JPS61124555A - Steel superior in sour resistance - Google Patents

Steel superior in sour resistance

Info

Publication number
JPS61124555A
JPS61124555A JP24328884A JP24328884A JPS61124555A JP S61124555 A JPS61124555 A JP S61124555A JP 24328884 A JP24328884 A JP 24328884A JP 24328884 A JP24328884 A JP 24328884A JP S61124555 A JPS61124555 A JP S61124555A
Authority
JP
Japan
Prior art keywords
steel
less
rare earth
inclusions
sour resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24328884A
Other languages
Japanese (ja)
Other versions
JPH0588298B2 (en
Inventor
Akihiro Miyasaka
明博 宮坂
Hirotsugu Haga
芳賀 博世
Takeshi Terasawa
寺沢 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24328884A priority Critical patent/JPS61124555A/en
Publication of JPS61124555A publication Critical patent/JPS61124555A/en
Publication of JPH0588298B2 publication Critical patent/JPH0588298B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the titled steel, by adding specified ratios of C, Si, Mn, Ca, Mg, rare earth element, Ti, Zr, Al, P, S to Fe. CONSTITUTION:Steel composed of, by weight 0.01-0.35% C, 0.02-0.5% Si, 0.1-1.8% Mn, and one or >=2 kinds among 0.0005-0.02% Ca, 0.0005-0.02% Mg, 0.001-0.02% rare earth element, 0.005-0.2% total of one or 2 kinds of Ti, Zr, further restricting to <=0.005% Al, <=0.015% P, <=0.003% S and the balance Fe with impurities is prepd. Further if necessary, one or >=2 kinds among 0.2-0.6% Cu, 0.1-1.0% Ni, 0.2-0.3% Cr, and/or one or >=2 kinds among 0.10-1.0% Mo, 0.01-0.15% Nb, 0.01-0.15% V are incorporated. By this way, the titled steel without causing hydrogen blister cracking under circumstances of low pH is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐サワー性の優れた鋼に係り、さらに詳しく
は例えば石油・天然ガス掘削、輸送、あるいは貯蔵等に
おいて、湿潤硫化水素を含む環境下にあっても割れ抵抗
の高い鋼に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to steel with excellent sour resistance, and more specifically, it is used in steels containing wet hydrogen sulfide, for example, in oil and natural gas drilling, transportation, or storage. Concerning steel that has high cracking resistance even under environmental conditions.

(従来の技術及び発明が解決しようとする問題点)近年
生産される石油・天然ガス中には硫化水素を含む場合が
非常に多く、さらに海水、淡水などの水が共存する場合
には、鋼表面で起こる腐食に基づく減肉だけではなく、
腐食によって鋼表面で発生した水素が鋼中に侵入するこ
とによって破壊をおこすことがあり、問題となっている
。この破壊は高張力鋼に古くから認められる硫化物応力
割れとは異なり、外部からの付加応力がなくとも発生が
認められる。
(Problems to be solved by conventional technology and invention) Oil and natural gas produced in recent years often contain hydrogen sulfide, and when water such as seawater and fresh water coexists, steel In addition to thinning due to corrosion that occurs on the surface,
Hydrogen generated on the steel surface due to corrosion can penetrate into the steel, causing destruction, which has become a problem. This fracture is different from sulfide stress cracking, which has long been observed in high-strength steel, and can occur even without any external stress applied.

この破壊は環境中から侵入した水素が母材中に存在する
圧延方向に長く伸びたMnSなどのf4化物系介在物と
地鉄との境界に集積してガス化し、そのガス圧によって
発生するもので、前記MnSなどのA系硫化物系介在物
が鋭い切欠となり、これを割れの核として板面平行割れ
に成長し、この板面平行割れが板厚方向に連結されるも
のである。
This fracture is caused by hydrogen penetrating from the environment that accumulates at the boundary between the steel base and F4 compound inclusions such as MnS that extend in the rolling direction in the base metal, and gasifies, resulting in gas pressure. Then, the A-based sulfide inclusions such as MnS form sharp notches, which serve as crack nuclei to grow into parallel cracks on the plate surface, and these parallel cracks are connected in the thickness direction.

この種の割れを以下「水素ふくれ割れ」と呼ぶ○こうし
た水素ふくれ割れに対する抵抗の高い鋼について従来か
ら様々な研究が成され種々の鋼が提案されている。それ
らは例えば特公昭57−17065号公報、或は特公昭
57−16184号公報などにその代表例がみられる如
く、CuやCo添加による割れ防止、極低S化によるM
nSの減少、Ca或は希土類元素などの添加によるSの
固定などを利用するものであって、これらの技術によっ
て現在迄にかなり厳しい環境にまで耐え得る鋼が開発さ
れている。
This type of cracking is hereinafter referred to as "hydrogen blister cracking." Various studies have been conducted and various steels have been proposed for steels that have high resistance to hydrogen blister cracking. These include prevention of cracking by adding Cu or Co, and M
These techniques utilize reduction of nS, fixation of S by addition of Ca or rare earth elements, etc., and to date, steels that can withstand even quite severe environments have been developed using these techniques.

しかしこれらの鋼においては、MnSを減少させてもク
ラスター状のAl203系の大型介在物、或は表層介在
物によって水素ふくれ割れを発生する場合があるという
細点を有していた。而してこの大型介在物、或は表層介
在物を起点とする水素ふくれ割れは上記技術によっても
防止できないことがわかった。
However, these steels have a disadvantage in that even if MnS is reduced, hydrogen bulging cracks may occur due to cluster-like large Al203 inclusions or surface inclusions. It has been found that hydrogen blistering cracking originating from large inclusions or surface inclusions cannot be prevented even by the above techniques.

そこで本発明者らは、大型介在物及び表層介在物による
割れをも防止せんとして検討を始め、さまざまな成分に
ついて実験を行った結果、Alを低減させ代りにTi及
びZrを適用することを考えるに至ったO ところで、従来T1を脱酸に使用した例は少ない。
Therefore, the present inventors began to consider how to prevent cracks caused by large inclusions and surface inclusions, and as a result of conducting experiments with various components, they considered reducing Al and applying Ti and Zr instead. By the way, there are few examples of conventionally using T1 for deoxidation.

最近T1を含む各種の合金元素を添加して酸化物を生成
させることにより大入熱溶接においても溶接熱影響部の
靭性の優れた鋼材を製造する方法が特開昭58−204
117号公報により報告されている。
Recently, a method for manufacturing steel materials with excellent toughness in the weld heat-affected zone even in high heat input welding by adding various alloying elements including T1 to generate oxides has been proposed in Japanese Patent Application Laid-Open No. 58-204.
This is reported in Publication No. 117.

]−かしこの方法はもとより耐サワー性の向上を目的と
したものではなく、さらに通常耐サワー性の優れた鋼に
おいては、可能な限り低減させる酸素を、(150±5
0)ppmと非常に高い含有1としている。したがって
この技術によっても耐サワー性の優れた鋼を得ることは
できないことは明らかである。
]-However, this method is not originally intended to improve sour resistance, and in addition, for steels that normally have excellent sour resistance, oxygen is reduced as much as possible (150 ± 5
0) ppm, which is a very high content of 1. Therefore, it is clear that steel with excellent sour resistance cannot be obtained even by this technique.

さらに参考迄に付は加えるならば従来よりTiは鋼中に
添加することによって溶接熱影響部、溶接金属、或は母
材の靭性を向上させることはよく知られている。しかし
ながらこうした目的でTiを鋼中に添加するか、或は溶
接金属中に含有させようとする場合には、  TiNi
 TiCを生成させることが主眼であってTi酸化物の
生成を防止するのに鋼中酸素量を充分低減させるための
脱酸はあくまで従来同様kAによって行うものである。
For further reference, it has been well known that Ti improves the toughness of the weld heat affected zone, weld metal, or base metal by adding it to steel. However, when adding Ti to steel or including it in weld metal for these purposes, TiNi
The main objective is to generate TiC, and deoxidation to sufficiently reduce the amount of oxygen in the steel to prevent the formation of Ti oxides is carried out using kA as in the conventional method.

(問題点を解決するための手段) 本発明者らはMnSのみならずAl203系の大型介在
物及び表層介在物に起因する水素ふくれ割れのない鋼に
ついて、検討を重ね従来より主に脱酸を目的として添加
されてきたAlを極力減少させてAl203系の大型介
在物及び表層介在物の生成を防止し、kAに代えてTi
或はZrを脱酸元素として添加することによって、大型
介在物及び表層介在物が著しく少なく大型介在物及び表
層介在物に起因した水素ふくれ割れのない鋼が得られる
こと、Ti或はZrを脱酸元素として添加した場合であ
ってもP及びS量を制限し、Ca、Mg、希土類元素の
1種又は2種以上を添加することによってMnSを起点
とする水素ふくれ割れが防止できることを見出したQ 本発明はこうした知見に基づいてなされたもので、その
要旨とするところは重量%でc:0.0、35 %、 
Si : 0.02〜0.5%、 Mn : 0.1〜
1.8 %と、Ca:0.0005〜002チ、Mg:
0.0005〜002%、希土類元素:0.001〜0
.02%の1種又は2種以上に加えて、Ti、 Zrの
1種又は2種を合計で0.006〜0.2 %含有し、
かつAz:o、oos%以下、P:0.015%以下、
s:o、ooa%以下に制限し、あるいはさらに(A)
Cu: 0.2〜0.6%、 Ni : 0.1−1.
0%、 Cr : 0.2〜3.0%の1種又は2種以
上、又は(B) Mo : 0.10〜1.0%INb
:001〜0.15係、V:0.01〜015% の1
種又は2種以上の(A) (B)いずれか一方、又は両
方を含有し、残部Fe及び不純物から成ることを特徴と
する耐サワー性の優れた鋼にあり、就中大型介在物或は
表層介在物による水素ふくれ割れを防止するためにkl
の含有量を0.005%以下と非常に低く制限し、Al
に代る脱酸元素としてTi、 Zrを含有せしめた点を
最大の骨子とするものである。
(Means for solving the problem) The present inventors have repeatedly studied steels that are free from hydrogen blistering caused by not only MnS but also large Al203-based inclusions and surface inclusions. The purpose is to reduce Al, which has been added as much as possible, to prevent the formation of large Al203-based inclusions and surface inclusions, and to replace kA with Ti.
Alternatively, by adding Zr as a deoxidizing element, it is possible to obtain a steel with significantly fewer large inclusions and surface inclusions and free from hydrogen blistering caused by large inclusions and surface inclusions, and by removing Ti or Zr. It has been found that even when added as an acid element, by limiting the amounts of P and S and adding one or more of Ca, Mg, and rare earth elements, hydrogen blistering cracking originating from MnS can be prevented. Q The present invention was made based on these findings, and its gist is that c: 0.0, 35%,
Si: 0.02~0.5%, Mn: 0.1~
1.8%, Ca: 0.0005-002%, Mg:
0.0005-002%, rare earth elements: 0.001-0
.. In addition to one or more kinds of 0.02%, one or two kinds of Ti and Zr are contained in a total of 0.006 to 0.2%,
and Az: o, oos% or less, P: 0.015% or less,
s: limited to o, ooa% or less, or further (A)
Cu: 0.2-0.6%, Ni: 0.1-1.
0%, Cr: 0.2 to 3.0% of one or more types, or (B) Mo: 0.10 to 1.0% INb
: 001-0.15 section, V: 0.01-015% 1
It is a steel with excellent sour resistance characterized by containing one or both of (A) and (B) of two or more species, with the balance consisting of Fe and impurities, especially large inclusions or kl to prevent hydrogen blistering cracks caused by surface inclusions.
The content of Al is limited to a very low 0.005% or less.
The main point is that Ti and Zr are contained as deoxidizing elements in place of oxidizing elements.

以F本発明の詳細な説明する。The present invention will now be described in detail.

最初に本発明において各成分範囲を前記の如く限定した
理由を以下に述べる。
First, the reason for limiting the range of each component in the present invention as described above will be described below.

まずCは、鋼の強度をもっとも安定して向上させる基本
的な元素であるため、強度確保のため001%以上含有
させることが必要であるが、035%を超えると鋼の靭
性に対し好ましくない影響があるので、001〜0.3
5%とした。
First, C is a basic element that most stably improves the strength of steel, so it must be contained at 0.01% or more to ensure strength, but if it exceeds 0.35%, it is unfavorable for the toughness of steel. 001 to 0.3 as it has an influence.
It was set at 5%.

次にSiは、強度を向上させる元素であるので0.02
%以上含有すべきであるが、靭性確保のため上限含有量
を0.5%とすべきである。
Next, Si is an element that improves strength, so 0.02
% or more, but the upper limit content should be 0.5% to ensure toughness.

またMnは強度上必要な元素なので0.1%以上含有す
べきであるが、溶接性及び靭性の確保のためには上限含
有量を1.8チとすべきである0さらに(::a、 M
g+希土類元素は、鋼中のSを固定してMnSの生成を
防止することによって鋼材の耐サワー性向上に非常に有
効な元素であり、母材の耐サワー性確保のためにCa:
0.0005%以上、れも0.02%を超えると効果が
飽和するのでCa:0.0005〜0.02チ、Mg:
0.0005〜0.02%、希土類元素: 0.001
−0.02%の範囲に夫々制限する。これらの元素は単
独で使用しても良く、2種以上を同時に添加しても良い
。なお、本発明に訃いて希土類元素とは原子番号57〜
71番の各元素およびYの1種又は2種以上を指す0 またT1及びZrはklに代えて脱酸に使用する主要な
元素であるが、1種又は2種の合計で0006チ未満で
は実用的には脱酸効果がなく、0.2%を超えると鋼の
靭性を低下させるため、0006〜0.2%の含有量と
すべきである。
Furthermore, since Mn is an element necessary for strength, it should be contained at 0.1% or more, but in order to ensure weldability and toughness, the upper limit content should be 1.8%. , M
g+ Rare earth elements are very effective elements for improving the sour resistance of steel materials by fixing S in steel and preventing the formation of MnS. Ca:
If the content exceeds 0.0005% or 0.02%, the effect will be saturated, so Ca: 0.0005 to 0.02%, Mg:
0.0005-0.02%, rare earth elements: 0.001
-0.02% respectively. These elements may be used alone or two or more types may be added at the same time. In addition, for the purpose of the present invention, rare earth elements have an atomic number of 57 to
Refers to one or more of each element of No. 71 and Y. In addition, T1 and Zr are the main elements used for deoxidation instead of kl, but if the total of one or two of them is less than 0006 Practically speaking, it has no deoxidizing effect and if it exceeds 0.2%, it reduces the toughness of the steel, so the content should be between 0006 and 0.2%.

なお本発明者らは、鋼の断面を詳細に調査した結果Ti
或はZrで脱酸を行った場合には両元素、或は両元素と
Ca、Mg、希土類元素とを主成分とする酸化物は、大
きさが1μm以下のものが殆どであって極めて微細であ
り、さらにクラスター状の大型介在物や表層介在物が著
しく少ないことを見出した。これらの知見もまた本発明
においてTi及びZrの一方又は両方をAlに代えて含
有せしめる理由となるものである。
In addition, as a result of detailed investigation of the cross section of steel, the present inventors found that Ti
Alternatively, when deoxidizing with Zr, the oxides containing both elements or both elements and Ca, Mg, or rare earth elements as main components are extremely fine, with most of them having a size of 1 μm or less. It was also found that there were significantly fewer large cluster-like inclusions and surface inclusions. These findings are also the reason for containing one or both of Ti and Zr in place of Al in the present invention.

一方、ktは上記のように大型介在物或は表層介在物を
生成するため0.005%以下に制限すべきであり、少
ないほど好ましい。
On the other hand, kt should be limited to 0.005% or less because large inclusions or surface inclusions are generated as described above, and the smaller the kt, the better.

また、Pは水素ふくれ割れを伝播しやすくする元素であ
るので0.015%以下とすべきである。
Furthermore, since P is an element that facilitates the propagation of hydrogen bulge cracks, it should be kept at 0.015% or less.

さらにSはMnと結合して水素ふくれ割れの起点となる
MnSをつくるので耐サワー性確保のためには0.00
3%以下に抑えなければならない。
Furthermore, S combines with Mn to form MnS, which becomes the starting point for hydrogen bulging cracks, so in order to ensure sour resistance, 0.00
Must be kept below 3%.

以上が本発明の基本成分系であるが、本発明においては
このほかそれぞれ用途に応じて(A) Cu、 Ni 
The above is the basic component system of the present invention, but in the present invention, (A) Cu, Ni
.

Crの1種以上又は(B) Mo、 Nb、 Vの1種
以上の(〜(B)一方又は両方を含有させることができ
る。
One or more types of Cr or (B) one or more types of Mo, Nb, and V (-(B) one or both can be contained.

まず、Cu、 NiおよびCrはいずれも母材の耐食性
向上と鋼中への侵入水素量減少のために効果を有する。
First, Cu, Ni and Cr all have the effect of improving the corrosion resistance of the base metal and reducing the amount of hydrogen penetrating into the steel.

Cuは、0.20%未満では効果がなく、060%を超
えると熱間加工性に悪い影響を及ぼすので、0.2〜0
.60チの範囲に限定するO N1は0.1%未満では効果がなり1.0%を超えると
硫化物応力割れを誘発する恐れがあるので0.1〜10
%の範囲に限定する。なおNiはCu による熱間脆性
を防止する目的で上記範囲においてCuと同時に添加す
ることができるが、この目的でNiを添加した鋼であっ
ても本発明の範囲を何ら逸脱するものではない0 Crは02%未満では効果がな(3,0% を超えると
鋼の靭性を低下させるので0.2〜3.0%の範囲に限
定する。なおCrはMnSの生成を防止することを目的
としてMnの含有量を0.61未満とした鋼に添加して
強度および靭性を向上させる元素としても活用すること
が可能であり、この他の鋼の場合も含め強度および靭性
を向上させる目的でCrを添加した鋼であっても本発明
の範囲を何ら逸脱するものではない0 次にMo、Nbおよび■はいずれも鋼の強度を向上させ
る元素であって、 MoはO,]、00%以上Nbおよ
びV l−j: 0.01%以上を含有させることによ
って同等の強度向上効果を示すが、  Moは1.0%
、NbおよびVは0,15%を超えて添加すると靭性を
低下させる恐れがあるため、Moは0.10〜1.0%
、NbおよびVは0.01〜0.15%の範囲に限定し
た。
Cu has no effect if it is less than 0.20%, and if it exceeds 0.60%, it has a negative effect on hot workability, so it should be 0.2 to 0.
.. If N1 is less than 0.1%, it will not be effective, and if it exceeds 1.0%, it may induce sulfide stress cracking, so it should be 0.1 to 10%.
% range. Note that Ni can be added at the same time as Cu within the above range for the purpose of preventing hot embrittlement caused by Cu, but even if Ni is added for this purpose, this does not deviate from the scope of the present invention. Cr has no effect if it is less than 0.02% (if it exceeds 3.0%, it reduces the toughness of the steel, so it is limited to a range of 0.2 to 3.0%.The purpose of Cr is to prevent the formation of MnS. It can also be used as an element to improve strength and toughness by adding it to steel with a Mn content of less than 0.61, and it can also be used to improve strength and toughness in other steels as well. Even if Cr is added to the steel, it does not deviate from the scope of the present invention. Next, Mo, Nb, and ■ are all elements that improve the strength of the steel, and Mo is O, ], 00%. Nb and Vl-j: The same strength improvement effect is shown by containing 0.01% or more, but Mo is 1.0%.
, Nb and V may reduce toughness if added in excess of 0.15%, so Mo should be added in an amount of 0.10 to 1.0%.
, Nb and V were limited to a range of 0.01 to 0.15%.

上述の各合金成分はそれぞれ単独に、或は併用しても、
上記の制限範囲内において本発明が目的とする効果に何
ら支障を与えるものではない。
Each of the above-mentioned alloy components may be used alone or in combination,
Within the above-mentioned limited range, the intended effects of the present invention will not be hindered in any way.

なお本発明鋼において不純物のうちN量は0010%を
超えると溶接性に問題を生じるので好ましくないもので
あって0.010%以下であれば鋼の材質に著しい影響
を及ぼさないが、歪時効の影響や溶接部の靭性等も考慮
すると少ないほど好ましい。一方Ca、Mg、希土類元
素がSの固定に有効に利用されるためにはOは0.00
4%以下で少ないほど好ましい。
In the steel of the present invention, if the amount of N among the impurities exceeds 0.010%, it will cause problems in weldability and is therefore undesirable. The smaller the number, the more preferable, taking into consideration the influence of the above and the toughness of the welded part. On the other hand, in order for Ca, Mg, and rare earth elements to be effectively used for fixing S, O is 0.00.
It is preferably 4% or less, and the lower the content, the more preferable it is.

本発明鋼の製造工程としては熱間圧延のままでもよく、
或は熱間圧延直後の制御冷却工程、さらには圧延材を規
準、焼戻し或は焼入れ焼戻しするなど通常の鋼材に使用
される製造工程を適用することができる。さらに、本発
明鋼を使用して製造した鋼管や容器の一部又は全体に規
準、焼戻し或は焼入れ焼戻しする工程を適用しても良く
、本発明の範囲を何ら逸脱するものではない。いずれの
工程を適用するかは、強度、靭性等の特性確保の必要に
応じて決定すれば良い。
As a manufacturing process for the steel of the present invention, hot rolling may be used as is.
Alternatively, it is possible to apply a manufacturing process used for ordinary steel materials, such as a controlled cooling process immediately after hot rolling, or further standardizing, tempering, or quenching and tempering the rolled material. Furthermore, a standard, tempering, or quenching and tempering process may be applied to a part or the whole of a steel pipe or container manufactured using the steel of the present invention, without departing from the scope of the present invention. Which process to apply may be determined depending on the need to ensure properties such as strength and toughness.

なお本発明においてT1或はZrを脱酸に使用する目的
のひとつは、溶鋼中の酸素濃度を下げて、添加したCa
、Mg或は希土類元素をSの固定に有効に作用させるこ
とにあるので、Ti或はZrによる脱酸はCa、 Mg
或は希土類元素の添加前に行うことが必要であり、さら
にTi或はZrtl−添加後RH処理等の真空処理によ
って溶鋼中の酸素濃度を下げることが好ましい。
In addition, one of the purposes of using T1 or Zr for deoxidation in the present invention is to lower the oxygen concentration in molten steel and reduce the amount of added Ca.
, Mg or rare earth elements to effectively act on the fixation of S, deoxidation with Ti or Zr is effective for fixing Ca, Mg.
Alternatively, it is necessary to perform this before adding the rare earth element, and it is preferable to lower the oxygen concentration in the molten steel by vacuum treatment such as RH treatment after adding Ti or Zrtl.

以下本発明の効果を実施例によりさらに具体的に述べる
Hereinafter, the effects of the present invention will be described in more detail with reference to Examples.

(実施例) 第1表に示す組成の鋼を溶製し12mm厚さの鋼板に熱
間圧延後第1図に示す要領で厚さt4=12rrrn。
(Example) Steel having the composition shown in Table 1 was melted and hot-rolled into a steel plate with a thickness of 12 mm, followed by a thickness t4=12rrrn as shown in FIG.

幅W=20mm、長さt=IQOmmの試験片lを採取
し、耐サワー性の評価試験に供した。表層介在物が耐サ
ワー性に及ぼす影響の大小を調べるため試験片厚さtl
は鋼板の厚さと同じとし、圧延時のスケールをエメリー
紙を用いた研磨で除去した。
A test piece 1 having a width W = 20 mm and a length t = IQO mm was taken and subjected to a sour resistance evaluation test. To investigate the influence of surface inclusions on sour resistance, test piece thickness tl
was the same as the thickness of the steel plate, and the scale from rolling was removed by polishing with emery paper.

耐サワー性の評価試験としては5%NaCt+0.5%
CH,3C0OH水溶液にlatmのH2Sを飽和させ
た溶液(温度25℃、p)(2,8〜38)中に96時
間浸漬し割れを測定した。割れ発生の有無は板面に垂直
な方向の超音波探傷によって割れ率を測定し、その後断
面の検鏡観察によって判定した。
As a sour resistance evaluation test, 5% NaCt + 0.5%
Cracks were measured by immersing them in a solution (temperature 25° C., p) (2,8-38) in which a CH,3C0OH aqueous solution was saturated with latm H2S for 96 hours. The presence or absence of cracking was determined by measuring the cracking rate by ultrasonic flaw detection in the direction perpendicular to the plate surface, and then by microscopic observation of the cross section.

評価試験の結果を第1表に併せて示す。第1表より明ら
かな如く本発明鋼においてはまったく割れは発生してい
ないのに対し、比較鋼ではkt203系の大型介在物や
表層介在物を起点とする割れが発生している0 (発明の効果) 上述の試験結果かられかる通り本発明はpHが低く厳し
い環境においても水素ふくれ割れを起こさない耐サワー
性の優れた鋼を提供するものであり、産業の発展に貢献
するところ極めて犬なるものがある。
The results of the evaluation test are also shown in Table 1. As is clear from Table 1, in the steel of the present invention, no cracking occurred at all, whereas in the comparative steel, cracking started from large inclusions and surface inclusions of the kt203 series. Effect) As can be seen from the above test results, the present invention provides a steel with excellent sour resistance that does not cause hydrogen blistering even in harsh environments with low pH, and is extremely valuable in contributing to the development of industry. There is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐サワー性評価試験片の採取要領を示す図であ
る0 1・・・試験片゛     2・・・鋼板第を図
Figure 1 is a diagram showing the procedure for collecting sour resistance evaluation test pieces.

Claims (4)

【特許請求の範囲】[Claims] (1)重量%で C :0.01〜0.35%、 Si:0.02〜0.5%、 Mn:0.1〜1.8%と Ca:0.0005〜0.02%、 Mg:0.0005〜0.02%、 希土類元素:0.001〜0.02%の1種又は2種以
上に加えて Ti、Zrの1種又は2種を合計で0.006〜0.2
%含有し、かつ Al:0.005%以下、 P :0.015%以下、 S :0.003%以下に制限し、残部Fe及び不純物
から成ることを特徴とする耐サワー性の優れた鋼。
(1) C: 0.01-0.35%, Si: 0.02-0.5%, Mn: 0.1-1.8% and Ca: 0.0005-0.02% in weight%. In addition to one or more of Mg: 0.0005 to 0.02% and rare earth elements: 0.001 to 0.02%, one or two of Ti and Zr are added in a total amount of 0.006 to 0.02%. 2
%, and is limited to Al: 0.005% or less, P: 0.015% or less, S: 0.003% or less, and the balance consists of Fe and impurities, and has excellent sour resistance. .
(2)重量%で C :0.01〜0.35%、 Si:0.02〜0.5%、 Mn:0.1〜1.8%と Ca:0.0005〜0.02%、 Mg:0.0005〜0.02%、 希土類元素:0.001〜0.02%の1種又は2種以
上に加えてTi、Zrの1種又は2種を合計で0.00
6〜0.2%含有し、かつ Al:0.005%以下、 P :0.015%以下、 S :0.003%以下に制限し、さらに Cu:0.2〜0.6%、 Ni:0.1〜1.0%、 Cr:0.2〜3.0%の1種又は2種以上を含有し、
残部Fe及び不純物から成ることを特徴とする耐サワー
性の優れた鋼。
(2) C: 0.01-0.35%, Si: 0.02-0.5%, Mn: 0.1-1.8%, and Ca: 0.0005-0.02% in weight%. In addition to one or more of Mg: 0.0005 to 0.02%, rare earth elements: 0.001 to 0.02%, one or two of Ti and Zr in a total of 0.00%.
6 to 0.2%, and limited to Al: 0.005% or less, P: 0.015% or less, S: 0.003% or less, and Cu: 0.2 to 0.6%, Ni : 0.1 to 1.0%, Cr: 0.2 to 3.0%.
A steel with excellent sour resistance, characterized in that the remainder consists of Fe and impurities.
(3)重量%で C :0.01〜0.35%、 Si:0.02〜0.5%、 Mn:0.1〜1.8%と Ca:0.0005〜0.002%、 Mg:0.0005〜0.002%、 希土類元素:0.001〜0.02%の1種又は2種以
上に加えて、Ti、Zrの1種又は2種を合計で0.0
06〜0.2%含有し、かつ Al:0.005%以下、 P :0.015%以下、 S :0.003%以下に制限し、さらに Mo:0.10〜1.0%、 Nb:0.01〜0.15%、 V :0.01〜0.15%の1種又は2種以上を含有
し、残部Fe及び不純物から成ることを特徴とする耐サ
ワー性の優れた鋼。
(3) C: 0.01-0.35%, Si: 0.02-0.5%, Mn: 0.1-1.8% and Ca: 0.0005-0.002% in weight%. In addition to one or more of Mg: 0.0005 to 0.002%, rare earth elements: 0.001 to 0.02%, one or two of Ti and Zr in a total of 0.0%.
06 to 0.2%, and limited to Al: 0.005% or less, P: 0.015% or less, S: 0.003% or less, and Mo: 0.10 to 1.0%, Nb A steel with excellent sour resistance characterized by containing one or more of the following: 0.01 to 0.15% and V: 0.01 to 0.15%, with the balance being Fe and impurities.
(4)重量%で C :0.01〜0.35%、 Si:0.02〜0.5%、 Mn:0.1〜1.8%と Ca:0.0005〜0.002%、 Mg:0.0005〜0.002%、 希土類元素:0.001〜0.02%の1種又は2種以
上に加えて、Ti、Zrの1種又は2種を合計で0.0
06〜0.2%含有し、かつ Al:0.005%以下、 P :0.015%以下、 S :0.003%以下に制限し、さらに Cu:0.2〜0.6%、 Ni:0.1〜1.0%、 Cr:0.2〜3.0%の1種又は2種以上及びMo:
0.10〜1.0%、 Nb:0.01〜0.15%、 V :0.01〜0.15%の1種又は2種以上を含有
し、残部Fe及び不純物から成ることを特徴とする耐サ
ワー性の優れた鋼。
(4) C: 0.01-0.35%, Si: 0.02-0.5%, Mn: 0.1-1.8% and Ca: 0.0005-0.002% in weight%. In addition to one or more of Mg: 0.0005 to 0.002%, rare earth elements: 0.001 to 0.02%, one or two of Ti and Zr in a total of 0.0%.
06 to 0.2%, and limited to Al: 0.005% or less, P: 0.015% or less, S: 0.003% or less, and Cu: 0.2 to 0.6%, Ni : 0.1 to 1.0%, Cr: 0.2 to 3.0%, one or more types, and Mo:
0.10 to 1.0%, Nb: 0.01 to 0.15%, V: 0.01 to 0.15%, and the remainder consists of Fe and impurities. Steel with excellent sour resistance.
JP24328884A 1984-11-20 1984-11-20 Steel superior in sour resistance Granted JPS61124555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24328884A JPS61124555A (en) 1984-11-20 1984-11-20 Steel superior in sour resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24328884A JPS61124555A (en) 1984-11-20 1984-11-20 Steel superior in sour resistance

Publications (2)

Publication Number Publication Date
JPS61124555A true JPS61124555A (en) 1986-06-12
JPH0588298B2 JPH0588298B2 (en) 1993-12-21

Family

ID=17101615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24328884A Granted JPS61124555A (en) 1984-11-20 1984-11-20 Steel superior in sour resistance

Country Status (1)

Country Link
JP (1) JPS61124555A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425915A (en) * 1987-07-20 1989-01-27 Power Reactor & Nuclear Fuel Manufacture of ferritic structural member for fast reactor core
JPH02217439A (en) * 1989-02-20 1990-08-30 Sumitomo Metal Ind Ltd High strength low alloy steel having excellent corrosion resistance and oxidation resistance
JPH02217438A (en) * 1989-02-20 1990-08-30 Sumitomo Metal Ind Ltd Heat-resistant steel having high creep strength at high temperature
JPH04114380U (en) * 1991-03-22 1992-10-08 株式会社足立ライト工業所 Mounting structure of lamp wiring board in pachinko machine panel parts
CN107177797A (en) * 2017-04-24 2017-09-19 江阴兴澄特种钢铁有限公司 The oil gas field anti-corrosion drilling tool steel of 130KSI, 135KSI rank and its manufacture method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658948A (en) * 1979-10-15 1981-05-22 Nippon Steel Corp Structural steel with enhanced z-direction crack resistance
JPS5887221A (en) * 1981-11-20 1983-05-25 Nippon Kokan Kk <Nkk> Production of high tensile steel having excellent resistance to sulfide corrosion cracking
JPS58120726A (en) * 1982-01-13 1983-07-18 Nippon Kokan Kk <Nkk> Manufacture of nontemper steel superior in sulfide corrosion crack resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658948A (en) * 1979-10-15 1981-05-22 Nippon Steel Corp Structural steel with enhanced z-direction crack resistance
JPS5887221A (en) * 1981-11-20 1983-05-25 Nippon Kokan Kk <Nkk> Production of high tensile steel having excellent resistance to sulfide corrosion cracking
JPS58120726A (en) * 1982-01-13 1983-07-18 Nippon Kokan Kk <Nkk> Manufacture of nontemper steel superior in sulfide corrosion crack resistance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425915A (en) * 1987-07-20 1989-01-27 Power Reactor & Nuclear Fuel Manufacture of ferritic structural member for fast reactor core
JPH0625378B2 (en) * 1987-07-20 1994-04-06 動力炉・核燃料開発事業団 Manufacturing method of ferritic structural members for fast reactor core
JPH02217439A (en) * 1989-02-20 1990-08-30 Sumitomo Metal Ind Ltd High strength low alloy steel having excellent corrosion resistance and oxidation resistance
JPH02217438A (en) * 1989-02-20 1990-08-30 Sumitomo Metal Ind Ltd Heat-resistant steel having high creep strength at high temperature
JPH04114380U (en) * 1991-03-22 1992-10-08 株式会社足立ライト工業所 Mounting structure of lamp wiring board in pachinko machine panel parts
CN107177797A (en) * 2017-04-24 2017-09-19 江阴兴澄特种钢铁有限公司 The oil gas field anti-corrosion drilling tool steel of 130KSI, 135KSI rank and its manufacture method
CN107177797B (en) * 2017-04-24 2019-10-11 江阴兴澄特种钢铁有限公司 The oil gas field anti-corrosion drilling tool steel of 130KSI, 135KSI rank and its manufacturing method

Also Published As

Publication number Publication date
JPH0588298B2 (en) 1993-12-21

Similar Documents

Publication Publication Date Title
RU2307876C2 (en) High-strength martensite stainless steel with high corrosionproofness against gaseous carbon dioxide and high resistance against corrosion cracking under stress in hydrogen sulfide atmosphere
EP3760753A1 (en) Austenitic stainless steel welded joint
JPH05132741A (en) High strength duplex stainless steel excellent in corrosion resistance
EP2119802A1 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
JP6809414B2 (en) Duplex stainless steel sheet with excellent corrosion resistance and hydrogen brittleness
EP0270952B1 (en) Highly tough erw steel pipe with distinguished sour resistance
EP3693486B1 (en) Austenitic stainless steel welding metal and welded structure
US8900380B2 (en) Low-chromium stainless steel excellent in corrosion resistance of weld
JP3022746B2 (en) Welding material for high corrosion resistance and high toughness duplex stainless steel welding
JP2791804B2 (en) Martensitic stainless steel with high strength and excellent corrosion resistance
JPH08170153A (en) Highly corrosion resistant two phase stainless steel
CN112779453B (en) Fe-Ni-Cr-Mo-Cu alloy excellent in corrosion resistance
JPS61124555A (en) Steel superior in sour resistance
JPS61124554A (en) Steel for high toughness electric welded steel tube superior in sour resistance
JP2023085560A (en) Two-phase stainless steel and manufacturing method therefor
JP2620809B2 (en) High-strength martensitic stainless steel excellent in high-temperature high-chloride-ion-concentration wet high-pressure carbon dioxide gas environment corrosion resistance and stress corrosion cracking resistance, and method for producing the same
JPH0841599A (en) Martensitic stainless steel excellent in corrosion resistance in weld zone
JP2602319B2 (en) High-strength, high-temperature, high-chloride-ion-concentration, wet carbon dioxide gas-corrosion-resistant, martensitic stainless steel excellent in stress corrosion cracking resistance and method for producing the same
JP2742949B2 (en) Martensitic stainless steel excellent in corrosion resistance and method for producing the same
JPS6160866A (en) Steel material for line pipe superior in sour resistance
JP3574903B2 (en) High alloy austenitic stainless steel with excellent hot workability
JPS61124551A (en) Steel superior in sour resistance
JPS63270444A (en) Steel for line pipe having excellent sour resistance
JPS6199661A (en) High strength and high toughness welded clad steel pipe for line pipe
JP2745070B2 (en) Martensitic stainless steel having high strength and excellent corrosion resistance and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees