JP2914138B2 - Manufacturing method of steel for high corrosion resistance ERW steel pipe - Google Patents

Manufacturing method of steel for high corrosion resistance ERW steel pipe

Info

Publication number
JP2914138B2
JP2914138B2 JP31251393A JP31251393A JP2914138B2 JP 2914138 B2 JP2914138 B2 JP 2914138B2 JP 31251393 A JP31251393 A JP 31251393A JP 31251393 A JP31251393 A JP 31251393A JP 2914138 B2 JP2914138 B2 JP 2914138B2
Authority
JP
Japan
Prior art keywords
less
steel
environment
molten
hic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31251393A
Other languages
Japanese (ja)
Other versions
JPH07136748A (en
Inventor
彰俊 寺口
正志 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP31251393A priority Critical patent/JP2914138B2/en
Publication of JPH07136748A publication Critical patent/JPH07136748A/en
Application granted granted Critical
Publication of JP2914138B2 publication Critical patent/JP2914138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、強度レベルがアメリ
カ石油協会(American Petroleum
Institute 以下APIという)規格のX−4
2〜X−80クラスの主にラインパイプに用いられる耐
水素誘起割れ性(以下耐HIC性という)に優れた高耐
食性電縫鋼管用鋼の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to an American Petroleum (American Petroleum).
X-4 of the standard)
The present invention relates to a method for producing high corrosion-resistant steel for electric resistance welded steel pipe excellent in hydrogen-induced cracking resistance (hereinafter referred to as HIC resistance) mainly used in line pipes of class 2 to X-80.

【0002】[0002]

【従来の技術】近年、石油の油井や天然ガスのガス井
は、原油価格の高騰や、近い将来に予想される石油資源
の枯渇化を目前にして、従来は顧みられなかったような
深層油田の発掘や、開発が一放棄されたサワーガス田
などに対する開発が世界的規模で盛んに行われている。
このような油井、ガス井は、一般に深度が極めて深く、
また、その雰囲気はCO2、H2S、Cl-等を含有する
極めて厳しい腐食環境となっている。H2Sが多く含ま
れる石油や天然ガスは、海水、淡水と共存すると鋼表面
の腐食だけでなく、腐食によって生じた水素が鋼中に侵
入して内部割れを生じ問題となる。
2. Description of the Related Art In recent years, oil wells and gas wells of natural gas have been developed in deep oil fields which have not been neglected in the past due to soaring crude oil prices and depletion of petroleum resources expected in the near future. excavation and of the development is to develop for, such as single Dan abandoned sour gas field has been actively conducted on a global scale.
Such oil and gas wells are generally extremely deep,
Further, the atmosphere is an extremely severe corrosive environment containing CO 2 , H 2 S, Cl and the like. When petroleum or natural gas containing a large amount of H 2 S coexists with seawater or freshwater, not only corrosion of the steel surface, but also hydrogen generated by the corrosion penetrates into the steel to cause internal cracking, which is a problem.

【0003】水素が鋼中に侵入して生じる割れは、HI
C、水素ふくれ割れ等と呼ばれている。石油および天然
ガスを輸送するラインパイプは、このような割れが発生
して板厚方向に貫通した場合、油漏れ、ガス漏れなどで
パイプラインの破壊につながる恐れがある。また、近年
においては、ラインパイプとして電縫鋼管が使用される
ことが多くなり、HICの発生防止が重要な課題となっ
ている。
[0003] The cracks generated by the penetration of hydrogen into steel are caused by HI.
C, called hydrogen blister cracks. If such a crack occurs in a line pipe for transporting oil and natural gas and penetrates in the plate thickness direction, there is a possibility that the pipeline may be broken due to oil leakage, gas leakage, or the like. In recent years, an electric resistance welded steel pipe is often used as a line pipe, and prevention of HIC has been an important issue.

【0004】従来、HICを防止する方法としては、C
uを添加し耐食性被膜を生成させて水素侵入を防止する
方法やHICの起点となる鋼中介在物をCa、Zr、R
EM等で球状化する介在物形態制御方法が提案されてい
る(例えば、特開昭50−97515号公報、特開昭5
4−38214号公報、特開昭54−31020号公報
等)。また、連続鋳造材に一般的に見られる中心偏析部
でのMnS等のA系介在物やMn、Pの偏析による低温
変態組織であるベイナイトやマルテンサイト生成による
割れ発生を防止するため、低S化や低P化も提案されて
いる(例えば、特開昭52−111815号公報、特開
昭62−227067号公報等)。さらに、Nbの炭窒
化物もHIC発生の起点となることも指摘され、Nb、
C、N量を制限する方法も提案されている(例えば特開
昭56−119759号公報)。上記の技術は、かなり
厳しい環境にも耐え得る鋼管を連続鋳造材から電縫鋼管
法により製造することを可能としている。
Conventionally, as a method for preventing HIC, C
The method of preventing corrosion of hydrogen by adding u to form a corrosion-resistant coating and the inclusion of Ca, Zr, R
Methods for controlling the form of inclusions that are spheroidized by EM or the like have been proposed (for example, Japanese Patent Application Laid-Open Nos. 50-97515 and 5
4-382214, JP-A-54-31020, etc.). Further, in order to prevent the generation of cracks due to the formation of bainite or martensite, which is a low-temperature transformation structure due to segregation of Mn and P, and A-based inclusions such as MnS in the central segregation part generally observed in continuous cast materials, And reduction of P have been proposed (for example, JP-A-52-111815, JP-A-62-227067, etc.). Furthermore, it has been pointed out that Nb carbonitride also becomes a starting point of HIC generation.
A method of limiting the amounts of C and N has also been proposed (for example, JP-A-56-119759). The above-mentioned technique makes it possible to produce a steel pipe that can withstand a severe environment from a continuous cast material by an electric resistance welded pipe method.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記公
報に開示された方法により製造された電縫鋼管は、アラ
スカ、カナダ等で使用される環境(pH:4.8〜5.
4のいわゆるBP環境)や、これよりも厳しいpH:
4.5以下の環境(いわゆるNACE環境)では、到底
長期間に亘って耐HIC性を保持することはできない。
However, the electric resistance welded steel pipe manufactured by the method disclosed in the above publication is used in an environment (pH: 4.8 to 5.0) used in Alaska, Canada and the like.
4 so-called BP environment) or more severe pH:
In an environment of 4.5 or less (so-called NACE environment), HIC resistance cannot be maintained for a long period of time.

【0006】この発明の目的は、上記問題点を解消し、
BP環境やNACE環境下においても、長期間に亘って
耐HIC性を保持できる耐水素誘起割れ性に優れた電縫
鋼管用鋼の製造方法を提供することにある。
[0006] An object of the present invention is to solve the above problems,
An object of the present invention is to provide a method for producing ERW steel pipe excellent in hydrogen-induced cracking resistance capable of maintaining HIC resistance for a long period of time even in a BP environment or a NACE environment.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記BP
環境やNACE環境下におけるHIC試験において発生
した割れ部を詳細に調査、検討した結果、連続鋳造時に
浸漬ノズルの閉塞を目的として吹込まれたArガスが連
続鋳造鋳片内に捕捉され、熱間圧延工程においても圧着
されずに鋼板中に未圧着気泡として残存し、その熱延コ
イルを用いて製造された電縫鋼管では、この未圧着気泡
の周辺に存在する非金属介在物と、Mn、Pの局部偏析
によって、その鋼が元来有すべき耐食性能が発揮でき
ず、割れが発生していることを見い出した。
Means for Solving the Problems The present inventors have proposed the BP
As a result of investigating and examining the cracks generated in the HIC test under the environment and NACE environment, as a result, the Ar gas blown for the purpose of closing the immersion nozzle during the continuous casting is captured in the continuous cast slab, and hot rolled In the ERW steel pipe manufactured using the hot-rolled coil, non-metallic inclusions existing around the uncompressed bubbles and Mn, P It was found that due to the local segregation of the steel, the steel could not exhibit the corrosion resistance that the steel originally had, and cracking occurred.

【0008】さらに試験研究を重ねた結果、BP環境下
での耐HIC性に優れた鋼、例えば、C:0.01〜
0.20%、Si:0.01〜0.50%、Mn:0.
5〜1.8%、P:0.020%以下、S:0.010
%以下、Al:0.1%以下、Cu:0.2〜0.8
%、Ni:0.6%以下を含有し、さらに、Cr:1.
0%以下、Mo:1.0%以下、Ti:0.01〜0.
10%、Nb:0.01〜0.10%、V:0.1%以
下のうちの1種または2種以上を含有し、残部がFeお
よび不可避的不純物からなる鋼におけるHICの発生
は、未圧着気泡に沿って発生したMn、P偏析帯に存在
するMnS等の板状硫化物が原因であった。未圧着気泡
に沿ったMn、Pの偏析は、連続鋳造での凝固時に溶鋼
中に吹込まれたArガス気泡が上昇中に凝固中の樹枝状
晶に捕捉され、断熱効果によって凝固遅れによる濃化が
生じ、偏析したものと考えられた。このMn、Pの偏析
によるベイナイト・マルテンサイト等の低温変態組織は
転位が非常に多く、HICが発生し易いことも従来から
云われていることである。
[0008] As a result of further testing and research, steel having excellent HIC resistance under BP environment, for example, C: 0.01 to
0.20%, Si: 0.01 to 0.50%, Mn: 0.
5 to 1.8%, P: 0.020% or less, S: 0.010
% Or less, Al: 0.1% or less, Cu: 0.2 to 0.8
%, Ni: 0.6% or less, and Cr: 1.
0% or less, Mo: 1.0% or less, Ti: 0.01-0.
HIC in steel containing one or more of 10%, Nb: 0.01 to 0.10%, and V: 0.1% or less, with the balance being Fe and unavoidable impurities, This was caused by plate-like sulfides such as Mn and MnS existing in the P segregation zone generated along the uncompressed bubbles. The segregation of Mn and P along the uncompressed bubbles is caused by Ar gas bubbles blown into the molten steel during solidification in continuous casting, which are trapped by the dendrites during solidification during the ascent, and are concentrated due to solidification delay due to the adiabatic effect. It was considered that segregation occurred. The low-temperature transformation structure such as bainite and martensite due to the segregation of Mn and P has an extremely large number of dislocations, and it has been conventionally known that HIC is easily generated.

