 0.9% 이하로 제한하는 것이 바람직하다.Mn is an effective component to increase strength through solid solution strengthening without lowering toughness. However, when added in excess, corrosion resistance may be reduced by increasing the electrochemical reaction rate of the steel surface during corrosion reaction. When the Mn is added to less than 0.3%, there is a problem that it is difficult to secure the durability of the structural steel. On the other hand, if the Mn content increases, the quenching property increases and the strength increases, but if it is added more than 0.9%, the segregation part in the center of thickness is greatly developed during slab casting in the steelmaking process, and the weldability decreases. There is a problem of deteriorating corrosion resistance. Therefore, in the present invention, it is preferable to limit the Mn content to 0.3% or more and 0.9% or less.

크롬(Cr): 1.2% 이상 1.5% 미만Chromium (Cr): 1.2% or more but less than 1.5%

Cr 은 부식환경에서 강재 표면에 Cr 을 포함한 산화막을 형성하여 내식성을 상승시키는 원소이다. 해수 환경에서 Cr 첨가에 따른 내식성 효과가 충분히 나타나기 위해서는 1.2% 이상 함유되어야 한다. 그러나, 상기 Cr 이 1.5% 이상으로 과도하게 함유되면 인성과 용접성에 악영향을 미치므로, 그 함량을 1.2% 이상 1.5% 미만으로 제한하는 것이 바람직하다.Cr is an element that increases corrosion resistance by forming an oxide film containing Cr on the surface of a steel in a corrosive environment. In the seawater environment, it should be contained at least 1.2% in order to sufficiently exhibit the corrosion resistance effect by adding Cr. However, if the Cr is excessively contained in 1.5% or more, it adversely affects toughness and weldability, so it is preferable to limit the content to 1.2% or more and less than 1.5%.

구리(Cu): 0.1% 이상 0.5% 미만Copper (Cu): 0.1% or more but less than 0.5%

Cu 는 Ni 과 함께 0.1% 이상 함유시키면 Fe 의 용출을 지연시키므로 전면부식 및 국부부식 저항성 향상에 유효하다. 그러나 상기 Cu 함량이 0.5% 이상 첨가되면 슬라브 제조 시 액체상태의 Cu 가 입계로 녹아 들어가 열간가공 시 크랙을 발생시키는 핫 쇼트니스(Hot Shortness) 현상을 유발하므로, 본 발명에서 Cu 함량은 0.1% 이상 0.5% 미만으로 제한하는 것이 바람직하다. 한편 슬라브 제조 시 발생되는 표면균열은 C, Ni, Mn 함유량과 서로 상호적으로 작용하므로 각 원소의 함유량에 따라 표면균열의 발생빈도는 달라질 수 있으나, 해당 원소들의 함유량과 상관없이 표면 균열 발생 가능성을 최소화하기 위해서는 Cu 함유량을 0.45% 미만으로 하는 것이 보다 바람직하다.When Cu is contained in an amount of 0.1% or more together with Ni, the elution of Fe is delayed, and thus it is effective in improving the resistance to front corrosion and local corrosion. However, when the Cu content is added more than 0.5%, when the slab is manufactured, liquid Cu melts into the grain boundary and causes a hot shortness phenomenon that causes cracks during hot working, so the Cu content in the present invention is 0.1% or more. It is preferred to limit it to less than 0.5%. On the other hand, since the surface cracks generated during slab production interact with each other with the C, Ni, and Mn contents, the frequency of surface cracking may vary depending on the content of each element, but the possibility of surface cracking is generated regardless of the content of the elements. In order to minimize, it is more preferable to make the Cu content less than 0.45%.

알루미늄(Al): 0.01% 이상 0.08% 미만Aluminum (Al): 0.01% or more but less than 0.08%

Al 은 탈산을 위하여 첨가되는 원소로, 강 중 N 과 반응하여 AlN을 형성하여 오스테나이트 결정립을 미세화시켜 인성을 향상시키는 원소이다. 상기 Al 은 충분한 탈산을 위해서 용해 상태에서 0.01% 이상 함유되는 것이 바람직하다. 반면 Al 이 0.08% 이상으로 과도하게 함유되면 제강공정에서 조대한 산화물에 개재물을 형성하고, 알루미늄 산화물(Al oxide)계 특징에 따라 압연 시 부서져 길게 늘어서는 연신 개재물을 형성한다. 이러한 연신 개재물의 형성은 개재물 주변에 공공을 형성을 조장하고 이러한 공공은 국부부식 개시점으로 작용하므로 국부부식 저항성을 저해하는 역할을 한다. 따라서 본 발명에서 Al 함량은 0.01% 이상 0.08% 미만으로 제한하는 것이 바람직하다.Al is an element added for deoxidation, and is an element that reacts with N in steel to form AlN to refine austenite grains to improve toughness. The Al is preferably contained at least 0.01% in the dissolved state for sufficient deoxidation. On the other hand, if Al is excessively contained in an amount of 0.08% or more, an inclusion is formed in a coarse oxide in the steelmaking process, and a stretched inclusion that is broken and elongated during rolling is formed according to the characteristics of the aluminum oxide system. The formation of such stretched inclusions promotes the formation of cavities around the inclusions, and these cavities act as a starting point for local corrosion, thereby inhibiting local corrosion resistance. Therefore, in the present invention, it is preferable to limit the Al content to 0.01% or more and less than 0.08%.

