JPS6160866A - Steel material for line pipe superior in sour resistance - Google Patents

Steel material for line pipe superior in sour resistance

Info

Publication number
JPS6160866A
JPS6160866A JP18201684A JP18201684A JPS6160866A JP S6160866 A JPS6160866 A JP S6160866A JP 18201684 A JP18201684 A JP 18201684A JP 18201684 A JP18201684 A JP 18201684A JP S6160866 A JPS6160866 A JP S6160866A
Authority
JP
Japan
Prior art keywords
less
steel
resistance
hydrogen
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18201684A
Other languages
Japanese (ja)
Other versions
JPH0368101B2 (en
Inventor
Mitsuo Kimura
光男 木村
Nobuo Totsuka
戸塚 信夫
Takao Kurisu
栗栖 孝雄
Yoichi Nakai
中井 揚一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18201684A priority Critical patent/JPS6160866A/en
Publication of JPS6160866A publication Critical patent/JPS6160866A/en
Publication of JPH0368101B2 publication Critical patent/JPH0368101B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Arc Welding In General (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain the titled material superior in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance by specifying a compsn. and its relation consisting of C, Si, Mn, Al, P, S, Ca, Ni, Cr, Mo and Fe in said material. CONSTITUTION:The titled material is composed of 0.01-0.25wt% C, 0.010-0.50% Si, 0.70-2.00% Mn, 0.01-0.10% Al, <=0.030% P, <=0.0030% S, 0.0005-0.0050% Ca, further 0.20-3.0% Ni and one or 2 kinds of 5.0% Cr, <=2.0% Mo under >=0.5% Cr + Mo, further if necessary >=one kind among 0.10-0.60% Cu, <=rho@@@@@@@@@00X00'0000'00$rhoBETA@@@@@@@Fe with inevitable impurities and is suitable to submerged arc welded steel 0.10% Nb, <=0.15% V, <=0.10% Zr, <=0.10% Ti, <=0.005% B and the balance Fe with inevitable impurities and is suitable to submerged arc welded steel pipe or electric welded steel pipe, etc.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、原油や天然ガス等の輸送に使用されるライ
ンパイプ用の鋼材に関するものでお)、特に水素誘起割
れおよび硫化物応力腐食割れが問題となる湿潤硫化水素
環境、すなわち所謂サワーな環境で使用される2インバ
イグ用の潜弧溶接鋼管ちるいは電縫溶接鋼管等に適した
鋼材に関するものである。
[Detailed Description of the Invention] Industrial Application Field This invention relates to steel materials for line pipes used for transporting crude oil, natural gas, etc.), in which hydrogen-induced cracking and sulfide stress corrosion cracking are particularly problematic. This invention relates to steel materials suitable for submerged arc welded steel pipes or electric resistance welded steel pipes for two-in-vib applications that are used in humid hydrogen sulfide environments, that is, so-called sour environments.

従来技術 近年、硫化水素を含む原油や天然ガスの輸送に用いられ
るラインパイプにおいては、水素誘起割れおよび硫化物
応力腐食割れが問題となるようになり、そこで種々の研
究が行なわれ、いくつかの対策が講じられるようになっ
ている。
Prior Art In recent years, hydrogen-induced cracking and sulfide stress corrosion cracking have become a problem in line pipes used to transport crude oil and natural gas containing hydrogen sulfide. Countermeasures are being taken.

ところが最近では良質石油資源の枯渇化が進行したため
、従来は顧られなかったような硫化水素濃度の著しく高
い油田、ガス田、すなわちハイサワーな油田、ガス田の
開発が急増しつつあシ、また最近ではラインの輸送効率
を上げるためにラインの操業圧力を高くすることが多く
なっておシ、そのため従来のラインパイプ使用環境と比
較して、よシ声値が低くかつ硫化水素圧力の高い苛酷な
環境が課せられるようになり、それに伴なってラインパ
イプ用鋼材に対する要求も従来より一層厳しくなってい
るのが実情である。
However, recently, as high-quality oil resources have been depleted, there has been a rapid increase in the development of oil and gas fields with extremely high concentrations of hydrogen sulfide, which had previously been neglected. In order to improve line transportation efficiency, the operating pressure of lines is often increased, and as a result, compared to the conventional environment in which line pipes are used, it is necessary to use harsh environments with low noise values and high hydrogen sulfide pressure. The reality is that as environmental conditions have become more demanding, the requirements for steel materials for line pipes have become more stringent than ever.

ところで水素誘起割れ(以下HICと記す)の発生原因
については、これまでの研究から、鋼表面の腐食反応で
発生した水素が鋼中に侵入して、鋼中の非金属介在物、
特に介在物先端のノツチ効果による応力集中の生じ易い
MnS等の所謂A系介在物と地鉄との界面に水素が集積
、ガス化して割れの起点を生じさせ、板厚中央の偏析部
に生じる帯状のマルテンサイトやベイナイトなどの低温
変態異常組織(以下単に異常組織と記す)をその割れが
伝播拡大するものであることが知られている。
By the way, as for the cause of hydrogen-induced cracking (hereinafter referred to as HIC), previous research has revealed that hydrogen generated by a corrosion reaction on the steel surface penetrates into the steel, causing non-metallic inclusions in the steel,
In particular, hydrogen accumulates at the interface between the so-called A-based inclusions such as MnS and the steel base, where stress concentration is likely to occur due to the notch effect at the tip of the inclusion, and gasifies, creating the starting point of cracks, which occur in the segregation area at the center of the plate thickness. It is known that cracks propagate and expand in low-temperature transformed abnormal structures (hereinafter simply referred to as abnormal structures) such as band-shaped martensite and bainite.

またHICと同時に間層となる硫化物応力腐食割れ(以
下SSCと記す)は、硫化水素を含む環境下での鋼の腐
食反応で生じた水素が鋼中に侵入することによって起こ
る水素脆化現象の一つであ夛、鋼の組成や組織等の冶金
学的因子および鋼に加わる応力状態等の種々の因子が複
雑に関連して生じる現象であることが知られている。
In addition, sulfide stress corrosion cracking (hereinafter referred to as SSC), which forms an interlayer at the same time as HIC, is a hydrogen embrittlement phenomenon that occurs when hydrogen generated by a corrosion reaction of steel in an environment containing hydrogen sulfide penetrates into the steel. It is known that metallurgical factors, such as the composition and structure of the steel, and various factors, such as the state of stress applied to the steel, are complexly related to each other.

そこで従来から耐HIC性向上対策としては(1)。Therefore, the conventional measures to improve HIC resistance are (1).

(2) 、 (3)に示すような方法が採用または提案
されて−る。
The methods shown in (2) and (3) have been adopted or proposed.

(1)  割れの起点となる硫化物系介在物をCat)
るいはREM (希土類元素)添加によって分散、球状
化させ、割れの起点となり難い状態とする方法(例えば
特公昭54−.38568号)。
(1) Catalyze sulfide inclusions that are the starting point of cracks)
Or, by adding REM (rare earth element), the metal is dispersed and spheroidized, making it difficult to become a starting point for cracks (for example, Japanese Patent Publication No. 54-38568).

(2)  Mn 、 P等の含有量を低減し、圧延半製
品を熱処理することによって異常組織を低減させ、割れ
の伝播、拡大が生じないようにする方法(例えば特開昭
52−111815号)。
(2) A method of reducing the content of Mn, P, etc. and heat-treating rolled semi-finished products to reduce abnormal structures and prevent crack propagation and expansion (for example, JP-A-52-111815) .

(3)鋼表面に安定被膜を生成するCu等の元素を添加
して鋼中への水素侵入を減少させる方法(例えば特開昭
52−111815号)。
(3) A method of reducing hydrogen intrusion into steel by adding elements such as Cu that form a stable film on the steel surface (for example, JP-A-52-111815).

発明が解決すべき問題点 前述のように最近の厳しい環境では田が近く、そのため
前記従来方法(3)の方法を適用してもCuが有効な皮
膜を形成することが困難であシ、シたがりて従来方法(
3)では充分な耐HIC効果を得ることは困難であった
。またそのような環境では鋼中に多量の水素が侵入する
ため、前記従来方法(1)。
Problems to be Solved by the Invention As mentioned above, in the recent harsh environment, rice fields are close, so even if the conventional method (3) is applied, it is difficult to form a film in which Cu is effective. Traditional method (
3), it was difficult to obtain a sufficient HIC resistance effect. In addition, in such an environment, a large amount of hydrogen enters the steel, so the conventional method (1) is used.

(2)の対策だけでは充分な耐HIC効果を得ることが
困難であった。したがって前述のような苛酷な環境下で
の耐HIC性を充分に向上させるためには、鋼中に侵入
する水素を減少させる必要があると考えられる。
It was difficult to obtain a sufficient HIC resistance effect only with the measure (2). Therefore, in order to sufficiently improve the HIC resistance under the above-mentioned harsh environment, it is considered necessary to reduce the amount of hydrogen penetrating into the steel.

したがってこの発明は、鋼中への水素侵入を減少させて
耐HIC性を向上させると同時に、充分な耐SSC性を
も有するようKしたラインパイプ用鋼材、すなわち耐サ
ワー性の優れたラインパイプ用鋼材を提供すること金目
的とするものである。
Therefore, this invention provides a steel material for line pipes that reduces hydrogen intrusion into the steel and improves HIC resistance while also having sufficient SSC resistance, that is, a steel material for line pipes with excellent sour resistance. The objective is to provide steel materials.

問題点を解決するための手段 本発明者等は鋼中への水素の侵入を減少させて耐I(I
C性を向上させる方策について種々実験・検討を重ねた
結果、Ntを添加しておくことが水素の侵入抑制に効果
があり、かつまたNiと同時1ccrおよび/またはM
oを添加することによってその効果が飛躍的に増大して
、耐HIC性が著しく向上することを見出した。またN
iを添加した場合耐SSC性の低下が懸念されるが、C
rおよび/またはMoを添加することによって耐SSC
性の低下を防止して、耐HIC性と耐SSC性ともに優
れた鋼材が得られることを見出した。すなわちこの発明
では、Niと、Crおよび/またはMoの複合添加1c
ごって耐HIC性および耐SSC性の両者が著しく優れ
たラインパイプ用鋼材を得ることが可能となったのでち
る。
Means for Solving the Problems The present inventors reduced the penetration of hydrogen into the steel and increased the resistance to I (I).
As a result of various experiments and studies on measures to improve carbon properties, we found that adding Nt is effective in suppressing hydrogen penetration, and that adding 1ccr and/or M at the same time as Ni
It has been found that by adding o, the effect is dramatically increased and the HIC resistance is significantly improved. Also N
There is a concern that the SSC resistance will decrease if C is added, but C
SSC resistance by adding r and/or Mo
It has been found that a steel material with excellent both HIC resistance and SSC resistance can be obtained by preventing a decrease in properties. That is, in this invention, the composite addition of Ni, Cr and/or Mo
This is because it has become possible to obtain a steel material for line pipes that is extremely superior in both HIC resistance and SSC resistance.