【0009】また、NACE環境下での耐HIC性に優
れた鋼、例えば、C:0.01〜0.20%、Si:
0.01〜0.50%、Mn:0.5〜1.8%、P:
0.020%以下、S:0.010%以下、Al:0.
1%以下、Ti:0.001〜0.1%、Nb:0.0
05〜0.1%、Ca:0.0001〜0.005%を
含有し、さらに、Cu:0.2〜0.8%、Ni:0.
6%以下、Cr:1.0%以下、Mo:1.0%以下、
V:0.1%以下のうちの1種または2種以上を含有
し、残部がFeおよび不可避的不純物からなる鋼におけ
るHICの発生は、未圧着気泡周りに存在したTi系介
在物(主にTiN)またはCa系介在物クラスターが原
因であった。
Further, steel having excellent HIC resistance in a NACE environment, for example, C: 0.01 to 0.20%, Si:
0.01 to 0.50%, Mn: 0.5 to 1.8%, P:
0.020% or less, S: 0.010% or less, Al: 0.
1% or less, Ti: 0.001 to 0.1%, Nb: 0.0
0.5 to 0.1%, Ca: 0.0001 to 0.005%, Cu: 0.2 to 0.8%, Ni: 0.
6% or less, Cr: 1.0% or less, Mo: 1.0% or less,
V: HIC generation in steel containing one or more of 0.1% or less and the balance consisting of Fe and inevitable impurities is caused by Ti-based inclusions (mainly This was due to TiN) or Ca-based inclusion clusters.

【0010】なお、溶鋼中に吹込まれたArガス気泡
は、溶鋼中で晶出した介在物を捕捉して浮上分離するこ
とはよく知られており、また、樹枝状晶に捕捉された気
泡周りの凝固遅れ部分で介在物が析出し易いこともよく
知られている。このArガスの残留による未圧着気泡が
鋼中に存在した場合は、前記各種従来技術をもってして
も、耐HIC性能は改善されないことを究明した。さら
に、本発明者らは、連続鋳造鋳片ならびにその鋳片を用
いて熱間圧延した鋼板を調査した結果、連続鋳造時溶鋼
中に吹込まれたArガス量によって、鋼中の気泡個数が
変化することも確認し、連続鋳造時の浸漬ノズル閉塞防
止のため、溶鋼中に吹込むArガス量を所定値以下とす
ることによって、HICの原因となるMnS、Ca−A
l系・Ca系介在物クラスター、Ti・Nb系介在物等
の集積と、Mn、P偏析帯の発生を生じさせる鋼材中の
Arガスの未圧着気泡を低減できることを究明し、この
発明に到達した。
[0010] It is well known that Ar gas bubbles blown into molten steel capture inclusions crystallized in the molten steel and float and separate them. It is also well known that inclusions are liable to precipitate in the solidification-delayed portion. It has been found that when uncompressed bubbles due to the residual Ar gas are present in the steel, the HIC resistance is not improved even with the above-mentioned various conventional techniques. Furthermore, the present inventors investigated continuous cast slabs and steel sheets hot-rolled using the slabs, and found that the number of bubbles in the steel changed depending on the amount of Ar gas blown into the molten steel during continuous casting. MnS, Ca-A which causes HIC by reducing the amount of Ar gas blown into molten steel to a predetermined value or less to prevent clogging of the immersion nozzle during continuous casting.
The present inventors have found that it is possible to accumulate l-based / Ca-based inclusion clusters, Ti / Nb-based inclusions, etc., and to reduce uncompressed bubbles of Ar gas in steel materials that cause the generation of Mn and P segregation zones, and reached the present invention. did.

【0011】すなわちこの発明は、C:0.01〜0.
20%、Si:0.01〜0.50%、Mn:0.5〜
1.8%、P:0.020%以下、S:0.010%以
下、Al:0.1%以下、Cu:0.2〜0.8%、N
i:0.6%以下を含有し、さらに、Cr:1.0%以
下、Mo:1.0%以下、Ti:0.01〜0.10
%、Nb:0.01〜0.10%、V:0.1%以下の
うちの1種または2種以上を含有し、残部がFeおよび
不可避的不純物からなるBP環境下での耐HIC性に優
れた鋼の連続鋳造において、浸漬ノズル閉塞防止のため
溶鋼中に吹込むArガス量を、吐出溶鋼Ton当たり4
リットル以下とすることを特徴とする高耐食性電縫鋼管
用鋼の製造方法である。
That is, according to the present invention, C: 0.01-0.
20%, Si: 0.01 to 0.50%, Mn: 0.5 to
1.8%, P: 0.020% or less, S: 0.010% or less, Al: 0.1% or less, Cu: 0.2 to 0.8%, N
i: 0.6% or less, Cr: 1.0% or less, Mo: 1.0% or less, Ti: 0.01 to 0.10
%, Nb: 0.01 to 0.10%, V: 0.1% or less of HIC resistance in a BP environment containing at least one of Fe and inevitable impurities . Excellent
In continuous casting of extruded steel, the amount of Ar gas blown into the molten steel to prevent clogging of the immersion nozzle was reduced by 4
It is a method for producing high corrosion resistance steel for electric resistance welded steel pipe, characterized in that the volume is not more than 1 liter.

【0012】また、C:0.01〜0.20%、Si:
0.01〜0.50%、Mn:0.5〜1.8%、P:
0.020%以下、S:0.010%以下、Al:0.
1%以下、Ti:0.001〜0.1%、Nb:0.0
05〜0.1%、Ca:0.0001〜0.005%を
含有し、さらに、Cu:0.2〜0.8%、Ni:0.
6%以下、Cr:1.0%以下、Mo:1.0%以下、
V:0.1%以下のうちの1種または2種以上を含有
し、残部がFeおよび不可避的不純物からなるNACE
環境下での耐HIC性に優れた鋼の連続鋳造において、
浸漬ノズル閉塞防止のため溶鋼中に吹込むArガス量
を、吐出溶鋼Ton当たりリットル以下とすることを
特徴とする高耐食性電縫鋼管用鋼の製造方法である。
C: 0.01 to 0.20%, Si:
0.01 to 0.50%, Mn: 0.5 to 1.8%, P:
0.020% or less, S: 0.010% or less, Al: 0.
1% or less, Ti: 0.001 to 0.1%, Nb: 0.0
0.5 to 0.1%, Ca: 0.0001 to 0.005%, Cu: 0.2 to 0.8%, Ni: 0.
6% or less, Cr: 1.0% or less, Mo: 1.0% or less,
V: NACE containing one or more of 0.1% or less, with the balance being Fe and unavoidable impurities
In continuous casting of steel with excellent HIC resistance under the environment ,
A method for producing highly corrosion resistant steel for electric resistance welded steel pipe, characterized in that the amount of Ar gas blown into molten steel to prevent clogging of a submerged nozzle is 3 liters or less per molten molten steel Ton.

【0013】[0013]

【作用】この発明の対象である高耐食性電縫鋼管用鋼の
化学成分を限定した理由は、以下のとおりである。Cは
鋼の強度を向上させる基本的な元素で、強度確保のため
には0.01%以上必要であるが、0.20%を超える
と靭性や溶接性などに望ましくなく、使用上に影響があ
るばかりでなく、連続鋳造材での中心偏析帯の異常組織
(ベイナイトやマルテンサイト)の発生防止に好ましく
ないため、0.01〜0.20%とした。Siは製鋼過
程において脱酸剤として必要な元素で、鋼の強度向上の
ためには0.01%以上必要であるが、0.50%を超
えると脆性が増すため、0.01〜0.50%とした。
Mnは鋼の強度、靭性を付与するに必要な元素で、強度
確保のためには0.5%以上必要であるが、1.8%を
超えると溶接性、靭性が低下するため、0.5〜1.8
%とした。
The reasons for limiting the chemical composition of the steel for high corrosion resistance ERW steel pipes, which is the subject of the present invention, are as follows. C is a basic element for improving the strength of steel, and is required to be 0.01% or more to secure the strength. However, if it exceeds 0.20%, it is not desirable for toughness and weldability, and affects use. Not only that, but also unfavorable to prevent the generation of an abnormal structure (bainite or martensite) in the center segregation zone in the continuous cast material, the content was set to 0.01 to 0.20%. Si is an element necessary as a deoxidizing agent in the steelmaking process, and is required to be 0.01% or more in order to improve the strength of steel. 50%.
Mn is an element necessary for imparting the strength and toughness of steel. To secure the strength, 0.5% or more is required. However, if it exceeds 1.8%, the weldability and toughness are reduced. 5-1.8
%.

【0014】Pは中心偏析帯の異常組織を助長する元素
であるので、0.020%以下とした。Sは硫化物系介
在物を生成し、HICに多大の悪影響を及ぼすため、
0.010%以下とした。Alは製鋼過程において脱酸
剤として必要な元素であるが、0.1%を超えると介在
物が多くなって耐食性が損なわれるので、0.1%以下
とした。Cuは鋼の強度向上およびHICの低減に有効
な元素であるが、0.2%未満ではその効果が十分でな
く、0.8%を超えると溶接性の劣化と共に熱間加工性
の悪化を招くため、0.2〜0.8%とした。しかし、
Cuの耐食性効果は、pHが5以上で大きく、pHが5
未満では耐食性効果が期待できないため、pHが5未満
の使用環境での鋼には必ずしも添加する必要がない。N
iは鋼の靭性向上に効果を有する元素であるが、鋼中へ
の水素浸透防止に対しては有害で少ない方が良いが、C
uを0.30%以上添加する場合にはNiを添加しない
とCu脆化を生じ、表面品質等に悪影響を及ぼすため、
本発明鋼のCu:0.8%以下では、HICに大きな影
響を及ぼさない0.6%以下とした。また、使用環境に
よりCuを添加しない場合は、上記理由によりNiを必
ずしも添加する必要はない。
Since P is an element that promotes the abnormal structure of the central segregation zone, it is set to 0.020% or less. S generates sulfide-based inclusions and has a large adverse effect on HIC.
0.010% or less. Al is an element necessary as a deoxidizing agent in the steelmaking process, but if it exceeds 0.1%, inclusions increase and the corrosion resistance is impaired. Cu is an element effective for improving the strength of steel and reducing HIC, but if it is less than 0.2%, its effect is not sufficient, and if it exceeds 0.8%, weldability is deteriorated and hot workability is deteriorated. In order to invite, it was set to 0.2 to 0.8%. But,
The corrosion resistance effect of Cu is large when the pH is 5 or more,
If it is less than 10, the corrosion resistance effect cannot be expected, so that it is not always necessary to add it to steel in a use environment where the pH is less than 5. N
i is an element that has an effect on improving the toughness of steel, but it is harmful to the prevention of hydrogen permeation into steel, and it is better to use less.
In the case where 0.30% or more of u is added, Cu embrittlement occurs unless Ni is added, and adversely affects surface quality and the like.
When the Cu of the steel of the present invention is 0.8% or less, it is set to 0.6% or less, which does not significantly affect HIC. When Cu is not added depending on the use environment, it is not always necessary to add Ni for the above reason.

【0015】Ti、Nbは強度向上効果を有する元素で
あるが、0.01%未満ではその効果が十分でなく、
0.10%を超えると靭性を損なうため、0.01〜
0.10%とした。NACE環境においては、Cuの耐
食効果がないためCuを添加する必要がないが、Cuを
添加しない場合の強度確保のため、Ti、Nbの0.0
1%以上の添加が必要である。Cr、Moは強度向上効
果を有する元素であるが、1.0%を超えると効果が飽
和し、経済的に不利となるので、1.0%以下とした。
VはCr、Moと同様に強度向上効果を有する元素であ
るが、0.1%を超えると効果が飽和し、経済的に不利
となるので、0.1%以下とした。Caは介在物の形態
制御に用いられるが、0.005%を超えて添加しても
それ以上の効果がなく、また、0.0001%未満では
Ca系の介在物クラスターが増加して耐HIC性を低下
させるので、0.0001〜0.005%以下とした。
[0015] Ti and Nb are elements having an effect of improving strength, but if the content is less than 0.01%, the effect is not sufficient.
If it exceeds 0.10%, the toughness is impaired.
0.10%. In the NACE environment, it is not necessary to add Cu because Cu has no corrosion resistance effect. However, in order to secure strength when Cu is not added, 0.0% of Ti and Nb is added.
Addition of 1% or more is required. Cr and Mo are elements having an effect of improving the strength. However, if the content exceeds 1.0%, the effect is saturated, which is economically disadvantageous.
V is an element having a strength improving effect similarly to Cr and Mo, but if it exceeds 0.1%, the effect is saturated and it is economically disadvantageous, so V is set to 0.1% or less. Ca is used for controlling the morphology of inclusions, but if added over 0.005%, there is no further effect, and if less than 0.0001%, Ca-based inclusion clusters increase and HIC resistance increases. Therefore, the content is set to 0.0001 to 0.005% or less in order to lower the property.

【0016】この発明においては、連続鋳造時に浸漬ノ
ズル中に付着する介在物等の付着物を洗浄する目的で溶
鋼中に吹込むArガス量を、BP環境下での耐HIC性
に優れた鋼では吐出溶鋼Ton当たり4リットル以下
NACE環境下での耐HIC性に優れた鋼では吐出溶鋼
Ton当たり3リットル以下とすることによって、連続
鋳造スラブ中へのArガス気泡の残留が低減し、HIC
の原因となる種々の介在物の集積、Mn、Pの偏析帯が
大幅に減少し、耐HIC性を大幅に向上させることがで
きる。なお、この発明において、連続鋳造時に浸漬ノズ
ル中に付着する介在物等の付着物を洗浄する目的で溶鋼
中に吹込むArガス量を、BP環境下での耐HIC性に
優れた鋼では吐出溶鋼Ton当たり4リットル以下、N
ACE環境下での耐HIC性に優れた鋼では吐出溶鋼T
on当たり3リットル以下としたのは、吹込むArガス
量を減少させると連続鋳造スラブ中の気泡数が減少して
ゆくが、吐出溶鋼Ton当たり4リットル前後で急激に
減少する。この現象は、鋳込みスラブ幅1500mm以
上で顕著となるが、Arガス吹込み量の減少に伴い鋼片
中に残留する気泡の減少は明白であるので、特に鋳込み
スラブ幅は限定しない。この鋼片中に残留する気泡の減
少は、気泡周りに付着・集積する介在物の減少となると
共に、気泡に沿って生成するMn、Pによる低温変態組
織(ベイナイト、マルテンサイト)をも抑制することと
なる。
According to the present invention, the amount of Ar gas blown into molten steel for the purpose of cleaning the deposits such as inclusions in the immersion nozzle during continuous casting is determined by controlling the HIC resistance under the BP environment.
4 liters or less per discharge molten steel Ton is an excellent steel,
Discharged molten steel for steel with excellent HIC resistance under NACE environment
By controlling the volume to 3 liters or less per Ton , Ar gas bubbles remain in the continuously cast slab, thereby reducing the HIC.
, And the segregation bands of Mn and P are greatly reduced, and the HIC resistance can be greatly improved. In the present invention, the amount of Ar gas blown into the molten steel for the purpose of cleaning the deposits such as inclusions in the immersion nozzle at the time of continuous casting is reduced by the HIC resistance under the BP environment.
For excellent steel, less than 4 liters per molten molten steel Ton , N
For steel with excellent HIC resistance under ACE environment, discharge molten steel T
The reason for setting it to 3 liters or less per on is that the number of bubbles in the continuously cast slab is reduced when the amount of Ar gas to be blown is reduced, but sharply decreases at around 4 liters per molten steel Ton. This phenomenon is remarkable when the width of the cast slab is 1500 mm or more. However, since the reduction of the bubbles remaining in the steel slab with the decrease in the amount of Ar gas injected is obvious, the width of the cast slab is not particularly limited. The reduction of the bubbles remaining in the steel slab reduces the inclusions adhering and accumulating around the bubbles, and also suppresses the low-temperature transformation structure (bainite, martensite) due to Mn and P generated along the bubbles. It will be.

【0017】[0017]

【実施例】【Example】

実施例1 連続鋳造時に浸漬ノズル中に付着する介在物等の付着物
を洗浄する目的で溶鋼中に吹込むArガス量を、吐出溶
鋼Ton当たり0から12リットルの範囲で変化させ、
鋳込みスラブ幅1200mm、1500mm、1800
mmの3種類の連続鋳造スラブを製造し、スラブ横断面
100cm2当たりの気泡数を調査した。その結果を図
1に示す。図1に示すとおり、吹込むArガス量を減少
させると連続鋳造スラブ中の気泡数が減少してゆくが、
吐出溶鋼Ton当たり4リットル前後で急激に減少す
る。特に、鋳込みスラブ幅1500mm以上では、吹込
むArガス量が吐出溶鋼Ton当たり4リットル前後で
の減少は顕著となっている。
Example 1 The amount of Ar gas blown into molten steel for the purpose of cleaning deposits such as inclusions that adhere to the immersion nozzle during continuous casting was changed in the range of 0 to 12 liters per molten discharge Ton.
Cast slab width 1200mm, 1500mm, 1800
mm, three types of continuously cast slabs were manufactured, and the number of cells per 100 cm 2 of the slab cross section was investigated. The result is shown in FIG. As shown in FIG. 1, the number of bubbles in the continuous casting slab decreases as the amount of the injected Ar gas decreases,
It decreases sharply at around 4 liters per discharged molten steel Ton. In particular, when the casting slab width is 1500 mm or more, the decrease in the amount of the injected Ar gas at around 4 liters per discharged molten steel Ton is remarkable.

【0018】実施例2 表1に示すとおり、BP環境下での耐HIC性に優れた
A〜E鋼とNACE環境下での耐HIC性に優れたF〜
J鋼を溶製し、表2に示す連続鋳造条件で連続鋳造して
スラブとなし、熱間圧延して熱延コイルとしたのち、そ
のまま電縫溶接して電縫鋼管を得た。得られた各電縫鋼
管のBP環境あるいはNACE環境におけるHIC試験
を実施した。その結果を表2に示す。また、連続鋳造時
に溶鋼中に吹込むArガス量と耐HIC性の評価の一つ
である割れ面積率(CAR)との関係を図2に示す。な
お、表2中のArガス吹込み量欄は、吐出溶鋼Ton当
たりの量、割れ発生欄の○は割れなし、△はふくれ状微
小割れ、×は割れ大を示す。HIC試験は、NACE
standerd TM−02−84に準じて行った。
ただし、表2中の試験結果欄のBP環境は、溶液として
2Sで飽和したpH4.9〜5.3の人工海水(いわ
ゆるBP溶液)を用い、試験温度25±3℃、浸漬時間
96時間である。また、NACE環境は、溶液としてp
H3.1〜3.5の5%NaCl+0.5%酢酸溶液
(いわゆるNACE溶液)を用い、試験温度25±3
℃、浸漬時間96時間である。試験は、各供試電縫鋼管
から採取した試験片を無負荷状態で上記溶液に96時間
浸漬したのち、断面検鏡によりHICの有無を判定し
た。試験片は、各供試電縫鋼管より各試験溶液当たり3
個の試験片を採取し、何れの試験片においてもHICの
発生が認められない場合のみ、HICの発生なしと判定
した。
Example 2 As shown in Table 1, A to E steels having excellent HIC resistance in a BP environment and F to F steels having an excellent HIC resistance in a NACE environment.
J steel was melted, continuously cast into slabs under the continuous casting conditions shown in Table 2, hot rolled into a hot rolled coil, and then subjected to ERW welding to obtain an ERW steel pipe. The HIC test in the BP environment or the NACE environment of each obtained electric resistance welded steel pipe was performed. Table 2 shows the results. FIG. 2 shows the relationship between the amount of Ar gas blown into molten steel during continuous casting and the crack area ratio (CAR), which is one of the evaluations of HIC resistance. In addition, in the Ar gas injection amount column in Table 2, the amount per molten molten steel Ton, and in the crack occurrence column, ○ indicates no cracking, Δ indicates blister-like minute cracking, and X indicates large cracking. HIC test is NACE
The measurement was performed according to standard TM-02-84.
However, the BP environment in the test result column in Table 2 was a test solution at 25 ± 3 ° C. and an immersion time of 96 using artificial seawater (so-called BP solution) having a pH of 4.9 to 5.3 saturated with H 2 S as a solution. Time. Also, the NACE environment uses p
Using a 5% NaCl + 0.5% acetic acid solution (so-called NACE solution) of H3.1 to 3.5, the test temperature was 25 ± 3.
C., immersion time 96 hours. In the test, a test piece collected from each of the ERW steel tubes was immersed in the above solution for 96 hours under no load, and then the presence or absence of HIC was determined by a cross-sectional microscope. The test piece was 3 pcs per test solution from each test ERW steel pipe.
Individual test pieces were collected, and it was determined that no HIC was generated only when no HIC was generated in any of the test pieces.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】表2および図2に示すとおり、BP環境ま
たはNACE環境下での耐HIC性に優れた鋼の連続鋳
造に際し、溶鋼中に吹込むArガス量を、BP環境下で
の耐HIC性に優れた鋼では吐出溶鋼Ton当たり4リ
ットル以下、NACE環境下での耐HIC性に優れた鋼
では吐出溶鋼Ton当たり3リットル以下とすることに
よって、従来たびたび発生していたHICが皆無となっ
ている。これに対し、溶鋼中に吹込むArガス量を、吐
出溶鋼Ton当たり5リットル以上とした比較例におい
ては、いずれもHICが発生すると共に、割れ面積率が
いずれも1%を超えている。
As shown in Table 2 and FIG. 2, the amount of Ar gas blown into the molten steel during continuous casting of steel having excellent HIC resistance under the BP environment or the NACE environment was determined under the BP environment.
Steel with excellent HIC resistance of 4 liters or less per molten molten steel Ton , excellent in HIC resistance under NACE environment
In this case, the HIC, which is frequently generated in the past, is eliminated by setting the discharge molten steel Ton to 3 liters or less . On the other hand, in the comparative examples in which the amount of Ar gas blown into the molten steel was 5 liters or more per molten molten steel Ton, HIC was generated and the crack area ratio exceeded 1% in all cases.

【0022】[0022]

【発明の効果】以上述べたとおり、この発明方法によれ
ば、BP環境またはNACE環境下での耐HIC性に優
れた鋼の連続鋳造に際し、溶鋼中に吹込むArガス量
を、BP環境下での耐HIC性に優れた鋼では吐出溶鋼
Ton当たり4リットル以下、NACE環境下での耐H
IC性に優れた鋼では吐出溶鋼Ton当たり3リットル
以下とする簡単な操作によって、BP環境またはNAC
E環境下での耐HIC性に優れた電縫鋼管用の鋼を製造
することができる。
As described above, according to the method of the present invention, the amount of Ar gas blown into molten steel during continuous casting of steel having excellent HIC resistance in a BP environment or a NACE environment is reduced by the BP environment. 4 liters or less per molten Ton for HIC in HACE under NACE environment
3 liters per molten Ton for steel with excellent IC properties
By a simple operation that follows, BP environment or NAC
It is possible to manufacture steel for an electric resistance welded steel pipe having excellent HIC resistance in an E environment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1における吐出溶鋼Ton当たりのAr
ガス量とスラブ横断面での気泡数との関係を示すグラフ
である。
FIG. 1 shows Ar per molten molten steel Ton in Example 1.
It is a graph which shows the relationship between the gas amount and the number of air bubbles in a slab cross section.

【図2】実施例2における吐出溶鋼Ton当たりのAr
ガス量と割れ面積率との関係を示すグラフである。
FIG. 2 shows Ar per discharged molten steel Ton in Example 2.
It is a graph which shows the relationship between gas amount and crack area ratio.

フロントページの続き (56)参考文献 特開 昭50−97515(JP,A) 特開 昭54−38214(JP,A) 特開 昭62−227067(JP,A) 特開 昭56−119759(JP,A) 特開 昭62−38747(JP,A) 特開 平2−247052(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22D 11/00 360 B22D 11/00 Continuation of the front page (56) References JP-A-50-97515 (JP, A) JP-A-54-38214 (JP, A) JP-A-62-227067 (JP, A) JP-A-56-119759 (JP, A) , A) JP-A-62-38747 (JP, A) JP-A-2-247052 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B22D 11/00 360 B22D 11/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.01〜0.20%、Si:0.
01〜0.50%、Mn:0.5〜1.8%、P:0.
020%以下、S:0.010%以下、Al:0.1%
以下、Cu:0.2〜0.8%、Ni:0.6%以下を
含有し、さらに、Cr:1.0%以下、Mo:1.0%
以下、Ti:0.01〜0.10%、Nb:0.01〜
0.10%、V:0.1%以下のうちの1種または2種
以上を含有し、残部がFeおよび不可避的不純物からな
BP環境下での耐水素誘起割れ性に優れた鋼の連続鋳
造において、浸漬ノズル閉塞防止のため溶鋼中に吹込む
Arガス量を、吐出溶鋼Ton当たり4リットル以下と
することを特徴とする高耐食性電縫鋼管用鋼の製造方
法。
C: 0.01 to 0.20%, Si: 0.1%
01-0.50%, Mn: 0.5-1.8%, P: 0.
020% or less, S: 0.010% or less, Al: 0.1%
Hereinafter, Cu: 0.2 to 0.8%, Ni: 0.6% or less, Cr: 1.0% or less, Mo: 1.0%
Hereinafter, Ti: 0.01 to 0.10%, Nb: 0.01 to
0.10%, V: Continuation of steel containing one or more of 0.1% or less and excellent in resistance to hydrogen-induced cracking in a BP environment consisting of Fe and unavoidable impurities. In the casting, a method for producing high corrosion resistant steel for electric resistance welded steel pipe, wherein an amount of Ar gas blown into molten steel to prevent clogging of a submerged nozzle is 4 liters or less per molten molten steel Ton.
【請求項2】 C:0.01〜0.20%、Si:0.
01〜0.50%、Mn:0.5〜1.8%、P:0.
020%以下、S:0.010%以下、Al:0.1%
以下、Ti:0.001〜0.1%、Nb:0.005
〜0.1%、Ca:0.0001〜0.005%を含有
し、さらに、Cu:0.2〜0.8%、Ni:0.6%
以下、Cr:1.0%以下、Mo:1.0%以下、V:
0.1%以下のうちの1種または2種以上を含有し、残
部がFeおよび不可避的不純物からなるNACE環境下
での耐水素誘起割れ性に優れた鋼の連続鋳造において、
浸漬ノズル閉塞防止のため溶鋼中に吹込むArガス量
を、吐出溶鋼Ton当たりリットル以下とすることを
特徴とする高耐食性電縫鋼管用鋼の製造方法。
2. C: 0.01 to 0.20%, Si: 0.
01-0.50%, Mn: 0.5-1.8%, P: 0.
020% or less, S: 0.010% or less, Al: 0.1%
Hereinafter, Ti: 0.001 to 0.1%, Nb: 0.005
0.1%, Ca: 0.0001-0.005%, Cu: 0.2-0.8%, Ni: 0.6%
Hereinafter, Cr: 1.0% or less, Mo: 1.0% or less, V:
Under NACE environment containing one or more of 0.1% or less, with the balance being Fe and unavoidable impurities
In continuous casting of steel excellent in hydrogen-induced cracking resistance at
A method for producing highly corrosion resistant steel for electric resistance welded steel pipe, characterized in that the amount of Ar gas blown into molten steel to prevent clogging of a submerged nozzle is 3 liters or less per molten molten steel Ton.
JP31251393A 1993-11-17 1993-11-17 Manufacturing method of steel for high corrosion resistance ERW steel pipe Expired - Fee Related JP2914138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31251393A JP2914138B2 (en) 1993-11-17 1993-11-17 Manufacturing method of steel for high corrosion resistance ERW steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31251393A JP2914138B2 (en) 1993-11-17 1993-11-17 Manufacturing method of steel for high corrosion resistance ERW steel pipe

Publications (2)

Publication Number Publication Date
JPH07136748A JPH07136748A (en) 1995-05-30
JP2914138B2 true JP2914138B2 (en) 1999-06-28

Family

ID=18030131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31251393A Expired - Fee Related JP2914138B2 (en) 1993-11-17 1993-11-17 Manufacturing method of steel for high corrosion resistance ERW steel pipe

Country Status (1)

Country Link
JP (1) JP2914138B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3018231A4 (en) * 2013-07-01 2017-03-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel plate having excellent hydrogen-induced-cracking resistance and toughness, and steel tube for line pipe

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002323481A (en) * 2001-04-27 2002-11-08 Kawasaki Steel Corp Ultrasonic flaw detection method and device
JP4810859B2 (en) * 2005-03-31 2011-11-09 Jfeスチール株式会社 Manufacturing method of high Cr steel slab
JP5131714B2 (en) * 2009-09-02 2013-01-30 新日鐵住金株式会社 Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent low-temperature toughness
KR101982014B1 (en) * 2012-06-18 2019-05-24 제이에프이 스틸 가부시키가이샤 Thick, high-strength, sour-resistant line pipe, method for producing same and method for judging resistance to hic of the same
US20150152982A1 (en) * 2012-07-09 2015-06-04 Jfe Steel Corporation Thick-walled high-strength sour-resistant line pipe and method for producing same
JP6869151B2 (en) 2016-11-16 2021-05-12 株式会社神戸製鋼所 Steel pipes for steel plates and line pipes and their manufacturing methods
WO2018092605A1 (en) 2016-11-16 2018-05-24 株式会社神戸製鋼所 Steel sheet, steel pipe for line pipe, and production method therefor
CN111500939B (en) * 2020-05-15 2021-08-03 佛山科学技术学院 anti-HIC pipeline steel based on cluster strengthening and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3018231A4 (en) * 2013-07-01 2017-03-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel plate having excellent hydrogen-induced-cracking resistance and toughness, and steel tube for line pipe
EP3428301A1 (en) * 2013-07-01 2019-01-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel plate with excellent hydrogen-induced cracking resistance and toughness, and steel pipe for line pipe

Also Published As

Publication number Publication date
JPH07136748A (en) 1995-05-30

Similar Documents

Publication Publication Date Title
KR101256268B1 (en) Austenitic stainless steel
EP1546417B1 (en) High strength seamless steel pipe excellent in hydrogen-induced cracking resistance and its production method
KR101331976B1 (en) Method of manufacturing sheet steel for thick-walled sour-resistant line pipe of excellent toughness
CN102317492A (en) High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
CN102317491A (en) High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
WO2005075694A1 (en) Steel product for line pipe excellent in resistance to hic and line pipe produced by using the steel product
JPH07216500A (en) High strength steel material excellent in corrosion resistance and its production
JP2914138B2 (en) Manufacturing method of steel for high corrosion resistance ERW steel pipe
JP3633515B2 (en) Hot-rolled steel sheet having excellent resistance to hydrogen-induced cracking and method for producing the same
KR100430067B1 (en) Steel for welded structure purpose exhibiting no dependence of haz toughness on heat input and method for producing the same
JPH08170153A (en) Highly corrosion resistant two phase stainless steel
JP3303647B2 (en) Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance
CN111607747A (en) Hydrogen sulfide corrosion resistant X70 grade pipeline steel for seabed and production method thereof
JPS6362569B2 (en)
JPH03211230A (en) Production of low alloy steel for line pipe with high corrosion resistance
JPH0770697A (en) High strength hot rolled steel strip excellent in hic resistance and its production
JPH08232042A (en) Corrosion resisting steel for resistance welded tube
JPS6160866A (en) Steel material for line pipe superior in sour resistance
JP2003293078A (en) Steel pipe having excellent weld heat affected zone toughness and deformability and method of producing steel sheet for steel pipe
JPS6363610B2 (en)
JP2001207242A (en) Thick-walled sour-resisting steel tube excellent in toughness at low temperature in circumferential weld zone, and pipeline
JP2006241508A (en) HT490MPa CLASS REFRACTORY STEEL FOR WELDED STRUCTURE HAVING EXCELLENT GALVANIZING CRACK RESISTANCE IN WELD ZONE AND ITS PRODUCTION METHOD
JP7256381B2 (en) Manufacturing method of killed steel
CN111705262B (en) Magnesium-containing X65 pipeline steel with excellent acid resistance and production method thereof
JPH091303A (en) Manufacture of low temperature use steel excellent in ctod property of heat affected zone

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080416

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090416

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100416

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees