JPS5887221A - Production of high tensile steel having excellent resistance to sulfide corrosion cracking - Google Patents

Production of high tensile steel having excellent resistance to sulfide corrosion cracking

Info

Publication number
JPS5887221A
JPS5887221A JP18545181A JP18545181A JPS5887221A JP S5887221 A JPS5887221 A JP S5887221A JP 18545181 A JP18545181 A JP 18545181A JP 18545181 A JP18545181 A JP 18545181A JP S5887221 A JPS5887221 A JP S5887221A
Authority
JP
Japan
Prior art keywords
steel
less
ingot
corrosion cracking
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18545181A
Other languages
Japanese (ja)
Other versions
JPH022925B2 (en
Inventor
Tadaaki Taira
平 忠明
Koshiro Tsukada
束田 幸四郎
Yasuo Kobayashi
泰男 小林
Kazuaki Matsumoto
和明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP18545181A priority Critical patent/JPS5887221A/en
Publication of JPS5887221A publication Critical patent/JPS5887221A/en
Publication of JPH022925B2 publication Critical patent/JPH022925B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce titled high tensile steel by forming molten steel contg. specific contents of C, Si, Mn, P, S, Nb, B, solAl and contg. P, C, Mn in specific relations to an ingot by continuous casting or large sized steel ingot-blooming stages and hot rolling the ingot. CONSTITUTION:Molten steel is composed, by wt% of 0.002-0.15 C, 0.1-1 Si, 0.5-2.5 Mn, <0.03 P, <0.005 S, 0.01-0.12 Nb, 0.0002-0.005 B, 0.01-0.005 sol Al, and the balance Fe and unavoidable impurities wherein the contents of P, C, Mn are so controlled as to satisfy the formula. After such molten steel is formed into an ingot by continuous casting or large sized steel ingot-blooming stages, the ingot is hot rolled. If necessary, the steel is subjected to accelerated cooling or heat treatments.

Description

【発明の詳細な説明】 本発明は、湿潤硫化水素腐食環境下Klる石油、天然ガ
ス輸送管やLPG貯蔵タンクに使用される ゛耐硫化物
腐食割れ性に優れた高張力鋼の製造方法に関するもので
、溶鋼を連続鋳造又は大型鋼塊−分塊工程により鋼片と
した後これを熱間圧延し、必要に応じて更に熱処理を施
して前記鋼を製造するに当り、その溶鋼組成を、連続鋳
造鋳片又は大型鋼塊中央における偏析を考慮し、詳しく
は硫化物腐食割れ感受性が最も大となる中央偏析部にお
いても当該割れが問題とならぬ如き特定範囲に調整する
ことを要旨とするものであり、斯くすることによシ耐H
I C(Hydrogen Induc@d Crac
king=水素誘起割れ)性及び耐SSC(5ulfi
d@5tressCrackinir =硫化物応力腐
食割れ)性の優れ丸鋼を製造するものである1、 従来、HICの発生は、鋼表面で発生した水素が鋼中に
浸入し、拡散過程を経て介在物/マトリックス界面に集
まり、その結果マトリックスの水素脆化と、水素による
圧力によって発生すると言われている。従って、耐HI
C性鋼に対しては(a)水素の侵入を防止する、(b)
割れの起点となる介在物の減少あるいは形態制御、(C
)マトリックスの水素脆化感度減少等の対策がとられて
いる。前記(a)については、例えばCu添加により鋼
表面に防食被膜を形成する方法が知られている。しかし
ながら、溶液のPHが低い腐食還境の下では被膜の形成
が不充分とnす、水素の侵入を充分に防止出来ない欠点
がおる。前記(b)Kついては、REM処理鋼(例えば
特開昭54−31020号)、Ca処理鋼(例えば特開
昭54−38214号)が提案されており、低強度材で
は大きな効果を示す9ものの、高強度材では充分な改善
効果が得られないことがある前記(e)については、偏
析部が特に問題となる。即ち、偏析部はMn、 Cr、
 Mo等の合金元素量が高いために硬く水素脆化感度の
高い低温変態生成物が生じ易い。従って、このような組
織が発生するのを防止するため圧砥後鋼板を徐冷したり
、あるいは圧延後焼入れ焼戻しをして、これらの組織を
水素割れ感受性の低い焼戻しマルテンサイトや焼戻しベ
ーナイ)K変化せしめる等の方法がとられている(例え
ば特開昭53−138916号)。しかしながら、これ
らの従来の方法は、iずれも生産性や経済性の点で問題
が多い。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing high-strength steel with excellent sulfide corrosion cracking resistance, which is used for oil and natural gas transmission pipes and LPG storage tanks exposed to wet hydrogen sulfide corrosion environments. In order to manufacture the above-mentioned steel by continuous casting or large-sized steel ingot-blooming process, molten steel is hot-rolled and further heat-treated as necessary, the composition of the molten steel is determined by The main idea is to take into account the segregation at the center of a continuously cast slab or large steel ingot, and to make adjustments to a specific range where the cracking does not become a problem even in the central segregation area where sulfide corrosion cracking is most susceptible. In this way, it is possible to
I C (Hydrogen Induc@d Crac)
king = hydrogen induced cracking) resistance and SSC (5ulfi
d@5tressCrackinir = produces round steel with excellent sulfide stress corrosion cracking resistance1. Conventionally, HIC occurs when hydrogen generated on the steel surface penetrates into the steel and forms inclusions/crackinir through a diffusion process. It is said that it gathers at the matrix interface, resulting in hydrogen embrittlement of the matrix and the pressure caused by hydrogen. Therefore, HI resistance
For C steel, (a) prevent hydrogen from entering, (b)
Reducing or controlling the morphology of inclusions that are the starting point of cracks, (C
) Measures have been taken to reduce the sensitivity of the matrix to hydrogen embrittlement. Regarding (a), a method is known in which, for example, an anticorrosive film is formed on the steel surface by adding Cu. However, in a corrosive environment where the pH of the solution is low, the formation of a film is insufficient and hydrogen penetration cannot be sufficiently prevented. Regarding (b) K, REM-treated steel (e.g., JP-A No. 54-31020) and Ca-treated steel (e.g., JP-A-54-38214) have been proposed, and nine of them are highly effective in low-strength materials. Regarding (e) above, where high-strength materials may not provide sufficient improvement effects, segregation is particularly problematic. That is, the segregated part is Mn, Cr,
Since the amount of alloying elements such as Mo is high, low-temperature transformation products that are hard and highly sensitive to hydrogen embrittlement are likely to be produced. Therefore, in order to prevent the formation of such structures, the steel plate is slowly cooled after rolling, or quenched and tempered after rolling, and these structures are replaced with tempered martensite or tempered behnite (K Methods such as changing the temperature have been adopted (for example, Japanese Patent Application Laid-Open No. 138916/1983). However, these conventional methods have many problems in terms of productivity and economy.

又、SSCは水素脆化した鋼に一定値−(限界応カニσ
th >以上の応力が作用した場合に発生する割れであ
る、この場合割れ発生の限界応力は、硬く水素脆化し易
い組織が存在する場合著しく低下する。この他、ライン
パイプの場合には介在物の量、形状、鋼中水素量がSS
Cの発生原因となる。
In addition, SSC is a constant value for hydrogen embrittled steel - (limit stress σ
In this case, the critical stress for cracking, which is a crack that occurs when a stress greater than or equal to th is applied, is significantly lowered when a hard structure that is easily susceptible to hydrogen embrittlement is present. In addition, in the case of line pipes, the amount and shape of inclusions, and the amount of hydrogen in steel are SS
It causes the occurrence of C.

つまり、HICとSSCの相違は応力の有無という点だ
けで、本質的には差はなく、上記HICK対する対策は
SSCK対しても有効であり、また問題点も同じでおる
と考えてもよい。
In other words, the difference between HIC and SSC is only in the presence or absence of stress, and there is essentially no difference, and the measures against HICK described above are also effective against SSCK, and it can be considered that the problems are the same.

併して、高張力鋼の製造においては、強度を高めるため
Mn、 Cr、 Mo等の合金元素の含有量を高めるこ
とが一般に行われている。しかし、これらの合金元素を
含む溶鋼を凝固させ大場合、特に連続鋳造によってスラ
ブ、ビレット、ブルーム等の鋳片としたとき、もしくは
大型鋼塊(重量20 ton以上)とし九七きは、これ
ら鋳片又は鋼塊の中央部には前記の合金元素が濃化し、
いわゆる中央偏析部を形成し易いことは知られている。
Additionally, in the production of high-strength steel, it is common practice to increase the content of alloying elements such as Mn, Cr, and Mo in order to increase the strength. However, when molten steel containing these alloying elements is solidified into large pieces, especially when it is made into slabs, billets, blooms, etc. by continuous casting, or when it is made into large steel ingots (weighing 20 tons or more), these castings The alloying elements are concentrated in the center of the piece or steel ingot,
It is known that so-called central segregation is likely to be formed.

したがって、このような鋳片から圧延される鋼材、もし
くはこのよう表鋼塊から分塊−圧延の工程を経て製造さ
れる鋼材、又はこれら鋼材を更に必要に応じて熱処理を
施した鋼材は、いずれも中央偏析部が)(IC,SSC
の感受性を高めるとされている。
Therefore, steel products rolled from such slabs, steel products manufactured from such face steel ingots through the blooming-rolling process, or steel products further heat-treated as necessary, are Also, the central segregation part) (IC, SSC
It is said to increase sensitivity.

一方、従来の鋼材の組成は、鋼材全体にわたって一様な
組成を呈するものとして(又は合金元素が中央部に偏析
することは知られて−でもとの亡とには配慮せず)溶鋼
段階における組成を、鋼材のそれと一致せしめる如く調
整している。しかし、HIC,SSCの如く鋼材の当該
割れ感受性の高い個所に先づ割れが発生し、これが伝播
拡大してゆくような破壊にあっては、このようなマクロ
的な考え方だけでは不充分である。
On the other hand, the composition of conventional steel materials is assumed to be uniform throughout the steel material (or, it is known that alloying elements segregate in the center - but without considering the original fate), at the molten steel stage. The composition is adjusted to match that of steel. However, in the case of fractures such as HIC and SSC, where cracks first occur in the crack-sensitive parts of the steel material and then propagate and spread, this macroscopic approach alone is insufficient. .

本発明は、斯かる観点から特に中央偏析の発達し易い連
続鋳造工程又は重量20ton 以上の大型鋼塊による
造塊工程を経て製造される鋼材について硫化物割れ感受
性が最も高い部分、即ち中央偏析部においても割れが発
生しないように1溶鋼組成を1整しようとす本ものであ
る。
From this point of view, the present invention particularly focuses on the part where the susceptibility to sulfide cracking is highest, that is, the central segregation part of steel products manufactured through a continuous casting process where center segregation is likely to develop or an ingot forming process using a large steel ingot weighing 20 tons or more. This is an attempt to adjust the composition of molten steel to prevent cracks from occurring.

発明者らは先づC,Mn、 Si、 P等の化学成分を
広範囲に変化させた溶鋼を準備し、溶鋼からサンプリン
グした試料によりその組成を求めると共に、これら溶鋼
を大型鋼塊−分塊−圧延(必要に応じて熱地理)又は連
続鋳造−圧延(必要に応じて鳥処理)して得た鋼材断面
をマクロエツチングし、鋼塊又は鋳片における中央偏析
部を現出させ、マイクロアナライザーによりその個所の
各元素含有量を求めた。このようKして偏析部の各元素
の含有量を知り、溶鋼における含有量の比として中央偏
析部の偏析係数を求めることができる。第1表はかがる
方法で求めた各元素の偏析係数である。
The inventors first prepared molten steel in which the chemical components such as C, Mn, Si, and P were varied over a wide range, determined the composition of the molten steel using samples sampled from the molten steel, and then transformed the molten steel into large steel ingots. A cross-section of the steel material obtained by rolling (thermogeography if necessary) or continuous casting-rolling (original treatment if necessary) is macro-etched to reveal the central segregation part of the steel ingot or slab, and it is analyzed using a microanalyzer. The content of each element at that location was determined. In this manner, the content of each element in the segregated area is known, and the segregation coefficient of the central segregated area can be determined as the ratio of the content in the molten steel. Table 1 shows the segregation coefficients of each element determined by the Kakaru method.

第1表 この第1表から20ton 以上の大型鋼塊又は連続鋳
造鋳片における各元素の分軸は、一様でなく、中央偏析
部にはPは溶鋼時の5倍、Mn、Moは2・5倍、C,
Crは1.5倍の量に濃化していることがわかる。・ま
た総ての元素が中央偏析部に偏析する訳では々(、Cu
、 Ni、 Nb等上記以外の元素は溶鋼時の組成と殆
んど変りがなく同レベル[6ることか確認された。
Table 1 From this Table 1, the component axes of each element in large steel ingots or continuously cast slabs of 20 tons or more are not uniform, and in the central segregation area, P is 5 times that of molten steel, Mn and Mo are 2・5 times, C,
It can be seen that Cr is concentrated to 1.5 times the amount.・Also, not all elements segregate in the central segregation area (Cu
It was confirmed that the elements other than those mentioned above, such as , Ni, and Nb, were almost unchanged from the composition of molten steel and were at the same level [6].

次いで、発明者らは数多くの偏析部相当鋼について詳細
な検討を行った。ここでいう偏析部相当鋼とは、先に説
明した如く大型鋼塊又は連続鋳造工程を経て製造された
鋼材にあっては、硫化物腐食割れは、最も硫化物腐食割
れ感受性の高い中央偏析部から発生するとの知見に基づ
き、当該個所での割れ防止乃至は減少させる目的から、
先づ鋼材全体が中央偏析部相当個所と同一組成を有する
鋼について調査を行うという意味での鋼である。
Next, the inventors conducted detailed studies on a large number of steels corresponding to segregation areas. The steel corresponding to the segregated area here refers to the central segregated area where sulfide corrosion cracking is most susceptible to sulfide corrosion cracking in large steel ingots or steel products manufactured through the continuous casting process as explained earlier. Based on the knowledge that cracks occur at these locations, in order to prevent or reduce cracking at the relevant locations,
First of all, this is steel in the sense that the entire steel material has the same composition as the part corresponding to the central segregation part.

つまり、使用した鋼材は試験溶解炉で溶解し50麺程度
の小型鋼塊とした後圧延しく必要に応じて熱処理した)
た鋼材(即ち鋼塊)全体にわたって偏析がないと考えら
れるものである。このような偏析部相尚鋼について耐硫
化物腐食割れ性のすぐれた鋼とするための条件を求め、
次いでこれと第1表の偏析係数とにより、連続鋳造、大
型鋼塊−分塊工程で製造される鋼材(中央偏析部を有す
る)における耐硫化物腐食割れ性の改善を図るための溶
鋼組成を求めん表したものである。
In other words, the steel used was melted in a test melting furnace and made into small steel ingots of about 50 noodles, then rolled and heat treated as necessary.)
It is considered that there is no segregation throughout the steel material (i.e., the steel ingot). We determined the conditions for making a steel with excellent sulfide corrosion cracking resistance for such a segregated phase steel, and
Next, using this and the segregation coefficients in Table 1, we determined the molten steel composition for improving the sulfide corrosion cracking resistance of steel products (having a central segregation part) manufactured by continuous casting and large steel ingot-blooming processes. This is what I wanted.

即ち、本発明は、C:α002〜0.15チ、Sl :
 111〜1.0 %、Mn : 0.5〜2.5チ、
P:0.03%以下、S:0.O05チ以下、Nb:[
101〜0.12チ、B:0.002〜α0050チ、
5otAt: 0.01〜0.05 Toを含み、或い
はこれに加えてNi:1.0%以下、Cu:1.0%以
下、Cr : 1.0チ以)、Mo : 1.0 %以
下、720.01〜015%、Tiす、しかも115 
200 X P  50C@q”270 (組積した溶
鋼を連続鋳造又は大型鋼塊−分塊工程により鋼片とした
後熱間圧延することを特徴とする耐硫化物腐食割れ性に
優れた高張力鋼の製造方法であり、前記の熱間圧延後、
必要に応じて加速冷却又は熱処理を施すことを特徴とす
るものである。
That is, in the present invention, C: α002 to 0.15chi, Sl:
111-1.0%, Mn: 0.5-2.5chi,
P: 0.03% or less, S: 0. O05chi or less, Nb: [
101~0.12chi, B:0.002~α0050chi,
5otAt: Contains 0.01 to 0.05 To, or in addition, Ni: 1.0% or less, Cu: 1.0% or less, Cr: 1.0% or more), Mo: 1.0% or less , 720.01~015%, Ti, and 115%
200 A method for manufacturing steel, in which after the hot rolling,
It is characterized by performing accelerated cooling or heat treatment as necessary.

しかして、本発明において溶鋼の組成中Cの下限を0.
0021とし九のは、それ未満ではこの種の鋼に必要な
強度を付与することができないからであり、又上限を0
.1!Mとしたのは、それを超えると溶接硬化性、割れ
感受性が著しく高まるからである。Slの下限を0.1
sとしたのは製鋼上これ未満となると著しく不利となる
ためであり、又上限を1.0−としたのは、それを超え
ると靭性を著しく損うからである。Mnは鋼に強度と延
性を与えるために必I11元素であるが、その下限を0
.5チとしたの′は、それ未満ではその効果が小さくな
るからでメク、又上限を2.5チとしたのは溶接硬化性
が著しく上昇し、またHICの感受性が著しく高まるか
らである。アは不純物として鋼中に含有されるが、極め
て偏析し易く、特に0.03 %を超えると著しく H
ICの感受性が高まるのでこれを上限とした。Sはサル
ファイド系非金属介在物がHIC、Sacの起点となる
ことが知られており、又シェルフエネルギーの点からも
0.005%を超えることは望ましくないのでこれを上
限とした。
Therefore, in the present invention, the lower limit of C in the composition of molten steel is set to 0.
The reason why it is set as 0021 is that it is impossible to impart the necessary strength to this type of steel with less than that, and the upper limit is set to 0.
.. 1! The reason for choosing M is that exceeding this value significantly increases weld hardenability and cracking susceptibility. Lower limit of Sl is 0.1
The reason why it is set as s is because it is extremely disadvantageous if it is less than this in terms of steel manufacturing, and the reason why the upper limit is set at 1.0 is because if it exceeds this, toughness will be significantly impaired. Mn is an essential element to give strength and ductility to steel, but its lower limit is 0.
.. The reason for setting the upper limit to 5 is because the effect is reduced below this value, and the reason that the upper limit is set to 2.5 is that the weld hardenability and HIC susceptibility increase significantly. H is contained in steel as an impurity, but it is extremely easy to segregate, especially when it exceeds 0.03%.
This was set as the upper limit because the sensitivity of IC increases. It is known that sulfide-based nonmetallic inclusions become the starting point of HIC and Sac, and it is not desirable for S to exceed 0.005% from the shelf energy standpoint, so this is set as the upper limit.

5otAtけ鋼の脱酸に少くとも0.01−は必要であ
り、又0.05 %を超えるとこの効果が飽和すること
からこれを上限とした。
At least 0.01% is necessary for deoxidizing steel with 5000 Attachment, and since this effect is saturated if it exceeds 0.05%, this is set as the upper limit.

Nb Kついては0.01%以上固溶しないと強度・靭
性に効果が1められないためこれを下限とした2、又、
添加量が大となると母材及びHAZの靭性を劣化させる
ので0.12%を上限とした。
As for Nb K, the effect on strength and toughness cannot be seen unless 0.01% or more is dissolved in solid solution, so this was set as the lower limit2.
If the amount added is large, the toughness of the base material and HAZ will deteriorate, so the upper limit was set at 0.12%.

Bは微量で鋼の焼入性を向上させるのに有効な元素であ
るが0.0002%以下ではその効果が小さいためこれ
を下限とした。又0.0050S以上となると溶接部靭
性を著しく損うのでこれを上限とした、 又、任意添加元素として本発明で溶鋼に含まれるCuは
主に耐食性の点から添加するものでおるが、1.0チを
超えると鋼板表面KCu疵が多発し、溶接熱影響部(H
AZ  )の靭性、硬化性にも悪影響を与えるからこれ
を上限とした。Ni、 Cr、 MoはHAZの靭性、
硬化性にはあまシ影響を与えることなく母材の強度・靭
性を向上させるが、1.01を超えることは矢張り上記
のHAZの靭性、硬化性に好しくなく、経済的な点から
もこれを上限とした5、N’b、 V、 T Iはこれ
らのいずれが一つが0.01優以−ヒ固溶しないと強度
、靭性に効果が認められないだめとれを下限とした。又
、これらはいずれも添加量が大となると母材及びHAZ
の靭性を劣化させるので0.15%を上限とした。Ca
は0.0005係未満では介在物制御効果が認められず
、従ってHICの感受性を減少せしめないのでこれを下
限とした。又0.01%を超えると大型介在物を形成し
かえってHIC感受性を高めるのでこれを上限とした。
B is an element effective in improving the hardenability of steel in a small amount, but the effect is small at 0.0002% or less, so this was set as the lower limit. Moreover, if it exceeds 0.0050S, the toughness of the weld zone will be significantly impaired, so this is set as the upper limit.Also, as an optional addition element, Cu contained in the molten steel in the present invention is mainly added from the viewpoint of corrosion resistance, but 1. If the temperature exceeds .0, KCu defects will occur frequently on the steel plate surface, and the welding heat affected zone (H
This is set as the upper limit because it also has an adverse effect on the toughness and hardenability of AZ). Ni, Cr, and Mo are the toughness of HAZ,
It improves the strength and toughness of the base material without affecting the hardenability, but exceeding 1.01 is unfavorable for the toughness and hardenability of the HAZ mentioned above, and from an economic point of view. With this as the upper limit, 5, N'b, V, and TI were set as the lower limit since no effect on strength and toughness would be observed unless any one of them was dissolved in a solid solution of 0.01% or more. In addition, when the addition amount of these is large, the base material and HAZ
The upper limit was set at 0.15% because it deteriorates the toughness of the steel. Ca
If the ratio is less than 0.0005, no inclusion control effect is observed, and therefore the sensitivity to HIC is not reduced, so this was set as the lower limit. Moreover, if it exceeds 0.01%, large inclusions will be formed and the HIC sensitivity will be increased, so this was set as the upper limit.

次に、本発明において溶鋼の組成規制の条件を115−
200 ×pH−s OCeq”270 C但し、P”
=5P、とした理由を説明する。
Next, in the present invention, the conditions for regulating the composition of molten steel are set to 115-
200 × pH-s OCeq"270 CHowever, P"
The reason for setting =5P will be explained.

第1図は前記偏析部相当鋼において求めたシャルピー衝
撃試験における室温での延性破面率(以下SAl’lT
という)と、HIC試験におけるクラック長さ率(以下
CLRという)の関係を示したグラフである。この第1
図から明らかなように、5ART値が増加するとCLR
値は減少し、SARτ値が70チ以上になると、クラッ
クは全く発生しないことがわかる。この傾向は熱間圧延
まま材のみならず熱処理材にも認められる。発明者らは
、更にこの5ARTに及ぼす各種冶金的因子について検
討した結果、C,Mn等の強化元素及び特にP量が大き
な影響を与えることを知った かかる実験データを基に
5ART値とP値、Ceq値との回帰式を求めると5A
RT(19= 115 200−P −50・Ceq 
−−=(1)が得られた。ここでPはP量(%)、Ce
qはロイドの炭素当量であり、 Ceq(@=C+Mn/S+(Cu+Ni)/15+(
Cr利■o +V )/’5− ・”(2)の式で表わ
される(各成分はいずれも重量%)。
Figure 1 shows the ductile fracture ratio (hereinafter referred to as SAl'lT) at room temperature in the Charpy impact test determined for the steel corresponding to the segregation zone.
2 is a graph showing the relationship between crack length ratio (hereinafter referred to as CLR) in the HIC test. This first
As is clear from the figure, as the 5ART value increases, the CLR
It can be seen that the value decreases, and when the SARτ value reaches 70 degrees or more, no cracks occur at all. This tendency is observed not only in hot-rolled materials but also in heat-treated materials. The inventors further studied various metallurgical factors that affect this 5ART, and found that reinforcing elements such as C and Mn, and especially the amount of P, have a large influence.Based on such experimental data, the 5ART value and P value were determined. , the regression equation with the Ceq value is 5A.
RT (19= 115 200-P -50・Ceq
--=(1) was obtained. Here, P is P amount (%), Ce
q is the carbon equivalent of Lloyd, Ceq(@=C+Mn/S+(Cu+Ni)/15+(
It is expressed by the formula (2) (each component is expressed in weight %).

以ヒのことから、鋼材生鰻もHIC、SSCの感受性が
高いと考えられる偏析部の組成として、115−200
”−50・Ceq”270・・・・・・・・・・・・・
・・・・・・・・・・・(3)を満載することが、HI
C,SSCの発生防止トの[1樟となる、 つまり、耐硫化物腐食割れ性に優れた高張力鋼を連続鋳
造、大型鋼塊−分塊工程を経て得られる綱の溶鋼組成は
、上記(3)式を満足する必要がある訳である。一方、
既に第1表に示す如く前記(3)式%式% 以上説明した如く、中央偏析部が発達し易い連続鋳造又
は大型鋼塊−分塊工程による鋳片を経て得られる鋼材(
硫化物腐食割れ感受性が異なる部分を併せ有する)にお
いて、本発明により耐硫化物腐食割れ性の優れた鋼材を
製造することが可能となるものである。
Therefore, the composition of the segregated part of steel raw eel, which is considered to be highly susceptible to HIC and SSC, is 115-200.
"-50・Ceq"270・・・・・・・・・・・・・
・・・・・・・・・・・・(3) is full of HI
C. Preventing the occurrence of SSC (1) In other words, the molten steel composition of the steel obtained by continuous casting of high-strength steel with excellent sulfide corrosion cracking resistance and the large steel ingot-blooming process is as described above. This means that equation (3) needs to be satisfied. on the other hand,
As already shown in Table 1, the steel material (3) obtained through continuous casting or large ingot-blooming process in which central segregation tends to develop (
According to the present invention, it is possible to produce a steel material with excellent sulfide corrosion cracking resistance.

以下実施例に基づき更に本発明の説明を補足する第2表
には供試溶鋼の化学成分、Ceq (ロイド)、Ceq
及び5ART を示し、第3表には圧延条件、熱処理条
件とその確性結果を示した。
Table 2, which further supplements the explanation of the present invention based on the examples below, shows the chemical composition of the sample molten steel, Ceq (Lloyd), Ceq
and 5ART, and Table 3 shows rolling conditions, heat treatment conditions, and their accuracy results.

第2表の溶鋼B、Fは34tの大型鋼塊に、その他の溶
鋼は寸法220 x 1 <550のモールドで連続鋳
造した鋳片である。
Molten steel B and F in Table 2 are large steel ingots of 34 tons, and the other molten steels are slabs continuously cast in a mold with dimensions of 220 x 1 <550.

次にHIC性能を評価する試験方法として一般にaBP
試験が用いられているが、本発明ではより腐食条件の厳
しいNACE溶液を用いたI(IC試験を行ってHIC
感受性を評価した− HIC感受性を示す大うメータと
してここではCLR及びC8Rを用いた。それらは次式
によって求まる価である。
Next, aBP is generally used as a test method to evaluate HIC performance.
However, in the present invention, the HIC
Sensitivity was evaluated - CLR and C8R were used here as major meters to indicate HIC susceptibility. These values are determined by the following formula.

但しΣai・biミニステップれの総面積A:試験片巾 B:試験片厚さ しかして、現在のところ耐硫化物割れ性の面からCLR
,C8Rの上限について定説ないので、本発明では現在
量も厳しい規格とされているARAMCO8PECAM
SS−1(Sに採用されている次の基準を用HIC感受
性を評価し九。
However, the total area of Σai/bi mini-step crack A: specimen width B: specimen thickness However, currently CLR is
, Since there is no established theory regarding the upper limit of C8R, the present invention uses ARAMCO8PECAM, which is currently considered to have a strict standard.
Assess HIC susceptibility using the following criteria adopted in SS-1 (S9).

CLR<  15% C3R=0(ステップ割れなし) −上記第2表の溶鋼A−Dは比較鋼であり、Pをはじめ
とする各成分が相対的に高いため、5ART = 11
5−200 P”−50ceq’−・−−−−−−・−
・−・山−<4>上記(4)式に基づ< 5ARTかい
ずれも70未満の低い値となる。鋼E−Hは本発明鋼で
あり、5ARTは総て70以上の値を示す。とれら各供
試鋼の圧延条件と確性結果は第6表に示される如くでめ
り、スラブ加熱温度、板厚、使用圧延機種(Hot材−
Plate材)、熱処理材、制御圧延まま材、加速冷却
材の如何を問わず、比較鋼ではNACE環境でのCLR
,C8Hの値がいずれも基準値(CLR<:15チ、C
3R=O1)  を超えるのに対し、本発明鋼ではCL
R,C8Hのいずれも基準値以下の優れた耐HIC性を
示している。第2図は実施例におけるSARTとCLR
との関係を示したグラフである。
CLR<15% C3R=0 (no step cracking) - Molten steels A-D in Table 2 above are comparison steels, and each component including P is relatively high, so 5ART = 11
5-200 P"-50ceq'-・---------・-
- Mountain - <4> Based on the above formula (4), <5ART or both are low values of less than 70. Steels E-H are steels of the present invention, and all 5ART values are 70 or more. The rolling conditions and accuracy results for each of the sample steels are as shown in Table 6.
CLR in the NACE environment for comparative steels, regardless of whether they are plate materials), heat-treated materials, controlled rolling materials, or accelerated cooling materials.
, C8H values are all standard values (CLR<:15ch, C
3R=O1), whereas in the steel of the present invention, CL
Both R and C8H exhibit excellent HIC resistance below the standard value. Figure 2 shows SART and CLR in the example.
This is a graph showing the relationship between

比較鋼と本発明鋼とを比較すると、特に低P化の効果が
大であり、例えば鋼CではCR4までCLRが60%、
熱処理(焼入れ焼戻し処理)材ではやや改善され20%
となるものの、いずれ本基準値以上の値である1、それ
に対してGではCRままでCLRは8%と基準値内の値
である。
Comparing the comparative steel and the steel of the present invention, the effect of lowering P is particularly large; for example, steel C has a CLR of 60% up to CR4;
Heat treated (quenched and tempered) material improved slightly by 20%.
However, the value will eventually reach 1, which is higher than this reference value, whereas in G, the CR remains as is, and the CLR is 8%, which is within the reference value.

以上のことから、Hot材−Plate材及び圧延まま
材、加速冷却材、熱処理材の如何を問わず本発明の効果
は期待出来、従来熱処理しても得ることが不可能でめっ
た耐HIC、SSC性能が圧延ままで得られるなど製造
方法として優れており、経済的にも効果は極めて大きい
、 尚、上記の本発明の実施例では鋼板の例についてのみ触
れたが、本発明はこれに限定されるものではなく、鋼管
、形鋼その他の鋼材の製造にも適用し得ることはいうま
でもない。
From the above, the effects of the present invention can be expected regardless of whether the material is hot-plate material, as-rolled material, accelerated cooling material, or heat-treated material. It is an excellent manufacturing method as it can achieve good performance as rolled, and has extremely large economical effects.Although the above embodiments of the present invention have only mentioned examples of steel plates, the present invention is not limited to this. Needless to say, the present invention is not limited to the production of steel pipes, shaped steel, and other steel materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は室温における延性破面率とCLRの関係を示す
グラフ、第2図は5ART  とCLRの関係を示すグ
ラフである1、 代理人 弁理士  佐 藤 正 年 回 同 木材三朗 同   同   佐々木 宗 治
Figure 1 is a graph showing the relationship between ductile fracture ratio and CLR at room temperature, and Figure 2 is a graph showing the relationship between 5ART and CLR. Osamu

Claims (2)

【特許請求の範囲】[Claims] (1)  C: 0.002〜0.15%、S i :
 0.1〜1.0 %%Mn :0.5〜2.5チ、P
:0.03チ以下、S二o、oosチ以下、Nb :0
.01〜0.12%、B :Q、0002〜o、oos
s、 5otAt:0.01〜0.05%を含み残部は
鉄及び不可避不純物からなり、しかも115−200X
P”−30Ceq270(但し、P”−5P、 Ceq
”= 1.5C+2.5Mn/6 )を満足するように
調整した溶鋼を連続鋳造又は大型鋼塊−分塊工程によυ
鋼片とした後熱間圧延し、必要に応じて更に加速冷却又
は熱処理を施すことを特徴とす−る耐硫化物腐食割れ性
に優れた高張力鋼の製造方法1、
(1) C: 0.002-0.15%, Si:
0.1-1.0%%Mn: 0.5-2.5chi, P
: 0.03 or less, S2o, oos or less, Nb: 0
.. 01~0.12%, B:Q, 0002~o, oos
s, 5otAt: 0.01 to 0.05%, the remainder consisting of iron and inevitable impurities, and 115-200X
P”-30Ceq270 (However, P”-5P, Ceq
” = 1.5C + 2.5Mn/6) by continuous casting or large steel ingot-blooming process.
A method for producing high-strength steel with excellent sulfide corrosion cracking resistance, characterized by hot rolling after forming into a steel billet, and further subjecting it to accelerated cooling or heat treatment as necessary.
(2)C:0.002〜o、i 5%、 St :0.
1〜1.0%、 Mn :0.5〜2.5S、 P :
 0.01 以下、s:0.005%以下、・Nb :
0.01〜0.12%、B : 0.0002〜0.0
059G%5oAAA:0.01〜0.05%と、更に
Ni:1.0%以下、Cu:1.01以下、Cr : 
1.O1以下、Mo:1.0%以下、V二0.01〜0
.11、Ti :0.01〜G、11、Ca:0.00
05〜0.01%の一種又は二種基土を含み、残部は鉄
及び不可避不純物からなり、しかも115−200×?
−30Ceq”270 C但し、r=sp、 Ceq*
= 1.5C+を満足するように調整した溶鋼を連−続
鋳造又は大型鋼塊−分塊工程により鋼片とした後熱間圧
延し、必要に応じて更に加速冷却又は熱処理を施すこと
を特徴とする耐硫化物腐食割れ性に優れた高張力・鋼の
製造方法。
(2) C: 0.002~o, i 5%, St: 0.
1-1.0%, Mn: 0.5-2.5S, P:
0.01 or less, s: 0.005% or less, ・Nb:
0.01-0.12%, B: 0.0002-0.0
059G%5oAAA: 0.01 to 0.05%, further Ni: 1.0% or less, Cu: 1.01 or less, Cr:
1. O1 or less, Mo: 1.0% or less, V2 0.01 to 0
.. 11, Ti: 0.01-G, 11, Ca: 0.00
It contains 0.05 to 0.01% of one or two types of base, and the remainder consists of iron and inevitable impurities, and is 115 to 200×?
-30Ceq”270C However, r=sp, Ceq*
= 1.5C+ is made into steel slabs by continuous casting or large steel ingot-blooming process, then hot rolled, and further subjected to accelerated cooling or heat treatment as necessary. A method for manufacturing high-strength steel with excellent sulfide corrosion cracking resistance.
JP18545181A 1981-11-20 1981-11-20 Production of high tensile steel having excellent resistance to sulfide corrosion cracking Granted JPS5887221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18545181A JPS5887221A (en) 1981-11-20 1981-11-20 Production of high tensile steel having excellent resistance to sulfide corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18545181A JPS5887221A (en) 1981-11-20 1981-11-20 Production of high tensile steel having excellent resistance to sulfide corrosion cracking

Publications (2)

Publication Number Publication Date
JPS5887221A true JPS5887221A (en) 1983-05-25
JPH022925B2 JPH022925B2 (en) 1990-01-19

Family

ID=16171023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18545181A Granted JPS5887221A (en) 1981-11-20 1981-11-20 Production of high tensile steel having excellent resistance to sulfide corrosion cracking

Country Status (1)

Country Link
JP (1) JPS5887221A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199813A (en) * 1982-05-17 1983-11-21 Sumitomo Metal Ind Ltd Production of high tensile steel plate having high resistance to hydrogen induced cracking
JPS61124555A (en) * 1984-11-20 1986-06-12 Nippon Steel Corp Steel superior in sour resistance
JPS63250416A (en) * 1987-04-08 1988-10-18 Nippon Steel Corp Manufacture of steel material excellent in stress corrosion cracking resistance and having low yield ratio in sulfide-rich circumstances
JPS63250417A (en) * 1987-04-08 1988-10-18 Nippon Steel Corp Manufacture of steel material excellent in resistance to stress corrosion cracking and having low yield ratio in sulfide-rich circumstances
JPH02290947A (en) * 1989-05-01 1990-11-30 Nippon Steel Corp High toughness steel sheet for resistance welded steel tube having excellent sour resistance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274521A (en) * 1975-12-18 1977-06-22 Sumitomo Metal Ind Ltd Productin of hot coil material for line pipe having high resistance to hydrogen induced cracking

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274521A (en) * 1975-12-18 1977-06-22 Sumitomo Metal Ind Ltd Productin of hot coil material for line pipe having high resistance to hydrogen induced cracking

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199813A (en) * 1982-05-17 1983-11-21 Sumitomo Metal Ind Ltd Production of high tensile steel plate having high resistance to hydrogen induced cracking
JPH0569884B2 (en) * 1982-05-17 1993-10-04 Sumitomo Metal Ind
JPS61124555A (en) * 1984-11-20 1986-06-12 Nippon Steel Corp Steel superior in sour resistance
JPH0588298B2 (en) * 1984-11-20 1993-12-21 Nippon Steel Corp
JPS63250416A (en) * 1987-04-08 1988-10-18 Nippon Steel Corp Manufacture of steel material excellent in stress corrosion cracking resistance and having low yield ratio in sulfide-rich circumstances
JPS63250417A (en) * 1987-04-08 1988-10-18 Nippon Steel Corp Manufacture of steel material excellent in resistance to stress corrosion cracking and having low yield ratio in sulfide-rich circumstances
JPH02290947A (en) * 1989-05-01 1990-11-30 Nippon Steel Corp High toughness steel sheet for resistance welded steel tube having excellent sour resistance
JPH0587582B2 (en) * 1989-05-01 1993-12-17 Nippon Steel Corp

Also Published As

Publication number Publication date
JPH022925B2 (en) 1990-01-19

Similar Documents

Publication Publication Date Title
CN105886909B (en) A kind of resistance against hydrogen cracking steel plate of pressure vessel and its manufacture method
JP5177310B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
RU2415196C2 (en) Composition of martensite stainless steel, procedure for fabrication of mechanical tool out of this steel and part fabricated by this procedure
EP3246426B1 (en) Method for manufacturing a thick high-toughness high-strength steel sheet
JP5079793B2 (en) Steel material excellent in high temperature characteristics and toughness and method for producing the same
EP2894235B1 (en) Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
WO2015093321A1 (en) H-shaped steel and method for producing same
EP3722448B1 (en) High-mn steel and method for manufacturing same
US5336339A (en) Refractory shape steel material containing oxide and process for proucing rolled shape steel of said material
JP3379355B2 (en) High-strength steel used in an environment requiring sulfide stress cracking resistance and method of manufacturing the same
JP2008088547A (en) Fire-resistant steel having excellent high-temperature strength, toughness and reheat embrittlement resistance and process for production of the same
CA1190835A (en) Method of producing as rolled high toughness steel
JPS6035981B2 (en) High-strength, high-toughness rolled steel for pressure vessels
JPS5887221A (en) Production of high tensile steel having excellent resistance to sulfide corrosion cracking
CN102766820B (en) Hot rolled strip steel with yield strength higher than 600MPa for mine rescue capsule and preparation method of hot rolled strip steel
JP3085253B2 (en) Method for producing steel plate for crude oil tanker with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment
JP3518517B2 (en) Manufacturing method of high chromium / ferritic heat resistant steel
JPH0737650B2 (en) Method for manufacturing high-strength steel plate with excellent resistance to sulfide corrosion cracking
JP3477098B2 (en) Ferritic stainless steel sheet excellent in surface properties and ridging properties and method for producing the same
JP2003342670A (en) Non-heat treated high tensile steel having excellent toughness
JPS6056056A (en) Process-hardenable austenite manganese steel and manufacture
KR19990039203A (en) Manufacturing Method of High-Strength Hot-Rolled Steel Sheet
JP2834500B2 (en) Manufacturing method of high-strength steel sheet with excellent thermal toughness
JPH0310688B2 (en)