したがって第1発明のラインパイプ用鋼材は、C0.0
1〜0.25 %、Si 0.010〜0.50%、M
n0.70〜2.00%、AI0.O1〜0.10%、
P0.030−以下、80.0030%以下、Ca 0
.0005〜0.0050%を含有し、かつ0.20%
を越え3,0チ以下のNiを含有し、さらに5.0%以
下のCrと2.0−以下のMoのうち1種または2種を
合計で0.5チ以上含有し、残部がreおよび不可避的
不純物よりなることを特徴とするものである。
Therefore, the steel material for line pipes of the first invention has a C0.0
1-0.25%, Si 0.010-0.50%, M
n0.70-2.00%, AI0. O1~0.10%,
P0.030- or less, 80.0030% or less, Ca 0
.. 0005-0.0050% and 0.20%
Contains more than 3.0% Ni, and further contains 0.5% or more of 5.0% or less Cr and 2.0% or less Mo, with the balance being re. and unavoidable impurities.

また第2発明のラインパイプ用鋼材は、上記第1発明で
規定される各成分元素のほか、さらにCu 0.l O
〜0.60 ’lr、Nb0.10%以下、V0.15
チ以下、Zr0.10%以下、Ti0.lO%以丁、B
0.ooss以下のうちから選ばれた1mまたは2種以
上を含有するものである。
Further, the steel material for line pipes of the second invention contains Cu0. L O
~0.60'lr, Nb0.10% or less, V0.15
Ti or less, Zr0.10% or less, Ti0. 10%, B
0. ooss or more selected from the following.

次にこの発明のラインパイプ用鋼材における成分限定理
由を説明する。
Next, the reason for limiting the components in the steel material for line pipes of the present invention will be explained.

c0.oi〜0.25%: Cは0.01%未満ではラインパイプ用鋼材として必要
な強度が得られず、−万0.25 %を越えれば溶接鋼
管として使用されるラインパイプ用鋼材における溶接部
の靭性t−損なうから、0.01〜0.25%の範囲内
に限定した。
c0. oi ~ 0.25%: If C is less than 0.01%, the strength required for line pipe steel cannot be obtained, and if it exceeds -0.25%, it will not be possible to obtain the welded part of line pipe steel used as welded steel pipe. Since the toughness of t- is impaired, it is limited to a range of 0.01 to 0.25%.

Si0.010〜0.50− 二 Siは通常の製鋼過程において脱酸に必要な元素であり
、0.010%未満では脱酸効果がなく、−万0. s
 O%を越えれば鋼の靭性を劣化させるから0.oto
〜0.50 %の範囲に限定した。
Si0.010~0.50-Si is an element necessary for deoxidation in the normal steelmaking process, and if it is less than 0.010%, there is no deoxidation effect; s
If it exceeds 0%, it will deteriorate the toughness of the steel. oto
-0.50%.

Mn 0.70〜2.00%: 凪は強度向上に有効な元素であるが、0.70%未満で
は必要強度を確保することが困難となシ、−万2.00
%を越えれば靭性および溶接性を劣化させるから、0.
70〜2.00%の範囲内とした。
Mn 0.70-2.00%: Calm is an effective element for improving strength, but if it is less than 0.70%, it is difficult to secure the required strength.
If it exceeds 0.0%, the toughness and weldability will deteriorate.
It was set within the range of 70 to 2.00%.

AA! 0.OL〜0.−10%: AA’は通常の製鋼過程において脱酸に必要な元素でア
シ、また耐HIC性向上のために添加されるCaの添加
歩留りを向上させるに有効であるが、0.01%未満で
はその効果が得られず、一方0、 l Oチを越えて添
加すれば結晶粒の粗大化を招いて材質を劣化させるから
、0.01〜0.l O%の範囲に限定した。
AA! 0. OL~0. -10%: AA' is an element necessary for deoxidation in the normal steelmaking process, and is effective in improving the addition yield of Ca, which is added to improve HIC resistance, but less than 0.01%. However, if it is added in excess of 0.01 to 0.1 O, the crystal grains will become coarser and the material will deteriorate. It was limited to a range of lO%.

P0.030チ以下: Pは有害な不純物元素であゃ、また偏析して中心偏析部
の硬度を上昇させ、割れの伝播、拡大を助長させるから
、可及的に小量に抑制することが望ましいが、製造コス
トとの兼ね合いから0.030チ以下とした。
P0.030 or less: P is a harmful impurity element, and it also segregates and increases the hardness of the central segregation area, promoting the propagation and expansion of cracks, so it is best to keep the amount as small as possible. Although desirable, it is set to 0.030 inch or less in view of manufacturing cost.

S0.0030%以下: Sは1(ICの起点となる硫化物系介在物を生成する元
素であるから耐HIC性向上のためには可及的に少ない
ことが望ましく、0.0030%を越えれば充分な耐H
IC性が得られなくなるから、Sは0.0030チ以下
に限定した。
S 0.0030% or less: S is 1 (since it is an element that generates sulfide inclusions that become the starting point of IC, it is desirable to have as little as possible to improve HIC resistance, and it should not exceed 0.0030%. sufficient H resistance.
Since IC properties cannot be obtained, S is limited to 0.0030 or less.

Ca 0.0005〜0.OO50%:Caは硫化物系
介在物の形状を球状化して、硫化物系介在物がf(IC
の起点となることを抑制し、これKより耐HIC性を確
保するに有効な元素でらシ、Ca添加による耐HIC性
確保の効果を得る咬めにはSを0.ooto%以下と極
低S化した場合でも少なくとも0.0005%以上が必
要であり、一方0.oosoチを越えるCaの添加は大
型介在物を増加させて耐HIC性および耐水素ふくれ性
を低下させるおそれがちるから、0.0005〜0.0
050チの範囲に限定した。
Ca 0.0005-0. OO50%: Ca makes the shape of sulfide inclusions spheroidal, and the sulfide inclusions become f(IC
It is an element that is more effective in suppressing the formation of the starting point of HIC and ensuring HIC resistance than K, and 0.00% S is added to obtain the effect of securing HIC resistance by adding Ca. Even when the S content is extremely low, 0.0005% or less, at least 0.0005% or more is required. Addition of Ca in excess of 0.0005 to 0.000 is likely to increase large inclusions and reduce HIC resistance and hydrogen blistering resistance.
It was limited to a range of 0.050 cm.

Ni 0.20チを越え3.0−以下:Niは耐食性の
向上および靭性向上に有効であるのみならず、鋼中への
水素侵入量を減少させて耐)HC性を著しく向上させる
に有効な元素であり、この発明で基本的に!要な添加元
素でわる。Ni添加による耐I(IC性向上効果は0.
20%以下では得られず、一方3.0チを越えてNiを
添加してもコストが嵩むだけであるから、Niは0.2
0%を越え3.0−の範囲とした。
Ni more than 0.20 and less than 3.0: Ni is effective not only for improving corrosion resistance and toughness, but also for reducing the amount of hydrogen penetrating into the steel and significantly improving HC resistance. element, and this invention basically! Depends on the required additive elements. I resistance (IC property improvement effect by adding Ni is 0.
If Ni is less than 20%, it cannot be obtained, and on the other hand, adding more than 3.0% of Ni will only increase the cost.
It exceeded 0% and was set in the range of 3.0-.

Cr≦5.0%、Mo≦2,0%、Cr+Mo≧0.5
%:CrとMoはいずれも鋼の耐食性を向上させて鋼中
への水素侵入を低下させるとともIc、Ni添加に伴な
う耐SSC性の劣化を防ぐ効果を有する。Cr。
Cr≦5.0%, Mo≦2.0%, Cr+Mo≧0.5
%: Both Cr and Mo have the effect of improving the corrosion resistance of the steel, reducing hydrogen penetration into the steel, and preventing deterioration of the SSC resistance due to the addition of Ic and Ni. Cr.

Moの合計量が0.5チ未満ではこれらの効果が得られ
ないから、 Cr 、 Moの合計量を0.54以上と
した。一方Crが5.0チを越えれば、またMoが2.
0%を越えればそれぞれ靭性が劣化するから、Crは5
.0%以下、Moは2.0%以下とした。なおCr 。
Since these effects cannot be obtained if the total amount of Mo is less than 0.5, the total amount of Cr and Mo is set to 0.54 or more. On the other hand, if Cr exceeds 5.0 cm, Mo also increases to 2.0 cm.
If it exceeds 0%, the toughness deteriorates, so Cr is 5%.
.. 0% or less, and Mo was 2.0% or less. Furthermore, Cr.

Moはいずれか一方を単独添加しても、あるいは両者を
同時添加しても良い。
Either one of Mo may be added alone, or both may be added simultaneously.

以上の各成分元素のほか、第2発明の場合にはCu 、
 Nb 、 V 、 Zr 、 Ti 、 Bの1種ま
たは2種以上を添加する。そこでこれらの成分元素の限
定理由上次に説明する。
In addition to the above-mentioned component elements, in the case of the second invention, Cu,
One or more of Nb, V, Zr, Ti, and B are added. Therefore, the reason for limiting these component elements will be explained below.

Cu 0.l O〜0.60 % : Cuは0.10チ以上の添加により一が高い環境下で鋼
表面に安定な皮膜を生成して、耐食性を向上させるとと
もに、耐HIC性向上にも・効果を示す。
Cu0. lO ~ 0.60%: Cu is added in an amount of 0.10% or more to form a stable film on the steel surface in a high-I content environment, improving corrosion resistance and also having the effect of improving HIC resistance. show.

しかしながらCu添加量が0.60%を越えれば熱間加
工性を損なうから、0.10〜0.60−の範囲に限定
した。
However, if the amount of Cu added exceeds 0.60%, hot workability will be impaired, so it is limited to a range of 0.10 to 0.60.

Nb0.10%以下: Nbの添加は焼入性の向上、強度の向上に有効でおるが
、0.10%を越えて添加すれば靭性の低下を招くから
、0.10%以下に限定した。
Nb 0.10% or less: Addition of Nb is effective in improving hardenability and strength, but if added in excess of 0.10%, toughness will decrease, so it is limited to 0.10% or less. .

v0.ts俤以下、zr0.toチ以下:■およびZr
の添加もNb添加と同様に焼入性の向上、強度の向上に
効果があるが、V0.15%、Zr0.10%をそれぞ
れ越えれば靭性の劣化を招くからVは0.15%以下、
Zrは0.10%以下に限定した。
v0. Below ts, zr0. Below tochi: ■ and Zr
The addition of is also effective in improving hardenability and strength in the same way as adding Nb, but if the content exceeds 0.15% V or 0.10% Zr, the toughness deteriorates, so V should be 0.15% or less.
Zr was limited to 0.10% or less.

