JPH0737650B2 - Method for manufacturing high-strength steel plate with excellent resistance to sulfide corrosion cracking - Google Patents

Method for manufacturing high-strength steel plate with excellent resistance to sulfide corrosion cracking

Info

Publication number
JPH0737650B2
JPH0737650B2 JP15301592A JP15301592A JPH0737650B2 JP H0737650 B2 JPH0737650 B2 JP H0737650B2 JP 15301592 A JP15301592 A JP 15301592A JP 15301592 A JP15301592 A JP 15301592A JP H0737650 B2 JPH0737650 B2 JP H0737650B2
Authority
JP
Japan
Prior art keywords
steel
less
corrosion cracking
rolling
sulfide corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15301592A
Other languages
Japanese (ja)
Other versions
JPH05255747A (en
Inventor
忠明 平
幸四郎 束田
泰男 小林
和明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP15301592A priority Critical patent/JPH0737650B2/en
Publication of JPH05255747A publication Critical patent/JPH05255747A/en
Publication of JPH0737650B2 publication Critical patent/JPH0737650B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は湿潤硫化水素腐食環境下
にある石油・天然ガス油送管やLPG貯蔵タンクに使用
される耐硫化物腐食割れ性に優れた高張力厚鋼板の製造
方法に関するもので、溶鋼を連続鋳造又は大型鋼塊−分
塊工程により鋼片としたのち、これを熱間圧延して前記
鋼を製造するに当り、その溶鋼組成を、連続鋳造鋳片又
は大型鋼塊中央における偏析を考慮し、詳しくは硫化物
腐食割れ感受性が最も大となる中央偏析部においても当
該割れが問題とならぬ特定範囲に調整し、且つプレート
ミルで熱間圧延することのより耐HIC(Hydorogen In
duced Cracking= 水素誘起割れ)性及び耐SSC(Sulf
ide Stress Cracking=硫化物応力腐食割れ)性の優れた
高張力厚鋼板を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength steel plate having excellent resistance to sulfide corrosion cracking, which is used for oil / natural gas oil pipes and LPG storage tanks in a wet hydrogen sulfide corrosive environment. In the case of producing molten steel, the molten steel is made into a steel slab by continuous casting or a large steel ingot-segmentation process, and then hot-rolled to produce the steel, the molten steel composition is a continuously cast slab or a large steel ingot. In consideration of segregation in the center, more specifically, in the center segregated part where sulfide corrosion cracking susceptibility is the highest, the cracking is adjusted to a specific range where it does not pose a problem, and hot rolling with a plate mill is more resistant to HIC. (Hydorogen In
duced Cracking = Hydrogen induced cracking and SSC (Sulf)
The present invention relates to a method for producing a high-strength steel plate having excellent ide stress cracking (sulfide stress corrosion cracking) properties.

【0002】[0002]

【従来の技術】従来、HICの発生は、鋼表面で発生し
た水素が鋼中に侵入し、拡散過程を経て介在物/マトリ
ックス界面に集り、その結果マトリックスの水素脆化
と、水素による圧力とによって発生すると言われてい
る。従って、耐HIC性鋼に対しては、(a) 水素の侵入
の防止、(b) 割れの起点となる介在物の減少又は形態の
制御、(c) マトリックスの水素脆化感度減少、等の対策
がとられている。前記(a) については、例えばCu 添加
により鋼表面に防食被覆を形成する方法が知られてい
る。
2. Description of the Related Art Conventionally, HIC is generated by hydrogen generated on the surface of steel penetrating into the steel and gathering at an inclusion / matrix interface through a diffusion process, resulting in hydrogen embrittlement of the matrix and pressure due to hydrogen. It is said to be caused by. Therefore, for HIC resistant steel, (a) prevention of hydrogen intrusion, (b) reduction of inclusions or control of morphology that is the origin of cracking, (c) reduction of hydrogen embrittlement sensitivity of matrix, etc. Measures are taken. Regarding the above (a), there is known a method of forming an anticorrosion coating on the steel surface by adding Cu, for example.

【0003】しかしながら、溶液のpHが低い腐食環境
の下では被覆の形成が不充分となり、水素の侵入を充分
に防止できない欠点がある。前記(b) については、RE
M処理鋼(例えば特開昭54−31020号)、Ca 処
理鋼(例えば特開昭54−38214号)等が提案され
て降り、低強度材では大きな効果を示すものの、鋼強度
材では充分な改善効果が得られないことがある。前記
(c) については、偏析部が特に問題となる。即ち、偏析
部はMn,Cr,Mo 等の合金元素量が多いために硬く水素
脆化感度の高い低温変態生成物が生じ易い。従って、こ
のような組織が発生するのを防止するために圧延後鋼板
焼入れ焼戻しをして、これらの組織を水素割れ感受性の
低い焼戻しマンテンサイトやベーナイトに変化せしめる
等の方法がとられている(例えば特開昭53−1389
16号)。
However, in a corrosive environment where the pH of the solution is low, the formation of the coating becomes insufficient, and there is a drawback that hydrogen intrusion cannot be sufficiently prevented. Regarding (b) above, RE
M-treated steel (for example, JP-A-54-31020), Ca-treated steel (for example, JP-A-54-38214) and the like have been proposed and come down. Although they show great effects in low strength materials, they are sufficient in steel strength materials. The improvement effect may not be obtained. The above
With regard to (c), the segregation part becomes a particular problem. That is, since the segregated portion has a large amount of alloying elements such as Mn, Cr, Mo, etc., a low temperature transformation product that is hard and has a high sensitivity to hydrogen embrittlement is likely to occur. Therefore, in order to prevent the occurrence of such a structure, a method such as quenching and tempering a steel sheet after rolling to change these structures to tempered mantensite or bainite with low hydrogen cracking susceptibility is adopted ( For example, JP-A-53-1389
16).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の従来の方法は、何れも生産性や経済性の点で問題が多
い。また、SSCは水素脆化した鋼に一定値(限界応
力:σth)以上の応力が作用した場合に発生する割れで
ある。この場合、割れ発生の限界応力は、硬く水素脆化
し易い組織が存在する場合に著しく低下する。この他、
ラインパイプの場合には介在物の量、形状、鋼中水素量
がSSCの発生原因となる。つまり、HICとSSCの
相違は応力の有無という点だけで、本質的には差はな
く、HICに対する対策はSSCに対しても有効であ
り、また問題点も同じであると考えてよい。
However, all of these conventional methods have many problems in terms of productivity and economic efficiency. Further, SSC is a crack that occurs when a hydrogen embrittled steel is subjected to a stress of a certain value (critical stress: σ th ) or more. In this case, the critical stress for cracking is remarkably reduced in the presence of a hard, hydrogen-embrittled structure. Besides this,
In the case of a line pipe, the amount of inclusions, the shape, and the amount of hydrogen in steel cause SSC. That is, the difference between HIC and SSC is essentially the presence or absence of stress, and there is essentially no difference, and it can be considered that the countermeasures for HIC are effective for SSC and the problems are the same.

【0005】ところで高張力鋼の製造においては、強度
を高めるためMn,Cr,Mo 等の合金元素の含有量を高め
ることが一般に行なわれている。しかし、これらの合金
元素を含む溶鋼を凝固させた場合、特に連続鋳造によっ
てスラブ、ビレット、プール等の鋳片としたとき、もし
くは大型鋼塊(重量20ton 以上)としたときは、これら
鋳片又は鋼塊の中央部には合金元素が濃化し、いわゆる
中央偏析部を形成し易いことが知られている。従ってこ
のような鋼片から圧延される鋼材、もしくはこのような
鋼塊から分塊−圧延の工程を経て製造される鋼材、又は
これら鋼材に更に必要に応じて熱処理を施した鋼材は、
何れも中央偏析部がHIC、SSCの感受性を高めると
されている。
By the way, in the production of high-strength steel, it is generally practiced to increase the content of alloying elements such as Mn, Cr and Mo in order to increase the strength. However, when molten steel containing these alloying elements is solidified, especially when slabs, billets, pools, etc. are cast by continuous casting, or when large steel ingots (weight 20 tons or more) are used, these casts or It is known that the alloy element is concentrated in the central portion of the steel ingot and a so-called central segregation portion is easily formed. Therefore, a steel material rolled from such a steel slab, or a steel material manufactured from such a steel ingot through a slab-rolling process, or a steel material subjected to a heat treatment if necessary to these steel materials,
In both cases, the central segregation portion is said to enhance the sensitivity of HIC and SSC.

【0006】一方、従来の鋼材の組成は、鋼材全体にわ
たって一様な組成を呈するものとして(又は合金元素が
中央部に偏析することは知られていてもこのことは配慮
せず)、溶鋼段階における組成を鋼材のそれと一致せし
める如く調整している。しかしHIC、SSCの如く鋼
材の当該割れ感受性の高い個所に先ず割れが発生し、こ
れが伝播拡大してゆくような破壊にあっては、このよう
なマクロ的な考えだけでは不充分である。
On the other hand, the composition of the conventional steel material has a uniform composition throughout the steel material (or, although it is known that the segregation of alloying elements in the central portion is not taken into consideration), the molten steel stage The composition is adjusted so as to match that of steel. However, in the case of a fracture such as HIC or SSC in which a crack of a steel material is highly susceptible to cracking and the crack propagates and spreads, such a macroscopic idea alone is insufficient.

【0007】本発明は、かかる観点から特に中央偏析の
発達し易い連続鋳造工程又は重量20ton 以上の大型鋼塊
による造塊工程を経て製造される鋼材について硫化物割
れ感受性が最も高い部分、即ち中央偏析部においても割
れが発生しないように、溶鋼組成を調整しようとするも
のである。
From this point of view, the present invention provides a steel product manufactured through a continuous casting process in which central segregation is likely to develop or a large steel ingot having a weight of 20 tons or more, which has the highest susceptibility to sulfide cracking, that is, the central part. It is intended to adjust the composition of molten steel so that cracking does not occur even in the segregated portion.

【0008】[0008]

【課題を解決するための手段】発明者らは、先ずC, M
n ,Si ,P等の化学成分を広範囲に変化させた溶鋼を
準備し、溶鋼からサンプリングした試料によりその組成
を求めると共に、これら溶鋼を大型鋼塊−分塊−圧延
(必要に応じて熱処理)又は連続鋳造−圧延(必要に応
じて熱処理)して得た鋼材断面をマクロエッチングし、
鋼塊又は鋳片における中央偏析部を現出させ、マイクロ
アナライザーによりその個所の各元素含有量を求めた。
このようにして偏析部の各元素の含有量を知り、溶鋼に
おける含有量の比として中央偏析部の偏析係数を求める
ことができる。表1はかかる方法で求めた各元素の偏析
係数である。
[Means for Solving the Problems]
We prepare molten steel with chemical components such as n, Si, and P changed over a wide range, and determine the composition from samples sampled from the molten steel, and then weld these molten steels into large steel ingots, slabs, and rolling (heat treatment if necessary). Or continuous casting-rolling (heat treatment if necessary) macroetching the steel material cross section,
The central segregation portion in the steel ingot or the cast piece was exposed, and the content of each element in that portion was determined by a microanalyzer.
In this way, the content of each element in the segregated portion can be known, and the segregation coefficient of the central segregated portion can be obtained as the ratio of the content in the molten steel. Table 1 shows the segregation coefficient of each element obtained by such a method.

【0009】[0009]

【表1】 [Table 1]

【0010】この表1から、20ton 以上の大型鋼塊また
は連続鋳造鋳片における各元素の分布は一様でなく、中
央偏析部には、Pは溶鋼時の5倍、Mn,Mo は2.5
倍、C,Cr は1.5倍の量に濃化していることがわか
る。また全ての元素が中央偏析部に偏析する訳ではな
く、Cu,Ni,Nb 等上記以外の元素は溶鋼時の組成と殆
ど変りなく同レベルにあることが確認された。
From Table 1, the distribution of each element is not uniform in a large steel ingot of 20 tons or more or a continuously cast slab, and P is 5 times that in molten steel and Mn and Mo are 2. 5
It can be seen that C and Cr are concentrated to 1.5 times. It was also confirmed that not all the elements segregate in the central segregation part, and elements other than the above, such as Cu, Ni and Nb, are at almost the same level as the composition during molten steel.

【0011】次いで、発明者らは数多くの偏析部相当鋼
について詳細な検討を行った。ここでいう偏析部相当鋼
とは、先に説明した如く大型鋼塊又は連続鋳造工程を経
て製造された鋼材にあっては、硫化物腐食割れは最も硫
化物腐食割れ感受性の高い中央偏析部から発生するとの
知見に基づき、当該個所での割れを防止乃至は減少させ
る目的から、先ず鋼材全体が中央偏析部相当個所と同一
組成を有する鋼に基づいて調査を行なうという意味での
鋼である。即ち、使用した鋼材は試験溶鉱炉で溶解して
50kg程度の小型鋼塊としたのち圧延(必要に応じて熱処
理)して得たもので、鋼材(即ち鋼塊)全体に渡って偏
析がないと考えられるものである。このような偏析部相
当鋼について耐硫化物腐食割れ性の優れた鋼とするため
の条件を求め、次いでこれと表1との偏析係数とによ
り、連続鋳造鋳片または大型鋼塊−分塊圧延工程で製造
される鋼材(中央偏析部を有する)における耐硫化物腐
食割れ性の改善を図るための溶鋼組成を求めんとしたも
のである。
Next, the inventors conducted a detailed study on a large number of steels corresponding to segregated parts. The steel equivalent to the segregation part referred to here is a steel product manufactured through a large ingot or a continuous casting process as described above, and sulfide corrosion cracking is from the central segregation part with the highest susceptibility to sulfide corrosion cracking. Based on the knowledge that it occurs, for the purpose of preventing or reducing cracks at the relevant part, it is a steel in the sense that the entire steel material is first investigated based on the steel having the same composition as the part corresponding to the central segregation part. That is, the steel material used was melted in the test blast furnace.
A small ingot of about 50 kg was made and then rolled (heat treatment if necessary), and it is considered that there is no segregation throughout the steel material (that is, the ingot). Conditions for obtaining steel having excellent sulfide corrosion cracking resistance for such segregated portion equivalent steel are obtained, and then, according to this and the segregation coefficient of Table 1, continuously cast slabs or large steel ingots-slab rolling It seeks a molten steel composition for improving the sulfide corrosion cracking resistance of a steel material (having a central segregation portion) manufactured in the process.

【0012】本第1発明に係る耐硫化物腐食割れ性に優
れた高張力厚鋼板の製造方法では、重量基準にて、C:
0.03〜0.20%,Si:0.1 〜1.0%, Mn:0.5 〜2.5%、P:0.
03%以下、S:0.005%以下、Sol.Al:0.01〜0.05%と、
Ni:1.0%以下、Cr:1.0%以下、Mo:1.0%以下、Nb:0.01
〜0.08% 、V:0.01〜0.15% 、Ti:0.01〜0.15% の一種
または二種以上、Ca:0.0005〜0.01%を含み、残部は鉄
及び不可避不純物からなり、且つ、 115 − 200×P* −50Ceq * ≧70 [但し、P*=5P, Ceq *= 1.5C+2.5Mn/6 +Ni/15 +(1.5Cr+ 2.5Mo+V)/5] を満足するように調整した溶鋼を連続鋳造または大型鋼
塊−分塊工程により鋼片とした後にプレートミルにより
最終圧延仕上り温度を 680〜 800℃で制御圧延するもの
である。
In the method for producing a high-strength steel plate having excellent resistance to sulfide corrosion cracking according to the first aspect of the present invention, C:
0.03 to 0.20%, Si: 0.1 to 1.0%, Mn: 0.5 to 2.5%, P: 0.
03% or less, S: 0.005% or less, Sol.Al: 0.01 to 0.05%,
Ni: 1.0% or less, Cr: 1.0% or less, Mo: 1.0% or less, Nb: 0.01
.About.0.08%, V: 0.01 to 0.15%, Ti: 0.01 to 0.15%, one or more kinds, Ca: 0.0005 to 0.01%, the balance consisting of iron and unavoidable impurities, and 115-200 × P * -50C eq * ≧ 70 [However, P * = 5P, C eq * = 1.5C + 2.5Mn / 6 + Ni / 15 + (1.5Cr + 2.5Mo + V) / 5] This is a method in which a steel piece is formed by continuous casting or a large steel ingot-agglomeration process, and then the final rolling finish temperature is controlled and rolled by a plate mill at 680 to 800 ° C.

【0013】また、本第2発明に係る耐硫化物腐食割れ
性に優れた高張力厚鋼板の製造方法では、重量基準に
て、C: 0.03〜0.20%,Si:0.1 〜1.0%, Mn:0.5 〜2.5
%、P:0.03%以下、S:0.005%以下、Sol.Al:0.01〜
0.05%と、Ni:1.0%以下、Cr:1.0%以下、Mo:1.0%以
下、Nb:0.01〜0.08% 、V:0.01〜0.15% 、Ti:0.01〜
0.15% の一種または二種以上、およびCu: 1.0以下、及
びCa:0.0005〜0.01%を含み、残部は鉄及び不可避不純
物からなり、且つ、 115 − 200×P* −50Ceq * ≧70 [但し、P*=5P, Ceq *= 1.5C+2.5Mn/6+(Cu+Ni)/15+(1.5Cr+ 2.5Mo+V)/5] を満足するように調整した溶鋼を連続鋳造または大型鋼
塊−分塊工程により鋼片とした後にプレートミルにより
最終圧延仕上り温度を 680〜 800℃で制御圧延するもの
である。
Further, in the method for producing a high-strength thick steel sheet excellent in sulfide corrosion cracking resistance according to the second aspect of the present invention, C: 0.03 to 0.20%, Si: 0.1 to 1.0%, Mn: 0.5 to 2.5
%, P: 0.03% or less, S: 0.005% or less, Sol.Al: 0.01 to
0.05%, Ni: 1.0% or less, Cr: 1.0% or less, Mo: 1.0% or less, Nb: 0.01 to 0.08%, V: 0.01 to 0.15%, Ti: 0.01 to
0.15% of one or more, Cu: 1.0 or less, and Ca: 0.0005 to 0.01%, the balance consisting of iron and unavoidable impurities, and 115-200 × P * -50C eq * ≧ 70 [however, , P * = 5P, C eq * = 1.5C + 2.5Mn / 6 + (Cu + Ni) / 15 + (1.5Cr + 2.5Mo + V) / 5] continuous casting or large the adjusted molten steel so as to satisfy After the steel ingot is formed into a slab by the ingot-agglomeration process, it is controlled and rolled by a plate mill at a final rolling finish temperature of 680 to 800 ° C.

【0014】[0014]

【作用】本発明において、溶鋼の組成中、Cの下限を0.
03%以下にしたのは、それ未満ではこの種の鋼に必要な
強度を付与することができないからであり、また上限を
0.20%としたのは、それを越えると溶接硬化性および割
れ感受性が著しく高まるからである。
In the present invention, the lower limit of C in the composition of molten steel is set to 0.
The reason why the amount is made 03% or less is that the strength required for this type of steel cannot be imparted below that, and the upper limit is also set.
The reason for setting it to 0.20% is that if it exceeds this value, the weld hardenability and crack susceptibility are remarkably increased.

【0015】Si の下限を 0.1%としたのは製鋼上これ
未満となると著しく不利となるためであり、また上限を
1.0%としたのは、それを越えると靱性を著しく損なう
からである。
The lower limit of Si is set to 0.1% because if it is less than this, it is extremely disadvantageous in steel making, and the upper limit is set to 0.1%.
The reason for setting it to 1.0% is that if it exceeds that, the toughness is significantly impaired.

【0016】Mn は鋼に強度を延性を与えるために必要
な元素であるが、その下限を 0.5%としたのは、それ未
満ではその効果が小さくなるからであり、また上限を
2.5%としたのは溶接硬化性が著しく上昇し、またHI
Cの感受性が著しく高まるからである。
Mn is an element necessary for imparting strength and ductility to the steel, but the lower limit is 0.5% because the effect becomes small at less than that and the upper limit is set.
If 2.5% is set, the weld hardenability is significantly increased, and HI
This is because the sensitivity of C is significantly increased.

【0017】Pは不純物として鋼中に含有されるが、極
めて偏析し易く、特に0.03%を越えると著しくHICの
感受性が高まるのでこれを上限とした。
Although P is contained in the steel as an impurity, it is extremely segregated, and particularly if it exceeds 0.03%, the sensitivity of HIC is remarkably increased.

【0018】Sは、サルファイド系非金属介在物がHI
C,SSCの起点となることが知られており、またシェ
ルフエネルギーの点からも 0.005%を越えることは望ま
しくないのでこれを上限とした。
In S, sulfide-based nonmetallic inclusions are HI
It is known to be the starting point of C and SSC, and it is not desirable to exceed 0.005% from the viewpoint of shelf energy, so the upper limit was made this.

【0019】sol.Al は鋼の脱酸に少なくとも0.01%は
必要であり、また0.05%を越えるとこの効果が飽和する
ことからこれを上限とした。
At least 0.01% of sol.Al is necessary for deoxidation of steel, and if it exceeds 0.05%, this effect is saturated, so the upper limit was made this value.

【0020】Cu は、主に耐食性を要求される場合に添
加されるものであるが、 1.0%を越えると鋼板の表面に
Cu 疵が多発し、溶接熱影響部(HAZ)の靱性、硬化
性にも悪影響を与えるからこれを上限とした。
Cu is mainly added when corrosion resistance is required, but if it exceeds 1.0%, Cu defects frequently occur on the surface of the steel sheet, and the toughness and hardenability of the weld heat affected zone (HAZ) are high. This also has an adverse effect on this, so the upper limit was set.

【0021】Ni,Cr,Mo は、HAZの靱性、硬化性に
は余り影響を与えることなく母材の強度・靱性を向上さ
せるが、これらを添加する場合、 1.0%を越えることは
やはりHAZの靱性と硬化性に好ましくなく、また経済
的な点からもこれを上限とした。
Ni, Cr and Mo improve the strength and toughness of the base metal without affecting the toughness and hardenability of the HAZ, but when these are added, the amount exceeding 1.0% is still the HAZ. This is not preferable for toughness and curability, and this is the upper limit from the economical point of view.

【0022】Nb,V, Ti も強度と靱性の向上のために
添加されるが、その場合、これらのいずれか一つが0.01
%以上溶出しないと強度、靱性に効果が認められないた
めこれを下限とした。また、これらはいずれも添加量が
大となると母材およびHAZの靱性を劣化させるので、
Nb は0.08%、V, Ti は0.15%を上限とした。
Nb, V, and Ti are also added to improve strength and toughness. In that case, one of these is 0.01
%, No effect is observed on strength and toughness, so the lower limit was set. Moreover, since the toughness of the base material and HAZ is deteriorated if the addition amount of these is large,
The upper limit of Nb was 0.08% and the upper limit of V, Ti was 0.15%.

【0023】Ca を添加する場合は、0.0005%未満では
介在物制御効果が認められず、従ってHICの感受性を
減少せしめないのでこれを下限とした。また、0.01%を
越えると大型介在物を形成し、かえってHIC感受性を
高めるのでこれを上限とした。
In the case of adding Ca, if it is less than 0.0005%, the effect of controlling inclusions is not recognized, and therefore the sensitivity of HIC cannot be reduced, so this is the lower limit. Further, when it exceeds 0.01%, large inclusions are formed and the HIC sensitivity is rather increased.

【0024】次に、本発明において溶鋼の組成規則の条
件を 115 − 200×P* −50Ceq * ≧70 [但し、P*=5P, Ceq *= 1.5C+2.5Mn/6+(Cu+Ni)/15+(1.5Cr+ 2.5Mo+V)/5] とした理由を説明する。
Next, the condition of the molten steel composition rules in the present invention 115 - 200 × P * -50C eq * ≧ 70 [ where, P * = 5P, C eq * = 1.5C + 2.5Mn / 6 + (Cu + Ni) / 15 + (1.5Cr + 2.5Mo + V) / 5] will be described.

【0025】図1は前記偏析部相当鋼において求めたシ
ャルビー衝撃試験における室温での延性破面率(以下S
RTという)と、HIC試験におけるクラック長さ率
(以下CLRという)との関係を示した線図である。こ
の図1から明らかなように、SART値が増加するとCL
R値は減少し、SART値が70%以上になるとクラックは
全く発生しないことがわかる。この傾向は制御圧延まま
材のみならず、熱処理材にも認められる。発明者らは、
更にこのSARTに及ぼす各種冶金因子について検討した
結果、C,Mn 等の強化元素および特にP量が大きな影
を与えることを知った。かかる実験データを下にSART
値とP値、Ceq値との回帰式を求めると、 SART(%)= 115-200×P−50Ceq …(1) が得られた。ここでPはP量(%)、Ceqはロイドの炭
素当量であり、 Ceq(%)=C+Mn/6 +(Cn+Ni)/15 +(Cr+Mo+V)/5 …(2) の式で表される(各成分はいずれも重量%)。
FIG. 1 shows the ductile fracture surface ratio at room temperature (hereinafter referred to as S
And that A RT), a diagram showing the relationship between the crack length ratio (hereinafter referred CLR) in HIC test. As is clear from FIG. 1, when the SA RT value increases, CL
It can be seen that the R value decreases and cracks do not occur at all when the SA RT value exceeds 70%. This tendency is observed not only in the as-rolled material but also in the heat-treated material. The inventors
Further, as a result of studying various metallurgical factors affecting the SA RT , it was found that the strengthening elements such as C and Mn, and especially the amount of P give a great shadow. Based on such experimental data, SA RT
When a regression equation of the value, the P value, and the C eq value was obtained, SA RT (%) = 115−200 × P−50 C eq (1) was obtained. Here, P is the amount of P (%), C eq is the carbon equivalent of Lloyd, and C eq (%) = C + Mn / 6 + (Cn + Ni) / 15 + (Cr + Mo + V) / 5 (2 ) The formula (each component is% by weight).

【0026】以上のことから、鋼材中で最もHIC,S
SCの感受性が低いと考えられる偏析部の組成として
は、 115 − 200×P* −50Ceq * ≧70 …(3) [但し、P*=5P, Ceq *= 1.5C+2.5Mn/6+(Cu+Ni)/15+(1.5Cr+ 2.5Mo+V)/5] を満足することが、HIC,SSCの発生防止上の目標
となる。即ち、耐硫化物腐食割れ性に優れた高張力厚鋼
板を連続鋳造または大型鋼塊−分塊工程を経て得ること
のできる溶鋼組成は、前記(3) 式を満足する必要があ
る。
From the above, HIC and S are the highest among steel materials.
The composition of segregation of SC sensitivity is considered low, 115 - 200 × P * -50C eq * ≧ 70 ... (3) [ where, P * = 5P, C eq * = 1.5C + 2.5Mn / 6 Satisfaction of + (Cu + Ni) / 15 + (1.5Cr + 2.5Mo + V) / 5] is a target for preventing the occurrence of HIC and SSC. That is, the molten steel composition capable of obtaining a high-strength steel plate excellent in sulfide corrosion cracking resistance through continuous casting or a large steel ingot-agglomeration process must satisfy the above expression (3).

【0027】さて、本発明では、以上のような組成をも
つ連続鋳造鋼片または大型鋼塊の分塊鋼片を、プレート
ミルにより最終仕上温度 680〜800 ℃で制御圧延に付し
て鋼板とするものである。本発明でプレートミルによる
熱間圧延を採用する理由は、冒頭に述べたように本鋼板
の用途が石油・天然ガスの輸送管やLPG貯蔵タンクで
あることによる。即ち、ホットストリップミルによる熱
間圧延では完全一方向性圧延であるため圧延方向に割れ
が生じ易いという異方性の欠点が避けられず、また靱性
が不良となるほか、高張力材では製造可能な板寸法が幅
2〜2.3 m、厚さ20〜25mm程度までに限定される問題が
あるので、この種の用途には材質及び寸法の両面で要求
を満たすことができない。これに対して、プレートミル
による熱間圧延ではL方向及びC方向のクロス圧延が行
なわれ、圧延異方性が制御可能であるほか、寸法面でも
幅5m程度、厚さ 150mm程度まで、あるいはそれ以上の
ものを得ることができ、この種の用途の材質寸法要求を
満たす広幅厚肉の高靱性高張力鋼板を得ることが可能で
ある。
In the present invention, a continuously cast steel piece or a slab of large ingot having the above composition is subjected to controlled rolling at a final finishing temperature of 680 to 800 ° C. by a plate mill to obtain a steel sheet. To do. The reason why the hot rolling by the plate mill is adopted in the present invention is that the use of the present steel plate is the transportation pipe of oil and natural gas and the LPG storage tank as described at the beginning. In other words, hot rolling with a hot strip mill is completely unidirectional rolling, so the anisotropic defect that cracks tend to occur in the rolling direction is unavoidable, and the toughness becomes poor. Since the plate size is limited to a width of 2 to 2.3 m and a thickness of 20 to 25 mm, it is impossible to meet the requirements in terms of material and size for this type of application. On the other hand, in hot rolling with a plate mill, L-direction and C-direction cross rolling is performed, and the rolling anisotropy can be controlled. In terms of dimensions, the width is about 5 m and the thickness is about 150 mm, or It is possible to obtain the above, and it is possible to obtain a wide-width, thick-walled, high-toughness, high-strength steel sheet that satisfies the material size requirements for this type of application.

【0028】また圧延最終仕上温度の下限を 680℃とし
たのは、 680℃未満の場合は耐硫化物腐食割れ性(SS
C)が劣化し、またミルの負荷が増大し、圧延上の困難
が著しく増大して実生産的でないからである。一方、圧
延最終仕上温度の上限を 800℃としたのは、 800℃を越
えると鋼の靱性を阻害するからである。
Further, the lower limit of the final rolling finishing temperature is set to 680 ° C. because the sulfide corrosion cracking resistance (SS
This is because C) deteriorates, the load on the mill increases, and the difficulty in rolling significantly increases, which is not practical. On the other hand, the upper limit of the rolling final finishing temperature was set to 800 ° C because if the temperature exceeds 800 ° C, the toughness of the steel is impaired.

【0029】以上説明した如く、中央偏析部が発達し易
い連続鋳造または大型鋼塊−分塊圧延工程による鋳片を
経て得られる鋼材(硫化物腐食割れ感受性が異なる部分
を併せもつ)でも、本発明による耐硫化物腐食割れ性に
優れた高張力厚鋼板を製造することが可能となる。
As explained above, even if the steel material obtained by continuous casting in which the central segregation portion easily develops or a slab by a large steel ingot-slab rolling process (having parts having different susceptibility to sulfide corrosion cracking), It becomes possible to manufacture a high-strength steel plate having excellent resistance to sulfide corrosion cracking according to the invention.

【0030】[0030]

【実施例】以下に本発明の実施例を示す。表2は、供試
溶鋼の化学成分、Ceq(ロイド)、Ceq * 及びSART
示し、表3には、圧延条件、熱処理条件とその特性試験
の測定結果を示した。
EXAMPLES Examples of the present invention will be shown below. Table 2 shows the chemical composition, C eq (Lloyd), C eq * and SA RT of the molten steel under test, and Table 3 shows the rolling conditions, heat treatment conditions and the measurement results of the characteristic test.

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】表2の溶鋼C,Dは各々23t,34tの
大型鋼塊に、溶鋼Gは寸法が 220×450 mmのモールドで
連続鋳造により鋳片としたものであり、その他の溶鋼は
寸法220×1650mmのモールドで連続鋳造した鋳片であ
る。
Molten steels C and D in Table 2 are large ingots of 23t and 34t, respectively, molten steel G is a slab made by continuous casting in a mold having a size of 220 × 450 mm, and other molten steels have a size of 220. It is a slab continuously cast with a mold of × 1650 mm.

【0034】HIC性能を評価する試験方法として一般
にはBP試験が用いられているが、本発明ではより腐食
条件の激しいNACE溶液を用いたHIC試験を行なっ
てHIC感受性を評価した。尚、NACE溶液とは、1
気圧のH2 Sを飽和溶解させた5%食塩+ 0.5%酢酸の
水溶液であり、HIC試験およびSSC試験で一般的に
使用されているものである。HIC感受性を示すパラメ
ータとしてここではCLRおよびCSRを用いた。これ
らは次式によって求める値である。
The BP test is generally used as a test method for evaluating the HIC performance, but in the present invention, the HIC susceptibility was evaluated by conducting the HIC test using a NACE solution under severe corrosion conditions. The NACE solution is 1
It is an aqueous solution of 5% sodium chloride + 0.5% acetic acid in which atmospheric pressure H 2 S is saturatedly dissolved, and is generally used in the HIC test and the SSC test. Here, CLR and CSR were used as parameters showing HIC sensitivity. These are the values obtained by the following equation.

【0035】CLR(%)=(Σai/A)100 CSR(%)=(Σai・bi/A・B)100 但し、Σai・bi :ステップ割れの総面積 A:試験片幅 B:試験片厚さCLR (%) = (Σa i / A) 100 CSR (%) = (Σa i · b i / A · B) 100 where Σa i · b i : total area of step cracks A: test piece width B: Thickness of test piece

【0036】尚、現在のところは耐硫化物割れ性の面か
らCLR,CSRの上限について定説がないので、本発
明では現在最も激しい規格とされているARAMCO
SPEC AMSS−16に採用されている次の基準を
用いてHIC感受性を評価した。
At present, there is no established theory about the upper limits of CLR and CSR from the viewpoint of sulfide cracking resistance, so that ARAMCO, which is the most severe standard in the present invention, is currently used.
HIC susceptibility was assessed using the following criteria adopted by SPEC AMSS-16.

【0037】CLR<15% CSR=0(ステップ割れなし)CLR <15% CSR = 0 (no step cracking)

【0038】前記表2の溶鋼A〜Fは比較鋼であり、P
を始めとする各成分が相対的に高いため、下記(4) 式 SART= 115− 200P−50Ceq * …(4) (4) に基づくSART値がいずれも70未満の低い値となっ
ている。
Molten steels A to F in Table 2 are comparative steels and P
The SA RT value based on the following formula (4) SA RT = 115−200P−50C eq * (4) (4) is a low value of less than 70 in all because the respective components such as are relatively high. ing.

【0039】鋼G,H,L,T,V,Xは本発明鋼の参
考比較鋼であり、SARTは全て70以上の値を示すが、C
a を含まない鋼であり、I,Yは本発明の鋼であり、S
RTは全て70以上の値を示し、Ca を0.0005〜0.01%含
む鋼である。これら各供試鋼の圧延条件と特性測定結果
は表3に示される如くであり、スラブ加熱温度、板厚、
プレート材、熱処理材、制御圧延まま材、加速冷却材、
の如何を問わず、比較鋼ではNACE環境でのCLR,
CSRの値が何れも基準値(CLR<15%、CSR=0
%)を越えるのに対し、特にA,B,C,E,Fに示さ
れるCa を含有する比較鋼ではNACE環境でのCL
R,CSRの値が何れも基準値(CLR<15%、CSR
=0%)を越えるのに対し、本発明鋼及び本発明鋼の参
考比較鋼、特に本発明鋼では制御圧延まま材であっても
CLR,CSRの何れも基準値以下の優れた耐HIC性
を示している。
Steels G, H, L, T, V, and X are reference comparative steels of the present invention steels, and SA RT shows a value of 70 or more, but C
Steels not containing a, I and Y are steels of the present invention, S
A RT is a steel that shows a value of 70 or more and contains 0.0005 to 0.01% of Ca. The rolling conditions and the characteristic measurement results of each of these test steels are as shown in Table 3, and the slab heating temperature, plate thickness,
Plate material, heat treated material, as-rolled material, accelerated cooling material,
Irrespective of whether the comparative steels have CLR in NACE environment,
All CSR values are reference values (CLR <15%, CSR = 0
%), Whereas in the comparative steels containing Ca shown in A, B, C, E, and F, CL in the NACE environment
R and CSR values are both standard values (CLR <15%, CSR
= 0%), whereas in the case of the present invention steel and the reference comparative steel of the present invention steel, in particular, the present invention steel, even if it is as-controlled rolled, CLR and CSR both have excellent HIC resistance below the standard value. Is shown.

【0040】図2は実施例におけるSARTとCLRとの
関係を示した線図である。即ち、図2において、横軸に
表2に示した各鋼種A〜YのSART値を、縦軸に表3に
示したCLR%をとり、圧延ままのものを○、焼基材を
△、焼入れ・焼戻し材を◇で示してある。図2に明らか
なように、SART値が70以上の本発明による鋼板では、
圧延まま材でもCLRが15%未満でしかもCSR=0%
(ステップ割れなし)の基準を満足している。
FIG. 2 is a diagram showing the relationship between SA RT and CLR in the example. That is, in FIG. 2, the SA RT values of the steels A~Y shown in Table 2 on the horizontal axis and the vertical axis represents the CLR% as shown in Table 3, ○ ones while rolling the baked base △ , ◇ indicates the quenched and tempered materials. As is clear from FIG. 2, in the steel sheet according to the present invention having a SA RT value of 70 or more,
CLR is less than 15% and CSR = 0% even in as-rolled material
Satisfies the criteria of (no step cracking).

【0041】[0041]

【発明の効果】以上にのべたように、本発明の方法によ
れば、耐硫化物腐食割れ性が最も大きくなりがちな中央
偏析部においても耐硫化物割れが問題とならないような
広幅厚肉の高靱性高張力厚鋼板を得ることができ、従来
は熱処理しても得ることが不可能であった耐HIC,S
SC性能が圧延ままで得られるなど、製造方法として優
れた効果が達成でき、経済的な効果も極めて大きいもの
である。
As described above, according to the method of the present invention, the wide and thick wall thickness is such that the sulfide cracking does not become a problem even in the central segregation portion where the sulfide corrosion cracking resistance tends to be the largest. Of high toughness and high tensile strength steel plate, which was previously impossible to obtain by heat treatment
Excellent effects as a manufacturing method, such as SC performance obtained as-rolled, can be achieved, and the economic effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】室温における延性破面率とCLRの関係を示す
線図である。
FIG. 1 is a diagram showing the relationship between ductile fracture surface ratio and CLR at room temperature.

【図2】SARTとCLRの関係を示す線図である。FIG. 2 is a diagram showing the relationship between SA RT and CLR.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量基準にて、C: 0.03〜0.20%,Si:0.
1 〜1.0%, Mn:0.5〜2.5%、P:0.03%以下、S:0.005
%以下、Sol.Al:0.01〜0.05%と、Ni:1.0%以下、Cr:
1.0%以下、Mo:1.0%以下、Nb:0.01〜0.08% 、V:0.01
〜0.15% 、Ti:0.01〜0.15% の一種または二種以上、C
a:0.0005〜0.01%を含み、残部は鉄及び不可避不純物か
らなり、且つ、 115 − 200×P* −50Ceq * ≧70 [但し、P*=5P, Ceq *= 1.5C+2.5Mn/6 +Ni/15 +(1.5Cr+ 2.5Mo+V)/5] を満足するように調整した溶鋼を連続鋳造または大型鋼
塊−分塊工程により鋼片とした後にプレートミルにより
最終圧延仕上り温度を 680〜 800℃で制御圧延すること
を特徴とする耐硫化物腐食割れ性に優れた高張力厚鋼板
の製造方法。
1. On a weight basis, C: 0.03 to 0.20%, Si: 0.
1 to 1.0%, Mn: 0.5 to 2.5%, P: 0.03% or less, S: 0.005
% Or less, Sol.Al: 0.01 to 0.05%, Ni: 1.0% or less, Cr:
1.0% or less, Mo: 1.0% or less, Nb: 0.01 to 0.08%, V: 0.01
~ 0.15%, Ti: 0.01 ~ 0.15%, one or more kinds, C
a: 0.0005 to 0.01%, the balance consisting of iron and inevitable impurities, and 115 −200 × P * −50C eq * ≧ 70 [where P * = 5P, C eq * = 1.5C + 2.5Mn / 6 + Ni / 15 + (1.5Cr + 2.5Mo + V) / 5], the molten steel adjusted so as to satisfy the requirement of 6 + Ni / 15 + (1.5Cr + 2.5Mo + V) / 5] is formed into a slab by continuous casting or a large steel ingot-agglomeration process, and then the final rolling finish temperature is set by a plate mill. A method for producing a high-strength steel plate with excellent resistance to sulfide corrosion cracking, which comprises controlled rolling at 680 to 800 ° C.
【請求項2】 重量基準にて、C: 0.03〜0.20%,Si:0.
1 〜1.0%, Mn:0.5〜2.5%、P:0.03%以下、S:0.005
%以下、Sol.Al:0.01〜0.05%と、Ni:1.0%以下、Cr:
1.0%以下、Mo:1.0%以下、Nb:0.01〜0.08% 、V:0.01
〜0.15% 、Ti:0.01〜0.15% の一種または二種以上、お
よびCu: 1.0以下、及びCa:0.0005〜0.01%を含み、残
部は鉄及び不可避不純物からなり、且つ、 115 − 200×P* −50Ceq * ≧70 [但し、P*=5P, Ceq *= 1.5C+2.5Mn/6+(Cu+Ni)/15+(1.5Cr+ 2.5Mo+V)/5] を満足するように調整した溶鋼を連続鋳造または大型鋼
塊−分塊工程により鋼片とした後にプレートミルにより
最終圧延仕上り温度を 680〜 800℃で制御圧延すること
を特徴とする耐硫化物腐食割れ性に優れた高張力厚鋼板
の製造方法。
2. On a weight basis, C: 0.03 to 0.20%, Si: 0.
1 to 1.0%, Mn: 0.5 to 2.5%, P: 0.03% or less, S: 0.005
% Or less, Sol.Al: 0.01 to 0.05%, Ni: 1.0% or less, Cr:
1.0% or less, Mo: 1.0% or less, Nb: 0.01 to 0.08%, V: 0.01
.About.0.15%, Ti: 0.01 to 0.15%, one or more kinds, Cu: 1.0 or less, and Ca: 0.0005 to 0.01%, with the balance being iron and inevitable impurities, and 115-200.times.P *. −50C eq * ≧ 70 [however, P * = 5P, C eq * = 1.5C + 2.5Mn / 6 + (Cu + Ni) / 15 + (1.5Cr + 2.5Mo + V) / 5] Excellent sulphide corrosion cracking resistance, characterized in that the adjusted molten steel is continuously cast or made into billets by a large steel ingot-segmentation process, and then controlled by a plate mill at a final rolling finish temperature of 680 to 800 ° C. Manufacturing method of high-tensile steel plate.
JP15301592A 1992-05-21 1992-05-21 Method for manufacturing high-strength steel plate with excellent resistance to sulfide corrosion cracking Expired - Lifetime JPH0737650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15301592A JPH0737650B2 (en) 1992-05-21 1992-05-21 Method for manufacturing high-strength steel plate with excellent resistance to sulfide corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15301592A JPH0737650B2 (en) 1992-05-21 1992-05-21 Method for manufacturing high-strength steel plate with excellent resistance to sulfide corrosion cracking

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1438981A Division JPS57131318A (en) 1981-02-04 1981-02-04 Production of high tensile steel of superior sulfide corrosion resistance

Publications (2)

Publication Number Publication Date
JPH05255747A JPH05255747A (en) 1993-10-05
JPH0737650B2 true JPH0737650B2 (en) 1995-04-26

Family

ID=15553101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15301592A Expired - Lifetime JPH0737650B2 (en) 1992-05-21 1992-05-21 Method for manufacturing high-strength steel plate with excellent resistance to sulfide corrosion cracking

Country Status (1)

Country Link
JP (1) JPH0737650B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990052502A (en) * 1997-12-22 1999-07-15 이구택 Method for manufacturing thick steel plate with excellent corrosion resistance fatigue corrosion resistance
TWI392748B (en) 2007-11-07 2013-04-11 Jfe Steel Corp Pipeline steel and steel pipe
CN111440999A (en) * 2020-05-07 2020-07-24 南京钢铁股份有限公司 Production method for improving micro segregation of acid-resistant pipeline

Also Published As

Publication number Publication date
JPH05255747A (en) 1993-10-05

Similar Documents

Publication Publication Date Title
CN107208212B (en) Thick-walled high-toughness high-strength steel plate and method for producing same
WO1994022606A1 (en) Wear- and seizure-resistant roll for hot rolling
CA2353407C (en) Method of making an as-rolled multi-purpose weathering steel plate and product therefrom
EP3521474B1 (en) High-strength coated steel sheet and method for manufacturing the same
WO2006022053A1 (en) HIGH TENSILE STEEL PRODUCT BEING EXCELLENT IN WELDABILITY AND TOUGHNESS AND HAVING TENSILE STRENGTH OF 550 MPa CLASS OR MORE, AND METHOD FOR PRODUCTION THEREOF
JP2003013175A (en) Steel material superior in hydrogen-induced cracking resistance
JP2019094563A (en) Steel material
EP1149182A1 (en) Method of making a weathering grade plate and product therefrom
JP3379355B2 (en) High-strength steel used in an environment requiring sulfide stress cracking resistance and method of manufacturing the same
EP3899062A1 (en) Hot rolled and steel and a method of manufacturing thereof
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP4222073B2 (en) H-section steel with excellent fillet part toughness and method for producing the same
JPH0737650B2 (en) Method for manufacturing high-strength steel plate with excellent resistance to sulfide corrosion cracking
JPH022925B2 (en)
JP4012497B2 (en) High strength steel with excellent weld heat affected zone toughness and method for producing the same
JP3518517B2 (en) Manufacturing method of high chromium / ferritic heat resistant steel
JP3536752B2 (en) Thin-walled steel plate with excellent resistance to hydrogen-induced cracking and method for producing the same
JP4464867B2 (en) High tensile strength steel material having a tensile strength of 700 MPa or more that has both weldability and toughness, and a method for producing the same
US6419878B2 (en) Fe-Cr alloy having excellent initial rust resistance, workability and weldability
JP3477098B2 (en) Ferritic stainless steel sheet excellent in surface properties and ridging properties and method for producing the same
JP2003342670A (en) Non-heat treated high tensile steel having excellent toughness
JP2573109B2 (en) Method for producing high-strength steel for Zn plating crack resistant structure
JPS6410565B2 (en)
JP3881465B2 (en) High-tensile hot-rolled steel sheet with good surface quality
JPH0121849B2 (en)