티타늄(Ti): 0.01% 이상 0.1% 미만Titanium (Ti): 0.01% or more but less than 0.1%

Ti 는 0.01% 이상 첨가 시 강 중에서 탄소와 결합하여 TiC를 형성함으로서 석출강화 효과에 의하여 강도를 향상시키는 역할을 한다. 반면 상기 Ti 함량이 0.1% 이상으로 첨가되는 경우에는 그 함량 증가 대비 강도 향상 효과가 크지 않다. 따라서 본 발명에서 상기 Ti 함량은 0.01% 이상 0.1% 미만으로 제한할 수 있다.When Ti is added at 0.01% or more, TiC is formed by bonding with carbon in steel to improve strength by precipitation strengthening. On the other hand, when the Ti content is added at 0.1% or more, the effect of improving strength compared to the increase of the content is not significant. Therefore, in the present invention, the Ti content may be limited to 0.01% or more and less than 0.1%.

니켈(Ni): 0.05% 이상 0.1% 미만Nickel (Ni): 0.05% or more but less than 0.1%

Ni 은 Cu 와 마찬가지로 0.05% 이상 함유시키면 전면부식 및 국부부식 저항성 향상에 유효하다. 또한 Cu 와 함께 첨가하면 Cu 와 반응하여 융점이 낮은 Cu 상의 생성을 억제하여 핫 쇼트니스를 억제하는 효과가 있어서, 대부분의 Cu 첨가강에서는 Ni 을 Cu 함량의 1배 이상으로 첨가하는 것이 일반적이나, 본 발명에서와 같이 C, Mn 등 탄소당량 관련 원소의 함량이 낮고 Cr 함량이 클 경우 Cu 함량의 절반 이하로 넣어도 쇼트니스를 충분히 방지할 수 있으며, Ni 이 고가의 원소이므로 상대적 투입효과를 고려하여 Ni 함량의 상한을 0.1% 미만으로 제한하는 것이 바람직하다.Ni is effective in improving the corrosion resistance of the entire surface and the local corrosion when 0.05% or more is contained like Cu. In addition, when added together with Cu, it reacts with Cu to suppress the formation of a Cu phase with a low melting point, thereby suppressing hot shortness. In most Cu-added steels, it is common to add Ni at least 1 times the Cu content. As in the present invention, when the content of elements related to carbon equivalents such as C and Mn is low and the Cr content is large, even shorter than half of the Cu content can sufficiently prevent shortness, and since Ni is an expensive element, considering the relative input effect It is desirable to limit the upper limit of the Ni content to less than 0.1%.

니오븀(Nb): 0.002% 이상 0.07% 미만Niobium (Nb): 0.002% or more but less than 0.07%

Nb 는 Ti 과 같이 강 중에서 탄소와 결합하여 NbC를 형성함으로서 석출강화 역할을 하는 원소이며, 0.002% 이상 첨가 시 효과적으로 강도를 향상시킨다. 다만 그 함량이 0.07% 이상 첨가되는 경우에는 그 함량 증가 대비 강도 향상 효과가 그리 크지 않다. 따라서 본 발명에서 상기 Nb 함량은 0.002% 이상 0.07% 미만으로 제한하는 것이 바람직하다.Nb is an element that plays a role of precipitation strengthening by forming NbC in combination with carbon in steel, such as Ti, and effectively improves strength when added at 0.002% or more. However, when the content is added more than 0.07%, the effect of improving the strength compared to the increase of the content is not so great. Therefore, in the present invention, the Nb content is preferably limited to 0.002% or more and less than 0.07%.

인(P): 0.03% 이하Phosphorus (P): 0.03% or less

P 는 강 내에서 불순물로 존재하며, 그 함량이 0.03%를 초과하여 첨가되면 용접성이 현저히 저하될 뿐만 아니라 인성이 열화된다. 따라서 P 함량을 0.03% 이하로 제한하는 것이 바람직하다. 한편 상기 P 는 불순물이어서 그 함량을 저감할수록 유리하므로 그 하한은 별도로 한정하지 않을 수 있다.P is present as an impurity in the steel, and when its content is added in excess of 0.03%, the weldability is remarkably lowered and toughness deteriorates. Therefore, it is desirable to limit the P content to 0.03% or less. On the other hand, since P is an impurity, the lower the content, the more advantageous, so the lower limit may not be limited.