Ti0.10チ以下: Tiは強度の向上および耐食性の向上に効果があり、ま
たBと共存することによりBの効果を助長させる作用が
あって、Bの添加と併せてTiを0、OLチ以上を添加
することが望ましいが、0.10チを越えれば靭性を劣
化させるから、0.10%以下に限定した。
Ti: 0.10 mm or less: Ti is effective in improving strength and corrosion resistance, and when it coexists with B, it has the effect of promoting the effect of B. It is desirable to add more than 0.1%, but if it exceeds 0.10%, the toughness deteriorates, so it is limited to 0.10% or less.

80.005%以下: Bは焼入性を向上させる元素であり、0.0005チ以
上でその効果が顕著となるが、0.005%を越えれば
靭性を劣化させるおそれがあるから、0.005−以下
に限定した。
80.005% or less: B is an element that improves hardenability, and its effect becomes noticeable at 0.0005% or more, but if it exceeds 0.005%, there is a risk of deteriorating toughness, so B is an element that improves hardenability. 005- or less.

実施例 Ni 、 Cr 、 Moの添加により耐HIC性、耐
SSC性に優れた鋼材を製造できることを明らかにする
ために、Cレベルを変えた従来鋼をベースにNi、Cr
および/またはMoを添加し、またいくつかのものKつ
−てはCa 、 Nb 、 V 、 Zr 、 Ti 
、 Bを添加して本発明鋼を作成し、同時に本発明組成
範囲外の比較鋼を作成した。各供試材の化学成分組成お
よび機械的性質を第1表、第2表に示す。なお各供試材
は、常法にしたがって溶製し、連続鋳造によシスラブと
して熱間圧延した。
Example In order to clarify that it is possible to produce steel materials with excellent HIC resistance and SSC resistance by adding Ni, Cr, and Mo, Ni and Cr were added to the base of conventional steel with different C levels.
and/or Mo, and some also include Ca, Nb, V, Zr, Ti
, B was added to create the steel of the present invention, and at the same time, a comparative steel outside the composition range of the present invention was created. The chemical composition and mechanical properties of each sample material are shown in Tables 1 and 2. Each sample material was melted according to a conventional method and hot-rolled as a cis slab by continuous casting.

これらの各供試材に対して、次のようにして耐HIC性
の評価および耐SSC性の評価を行なった。
Each of these sample materials was evaluated for HIC resistance and SSC resistance as follows.

すなわち耐HIC性の評価としては、次の(1) 、 
(2)に記す方法を適用した。
In other words, the evaluation of HIC resistance is as follows (1):
The method described in (2) was applied.

(1)いわゆるBP試験法に準じた方法。すなわち試料
をNACE液(0,5チ酢酸+5−食塩水、H2S1気
圧飽和)中に96時間浸漬した後、試料断面を検鏡して
耐水素誘起割れ性を評価する方法。
(1) A method based on the so-called BP test method. That is, a method in which a sample is immersed in a NACE solution (0,5 thiacetic acid + 5-salt water, saturated at 1 atm of H2S) for 96 hours, and then a cross section of the sample is examined under a microscope to evaluate hydrogen-induced cracking resistance.

(2)環境側(オートクレーブ側)と測定側(水素透過
測定室側)との間に試験片を介挿して、環境側から試験
片鋼中へ侵入して測定側へ透過する水素をイオン化して
測定する所謂電気化学的透過法による水素透過試験法。
(2) A test piece is inserted between the environment side (autoclave side) and the measurement side (hydrogen permeation measurement chamber side), and the hydrogen that enters the test piece steel from the environment side and permeates to the measurement side is ionized. Hydrogen permeation test method using so-called electrochemical permeation method.

ここで、(1)の方法を実施するにあたっては、最も偏
析が多いと考えられる連鋳スラブの幅方向中央部に相当
する位置から第2図に示すように試験片1を各鋼種3本
ずつ採取した。そして耐HIC性の評価は、第3図に示
すように各試験片1ごとに3i11??1ff2A 、
 2E 、 2Cを倍率10倍で検鏡して行なった。
In carrying out method (1), three test pieces 1 of each steel type are placed as shown in Figure 2 from a position corresponding to the widthwise center of the continuously cast slab where segregation is considered to be the greatest. Collected. As shown in Figure 3, the HIC resistance was evaluated for each test piece by 3i11? ? 1ff2A,
2E and 2C were examined using a microscope at 10x magnification.

また(2)の水素透過試験は、環境をNACE l環境
と、5%NaC1水溶液・H2S I Oatm環境の
2sの環境に変えて、それぞれ100時間の試験期間に
透過した単位面積当シの水素量を調べた。
In addition, in the hydrogen permeation test (2), the environment was changed to a NACE l environment and a 5% NaCl aqueous solution/H2S I Oatm environment for 2 seconds, and the amount of hydrogen permeated per unit area during the test period of 100 hours was determined. I looked into it.

一方針SSC性の評価は、4点曲げによる応力腐食割れ
試験にて実施した。すなわち、第4図に示すようなノツ
チ部3を有する試験片4を作成し、その試験片4に対し
第5図に示すような4点曲げ試験用治具5にて4点曲げ
応力を付加し、NACE液中に7・20時間浸漬した後
、割れの有無を調べた。
On the other hand, needle SSC properties were evaluated using a stress corrosion cracking test using four-point bending. That is, a test piece 4 having a notch 3 as shown in FIG. 4 is prepared, and a four-point bending stress is applied to the test piece 4 using a four-point bending test jig 5 as shown in FIG. After being immersed in NACE solution for 7.20 hours, the presence or absence of cracks was examined.

上述の各試験結果を第3表(BP試験法に準じた耐SS
C性試験結果)、第4表(水素透過試験結果)、および
第5表(4点曲げ応力腐食割れ試験による耐SSC性試
験結果)に示す。なお第3表において、階段状割れとは
、試験片の版厚方向に階段状に連続した割れであって、
割れの先端から他の割れの先端までの距離が0.515
1以内にあるものを意味し、また直線状割れとは、上記
の階段状割れの規定にはいらず、互いに0. s m以
上離れて孤立している直線状の割れを意味する。
The above test results are shown in Table 3 (SS resistance according to BP test method)
C property test results), Table 4 (hydrogen permeation test results), and Table 5 (SSC resistance test results by 4-point bending stress corrosion cracking test). In Table 3, step-like cracks are cracks that are continuous in a step-like manner in the thickness direction of the test piece.
The distance from the tip of a crack to the tip of another crack is 0.515
Linear cracks mean those within 0.1 of each other, and linear cracks do not meet the stair-step cracks mentioned above. s means isolated linear cracks separated by more than m.

第3表の耐HIC性試験結果から明らかなように1本発
明鋼(Al−11)ではいずれも割れがないかまたはあ
っても微少であって、優れた耐HIC性を示しているの
に対し、Ntiが少ないA l 2 、 A13の比較
鋼ではHICの発生が認められた。またNiを含有して
いてもS量が0.OO3’16を越える應L7の比較鋼
やCaを含有していない煮18の比較鋼の場合にも、耐
HIC性が劣化していることが明らかである。
As is clear from the HIC resistance test results in Table 3, the invention steel (Al-11) has no cracks or only very small cracks, showing excellent HIC resistance. On the other hand, the occurrence of HIC was observed in the comparison steels Al 2 and A13, which have less Nti. Also, even if it contains Ni, the amount of S is 0. It is clear that the HIC resistance is also deteriorated in the case of the comparative steel of L7, which exceeds OO3'16, and the comparative steel of N18, which does not contain Ca.

また第4表の水素透過試験結果から明らかなように、N
ACE液環境、およびH2S 10 a Lm g境の
いずれにおいても本発明鋼A L = A L lは、
比較銅属12.13の如(Niが添加されていない場合
と比較して水素透過量が格段に少なくなっている。菌1
図に、NACEtL環境における水素透過量と鋼中N1
量との関係を示す。第1図から、Ni!lが062チを
越えれば水素透過量が大きく減少することがわかる。
Furthermore, as is clear from the hydrogen permeation test results in Table 4, N
In both the ACE liquid environment and the H2S 10 a Lm g environment, the steel of the present invention A L = A L l is
As shown in Comparative Copper Genus 12.13 (compared to the case where Ni is not added, the amount of hydrogen permeation is significantly lower. Bacteria 1
The figure shows the hydrogen permeation amount and N1 in steel in the NACEtL environment.
Shows the relationship with quantity. From Figure 1, Ni! It can be seen that when l exceeds 062 inches, the amount of hydrogen permeation decreases significantly.

さらに第5表の耐SSC性試験結果から、本発明銅還1
〜11はいずれも優れた耐SSC性を示すが、比較銅属
14,15.16の如(Cr + Mo量が0.5%未
満の場合には耐SSC性が劣化していることが明らかで
ある。また比較鋼417.18の場合は耐HIC性の劣
化に伴なって耐SSC性も劣化している。
Furthermore, from the SSC resistance test results in Table 5, it was found that the present invention
-11 all show excellent SSC resistance, but as in Comparative Copper Metals 14 and 15.16 (when the amount of Cr + Mo is less than 0.5%, it is clear that the SSC resistance deteriorates). In the case of comparative steel 417.18, the SSC resistance also deteriorated as the HIC resistance deteriorated.

以上の各実験結果から明らかなように、0.2%を越え
るNiを添加して鋼中への水素侵入を抑制するとともに
、S量を0.OO30%以下に規制しかつCaを添加す
ることによって、耐)HC性を著しく改善し、併せてC
rおよび/またはMoを合計量で05チ以上添加するこ
とによって優れた耐SSC性を得ることができる。
As is clear from the above experimental results, adding more than 0.2% Ni suppresses hydrogen intrusion into the steel, and at the same time reduces the amount of S to 0.2%. By controlling OO to 30% or less and adding Ca, the HC resistance is significantly improved, and at the same time, C
Excellent SSC resistance can be obtained by adding R and/or Mo in a total amount of 0.5 mm or more.

@2表:供試材の機械的性質 第3表:耐HIC性試験結果 ◎われなし、○われ微少、Δわれlべ×われ大。@Table 2: Mechanical properties of test materials Table 3: HIC resistance test results ◎I am not there, ○I am small, ΔI am x I am large.

第4表:水素透過試験結果 認t(標準状態) 第5表二耐SSC性試験結果 発明の効果 以上の説明で明らかなように、この発明のラインパイプ
用鋼材は、優れた耐HIC性と良好な耐SSC性とを併
せ持つ耐サワー性に憂れたものであり、したがって硫化
水素圧力が高く田が低いような苛酷な環境でも水素誘起
割れや硫化物応力腐食割れの発生を確実に防止してライ
ンパイプの信頼性を向上させることができる。
Table 4: Hydrogen permeation test results (standard condition) Table 5: Results of SSC resistance test Effects of the invention As is clear from the above explanation, the steel material for line pipes of the present invention has excellent HIC resistance. It was concerned about its sour resistance, which combines good SSC resistance, and therefore, it reliably prevents the occurrence of hydrogen-induced cracking and sulfide stress corrosion cracking even in harsh environments where hydrogen sulfide pressure is high and the field is low. This can improve the reliability of line pipes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は水素透過tK及ぼす鋼中Ni量の影響を示す相
関図、第2図は耐1(IC性試験に使用した試験片の採
取位置を示す斜視図、第3図は耐HIC性試験における
試験片の観察位置を示すがF視図、第4図は耐SSC試
験に使用した試験片の形状、寸法を示す略解的な斜視図
、第5図は耐SSC性試験における応力付加方法を示す
略解的な正面図である。
Figure 1 is a correlation diagram showing the influence of the amount of Ni in steel on hydrogen permeation tK, Figure 2 is a perspective view showing the sampling position of the test piece used in the IC resistance test, and Figure 3 is the HIC resistance test. Fig. 4 is a schematic perspective view showing the shape and dimensions of the test piece used in the SSC resistance test, and Fig. 5 shows the stress application method in the SSC resistance test. It is a schematic front view shown.

Claims (2)

【特許請求の範囲】[Claims] (1)C0.01〜0.25%(重量%、以下同じ)、
Si0.010〜0.50%、Mn0.70〜2.00
%、Al0.01〜0.10%、P0.030%以下、
S0.0030%以下、Ca0.0005〜0.005
0%を含有し、さらにNiを0.20%を越え3.0%
以下の範囲内含有し、かつ5.0%以下のCrと2.0
%以下のMoとの1種または2種をCr+Mo合計量が
0.5%以上の範囲で含有し、残部がFeおよび不可避
的不純物よりなることを特徴とする耐サワー性に優れた
ラインパイプ用鋼材。
(1) C0.01-0.25% (weight%, same below),
Si0.010~0.50%, Mn0.70~2.00
%, Al0.01-0.10%, P0.030% or less,
S0.0030% or less, Ca0.0005-0.005
Contains 0% of Ni, and furthermore contains more than 0.20% of Ni and 3.0% of Ni.
Contains within the following range and 5.0% or less of Cr and 2.0
% or less of Mo in a total amount of Cr + Mo in a range of 0.5% or more, with the remainder consisting of Fe and inevitable impurities.For line pipes with excellent sour resistance. Steel material.
(2)C0.01〜0.25%、Si0.010〜0.
50%、Mn0.70〜2.00%、Al0.01〜0
.10%、P0.030%以下、S0.0030%以下
、Ca0.0005〜0.0050%を含有し、さらに
Niを0.20%を越え3.0%以下の範囲内で含有し
、かつ5.0%以下のCrと2.0%以下のMoの1種
または2種をCr+Mo合計量が0.5%以上の範囲で
含有し、さらにCu0.10〜0.60%、Nb0.1
0%以下、V0.15%以下、Zr0.10%以下、T
i0.10%以下、B0.005%以下のうちから選ば
れた1種もしくは2種以上を含有し、残部がFeおよび
不可避的不純物よりなることを特徴とする耐サワー性に
優れたラインパイプ用鋼材。
(2) C0.01~0.25%, Si0.010~0.
50%, Mn0.70-2.00%, Al0.01-0
.. 10%, P 0.030% or less, S 0.0030% or less, Ca 0.0005 to 0.0050%, and further contains Ni in the range of more than 0.20% and 3.0% or less, and 5 Contains one or both of .0% or less Cr and 2.0% or less Mo in a range where the total amount of Cr+Mo is 0.5% or more, and further includes Cu0.10 to 0.60% and Nb0.1
0% or less, V0.15% or less, Zr0.10% or less, T
For line pipes with excellent sour resistance, characterized by containing one or more selected from i0.10% or less and boron 0.005% or less, with the remainder consisting of Fe and unavoidable impurities. Steel material.
JP18201684A 1984-08-31 1984-08-31 Steel material for line pipe superior in sour resistance Granted JPS6160866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18201684A JPS6160866A (en) 1984-08-31 1984-08-31 Steel material for line pipe superior in sour resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18201684A JPS6160866A (en) 1984-08-31 1984-08-31 Steel material for line pipe superior in sour resistance

Publications (2)

Publication Number Publication Date
JPS6160866A true JPS6160866A (en) 1986-03-28
JPH0368101B2 JPH0368101B2 (en) 1991-10-25

Family

ID=16110858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18201684A Granted JPS6160866A (en) 1984-08-31 1984-08-31 Steel material for line pipe superior in sour resistance

Country Status (1)

Country Link
JP (1) JPS6160866A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009061006A1 (en) 2007-11-07 2009-05-14 Jfe Steel Corporation Steel plate for line pipes and steel pipes
US7935197B2 (en) 2002-02-07 2011-05-03 Jfe Steel Corporation High strength steel plate
US7959745B2 (en) * 2001-07-13 2011-06-14 Jfe Steel Corporation High-strength steel pipe of API X65 grade or higher
WO2012029945A1 (en) 2010-09-03 2012-03-08 住友金属工業株式会社 High-strength steel sheet having excellent fracture resistance performance and hic resistance performance
WO2014024234A1 (en) 2012-08-10 2014-02-13 Nippon Steel & Sumitomo Metal Corporation Steel plate for high strength steel pipe and high strength steel pipe
WO2015001759A1 (en) 2013-07-04 2015-01-08 新日鐵住金株式会社 Seamless steel tube for line pipe used in acidic environment
KR20200051745A (en) 2017-09-28 2020-05-13 제이에프이 스틸 가부시키가이샤 High strength steel pipe for internal sour line pipe and manufacturing method thereof, and high strength steel pipe using high strength steel plate for internal sour line pipe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134155A (en) * 1979-04-03 1980-10-18 Nippon Steel Corp Steel plate with superior hydrogen-induced crack resistance
JPS57131350A (en) * 1981-02-04 1982-08-14 Nippon Steel Corp Low alloy cr-mo steel for pressure vessel
JPS5831069A (en) * 1981-08-18 1983-02-23 Sumitomo Metal Ind Ltd Thick high tensile steel plate with high strength and toughness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134155A (en) * 1979-04-03 1980-10-18 Nippon Steel Corp Steel plate with superior hydrogen-induced crack resistance
JPS57131350A (en) * 1981-02-04 1982-08-14 Nippon Steel Corp Low alloy cr-mo steel for pressure vessel
JPS5831069A (en) * 1981-08-18 1983-02-23 Sumitomo Metal Ind Ltd Thick high tensile steel plate with high strength and toughness

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7959745B2 (en) * 2001-07-13 2011-06-14 Jfe Steel Corporation High-strength steel pipe of API X65 grade or higher
US7935197B2 (en) 2002-02-07 2011-05-03 Jfe Steel Corporation High strength steel plate
EP2420586A1 (en) 2002-02-07 2012-02-22 JFE Steel Corporation High strength steel plate and method for manufacturing the same
US8147626B2 (en) 2002-02-07 2012-04-03 Jfe Steel Corporation Method for manufacturing high strength steel plate
WO2009061006A1 (en) 2007-11-07 2009-05-14 Jfe Steel Corporation Steel plate for line pipes and steel pipes
US8801874B2 (en) 2007-11-07 2014-08-12 Jfe Steel Corporation Steel plate and steel pipe for line pipes
WO2012029945A1 (en) 2010-09-03 2012-03-08 住友金属工業株式会社 High-strength steel sheet having excellent fracture resistance performance and hic resistance performance
US9528172B2 (en) 2010-09-03 2016-12-27 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet having improved resistance to fracture and to HIC
WO2014024234A1 (en) 2012-08-10 2014-02-13 Nippon Steel & Sumitomo Metal Corporation Steel plate for high strength steel pipe and high strength steel pipe
WO2015001759A1 (en) 2013-07-04 2015-01-08 新日鐵住金株式会社 Seamless steel tube for line pipe used in acidic environment
US10094008B2 (en) 2013-07-04 2018-10-09 Nippon Steel & Sumitomo Metal Corporation Seamless steel pipe for line pipe used in sour environments
KR20200051745A (en) 2017-09-28 2020-05-13 제이에프이 스틸 가부시키가이샤 High strength steel pipe for internal sour line pipe and manufacturing method thereof, and high strength steel pipe using high strength steel plate for internal sour line pipe

Also Published As

Publication number Publication date
JPH0368101B2 (en) 1991-10-25

Similar Documents

Publication Publication Date Title
AU2003289437B2 (en) High-strength martensitic stainless steel with excellent resistances to carbon dioxide gas corrosion and sulfide stress corrosion cracking
EP2258885A1 (en) Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness
RU2421539C2 (en) Martensite stainless steel for welded structures
JP7059357B2 (en) Duplex stainless clad steel sheet and its manufacturing method
WO2020138490A1 (en) Weld structure and method for producing same
WO1996010654A1 (en) Highly corrosion-resistant martensitic stainless steel with excellent weldability and process for producing the same
JPS6160866A (en) Steel material for line pipe superior in sour resistance
EP1026273B1 (en) Martensite stainless steel of high corrosion resistance
JPS6145697B2 (en)
JP4506933B2 (en) Steel material suitable for large heat input welding for steel frames
JP3344305B2 (en) High-strength steel sheet for line pipe excellent in resistance to hydrogen-induced cracking and method for producing the same
JP2770718B2 (en) High strength hot rolled steel strip excellent in HIC resistance and method for producing the same
JPH0841599A (en) Martensitic stainless steel excellent in corrosion resistance in weld zone
JPS6316461B2 (en)
JPS647138B2 (en)
JP2000301377A (en) Welded joint of ferritic heat resistant steel and welding material
JPS63270444A (en) Steel for line pipe having excellent sour resistance
WO2021201122A1 (en) Welded structure and storage tank
JPS61124555A (en) Steel superior in sour resistance
WO2024202929A1 (en) Nickel-containing steel sheet for low-temperature applications and tank for low-temperature applications in which said steel sheet is used
JPH0535209B2 (en)
JPH08197244A (en) Gas metal rc welding method
JPS62243737A (en) Steel sheet having superior resistance to hydrogen induced cracking
JPH03264647A (en) Overlay stainless clad steel which is made of low-alloy steel for high-temperature and high-pressure service as base metal and has excellent peeling resistance
JPH0630831B2 (en) Pressure vessel with excellent corrosion resistance and hydrogen delamination cracking resistance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees