JPS63250417A - Manufacture of steel material excellent in resistance to stress corrosion cracking and having low yield ratio in sulfide-rich circumstances - Google Patents
Manufacture of steel material excellent in resistance to stress corrosion cracking and having low yield ratio in sulfide-rich circumstancesInfo
- Publication number
- JPS63250417A JPS63250417A JP8462087A JP8462087A JPS63250417A JP S63250417 A JPS63250417 A JP S63250417A JP 8462087 A JP8462087 A JP 8462087A JP 8462087 A JP8462087 A JP 8462087A JP S63250417 A JPS63250417 A JP S63250417A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- hot rolling
- less
- temperature
- solid solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 85
- 239000010959 steel Substances 0.000 title claims abstract description 85
- 239000000463 material Substances 0.000 title claims abstract description 21
- 238000005260 corrosion Methods 0.000 title claims abstract description 16
- 230000007797 corrosion Effects 0.000 title claims abstract description 15
- 238000005336 cracking Methods 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 title claims description 13
- 238000005098 hot rolling Methods 0.000 claims abstract description 35
- 238000010438 heat treatment Methods 0.000 claims abstract description 23
- 239000006104 solid solution Substances 0.000 claims abstract description 23
- 238000001816 cooling Methods 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 12
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 11
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 10
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 8
- 229910052796 boron Inorganic materials 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 4
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract 8
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 12
- 229910052684 Cerium Inorganic materials 0.000 claims description 6
- 238000005496 tempering Methods 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims 8
- 229910052742 iron Inorganic materials 0.000 claims 2
- 239000000155 melt Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 5
- 238000005096 rolling process Methods 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 17
- 229910000859 α-Fe Inorganic materials 0.000 description 15
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 230000035882 stress Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 3
- 229910001562 pearlite Inorganic materials 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000012733 comparative method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229910000108 silver(I,III) oxide Inorganic materials 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、硫化物腐食環境においても良好な耐応力腐食
割れ性を有する低降伏比鋼材の製造法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a low yield ratio steel material that has good stress corrosion cracking resistance even in a sulfide corrosive environment.
(従来技術及び発明の解決しようとする問題点)従来、
耐硫化物応力腐食割れ性(以下、耐SSC性と記す)を
有する鋼材は、例えば「鉄と鋼“8O−8503Jでは
SScの発生要因と考えられているMnS 、 AI!
203等非金属介在物の低減、[日本鋼管技報醜87(
1987)JではQT!2!!I理による結晶粒の微細
化、均質化などにより製造されることが報告されている
。しかしながら、QT処理により結晶粒が微細化すると
降伏強度が高くなりその結果、鋼材の降伏比(降伏強度
/引張強度)が高くなるためパイプラインあるいはその
他の構造物の使用設計上問題となっている。(Prior art and problems to be solved by the invention) Conventionally,
Steel materials with sulfide stress corrosion cracking resistance (hereinafter referred to as SSC resistance) include, for example, MnS, AI!
Reduction of non-metallic inclusions such as 203, [Japan Steel Tube Technical Report Ugly 87 (
1987) QT! 2! ! It has been reported that it can be produced by refining and homogenizing crystal grains using the I-process. However, as grains become finer through QT treatment, the yield strength increases, resulting in a higher yield ratio (yield strength/tensile strength) of the steel, which poses a problem in the design of pipelines or other structures. .
SSCの発生は不発明者らの推測によると、応力下での
フェライトと非金属介在物との界面の水素脆化現象によ
り起ると考えられる。つまり、鋼の腐食反応により生成
した水素が鋼中に浸入し、非金属介在物との界面で水素
分子を形成しその圧力でマトリックスに応力集中域が発
生する。そのような領域は、水素濃度が高くなりマトリ
ックスは脆化する。この場合、外応力の存在下でフェラ
イトの強度がパーライトに比べ極端に低いとフェライト
のミクロな塑性変形が大きくなり水素脆化はより加速さ
れるものと判断している。According to the inventors' speculation, the occurrence of SSC is thought to be caused by hydrogen embrittlement phenomenon at the interface between ferrite and nonmetallic inclusions under stress. In other words, hydrogen generated by the corrosion reaction of steel penetrates into the steel, forms hydrogen molecules at the interface with nonmetallic inclusions, and the resulting pressure generates a stress concentration area in the matrix. In such a region, the hydrogen concentration becomes high and the matrix becomes brittle. In this case, it has been determined that if the strength of ferrite is extremely lower than that of pearlite in the presence of external stress, the microscopic plastic deformation of ferrite will increase and hydrogen embrittlement will be further accelerated.
しかるに、硫化物腐食環境に使用される鋼材には耐SS
C性が優れ低降伏比の鋼が要求されるが、その製造法に
おいて非金属介在物の低減化を図らねばならない厄介な
問題が鋼の製造作業にあった。However, steel materials used in sulfide corrosive environments have SS resistance.
Steels with excellent carbon properties and low yield ratios are required, but the steel manufacturing process has had the trouble of reducing non-metallic inclusions.
(問題点の解決手段)
本発明者らは、耐SSC性の優れた低降伏比鋼材を製造
することを目的に多くの実験を行ない検討した結果、鋼
の成分、熱間圧延条件さらには熱間圧延後の熱処理条件
などを制御することによって、非金属介在物、析出物あ
るいはパーライト等が存在する場合においてもフェライ
トの強化によって上述のようなミクロな塑性変形を抑制
し耐5scQ著しく向上させかつ低降伏比の鋼材が製造
されることを知見した。本発明は、この知見に基づいて
構成したものでその要旨は、
C:0.02〜0.20% Si : 0.04
〜o、s o %Mn : 0.2〜2.54
P : 0.025%以下S:0.02%以下
M : 0.1%以下Nb:o、o1〜0.10%
全含有しさらに上記成分に
Cu : 0.05〜0.5% Ce : 0.0
07〜0.07%Ca : 0.001〜0.07%
V : 0.01〜0.12%N : 0.00
20〜0.0250%のA群から選ばれた1種または2
種以上と、
又は
Ti : 0.05〜o、o 35% B : 0
.0003〜0.003%Cr : 0.05〜1.0
% MO: 0.05−0.5 %Ni :
0.05〜3.0%のB群から選ばれた1種または2
種以上と
さらに又
A群から選ばれた1種又は2種と、B群から選ばれた1
種又は2種と、
全含有して残部がFeからなる鋼片を、熱間圧延する工
程の中で鋼中のNbが固溶する温度に加熱し引き続き熱
間圧延でして自然冷却するか、もしくは熱間圧延した後
直ちに鋼中のNb、V が固溶する温度に加熱し引き続
き自然冷却し、さらには必要に応じて焼もどし処理を行
う耐硫化物応力腐食割れ性の優れた低降伏比鋼材の製造
法である。(Means for solving the problem) As a result of conducting many experiments and considering the purpose of manufacturing low yield ratio steel materials with excellent SSC resistance, the present inventors found that the composition of steel, hot rolling conditions, and By controlling the heat treatment conditions after rolling, even in the presence of nonmetallic inclusions, precipitates, pearlite, etc., the above-mentioned microscopic plastic deformation is suppressed by strengthening the ferrite, and the 5scQ resistance is significantly improved. It was found that steel materials with a low yield ratio can be manufactured. The present invention was constructed based on this knowledge, and the gist thereof is as follows: C: 0.02-0.20% Si: 0.04
~o, so %Mn: 0.2~2.54
P: 0.025% or less S: 0.02% or less
M: 0.1% or less Nb: o, o1 to 0.10%, and further added to the above components Cu: 0.05 to 0.5% Ce: 0.0
07~0.07%Ca: 0.001~0.07%
V: 0.01-0.12%N: 0.00
20-0.0250% of one or two selected from Group A
or Ti: 0.05~o, o 35% B: 0
.. 0003~0.003%Cr: 0.05~1.0
%MO: 0.05-0.5%Ni:
0.05-3.0% of one or two selected from group B
species or more, and one or two species selected from group A, and one selected from group B.
In the hot rolling process, a steel piece consisting entirely of Nb and the remaining Fe is heated to a temperature at which the Nb in the steel becomes a solid solution, followed by hot rolling and natural cooling. Or, after hot rolling, the steel is immediately heated to a temperature at which Nb and V are dissolved in solid solution, followed by natural cooling, and further tempered if necessary. Low yielding steel with excellent resistance to sulfide stress corrosion cracking. This is a manufacturing method for specific steel materials.
(作用) 以下、本発明の製造法について詳細に説明する。(effect) Hereinafter, the manufacturing method of the present invention will be explained in detail.
本発明において上記の様な鋼成分に限定した理由につ1
ハで先ず説明する。CおよびNbはN b Cとしてフ
ェライト中に微細析出してフェライトの強化を図る成分
である。第1図は、C含有量を一定にしてNb含有量を
変化させた鋼の硬化度(ΔHv)を示したもので少な過
ぎるとその効果がなく多過ぎてもその効果が飽和するた
め、それぞれ0.02〜0.2%、0.01〜0.10
%とした。The reason for limiting the steel composition to the above in the present invention is 1.
Let me explain first. C and Nb are components that finely precipitate in the ferrite as N b C to strengthen the ferrite. Figure 1 shows the degree of hardening (ΔHv) of steel with a constant C content and varying Nb content. 0.02-0.2%, 0.01-0.10
%.
Slは、固溶効果により強度の増大を図るため必要な成
分である。しかし少な過ぎると効果がな □く多過ぎる
と靭性劣化をきたし、溶接性にも悪影響をおよぼす・た
め効果と他への影響を考慮して0゜01〜0.5%とし
た。Sl is a necessary component for increasing the strength due to the solid solution effect. However, if it is too small, it will not be effective, and if it is too large, it will cause deterioration of toughness and have an adverse effect on weldability.Considering the effect and the influence on others, the content was set at 0.01 to 0.5%.
Mnは、結晶粒を微細化し靭性を向上させる有効な成分
であるが少な過ぎるとその効果はなく多過ぎると低温変
態生成物をつくり靭性の劣化をきたす。したがってMn
の含有量は0.2〜2.5%とした。Mn is an effective component that refines crystal grains and improves toughness, but if it is too small, it has no effect, and if it is too large, it creates low-temperature transformation products and deteriorates toughness. Therefore Mn
The content was 0.2 to 2.5%.
Pは、パーライトに偏析してSSC発生を促進させ耐S
Sc性を著しく劣化させる有害な成分であるためその含
有量を0.025%以下とした。P segregates into pearlite to promote SSC generation and improve S resistance.
Since it is a harmful component that significantly deteriorates Sc properties, its content was set to 0.025% or less.
Sは、延伸した硫化物を生成してSScの発生を促進さ
せ耐S SC性を著しく劣化させるのでその上限を0.
02%以下とした。S produces stretched sulfides, promotes the generation of SSc, and significantly deteriorates SSC resistance, so the upper limit should be set at 0.
0.02% or less.
At含有量の増/Jll+は、クラスター状のAg2O
,を生成して耐SSC性を著しく劣化させるためその上
限を0.1%以下とした。Increase in At content/Jll+ is caused by clustered Ag2O
, which significantly deteriorates SSC resistance, the upper limit was set to 0.1% or less.
上記のような成分組成で構成された鋼は、耐SSC性を
向上させ低降伏比の鋼材を製造する。また、本発明は上
記の成分の他にCu、Ce、Ca などの耐SSC改
善成分やTi、Bなどの強化成分の少量を撰択的に添加
する。Steel having the above-mentioned composition improves SSC resistance and produces a steel material with a low yield ratio. Further, in the present invention, in addition to the above-mentioned components, small amounts of SSC resistance improving components such as Cu, Ce, and Ca and reinforcing components such as Ti and B are selectively added.
Cuは、鋼中への水素侵入抑制効果があり、耐SSC性
に有効に働くが少ないと効果がなく多過ぎるとその効果
は飽和しまた溶接性にも悪影響をおよぼす。したがって
Cuの含有量は0.05〜0゜5チとした。Cu has the effect of suppressing hydrogen penetration into steel and works effectively on SSC resistance, but if it is too little, it is ineffective, and if it is too much, the effect is saturated and also has a negative effect on weldability. Therefore, the Cu content was set to 0.05 to 0.5 inches.
Ce、Caは硫化物の延伸防止およびクラスター状のA
2□03 の生成を防止し耐SSC性に有効な成分で
あるが、少ないとその効果がなく多過き゛ると鋼の清浄
度を低下させ耐SSc性全低下させる。Ce and Ca prevent the stretching of sulfides and form clusters of A.
It is an effective component for preventing the formation of 2□03 and improving SSC resistance, but if it is too little, it will not be effective, and if it is too much, it will reduce the cleanliness of the steel and completely reduce the SSC resistance.
したがってそれぞれの成分の含有量を0.007〜0.
07%、 o、o Ol 〜0.07%とした。Therefore, the content of each component is between 0.007 and 0.007.
07%, o,oOl ~0.07%.
■およびNは自然冷却時VNとしてフェライト中に微細
析出してフェライトの強化を図る重要な成分である。第
2図は、鋼中にV、N を含有させた場合の硬化量(
ΔHv)を示したもので、少ないとその効果がなく多過
ぎてもその効果が飽和するためそれぞれ0.01〜0.
12%、0.0020〜0.0250%とした。(2) and N are important components that finely precipitate in the ferrite as VN during natural cooling and strengthen the ferrite. Figure 2 shows the amount of hardening (
ΔHv), which is 0.01 to 0.0, respectively, because if it is too little, there is no effect, and if it is too much, the effect is saturated.
12% and 0.0020 to 0.0250%.
Tiは、窒化物を生成し結晶粒を微細化し靭性を向上さ
せる成分である。しかし含有量が0.005チ未満では
その効果はなくまた0、035%を超える過剰な含有量
では巨大な窒化物を生成して耐SSC性を劣化させる。Ti is a component that generates nitrides, refines crystal grains, and improves toughness. However, if the content is less than 0.005%, there is no effect, and if the content exceeds 0.035%, giant nitrides are formed and the SSC resistance is deteriorated.
したがってTi成分の含有量を0.005〜0.035
%とした。Therefore, the content of Ti component is 0.005 to 0.035.
%.
Bは、自然冷却中のフェライト変態抑制効果があり強度
上昇に有効な成分であるが、少ないとその効果がなく多
過ぎてもその効果は飽和するため0.0003〜0.0
03%とした。B is a component that has the effect of suppressing ferrite transformation during natural cooling and is effective in increasing strength, but if it is too small, it will not have this effect, and if it is too large, the effect will be saturated, so 0.0003 to 0.0
03%.
N1は、結晶粒の微細化により靭性の向上に有効に働ら
くが、少ないとその効果はなく多過ぎても七の効果は飽
和し、また高価であるため3.o%とした。N1 works effectively to improve toughness by refining the crystal grains, but if it is too little, it will not have that effect, and if it is too much, the effect in item 7 will be saturated, and it is expensive. It was set as o%.
次に本発明の製造法について説明する。Next, the manufacturing method of the present invention will be explained.
上記のような成分組成の鋼は転炉、電気炉等の溶解炉で
溶製され、連続鋳造法または造塊、分塊法で鋼片を製造
し、直ちにあるいは一担冷却された後再加熱されて、鋼
板、鋼管、形鋼など必要な形状に熱間圧延される。この
ようにして熱間圧延された鋼は、低降伏比は達成できる
が耐SSC性は低く H2Sガス等を含んだような厳し
い腐食環境での使用に問題があった。したがって、本発
明はこの問題を解決するために熱間圧延中もしくは熱間
圧延直後鋼中のNb、Vが固溶する温度に加熱し引き続
き自然冷却し、必要によってはさらに焼もどし処理を施
す。この処理は圧延ままあるいはNb。Steel with the above-mentioned composition is melted in a melting furnace such as a converter or electric furnace, and steel slabs are produced by continuous casting, ingot making, or blooming, and then reheated immediately or after cooling. The steel is then hot-rolled into the required shapes such as steel plates, steel pipes, and sections. Steel hot-rolled in this manner can achieve a low yield ratio, but has low SSC resistance and has problems in use in severe corrosive environments containing H2S gas and the like. Therefore, in order to solve this problem, the present invention heats the steel to a temperature at which Nb and V are dissolved in solid solution during hot rolling or immediately after hot rolling, and then naturally cools the steel, and if necessary, further tempers the steel. This treatment is performed on as-rolled or Nb.
V析出物がほとんど固溶しない再加熱温度からの自然冷
却を行った鋼材の耐SSC性の著しい低下を防止するた
めに行うものである。This is done in order to prevent a significant decrease in the SSC resistance of steel materials that have been naturally cooled from a reheating temperature at which almost no V precipitates form a solid solution.
したがって、NbやVなどの析出物を必要かつ充分固溶
する温度に加熱し、さらに冷却過程において強度や靭性
に影響を及ぼすことなく、降伏比を高めることなくしか
も鋼中に過度の応力を存在せしめないように自然冷却あ
るいはそれ以上の緩冷却を行う必要がある。すなわち、
圧延中あるいは圧延後の力ロ熱は冷却中に微細析出させ
フェライトを強化せしめるため充分な固溶温度を確保す
る必要がちるが、その加熱温度は930〜l l 50
’Cで充分である。保定時間は特に限定しないが誘導
加熱のような短時間あるいは炉加熱による長時間加熱で
もよい。ただ、あまり長時間(100分以上)保定する
と加熱温度によっては結晶粒の著しい成長をきたし耐S
SC性を劣化させる傾向にある。Therefore, it is possible to heat the precipitates such as Nb and V to a necessary and sufficient solid solution temperature, and in the cooling process, without affecting the strength and toughness, without increasing the yield ratio, and without creating excessive stress in the steel. It is necessary to perform natural cooling or even more gradual cooling to prevent this from happening. That is,
The heating during or after rolling causes fine precipitation during cooling to strengthen the ferrite, so it is necessary to ensure a sufficient solid solution temperature, but the heating temperature is 930 to 50
'C is sufficient. The holding time is not particularly limited, but may be short-time heating such as induction heating or long-time heating using furnace heating. However, if kept for too long (more than 100 minutes), depending on the heating temperature, crystal grains may grow significantly, making it resistant to S.
It tends to deteriorate SC properties.
一方、鋼材の形状、特に肉厚が薄い場合、圧延後あるい
は焼準し処理での冷却速度が比較的速くなるためフェラ
イト中に充分炭化物、窒化物が析出しない場合がある。On the other hand, when the shape of the steel material is particularly thin, the cooling rate after rolling or during normalizing treatment becomes relatively fast, so that carbides and nitrides may not be sufficiently precipitated in the ferrite.
この様な鋼材についてはAc。Ac for such steel materials.
点以下の焼もどし処理を行ない炭1ヒ物の微細析出によ
りフェライト全強化させる必要がある。焼もどし方法に
ついても特に限定しないが誘導加熱のような短時間ある
いは炉加熱のような長時間加熱でもよい。ただ、あまり
長時間保定すると加熱温度によっては析出物の成長をき
たしi!Ft′t38C!+を劣化させる傾向にある。It is necessary to perform a tempering treatment below the point and completely strengthen the ferrite through the fine precipitation of carbon atoms. The tempering method is not particularly limited either, but may be short-time heating such as induction heating or long-time heating such as furnace heating. However, if it is kept for too long, precipitates may grow depending on the heating temperature. Ft't38C! + tends to deteriorate.
次に本発明の実施例について説明する。Next, examples of the present invention will be described.
表は転炉で溶製し連続鋳造法を経て製造された鋼片を継
目無し鋼管に熱間圧延後焼準し処理を行った鋼あるいは
熱間圧延中に再刀口熱しその後最終仕Eげ圧延を行った
鋼および焼もどし処理した鋼で、いずれも自然冷却を行
ったときの強度、降伏比、フェライト硬さ、耐SSC性
を示す。熱間圧延中の再ノ用熱および焼準し温度は93
0〜1150”Cで行った。尚ssc特1生は、NAC
ETM−01−77に従った定荷重方式によりσth
(ThresholdStress) を求めて評価
した。The table shows steel that has been melted in a converter and produced through continuous casting, hot rolled into seamless steel pipes, then normalized, or reheated during hot rolling and then final finish rolled. Both steel and tempered steel exhibit strength, yield ratio, ferrite hardness, and SSC resistance when naturally cooled. The rerolling heat and normalizing temperature during hot rolling is 93
It was conducted at 0 to 1150"C. In addition, for SSC Special 1st students, NAC
σth by constant load method according to ETM-01-77
(ThresholdStress) was calculated and evaluated.
本発明によって製造した鋼は、比較法に比し耐SSC性
はσthで0.20y程度向上し、 しかも低降伏比を
示すことがわかる。It can be seen that the steel manufactured by the present invention has SSC resistance improved by about 0.20y in σth compared to the comparative method, and also exhibits a low yield ratio.
(発明の効果)
上記のような本発明法によって製造された鋼は、耐SS
C性が優れ、かつ低降伏比の性質を示し、各種の用途分
労に広く使用される。(Effect of the invention) Steel produced by the method of the present invention as described above has SS resistance.
It has excellent C properties and a low yield ratio, and is widely used in various applications.
第1図はフェライト硬さの上昇幅に及ぼすNbの影響、
第2図はフェライト硬さの上昇幅に及ぼすV、Hの影響
を示す。
第1図
Nb (X)Figure 1 shows the influence of Nb on the increase in ferrite hardness.
FIG. 2 shows the influence of V and H on the increase in ferrite hardness. Figure 1 Nb (X)
Claims (8)
.50% Mn:0.2〜2.5% P:0.025%以下 S:0.02%以下 Al:0.1%以下 Nb:0.01〜0.10% を含有して残部がFeおよび不可避不純物からなる鋼片
を、熱間圧延する工程の中で鋼中のNbが固溶する温度
に加熱し引き続き熱間圧延をして自然冷却するか、もし
くは熱間圧延した後直ちに鋼中のNbが固溶する温度に
加熱し引き続き自然冷却することを特徴とする耐硫化物
応力腐食割れ性の優れた低降伏比鋼材の製造法。(1) C: 0.02-0.20% Si: 0.01-0
.. 50% Mn: 0.2-2.5% P: 0.025% or less S: 0.02% or less Al: 0.1% or less Nb: 0.01-0.10% and the balance is Fe A steel billet containing unavoidable impurities is heated to a temperature at which Nb in the steel becomes a solid solution during the hot rolling process, followed by hot rolling and then allowed to cool naturally, or immediately after hot rolling, the steel billet is A method for producing a low yield ratio steel material having excellent resistance to sulfide stress corrosion cracking, characterized by heating the steel material to a temperature at which Nb becomes a solid solution, and then cooling it naturally.
.50% Mn:0.2〜2.5% P:0.025%以下 S:0.02%以下 Al:0.1%以下 Nb:0.01〜0.10%を含有しさらに Cu:0.05〜0.5% Ce:0.007〜0.0
7% Ca:0.001〜0.07% V:0.01〜0.1
2% N:0.0020〜0.0250%の1種または2種以
上 を含有して残部がFeおよび不可避的不純物からなる鋼
片を、熱間圧延する工程の中で 鋼中のNbが固溶する温度に加熱し引き続き熱間圧延を
して自然冷却するか、もしくは熱間圧延した後、直ちに
鋼中のNb、Vが固溶する温度に加熱し引き続き自然冷
却することを特徴とする耐硫化物応力腐食割れ性の優れ
た低降伏比鋼材の製造法。(2) C: 0.02-0.20% Si: 0.01-0
.. 50% Mn: 0.2 to 2.5% P: 0.025% or less S: 0.02% or less Al: 0.1% or less Nb: 0.01 to 0.10%, further Cu: 0 .05~0.5% Ce:0.007~0.0
7% Ca: 0.001-0.07% V: 0.01-0.1
2% Nb: In the process of hot rolling a steel billet containing one or more of 0.0020 to 0.0250%, with the balance consisting of Fe and unavoidable impurities, Nb in the steel solidifies. The steel is heated to a temperature at which it melts, followed by hot rolling, and then allowed to cool naturally, or after hot rolling, it is immediately heated to a temperature at which Nb and V in the steel become a solid solution, followed by natural cooling. A method for manufacturing low yield ratio steel materials with excellent sulfide stress corrosion cracking resistance.
.50% Mn:0.2〜2.5% P:0.025%以下 S:0.02%以下 Al:0.1%以下 Nb:0.01〜0.10%を含有しさらに Ti:0.005〜0.035% B:0.0003〜
0.003% Cr:0.05〜1.0% Mo:0.05〜0.5% Ni:0.05〜3.0%の1種または2種以上 を含有し残部がFeおよび不可避的不純物からなる鋼片
を、熱間圧延する工程の中で鋼 中のNbが固溶する温度に加熱し引き続き熱間圧延をし
て自然冷却するかもしくは熱間圧延した後、直ちに鋼中
のNbが固溶する温度に加熱し引き続き自然冷却するこ
とを特徴とする耐硫化物応力腐食割れ性の優れた低降伏
比鋼材の製造法。(3) C: 0.02-0.20% Si: 0.01-0
.. 50% Mn: 0.2-2.5% P: 0.025% or less S: 0.02% or less Al: 0.1% or less Nb: 0.01-0.10% and further Ti: 0 .005~0.035% B:0.0003~
Contains one or more of the following: 0.003% Cr: 0.05-1.0% Mo: 0.05-0.5% Ni: 0.05-3.0%, the balance being Fe and unavoidable During the hot rolling process, a steel billet containing impurities is heated to a temperature at which Nb in the steel becomes a solid solution, followed by hot rolling and natural cooling, or immediately after hot rolling, the Nb in the steel is removed. A method for producing a low yield ratio steel material with excellent resistance to sulfide stress corrosion cracking, which is characterized by heating to a temperature at which a solid solution occurs and then cooling naturally.
.50% Mn:0.2〜2.5% P:0.025%以下 S:0.02%以下 Al:0.1%以下 Nb:0.01〜0.10% を含有しさらに Cu:0.05〜0.5% Ce:0.007〜0.0
7% Ca:0.001〜0.07% V:0.01〜0.1
2% N:0.0020〜0.0250%の1種または2種以
上と Ti:0.05〜0.035% B:0.0003〜0
.003% Cr:0.05〜1.0% Mo:0.05〜0.5% Ni:0.05〜3.0%の1種または2種以上 を含有して残部がFeおよび不可避不純物からなる鋼片
を、熱間圧延する工程の中で鋼中のNbが固溶する温度
に加熱し引き続き熱間圧延を自然冷却するか、もしくは
熱間圧延後直ちに鋼中のNb、Vが固溶する温度に加熱
し引き続き自然冷却することを特徴とする耐硫化物応力
腐食割れ性の優れた低降伏比鋼材の製造法。(4) C: 0.02-0.20% Si: 0.01-0
.. 50% Mn: 0.2 to 2.5% P: 0.025% or less S: 0.02% or less Al: 0.1% or less Nb: 0.01 to 0.10% and further Cu: 0 .05~0.5% Ce:0.007~0.0
7% Ca: 0.001-0.07% V: 0.01-0.1
2% N: 0.0020~0.0250% of one or more types and Ti: 0.05~0.035% B: 0.0003~0
.. 003% Cr: 0.05-1.0% Mo: 0.05-0.5% Ni: 0.05-3.0% Contains one or more of the following, with the remainder being Fe and unavoidable impurities. During the hot rolling process, a steel billet is heated to a temperature at which Nb in the steel becomes a solid solution, and then the hot rolling is then naturally cooled, or immediately after hot rolling, Nb and V in the steel are dissolved in a solid solution. A method for producing a low yield ratio steel material with excellent sulfide stress corrosion cracking resistance, which is characterized by heating to a temperature of 100%, followed by natural cooling.
.50% Mn:0.2〜2.5% P:0.025%以下 S:0.02%以下 Al:0.1%以下 Nb:0.01〜0.10% を含有して残部がFeおよび不可避的不純物からなる鋼
片を、熱間圧延する工程の中で鋼中のNbが固溶する温
度に加熱し引き続き熱間圧延を自然冷却するか、もしく
は熱間圧延した後直ちに鋼中のNbが固溶する温度に加
熱し引き続き自然冷却した後焼もどし処理を行うことを
特徴とする耐硫化物応力腐食割れ性の優れた低降伏比鋼
材の製造法。(5) C: 0.02-0.20% Si: 0.01-0
.. 50% Mn: 0.2-2.5% P: 0.025% or less S: 0.02% or less Al: 0.1% or less Nb: 0.01-0.10% and the balance is Fe During the hot rolling process, a steel billet containing unavoidable impurities is heated to a temperature at which Nb in the steel becomes a solid solution, and then the hot rolling is allowed to cool naturally, or immediately after hot rolling, the Nb in the steel is A method for producing a low yield ratio steel material with excellent sulfide stress corrosion cracking resistance, which is characterized by heating to a temperature at which Nb becomes a solid solution, followed by natural cooling, and then tempering treatment.
.50% Mn:0.2〜2.5% P:0.025%以下 S:0.02%以下 Al:0.1%以下 Nb:0.01〜0.10%を含有しさらに Cu:0.05〜0.5% Ce:0.007〜0.0
7% Ca:0.001〜0.07% V:0.01〜0.1
2% N:0.0020〜0.0250%の1種または2種以
上 を含有して残部がFeおよび不可避的不純物からなる鋼
片を、熱間圧延する工程の中で鋼中のNbが固溶する温
度に加熱し引き続き熱間圧延を自然冷却するか、もしく
は熱間圧延した後直ちに鋼中のNb、Vが固溶する温度
に加熱し引き続き自然冷却した後焼もどし処理を行うこ
とを特徴とする耐硫化物応力腐食割れ性の優れた低降伏
比鋼材の製造法。(6) C: 0.02-0.20% Si: 0.01-0
.. 50% Mn: 0.2 to 2.5% P: 0.025% or less S: 0.02% or less Al: 0.1% or less Nb: 0.01 to 0.10%, further Cu: 0 .05~0.5% Ce:0.007~0.0
7% Ca: 0.001-0.07% V: 0.01-0.1
2% Nb: In the process of hot rolling a steel billet containing one or more of 0.0020 to 0.0250%, with the balance consisting of Fe and unavoidable impurities, Nb in the steel solidifies. It is characterized by heating the steel to a temperature at which it dissolves, followed by hot rolling and then natural cooling, or immediately after hot rolling, heating to a temperature at which Nb and V in the steel become a solid solution, followed by natural cooling, followed by tempering treatment. A method for producing low yield ratio steel with excellent resistance to sulfide stress corrosion cracking.
.50% Mn:0.2〜2.5 P:0.025%以下 S:0.02%以下 Al:0.1%以下 Nb:0.01〜0.10%を含有しさらに Ti:0.005〜0.035% B:0.0003〜
0.003% Cr:0.05〜1.0% Mo:0.05〜0.5% Ni:0.05〜3.0%の1種または2種以上 を含有し残部がFeおよび不可避的不純物からなる鋼片
を熱間圧延する工程の中で鋼中 のNbが固溶する温度に加熱し引き続き熱間圧延を自然
冷却するか、もしくは熱間圧延した後直ちに鋼中のNb
が固溶する温度に加熱し引き続き自然冷却した後焼もど
し処理を行うことを特徴とする耐硫化物応力腐食割れ性
の優れた低降伏比鋼材の製造法。(7) C: 0.02-0.20% Si: 0.01-0
.. 50% Mn: 0.2-2.5 P: 0.025% or less S: 0.02% or less Al: 0.1% or less Nb: 0.01-0.10%, and Ti: 0. 005~0.035% B:0.0003~
Contains one or more of the following: 0.003% Cr: 0.05-1.0% Mo: 0.05-0.5% Ni: 0.05-3.0%, the balance being Fe and unavoidable During the process of hot rolling a steel billet containing impurities, it is heated to a temperature at which Nb in the steel becomes a solid solution, and then the hot rolling is subsequently allowed to cool naturally, or the Nb in the steel is removed immediately after hot rolling.
A method for producing a low yield ratio steel material with excellent resistance to sulfide stress corrosion cracking, which is characterized by heating to a temperature at which a solid solution occurs, followed by natural cooling, and then tempering.
.50% Mn:0.2〜2.5% P:0.025%以下 S:0.02%以下 Al:0.1%以下 Nb:0.01〜0.10% を含有しさらに Cu:0.05〜0.5% Ce:0.007〜0.0
7% Ca:0.001〜0.07% V:0.01〜0.1
2% N:0.0020〜0.0250%の1種または2種以
上と Ti:0.03〜0.033% B:0.0003〜0
.003% Cr:0.05〜1.0% Mo:0.05〜0.5% Ni:0.05〜3.0%の1種または2種以上 を含有して残部がFeおよび不可避的不純物からなる鋼
片を熱間圧延する工程の中で鋼中のNbが固溶する温度
に加熱し引き続き熱間圧延を自然冷却するか、もしくは
熱間圧延した後直ちに鋼中のNb、Vが固溶する温度に
加熱し引き続き自然冷却した後焼もどし処理を行うこと
を特徴とする耐硫化物応力腐食割れ性の優れた低降伏比
鋼材の製造法。(8) C: 0.02-0.20% Si: 0.01-0
.. 50% Mn: 0.2 to 2.5% P: 0.025% or less S: 0.02% or less Al: 0.1% or less Nb: 0.01 to 0.10% and further Cu: 0 .05~0.5% Ce:0.007~0.0
7% Ca: 0.001-0.07% V: 0.01-0.1
2% N: 0.0020~0.0250% of one or more types and Ti: 0.03~0.033% B: 0.0003~0
.. 003% Cr: 0.05-1.0% Mo: 0.05-0.5% Ni: 0.05-3.0% Contains one or more of the following, with the remainder being Fe and inevitable impurities. In the process of hot rolling a steel billet, Nb in the steel is heated to a temperature at which it becomes a solid solution, and then the hot rolling is then allowed to cool naturally, or immediately after hot rolling, Nb and V in the steel are solidified. A method for producing a low yield ratio steel material with excellent sulfide stress corrosion cracking resistance, which is characterized by heating to a melting temperature, followed by natural cooling, and then tempering.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62084620A JP2578599B2 (en) | 1987-04-08 | 1987-04-08 | Manufacturing method of low yield ratio steel with excellent sulfide stress corrosion cracking resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62084620A JP2578599B2 (en) | 1987-04-08 | 1987-04-08 | Manufacturing method of low yield ratio steel with excellent sulfide stress corrosion cracking resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63250417A true JPS63250417A (en) | 1988-10-18 |
JP2578599B2 JP2578599B2 (en) | 1997-02-05 |
Family
ID=13835731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62084620A Expired - Lifetime JP2578599B2 (en) | 1987-04-08 | 1987-04-08 | Manufacturing method of low yield ratio steel with excellent sulfide stress corrosion cracking resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2578599B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110983156A (en) * | 2019-11-27 | 2020-04-10 | 上海大学 | Rare earth corrosion-resistant steel rich in alloying rare earth elements and manufacturing method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5887221A (en) * | 1981-11-20 | 1983-05-25 | Nippon Kokan Kk <Nkk> | Production of high tensile steel having excellent resistance to sulfide corrosion cracking |
JPS58120726A (en) * | 1982-01-13 | 1983-07-18 | Nippon Kokan Kk <Nkk> | Manufacture of nontemper steel superior in sulfide corrosion crack resistance |
JPS60204829A (en) * | 1984-03-29 | 1985-10-16 | Nippon Steel Corp | Manufacture of tough and hard steel pipe |
JPS6284619A (en) * | 1985-10-09 | 1987-04-18 | Fujitsu Ltd | Interface circuit |
-
1987
- 1987-04-08 JP JP62084620A patent/JP2578599B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5887221A (en) * | 1981-11-20 | 1983-05-25 | Nippon Kokan Kk <Nkk> | Production of high tensile steel having excellent resistance to sulfide corrosion cracking |
JPS58120726A (en) * | 1982-01-13 | 1983-07-18 | Nippon Kokan Kk <Nkk> | Manufacture of nontemper steel superior in sulfide corrosion crack resistance |
JPS60204829A (en) * | 1984-03-29 | 1985-10-16 | Nippon Steel Corp | Manufacture of tough and hard steel pipe |
JPS6284619A (en) * | 1985-10-09 | 1987-04-18 | Fujitsu Ltd | Interface circuit |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110983156A (en) * | 2019-11-27 | 2020-04-10 | 上海大学 | Rare earth corrosion-resistant steel rich in alloying rare earth elements and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2578599B2 (en) | 1997-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103352167B (en) | A kind of low yield strength ratio high strength bridge steel plate and manufacture method thereof | |
CN109957712B (en) | Low-hardness X70M pipeline steel hot-rolled plate coil and manufacturing method thereof | |
US11833777B2 (en) | High-strength double-sided stainless steel clad sheet and manufacturing method therefor | |
CN103255341B (en) | High-strength and high-toughness hot-rolled wear-resistant steel and preparation method thereof | |
WO2016095665A1 (en) | High-strength high-tenacity steel plate with tensile strength of 800 mpa and production method therefor | |
CN108342655B (en) | Quenched and tempered acid-resistant pipeline steel and manufacturing method thereof | |
CN111748739B (en) | Heat-resistant spring steel with tensile strength of more than 2100MPa and production method thereof | |
CN102367540B (en) | Deep sea pipeline steel produced based on steckel mill and preparation method thereof | |
CN113136533B (en) | Austenitic stainless steel for low temperature and manufacturing method thereof | |
EP4414473A1 (en) | High-strength steel with good weather resistance and manufacturing method therefor | |
CN110358970B (en) | Welded structure bainite high-strength steel with yield strength of 1100MPa and preparation method thereof | |
JP7032537B2 (en) | High-strength hot-rolled steel sheet with excellent bendability and low-temperature toughness and its manufacturing method | |
JP2016183387A (en) | Thick steel plate for low temperature and production method therefor | |
WO2018227740A1 (en) | Low yield strength ratio, high strength and ductility thick gauge steel plate and manufacturing method therefor | |
CN110172636A (en) | A kind of low-carbon hot forming steel and preparation method thereof | |
JP2005281842A (en) | Production method of low temperature service low yield ratio steel material having excellent weld zone toughness | |
CN111647803B (en) | Copper-containing high-strength steel and preparation method thereof | |
JPH01234521A (en) | Production of high-toughness low-yielding ratio steel material having excellent sulfide stress corrosion cracking resistance | |
JPS5831069A (en) | Thick high tensile steel plate with high strength and toughness | |
CN111979474B (en) | Hot continuous rolling fine grain bainite steel plate and preparation method thereof | |
JPS63250417A (en) | Manufacture of steel material excellent in resistance to stress corrosion cracking and having low yield ratio in sulfide-rich circumstances | |
JPS63241120A (en) | Manufacture of high ductility and high strength steel sheet having composite structure | |
JP2578598B2 (en) | Manufacturing method of low yield ratio steel with excellent sulfide stress corrosion cracking resistance | |
KR100825650B1 (en) | Low mo type wide and thick plate having excellent plate distortion property and method for manufacturing the same | |
JPH07173534A (en) | Production of ni-containing steel sheet excellent in toughness and workability |