황(S): 0.02% 이하Sulfur (S): 0.02% or less

S 는 강 내에서 불순물로 존재하며 그 함량이 0.02%를 초과하면 강의 연성, 충격인성 및 용접성을 열화시키는 문제점이 있다. 따라서 본 발명에서는 S 함량을 0.02% 이하로 제한하는 것이 바람직하다. 특히, S 는 Mn 과 반응하여 MnS 와 같이 연신 개재물을 형성하기 쉽고, 연신 개재물 양끝단에 존재하는 공공은 국부부식 개시점이 될 수 있으므로, 그 함량을 0.01% 이하로 제한하는 것이 보다 바람직하다. 한편 상기 S 는 불순물이어서 그 함량을 저감할수록 유리하므로 그 하한은 별도로 한정하지 않을 수 있다.S is present as an impurity in the steel, and when its content exceeds 0.02%, there is a problem of deteriorating the ductility, impact toughness and weldability of the steel. Therefore, in the present invention, it is preferable to limit the S content to 0.02% or less. Particularly, it is more preferable to limit the content to 0.01% or less, because S reacts with Mn to easily form a stretched inclusion, such as MnS, and the pores present at both ends of the stretched inclusion can be local corrosion starting points. On the other hand, since S is an impurity, the lower the content, the more advantageous, so the lower limit may not be limited.

본 발명의 고강도 구조용강은 상기 언급된 합금원소 이외에 나머지는 철(Fe) 성분이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수 없다. 이들 불순물들은 통상의 기술자라면 누구라도 알 수 있는 것이기 때문에, 그 모든 내용을 상세히 언급하지 않는다.The high-strength structural steel of the present invention is an iron (Fe) component other than the above-mentioned alloying elements. However, in the normal manufacturing process, impurities that are not intended from the raw material or the surrounding environment can be inevitably mixed, and therefore cannot be excluded. Since these impurities are known to anyone skilled in the art, they are not described in detail.

한편 본 발명의 일 측면에 따른 고강도 구조용강은, 미세조직으로서 면적분율로, 베이나이트 20% 이상, 폴리고날 페라이트 및 침상 페라이트가 합계로 80% 미만, 그 외 기타 상으로서 펄라이트 및 MA(도상 마르텐사이트)가 10% 미만일 수 있다.On the other hand, the high-strength structural steel according to one aspect of the present invention is a microstructure with an area fraction of 20% or more of bainite, less than 80% of polygonal ferrite and acicular ferrite in total, and pearlite and MA as other phases. Site) may be less than 10%.

고강도 구조용강 재료로 사용하기 위해서는 최소 500Mpa, 보편적으로 600Mpa 이상의 후물재 강도를 확보해야 하며, 이를 위해 미세조직으로 베이나이트 20% 이상 및 그 외 폴리고날 및/또는 침상 페라이트 위주의 조직을 구성하였다. 또한 기타 상인 펄라이트 및 MA의 경우 10% 이상 포함될 경우 본 발명에 따른 구조용강이 사용되는 환경에서 저온인성 및 내식성이 부족할 가능성이 있기 때문에 상한을 10% 미만으로 제한하였다.In order to use it as a high-strength structural steel material, it is necessary to secure a strength of at least 500Mpa, typically 600Mpa or more, and for this purpose, 20% or more of bainite as a microstructure and other polygonal and/or acicular ferrite-oriented structures were constructed. In addition, the upper limit was limited to less than 10% because other merchants, pearlite and MA, may have low temperature toughness and corrosion resistance in the environment in which the structural steel according to the present invention is used when 10% or more is included.

본 발명의 일 측면에 따른 고강도 구조용강은 상술한 성분계 및 미세조직을 만족함으로써 500MPa 이상의 항복강도, 600MPa 이상의 인장강도를 가질 수 있다.High-strength structural steel according to an aspect of the present invention can have a yield strength of 500 MPa or more and a tensile strength of 600 MPa or more by satisfying the above-described component system and microstructure.

다음으로 본 발명의 다른 일 측면에 따른 고강도 구조용강의 제조방법에 대하여 자세히 설명한다.Next, a method of manufacturing high strength structural steel according to another aspect of the present invention will be described in detail.

[고강도 구조용강의 제조방법][Method of manufacturing high strength structural steel]

본 발명의 다른 일 측면에 따른 고강도 구조용강의 제조방법은 슬라브 재가열 - 열간압연 - 냉각의 과정으로 이루어져 있으며, 각 제조단계별 상세한 조건은 아래와 같다.The method for manufacturing high-strength structural steel according to another aspect of the present invention consists of slab reheating-hot rolling-cooling, and detailed conditions for each manufacturing step are as follows.

슬라브 재가열 단계Slab reheating stage

먼저 상술한 성분계로 이루어지는 슬라브를 준비하고, 상기 슬라브를 1000~1200℃ 의 온도범위로 재가열한다. 주조 중에 형성된 탄질화물을 고용시키기 위해 재가열 온도를 1000℃ 이상으로 하며, 탄질화물을 충분히 고용시키기 위해 1050℃ 이상으로 가열하는 것이 보다 바람직하다. 한편, 과도하게 높은 온도로 재가열할 경우, 오스테나이트가 조대하게 형성될 우려가 있으므로, 상기 재가열 온도는 1200℃ 이하로 하는 것이 바람직하다.First, a slab made of the above-described component system is prepared, and the slab is reheated to a temperature range of 1000 to 1200°C. It is more preferable to heat the reheating temperature to 1000°C or higher to solidify the carbonitride formed during casting and to 1050°C or higher to sufficiently solidify the carbonitride. On the other hand, when reheating to an excessively high temperature, there is a fear that austenite may be coarse, so the reheating temperature is preferably 1200°C or less.

열간압연 단계Hot rolling stage

상기 재가열한 슬라브에 대해 조압연 및 사상압연을 포함하는 열간압연을 실시할 수 있다. 이때 사상압연은 750℃ 이상의 마무리 압연 온도에서 완료하는 것이 바람직하다. 상기 마무리 압연 온도가 750℃ 미만이면 공냉 페라이트가 다량 생성되는 문제가 발생할 수 있다. 반면 상기 마무리 압연 온도가 950℃ 를 초과하면 조직 조대화에 의한 강도 및 인성 하락을 야기할 수 있다. 따라서 본 발명에서 상기 마무리 압연 온도는 750~950℃ 로 제한하는 것이 바람직하다.Hot rolling including rough rolling and finishing rolling may be performed on the reheated slab. At this time, the finishing rolling is preferably completed at a finishing rolling temperature of 750°C or higher. When the finish rolling temperature is less than 750°C, a problem that a large amount of air-cooled ferrite is generated may occur. On the other hand, when the finish rolling temperature exceeds 950°C, strength and toughness may be reduced due to coarsening of the tissue. Therefore, in the present invention, it is preferable to limit the finish rolling temperature to 750 to 950°C.

냉각 단계Cooling stage

열간압연을 마친 강재에 대해 수냉을 통해 강제 냉각한다. 본 발명에서는 충분한 냉각을 통해 후물재에서도 고강도를 확보하는 것이 핵심기술이며, 조직 조대화를 막기 위해 10℃/s 이상의 냉각속도로 700℃ 이하의 온도까지 냉각이 필요하다. 또한 상기 냉각은 750℃ 이상의 냉각개시온도에서 시작될 수 있다. 다만 400℃ 미만의 온도까지 냉각할 경우 급냉 과정에 의해 중심부에 미세크랙이 유발될 수 있으며, 제품 표면과 중심부 재질편차 및 제품 선/후단부 재질편차를 유발할 수 있으므로, 400℃ 이상의 온도에서 냉각을 종료하는 것이 바람직하다. 한편 냉각속도의 상한은 설비능력에 주로 관계되며, 10℃/s 이상이면 냉각속도가 증가해도 강도에 의미 있는 변화가 보이지 않으므로, 냉각속도의 상한은 별도로 한정하지 않을 수 있다.Forced cooling is carried out through water cooling for the hot-rolled steel. In the present invention, it is a core technology to secure high strength even in a thick material through sufficient cooling, and cooling to a temperature of 700° C. or less at a cooling rate of 10° C./s or more is required to prevent tissue coarsening. Further, the cooling may be started at a cooling start temperature of 750°C or higher. However, when cooling to a temperature below 400℃, micro-cracks may be generated in the center by the rapid cooling process, and it may cause product surface and core material deviation and product front/rear material material deviation. It is desirable to end. On the other hand, the upper limit of the cooling rate is mainly related to the capacity of the facility, and if it is 10°C/s or more, there is no significant change in strength even if the cooling rate increases, so the upper limit of the cooling rate may not be limited.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, it is necessary to note that the following examples are only intended to illustrate the present invention in more detail and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by the items described in the claims and the items reasonably inferred therefrom.

(실시예)(Example)

먼저 하기 표 1 에 나타낸 성분계를 갖는 용강을 마련한 후 연속주조를 이용하여 슬라브를 제조하였다. 이후 상기 슬라브를 하기 표 2 의 제조조건으로 재가열, 열간압연, 냉각하여 강판을 제조하였다.First, a molten steel having a component system shown in Table 1 was prepared, and then slabs were prepared using continuous casting. Subsequently, the slabs were reheated, hot rolled, and cooled under the manufacturing conditions in Table 2 to prepare steel sheets.

상기 제조된 강판에 대해 광학 및 전자현미경으로 미세조직을 관찰하여 각 상의 면적분율을 측정하고, 인장시험을 통해 항복강도 및 인장강도를 측정하여 표 3 에 나타내었다. 또한 내해수 특성 평가로서 해수를 모사한 3.5% NaCl 용액에 하루간 침지한 후, 50% HCl+0.1% Hexamethylene tetramine용액과 함께 초음파 세척기에 넣어 시편을 세척하고 무게감량 측정 후 이를 초기 시편 표면적으로 나누어 부식속도를 산출하였으며, 비교강과 발명강의 부식속도를 비교하기 위해 비교강 1의 부식속도를 100 으로 기준하여 상대부식속도를 비교평가 하였고 그 결과를 표 3 에 함께 나타내었다.Table 3 shows the area fraction of each phase by observing the microstructure with an optical and electron microscope for the prepared steel sheet, and measuring the yield strength and tensile strength through a tensile test. In addition, as an evaluation of the characteristics of seawater, after immersing it in a 3.5% NaCl solution simulating seawater for a day, put it in an ultrasonic cleaner with 50% HCl+0.1% Hexamethylene tetramine solution, wash the specimen, measure the weight loss, and divide it into the initial specimen surface area The corrosion rate was calculated, and to compare the corrosion rate of the comparative steel and the invention steel, the relative corrosion rate was comparatively evaluated based on the corrosion rate of the comparative steel 1 as 100, and the results are shown in Table 3.

구분division CC SiSi MnMn PP SS Sol.AlSol.Al CuCu NiNi CrCr NbNb TiTi 발명강1Invention Steel 1 0.0410.041 0.270.27 0.80.8 0.0080.008 0.0050.005 0.0220.022 0.430.43 0.080.08 1.21.2 0.0440.044 0.0150.015 발명강2Invention Steel 2 0.0350.035 0.440.44 0.90.9 0.0180.018 0.0070.007 0.0240.024 0.280.28 0.090.09 1.41.4 0.0320.032 0.0180.018 비교강1Comparative Steel 1 0.0680.068 0.510.51 1.81.8 0.0080.008 0.0070.007 0.0290.029 0.120.12 0.060.06 0.40.4 0.0090.009 0.0190.019 비교강2Comparative Steel 2 0.0920.092 0.270.27 2.12.1 0.0090.009 0.0050.005 0.0420.042 0.040.04 0.080.08 0.20.2 0.0260.026 0.0240.024 비교강3Comparative Steel 3 0.0490.049 0.510.51 2.22.2 0.0180.018 0.0070.007 0.0240.024 0.070.07 0.120.12 0.70.7 0.0470.047 0.0210.021

구분division 재가열 온도
(℃)
Reheating temperature
(℃)
마무리 압연 온도
(℃)
Finish rolling temperature
(℃)
냉각개시온도
(℃)
Cooling start temperature
(℃)
냉각종료온도
(℃)
Cooling end temperature
(℃)
냉각속도
(℃/sec)
Cooling rate
(℃/sec)
발명강1Invention Steel 1 11421142 870870 774774 542542 3636 발명강2Invention Steel 2 11291129 901901 784784 614614 4242 비교강1Comparative Steel 1 11191119 875875 769769 565565 1515 비교강2Comparative Steel 2 11241124 891891 771771 579579 2323 비교강3Comparative Steel 3 11511151 880880 773773 612612 1414

구분division 미세조직 면적분율 (%)Area fraction of microstructure (%) 항복강도
(MPa)
Yield strength
(MPa)
인장강도
(MPa)
The tensile strength
(MPa)
상대부식
속도
Relative corrosion
speed
베이나이트Bainite 폴리고날 페라이트+침상 페라이트Polygonal ferrite + needle ferrite 기타 상
(펄라이트, MA)
Other awards
(Perlite, MA)
발명강1Invention Steel 1 7171 2727 22 564564 636636 6666 발명강2Invention Steel 2 6868 3030 22 512512 608608 6464 비교강1Comparative Steel 1 6464 3434 22 574574 671671 100100 비교강2Comparative Steel 2 5757 3939 44 564564 659659 137137 비교강3Comparative Steel 3 6363 3333 44 592592 702702 143143

상기 표 1 에서 볼 수 있는 바와 같이, 상기 발명강 1 및 2 는 모두 본 발명에서 규정하는 성분범위를 충족하는 반면, 비교강 1 내지 3 은 Cr, Cu, Ni 또는 Mn 의 성분범위가 본 발명의 범위를 벗어난다.As can be seen from Table 1, the invention steels 1 and 2 both satisfy the component ranges defined in the present invention, whereas comparative steels 1 to 3 have the component ranges of Cr, Cu, Ni or Mn of the present invention. Out of range

그 결과 상기 발명강 1 및 2 는 페라이트 기반에 베이나이트 20% 이상의 저온조직을 갖는 미세조직을 가지게 되어, 항복강도 500MPa 이상, 인장강도 600Mpa 이상의 높은 강도를 갖게 되어 구조용강으로 충분한 재질을 갖추게 되었다. 또한 본 발명에서 규정하는 성분범위를 충족함으로써 비교강 1 에 비하여 낮은 부식속도를 나타내어 내해수 분위기에서 충분한 수명을 가질 수 있음을 확인할 수 있었다.As a result, the invention steels 1 and 2 have a microstructure having a low-temperature structure of 20% or more of bainite on a ferrite base, and have a high strength of 500 MPa or more in yield strength and 600 Mpa or more in tensile strength, thereby providing sufficient materials for structural steel. In addition, it was confirmed that by satisfying the component range specified in the present invention, it exhibits a lower corrosion rate compared to Comparative Steel 1, and thus has a sufficient life in an atmosphere of seawater.

반면에 비교강 1 내지 3 은 Cr, Cu, Ni 또는 Mn 의 성분범위가 본 발명의 범위를 벗어남에 따라, 본 발명의 제조조건을 만족하는 제조방법으로 제조되었음에도 불구하고 상기 표 3 에서 볼 수 있는 바와 같이 상대부식속도 100 이상의 높은 부식속도를 나타내어 결과적으로 내해수 분위기에서 충분한 수명을 갖지 못하게 되었다.On the other hand, the comparative steels 1 to 3 are Cr, Cu, Ni or Mn as the component range is out of the scope of the present invention, despite being prepared by a manufacturing method that satisfies the manufacturing conditions of the present invention, can be seen in Table 3 above. As a result, it exhibited a high corrosion rate of 100 or more relative corrosion rate, and as a result, it did not have a sufficient life in the seawater atmosphere.

이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 통상의 기술자는 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described with reference to the above embodiments, those skilled in the art understand that various modifications and changes can be made to the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. Will be able to.

Claims (6)

중량%로, C: 0.03% 이상 0.1% 미만, Si: 0.1% 이상 0.8% 미만, Mn: 0.3% 이상 0.9% 이하, Cr: 1.2% 이상 1.5% 미만, Cu: 0.1% 이상 0.5% 미만, Al: 0.01% 이상 0.08% 미만, Ti: 0.01% 이상 0.1% 미만, Ni: 0.05% 이상 0.1% 미만, Nb: 0.002% 이상 0.07% 미만, P: 0.03% 이하, S: 0.02% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고,
미세조직이, 면적분율로, 베이나이트 20% 이상, 폴리고날 페라이트 및 침상 페라이트가 합계로 80% 미만, 그 외 기타상으로서 펄라이트 및 MA가 10% 미만인 고강도 구조용강.
In weight percent, C: 0.03% or more and less than 0.1%, Si: 0.1% or more and less than 0.8%, Mn: 0.3% or more and less than 0.9%, Cr: 1.2% or more and less than 1.5%, Cu: 0.1% or more and less than 0.5%, Al : 0.01% or more and less than 0.08%, Ti: 0.01% or more and less than 0.1%, Ni: 0.05% or more and less than 0.1%, Nb: 0.002% or more and less than 0.07%, P: 0.03% or less, S: 0.02% or less, balance Fe and Contains inevitable impurities,
High-strength structural steel with microstructure having an area fraction of 20% or more of bainite, less than 80% of polygonal ferrite and acicular ferrite in total, and less than 10% of pearlite and MA as other phases.
제 1 항에 있어서,
상기 C 는 0.03% 이상 0.09% 미만으로 포함되는 것을 특징으로 하는 고강도 구조용강.
According to claim 1,
The C is a high-strength structural steel, characterized in that contained more than 0.03% and less than 0.09%.
제 1 항에 있어서,
상기 Si 는 0.2% 이상 0.8% 미만으로 포함되는 것을 특징으로 하는 고강도 구조용강.
According to claim 1,
The Si is a high-strength structural steel, characterized in that contained 0.2% or more and less than 0.8%.
제 1 항에 있어서,
상기 Cu 는 0.1% 이상 0.45% 미만으로 포함되는 것을 특징으로 하는 고강도 구조용강.
According to claim 1,
The Cu is a high-strength structural steel, characterized in that contained more than 0.1% and less than 0.45%.
제 1 항에 있어서,
상기 고강도 구조용강은 500MPa 이상의 항복강도, 600MPa 이상의 인장강도를 가지는 것을 특징으로 하는 고강도 구조용강.
According to claim 1,
The high strength structural steel is a high strength structural steel, characterized in that it has a yield strength of 500MPa or more and a tensile strength of 600MPa or more.
중량%로, C: 0.03% 이상 0.1% 미만, Si: 0.1% 이상 0.8% 미만, Mn: 0.3% 이상 0.9% 이하, Cr: 1.2% 이상 1.5% 미만, Cu: 0.1% 이상 0.5% 미만, Al: 0.01% 이상 0.08% 미만, Ti: 0.01% 이상 0.1% 미만, Ni: 0.05% 이상 0.1% 미만, Nb: 0.002% 이상 0.07% 미만, P: 0.03% 이하, S: 0.02% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 1000℃ 이상 1200℃ 이하의 온도에서 재가열하는 단계;
재가열한 상기 슬라브를 750℃ 이상 950℃ 이하의 마무리 압연 온도로 열간압연하는 단계; 및
압연된 강판을 750℃ 이상의 냉각개시온도에서 400~700℃의 냉각종료온도까지 10℃/sec 이상의 냉각 속도로 냉각하는 단계;
를 포함하는 고강도 구조용강의 제조방법.
In weight percent, C: 0.03% or more and less than 0.1%, Si: 0.1% or more and less than 0.8%, Mn: 0.3% or more and less than 0.9%, Cr: 1.2% or more and less than 1.5%, Cu: 0.1% or more and less than 0.5%, Al : 0.01% or more and less than 0.08%, Ti: 0.01% or more and less than 0.1%, Ni: 0.05% or more and less than 0.1%, Nb: 0.002% or more and less than 0.07%, P: 0.03% or less, S: 0.02% or less, balance Fe and Reheating the slab containing inevitable impurities at a temperature of 1000°C or higher and 1200°C or lower;
Hot rolling the reheated slab to a finishing rolling temperature of 750°C or higher and 950°C or lower; And
Cooling the rolled steel sheet at a cooling rate of 10° C./sec or more from a cooling start temperature of 750° C. or higher to a cooling end temperature of 400-700° C.;
Method of manufacturing a high-strength structural steel comprising a.
KR1020180136846A 2018-11-08 2018-11-08 High strength steel plate for structure with a good seawater corrosion resistive property and method of manufacturing thereof KR102142774B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020180136846A KR102142774B1 (en) 2018-11-08 2018-11-08 High strength steel plate for structure with a good seawater corrosion resistive property and method of manufacturing thereof
CN201980073445.3A CN112969809B (en) 2018-11-08 2019-11-08 High-strength steel for structure having excellent seawater corrosion resistance and method for manufacturing the same
EP19883204.0A EP3878996A4 (en) 2018-11-08 2019-11-08 High strength steel plate for structure with good seawater corrosion resistant property and method of manufacturing same
PCT/KR2019/015124 WO2020096398A1 (en) 2018-11-08 2019-11-08 High strength steel plate for structure with good seawater corrosion resistant property and method of manufacturing same
JP2021524195A JP7332692B2 (en) 2018-11-08 2019-11-08 High-strength structural steel and its manufacturing method
US17/291,823 US20210388458A1 (en) 2018-11-08 2019-11-08 High strength steel plate for structure with good seawater corrosion resistant property and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180136846A KR102142774B1 (en) 2018-11-08 2018-11-08 High strength steel plate for structure with a good seawater corrosion resistive property and method of manufacturing thereof

Publications (2)

Publication Number Publication Date
KR20200053342A KR20200053342A (en) 2020-05-18
KR102142774B1 true KR102142774B1 (en) 2020-08-07

Family

ID=70612140

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180136846A KR102142774B1 (en) 2018-11-08 2018-11-08 High strength steel plate for structure with a good seawater corrosion resistive property and method of manufacturing thereof

Country Status (6)

Country Link
US (1) US20210388458A1 (en)
EP (1) EP3878996A4 (en)
JP (1) JP7332692B2 (en)
KR (1) KR102142774B1 (en)
CN (1) CN112969809B (en)
WO (1) WO2020096398A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101899689B1 (en) 2016-12-23 2018-09-17 주식회사 포스코 Steel plate for welded steel pipe having excellent elogation of the longitudinal direction, method for manufacturing thereof and welded steel pipe using same

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316723A (en) * 1993-03-12 1994-11-15 Kobe Steel Ltd Production of weather resistant refractory steel material for building construction, excellent in gas cutting property and weldability
JPH07216500A (en) * 1994-01-28 1995-08-15 Sumitomo Metal Ind Ltd High strength steel material excellent in corrosion resistance and its production
KR100371960B1 (en) * 2000-09-29 2003-02-14 주식회사 포스코 High atmosphere corrosion resting and workability hot rolled strip having tensile strength of 60 kg/㎟ and method for manufacturing it
KR20040054272A (en) 2002-12-18 2004-06-25 주식회사 포스코 Method of manufacturing piping steel of a ship with a good seawater resistive property
US8038809B2 (en) * 2005-03-28 2011-10-18 Kobe Steel, Ltd. High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof
KR100815709B1 (en) * 2006-12-12 2008-03-20 주식회사 포스코 Formable high strength cold-rolled steel sheet with excellent weather resistance and method manufacturing the same
KR101018159B1 (en) * 2008-05-15 2011-02-28 주식회사 포스코 High-strength steel sheet with excellent low temperature toughness and manufacturing method thereof
EP2240618B1 (en) * 2007-12-04 2013-01-23 Posco High-strength steel sheet with excellent low temperature toughness and manufacturing method thereof
KR100951296B1 (en) * 2007-12-04 2010-04-02 주식회사 포스코 Steel plate for linepipe having high strength and excellent low temperature toughness and manufacturing method of the same
KR101125886B1 (en) * 2008-11-29 2012-03-21 주식회사 포스코 High strength ship-building steel with excellent general corrosion and pitting corrosion resistance at low ph chloride solution and excellent haz toughness and manufacturing method for the same
US8641836B2 (en) * 2009-10-28 2014-02-04 Nippon Steel & Sumitomo Metal Corporation Steel plate for line pipe excellent in strength and ductility and method of production of same
KR101289124B1 (en) 2009-12-10 2013-07-23 주식회사 포스코 Ship-building steel with excellent corrosion resistance at sea water
KR101289154B1 (en) 2009-12-29 2013-07-23 주식회사 포스코 Hot rolled steel sheet having excellent corrosion resistance and impcat toughness and manufacturing method thereof
JP5573265B2 (en) 2010-03-19 2014-08-20 Jfeスチール株式会社 High strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more and method for producing the same
US10000829B2 (en) 2013-04-15 2018-06-19 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet
KR101536471B1 (en) * 2013-12-24 2015-07-13 주식회사 포스코 Ultra-high strength steel sheet for welding structure with superior haz toughness for high heat input welding and method for manufacturing the same
KR20150112517A (en) * 2014-03-28 2015-10-07 현대제철 주식회사 Steel sheet for line pipe and method of manufacturing the same
CN106480374B (en) * 2015-08-31 2018-04-24 鞍钢股份有限公司 A kind of cold-resistant pipeline high tenacity low yield strength ratio hot-rolled thick plank and its production method
CN105441799B (en) * 2015-11-25 2017-05-24 武汉钢铁(集团)公司 High-toughness and low-yield-ratio quenched and tempered steel plate used in low-temperature environment and manufacturing method of high-toughness and low-yield-ratio quenched and tempered steel plate
JP6766642B2 (en) 2016-02-25 2020-10-14 日本製鉄株式会社 Steel sheet with excellent brittle crack propagation stop characteristics and its manufacturing method
JP6911575B2 (en) 2016-06-30 2021-07-28 日本製鉄株式会社 Steel sheet with excellent brittle crack propagation stop characteristics and its manufacturing method
KR101889182B1 (en) * 2016-12-20 2018-08-16 주식회사 포스코 Steel plate for welded steel pipe having excellent elogation of the longitudinal direction and toughness at low-temperature, method for manufacturing thereof and welded steel pipe using same
CN108728733A (en) * 2017-04-24 2018-11-02 鞍钢股份有限公司 Convey natural gas from coal X70 Pipeline Steel Plates and its manufacturing method
CN108467993B (en) * 2018-06-11 2020-02-18 鞍钢股份有限公司 Ultra-wide high-toughness hot-rolled thick plate for low-temperature pipeline and production method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101899689B1 (en) 2016-12-23 2018-09-17 주식회사 포스코 Steel plate for welded steel pipe having excellent elogation of the longitudinal direction, method for manufacturing thereof and welded steel pipe using same

Also Published As

Publication number Publication date
US20210388458A1 (en) 2021-12-16
EP3878996A1 (en) 2021-09-15
JP2022506661A (en) 2022-01-17
CN112969809B (en) 2023-12-15
JP7332692B2 (en) 2023-08-23
WO2020096398A1 (en) 2020-05-14
EP3878996A4 (en) 2022-01-05
KR20200053342A (en) 2020-05-18
CN112969809A (en) 2021-06-15

Similar Documents

Publication Publication Date Title
JP6700400B2 (en) Steel plate for low temperature pressure vessel having excellent PWHT resistance and method for producing the same
JP5195413B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and toughness anisotropy and method for producing the same
JP5764498B2 (en) High-strength cold-rolled steel sheet having excellent deep drawability and high yield ratio, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet using the same, and production method thereof
CN112912527A (en) Steel sheet for pressure vessel having excellent low-temperature toughness and excellent ductility, and method for producing same
KR101289154B1 (en) Hot rolled steel sheet having excellent corrosion resistance and impcat toughness and manufacturing method thereof
EP3040427B1 (en) High-strength hot-rolled plated steel sheet and method for manufacturing same
KR20100030070A (en) High strength hot-rolled steel sheet having excellent weather resistance and impact resistance, and manufacturing method thereof
KR101758481B1 (en) Steel sheet for pipe having excellent corrosion resistance and low-temperature toughness, and method for manufacturing the same
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
KR101714929B1 (en) Austenitic steel having excellent wear resistance and method for manufacturing the same
KR102142774B1 (en) High strength steel plate for structure with a good seawater corrosion resistive property and method of manufacturing thereof
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP4264296B2 (en) Low yield ratio 570 MPa class high strength steel with excellent weld toughness and slitting characteristics and method for producing the same
JP7429782B2 (en) Structural steel plate with excellent seawater resistance and manufacturing method thereof
CN113373381A (en) 670 MPa-level steel plate welded by high heat input and manufacturing method thereof
KR102321301B1 (en) Steel plate for structure with a good seawater corrosion resistive property and method of manufacturing the same
KR20200047081A (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
KR101467030B1 (en) Method for manufacturing high strength steel plate
KR102484998B1 (en) High strength steel sheet having excellent ductility and method for manufacturing thereof
KR101185222B1 (en) Api hot-rolled steel sheet with high strength and method for manufacturing the api hot-rolled steel sheet
KR101185359B1 (en) High strength api hot-rolled steel sheet with low yield ratio and method for manufacturing the api hot-rolled steel sheet
JP2022536627A (en) High-strength structural steel material with excellent corrosion resistance and its manufacturing method
JP2000345284A (en) Steel for structural purpose excellent in corrosion resistance and corrosion fatigue resistance and its production
KR20240098760A (en) High strength hot rolled steel having excellent corrosion resistance and method of manufacturing the same
KR20240045561A (en) Plated steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant