JP4222073B2 - H-section steel with excellent fillet part toughness and method for producing the same - Google Patents

H-section steel with excellent fillet part toughness and method for producing the same Download PDF

Info

Publication number
JP4222073B2
JP4222073B2 JP2003067987A JP2003067987A JP4222073B2 JP 4222073 B2 JP4222073 B2 JP 4222073B2 JP 2003067987 A JP2003067987 A JP 2003067987A JP 2003067987 A JP2003067987 A JP 2003067987A JP 4222073 B2 JP4222073 B2 JP 4222073B2
Authority
JP
Japan
Prior art keywords
less
toughness
section steel
grain size
fillet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003067987A
Other languages
Japanese (ja)
Other versions
JP2003268498A (en
Inventor
達己 木村
文丸 川端
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003067987A priority Critical patent/JP4222073B2/en
Publication of JP2003268498A publication Critical patent/JP2003268498A/en
Application granted granted Critical
Publication of JP4222073B2 publication Critical patent/JP4222073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、土木構造物あるいは建築物に広く適用されるH形鋼に関し、とくにH形鋼のフィレット部の靱性の向上に関する。
【0002】
【従来の技術】
建築物の柱材、梁材には熱間圧延したH形鋼が広く利用されている。このH形鋼には、JIS G 3106で規定される溶接構造用圧延鋼材が多く用いられている。最近、耐震性などの点から建築構造物の安全性の向上が要求され、さらに、脆性破壊抑制の観点から、H形鋼にも靱性向上が強く要求されている。
【0003】
熱間圧延により製造されるH形鋼では、従来から、ウェブとフランジが交叉する部分、一般にフィレット部と呼ばれる部分の靱性が、ウェブ部やフランジ部の靱性と比較して低く問題となっていた。
このフィレット部の低靱性については、従来から、フィレット部は、フランジやウェブに比較して、熱間圧延時の加工量が不十分で、再結晶による細粒化が進まず、オーステナイト粒が粗大のままであり、さらに圧延後の冷却速度が、フランジやウェブに比較して遅く、したがって生成されるミクロ組織も他の部位にくらべ粗大化しているためであると言われてきた。
【0004】
最近では、ウェブを薄肉化する傾向であり、このような薄肉ウェブのH形鋼では、圧延時にウェブとフランジの温度差が大きくなり、冷却時にウェブ波が発生するのを防止するため、フランジ外面から強制冷却を施している。
このため、薄肉ウェブH形鋼のフィレット部は、粗大ベイナイトを主体とする組織となっている。
【0005】
また、最近では、H形鋼の寸法精度の要求が厳しくなり、要求される寸法精度内に製品を仕上げるため、冷間矯正が大きくなる傾向にある。この冷間矯正により、H形鋼のフィレット部に導入される歪が増加し、歪時効が生じている。これらが、複合されて、H形鋼フィレット部の靱性が劣化しているものと考えられている。
【0006】
このようなフィレット部の低靱性を改善すべく、多数の提案がなされている。
例えば、特許文献1には、Al:0.005 %以下、V:0.05〜0.20%、N:0.006 〜0.015 %および溶存酸素濃度を0.003 〜0.015 %とした靱性に優れた圧延中形鋼およびその製造方法が提案されている。
また、特許文献2には、真空脱ガス処理あるいは予備脱酸処理により酸素濃度を0.003 〜0.015 %に調整したのち、合金添加、さらに連続鋳造時にTi−Cu、Ti−Ni、Ti−Fe合金等を添加して最終脱酸し、Tiを含む酸化物、Tiを含む酸化物とTiN 、MnS の複合粒子の大きさ、分散量を規制した靱性に優れた圧延形鋼の製造方法が提案されている。
【0007】
しかしながら、これらの方法によってもなお、フィレット部は、フランジ部やウェブ部に比較して、なお十分な靱性を有しているとは言えないという問題を残しており、フィレット部についてさらなる靱性の改善が要求されている。
【0008】
【特許文献1】
特開平4−131356号公報
【特許文献2】
特開平4−279248号公報
【0009】
【発明が解決しようとする課題】
本発明は、上記した問題を有利に解決し、フィレット部の靱性が優れたフランジ厚40mm未満のH形鋼およびその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、フィレット部の靱性を向上するために、まず、フィレット部組織の微細化を検討した。その結果、VとNを複合添加し、圧延後の冷却速度を調整することにより、フィレット部のような圧延加工量の少ない部位でも、JIS G 0552で判定される結晶粒度で5番以上の微細粒を有する組織とすることができることを見いだした。VNは、粗大なオーステナイト粒内に析出し、これらVNを核としてフェライトがオーステナイト粒内に形成されるため、組織が微細なフェライト+パーライトあるいは微細なフェライト+ベーナイトなるのである。これにより、フィレット部の靱性は著しく向上する。
【0011】
また、さらに、本発明者らは、フィレット部に発生する冷間矯正による歪時効の抑制方法を検討し、C量の低減、V含有量とN含有量の比、V/Nの制御および冷却停止温度の制御により、冷間矯正によるフィレット部の歪時効を抑制できることを知見した。
本発明は、上記した知見をもとに構成されたものである。
【0012】
すなわち、本発明は、重量%で、C:0.01〜0.15%、Si:0.60%以下、Mn:0.5 〜1.8 %、P:0.030 %以下、S:0.030 %以下、Al:0.021 〜0.05%、V:0.01〜0.10%、N:0.0040〜0.0120%およびTi:0.001 〜0.030 %を含有し、かつV/Nが3.6 以上(ただし、 10.2 を除く)で、残部Feおよび不可避的不純物からなり、さらにフィレット部の結晶粒度がJIS G0552で判定される結晶粒度で5番以上を有することを特徴とするフィレット部靱性に優れたフランジ厚40mm未満のH形鋼である。
【0013】
また、本発明は、重量%で、C:0.01〜0.15%、Si:0.60%以下、Mn:0.5 〜1.8 %、P:0.030 %以下、S:0.030 %以下、Al:0.021 〜0.05%、V:0.01〜0.10%、N:0.0040〜0.0120%を含み、Cu:0.05〜0.5 %、Ni:0.05〜0.5 %、Cr:0.05〜0.5 %、Mo:0.01〜0.3 %のうちから選ばれた1種または2種以上およびTi:0.001 〜0.030 %を含有し、かつV/Nが3.6 以上(ただし、 10.2 を除く)で、残部Feおよび不可避的不純物からなり、さらにフィレット部の結晶粒度がJIS G0552で判定される結晶粒度で5番以上を有することを特徴とするフィレット部靱性に優れたフランジ厚40mm未満のH形鋼である。
【0014】
また、本発明は、重量%で、C:0.01〜0.15%、Si:0.60%以下、Mn:0.5 〜1.8 %、P:0.030 %以下、S:0.030 %以下、Al:0.021 〜0.05%、V:0.01〜0.10%、N:0.0040〜0.0120%およびTi:0.001 〜0.030 %を含有し、かつV/Nが3.6 以上で、残部Feおよび不可避的不純物からなる鋼素材を、熱間圧延により、H形鋼としたのち、H形鋼のフランジB/2部の冷却速度α(℃/sec )が次(1)式
α≦V/N×3.5 ……………(1)
を満足し、かつ冷却停止温度が次(2)式
Ar3 =910 −273 C+25Si−74Mn ……………(2)
で定義されるAr3 点(℃)で表される(Ar3 −50℃)〜(Ar3 −200 ℃)の温度範囲となる強制冷却を施し、その後空冷することを特徴とするフィレット部の結晶粒度がJIS G0552で判定される結晶粒度で5番以上を有し、フィレット部靱性に優れたフランジ厚40mm未満のH形鋼の製造方法である。
【0015】
また、本発明は、重量%で、C:0.01〜0.15%、Si:0.60%以下、Mn:0.5 〜1.8 %、P:0.030 %以下、S:0.030 %以下、Al:0.021 〜0.05%、V:0.01〜0.10%、N:0.0040〜0.0120%、およびCu:0.05〜0.5 %、Ni:0.05〜0.5 %、Cr:0.05〜0.5 %、Mo:0.01〜0.3 %のうちから選ばれた1種または2種以上およびTi:0.001 〜0.030 %を含有し、かつV/Nが3.6 以上で、残部Feおよび不可避的不純物からなる鋼素材を、熱間圧延により、H形鋼としたのち、H形鋼のフランジB/2部の冷却速度α(℃/sec )が前記(1)式を満足し、かつ冷却停止温度が次(3)式
Ar3 =910 −273 C+25Si−74Mn−56Ni−16Cr−9Mo −5Cu ……(3)
で定義されるAr3 点(℃)で表される(Ar3 −50℃)〜(Ar3 −200 ℃)の温度範囲となる強制冷却を施し、その後空冷することを特徴とするフィレット部の結晶粒度がJIS G0552で判定される結晶粒度で5番以上を有し、フィレット部靱性に優れたフランジ厚40mm未満のH形鋼の製造方法である。
【0016】
【発明の実施の形態】
本発明要件の限定理由を、まず素材の化学組成について説明する。
C:0.01〜0.15%
Cは強度を確保するために0.01%以上の含有を必要とするが、0.15%を超えると、母材靱性、溶接性および耐歪時効性が低下するので、Cは0.01〜0.15%の範囲とした。なお、好ましい範囲は0.05〜0.12%である。
【0017】
Si:0.60%以下
Siは強度上昇に有効な元素であるが、0.60%を超えると溶接熱影響部(HAZ)靱性を著しく劣化させるので、0.60%以下に限定した。なお、好ましくは、赤スケール抑制の観点から0.01〜0.40%である。
Mn:0.5 〜1.8 %
MnはSiと同様強度上昇に有効な元素であるが、0.5 %未満ではその効果が少なく、1.8 %を超えると、粒内フェライトの生成を阻害し、組織を粗大化させるため、靱性を大きく低下させる。このため、Mnは0.5 〜1.8 %の範囲に限定した。
【0018】
P:0.030 %以下
Pは母材、溶接熱影響部の靱性、耐溶接割れ感受性を劣化させるので、極力低減すべき元素であり、上限を0.030 %とした。
S:0.030 %以下
Sは靱性、延性の圧延異方性を高めるので、極力低減すべき元素であり、上限を0.030 %とした。
【0019】
Al:0.021 〜0.05%
Alは脱酸のために0.021 %以上必要であるが、0.05%を超えて添加しても脱酸効果は飽和するので、Alは0.021 〜0.05%の範囲とした。
V:0.01〜0.10%
Vは圧延冷却中にVNとしてオーステナイト中に析出してフェライト変態核となり、結晶粒を微細化して靱性を向上させる。オーステナイト粒が粗大でも組織を微細化することができるため、粗大オーステナイト粒となるフィレット部でも組織の微細化が可能となり、靱性の向上が期待できる。また、Vは母材強度を高める重要な役割をもち、母材の強度・靱性バランスを確保するために不可欠の元素である。これらの効果を発揮させるためには、0.01%以上の添加が必要であるが、0.10%を超えると、母材の靱性が劣化し強度・靱性バランスがくずれるため、Vは0.01〜0.10%の範囲に限定した。なお、好ましい範囲は0.03〜0.08%である。
【0020】
N:0.0040〜0.0120%
NはVと結合してVNを形成し、組織の微細化によりフィレット部の靱性向上および母材の強度向上に寄与する重要な元素である。これらの効果を発揮させるためには、0.0040%以上の含有が必要であるが、0.0120%を超えると、溶接HAZ部の靱性を著しく劣化させるため、Nは0.0040〜0.0120%の範囲とした。なお、好ましい範囲は0.0050〜0.0100%である。
【0021】
V/N:3.6 以上
前記したようにVとNは、フィレット部の靱性向上に大きく寄与する重要な元素であるが、VとNの含有量の比、V/Nが不適切な場合には、フリーNを増加させ冷間矯正による歪時効性を高めるため、フィレット部の靱性を低下させる。このため、V/Nを3.6 以上に限定した。なお、好ましくは、5.0 以上である。
【0022】
Cu:0.05〜0.5 %、Ni:0.05〜0.5 %、Cr:0.05〜0.5 %、Mo:0.01〜0.3 %のうちから選ばれた1種または2種以上
Cu、Ni、Cr、Moは、いずれも熱間圧延後の冷却変態開始温度(Ar3 点)を低下させ、オーステナイト粒界からのフェライト変態を抑制し、間接的に粒内フェライト形成を促進し、組織の微細化によるフィレット部の靱性向上に寄与する効果を有している。また、Cu、Ni、Cr、Moは、フェライト以外の第2相組織をベイナイト化し、さらに、第2相組織の割合を増加させる作用を有している。これにより、母材の強度が上昇する。
【0023】
フィレット部の圧延加工が期待できない場合や、十分な冷却速度が得にくい場合や、あるいは高強度を必要とする場合には、これら元素のうちから1種または2種以上を添加できる。
上記した効果を得るためには、Cu、Ni、Cr、Moはそれぞれ0.05%以上、0.05%以上、0.05%以上、0.01%以上の添加が必要となる。Cuは熱間加工性を劣化させるため、多量添加の場合にはNiを同時に添加する必要がある。Cu、Niの0.5 %を超える添加は、経済的に高価となるため、Cu、Niの添加は0.5 %を上限とした。Cr、Moはそれぞれ0.50%、0.30%を超えて添加すると、溶接性、溶接部靱性を損なうので、Cr、Moはそれぞれ0.50%、0.30%を上限とした。
【0024】
Ti:0.001 〜0.030 %
Tiは溶接熱影響部の靱性向上に有効な元素であり、高い溶接部靱性が要求される場合に添加する。溶接熱影響部の靱性向上のためにはTiは0.001 %以上の添加が必要であるが、0.030 %を超えて添加すると母材靱性を低下させるため、Tiは0.001 〜0.030 %の範囲とした。
【0025】
その他、残部はFeおよび不可避的不純物である。
なお、Nbはオーステナイトの再結晶を抑制するため、とくにH形鋼のフィレット部ミクロ組織の微細化を阻害し、粗大組織のままとする弊害があるため、実質的には添加しない。
つぎに、フィレット部の結晶粒度をJIS G0552で判定される結晶粒度で5番以上とする。
【0026】
フィレット部の結晶粒度が、JIS G0552で判定される結晶粒度で5番未満では、靱性が低下するため、フィレット部の結晶粒度は5番以上の細粒とする。なお、好ましくは6〜9番である。
つぎに、H形鋼の製造条件について説明する。
上記した化学組成の鋼は転炉、電気炉あるいはその他の溶解炉で溶製し、造塊−分塊法あるいは連続鋳造法でH形鋼の鋼素材とするのが好ましい。
【0027】
鋼素材を熱間圧延により、H形鋼に圧延する。
圧延後、フランジB/2部の平均冷却速度α(℃/sec )が、次(1)式
α≦V/N×3.5 ……………(1)
を満足し、かつ冷却停止温度が次(2)、(3)式
Ar3 =910 −273 C+25Si−74Mn ……………(2)
Ar3 =910 −273 C+25Si−74Mn−56Ni−16Cr−9Mo −5Cu ……(3)
で定義されるAr3 点(℃)で表される(Ar3 −50℃)〜(Ar3 −200 ℃)の温度範囲となる強制冷却を施し、その後空冷する。
【0028】
フランジB/2部の平均冷却速度αが、(1)式を満足しない場合には、オーステナイト域におけるVNの析出が抑制され、フィレット部の靱性が劣化する。冷却停止温度が(Ar3 −50℃)を超えると、フェライトの成長が促進され、フィレット部の組織が粗大化する。また、冷却停止温度が(Ar3 −200 ℃)未満では、残留応力の増加による寸法精度の低下を招くとともに、冷間矯正量の増大により歪時効性が高くなる。このため、冷却停止温度は、(Ar3 −50℃)〜(Ar3 −200 ℃)の温度範囲とした。なお、Ar3 点の計算は、Ni、Cr、Mo、Cuが添加される場合は、(3)式を用いて行う。
【0029】
強制冷却における冷却方法は、フランジB/2部を中心とした強制空冷、あるいはノズルを利用した水冷が好適である。さらに、上記冷却方法に加えて、フランジ内面からR部を中心に強制空冷あるいはノズル水冷を併用してもよい。
H形鋼の熱間圧延方法は、通常公知の方法が適用でき、本発明では、とくに規定しないが、加熱温度は1100〜1350℃の範囲がより好ましく、圧延終了温度はAr3 点よりも高いことが望ましい。なお、圧延途中でフランジを強制空冷あるいは水冷を行ってもよい。
【0030】
【実施例】
転炉で溶製した表1に示す化学組成の鋼を、連続鋳造により鋳片としたのち、熱間圧延により、表2に示すサイズのH形鋼に圧延した。圧延後、表2に示す、冷却速度・冷却停止温度の冷却条件で、冷却したのち、コールドレベラーによる冷間矯正を施し、製品とした。なお、冷却速度および冷却停止温度はフランジB/2部外面のデータである。
【0031】
製造したH形鋼について、図1に示す位置、フランジB/4部およびフィレット部から引張試験片およびシャルピー衝撃試験片を採取し、引張および衝撃特性について調査した。また、フィレット部の結晶粒度をJIS G 0552の規定に従い測定した。それらの結果を表2に示す。
【0032】
【表1】

Figure 0004222073
【0033】
【表2】
Figure 0004222073
【0034】
【表3】
Figure 0004222073
【0035】
化学組成およびフィレット部の結晶粒度が本発明の範囲の本発明例No.7、No.11 では、フィレット部の強度・靱性がフランジ部の強度・靱性とぼぼ同等であった。これに対し、圧延後の冷却条件が本発明の範囲を外れる比較例No.12 は、フィレット部の組織が粗大化し、ベイナイト主体の組織となっており、さらに冷間矯正による歪時効により、良好な靱性が得られなかった。また、化学組成、とくにV、NあるいはV/N が本発明の範囲を外れる比較例No.15 〜No.18 は、フィレット部の組織が粗大化し、ベイナイト主体の組織となっており、良好な靱性が得られなかった。Nが本発明の範囲より高い比較例No.19 は、フィレット部の靱性は良好であったが、入熱10kJ/cm の溶接を想定した再現HAZ 部の靱性(vE0 )が20Jと低く、溶接構造物用鋼材への適用は困難である。本発明例についても、入熱10kJ/cm の溶接HAZ 部の靱性を調査したが、いずれも、vE0 が70J以上と、靱性は良好で溶接構造物として適用できる鋼材であることがわかった。
【0036】
また、化学組成、とくにNbが本発明の範囲を外れる比較例No.21 、No.22 は、フィレット部のフェライト粒が粗大しているため、良好な靱性が得られなかった。
【0037】
【発明の効果】
本発明によれば、圧延H形鋼で長く懸案であったフィレット部の低靱性を改善し、フィレット部の靱性が優れたH形鋼を工業的に容易に製造できるという、産業上極めて有益な効果を奏する。
【図面の簡単な説明】
【図1】圧延H形鋼の形状と実施例における試験片採取位置および測温位置を示す説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an H-section steel widely applied to civil engineering structures or buildings, and more particularly to an improvement in toughness of a fillet portion of the H-section steel.
[0002]
[Prior art]
Hot-rolled H-section steel is widely used for building pillars and beams. For this H-shaped steel, a rolled steel material for welded structure defined in JIS G 3106 is often used. Recently, improvement of the safety of building structures has been demanded from the viewpoint of earthquake resistance, and further, toughness improvement has been strongly demanded for H-section steel from the viewpoint of suppressing brittle fracture.
[0003]
Conventionally, in H-section steel manufactured by hot rolling, the toughness of the part where the web and the flange intersect, generally called the fillet part, has been low compared to the toughness of the web part and the flange part. .
Regarding the low toughness of this fillet part, conventionally, the fillet part has an insufficient amount of processing during hot rolling compared to flanges and webs, and refining does not progress, and austenite grains are coarse. Further, it has been said that the cooling rate after rolling is slower than that of the flange and the web, and thus the generated microstructure is coarser than other parts.
[0004]
Recently, there has been a tendency to reduce the thickness of the web. In the H-shaped steel of such a thin web, the temperature difference between the web and the flange is increased during rolling, and web waves are prevented from being generated during cooling. The forced cooling is given from.
For this reason, the fillet part of the thin web H-section steel has a structure mainly composed of coarse bainite.
[0005]
In recent years, the demand for dimensional accuracy of H-section steel has become stricter, and in order to finish the product within the required dimensional accuracy, cold correction tends to increase. By this cold straightening, the strain introduced into the fillet portion of the H-section steel increases, and strain aging occurs. It is considered that these are combined and the toughness of the H-section steel fillet portion is deteriorated.
[0006]
Many proposals have been made to improve the low toughness of such fillets.
For example, in Patent Document 1, Al: 0.005% or less, V: 0.05 to 0.20%, N: 0.006 to 0.015%, and dissolved toughness with a dissolved oxygen concentration of 0.003 to 0.015% and a method for producing the same Has been proposed.
Patent Document 2 discloses that after oxygen concentration is adjusted to 0.003 to 0.015% by vacuum degassing treatment or preliminary deoxidation treatment, alloy addition, Ti-Cu, Ti-Ni, Ti-Fe alloy, etc. are performed during continuous casting. Is added to the final deoxidation, and a method of manufacturing rolled steel with excellent toughness with regulated size and dispersion of Ti-containing oxide, Ti-containing oxide and TiN, and MnS composite particles has been proposed. Yes.
[0007]
However, even with these methods, the fillet portion still has a problem that it cannot be said that it has sufficient toughness compared to the flange portion and the web portion. Is required.
[0008]
[Patent Document 1]
JP-A-4-131356 [Patent Document 2]
JP-A-4-279248
[Problems to be solved by the invention]
An object of the present invention is to advantageously solve the above-described problems and provide an H-section steel having a flange thickness of less than 40 mm with excellent fillet portion toughness and a method for producing the same.
[0010]
[Means for Solving the Problems]
In order to improve the toughness of the fillet part, the present inventors first examined the refinement of the fillet part structure. As a result, by adding V and N in a composite manner and adjusting the cooling rate after rolling, even a part with a small amount of rolling processing such as a fillet part has a fineness of 5 or more in crystal grain size determined by JIS G 0552. It has been found that a structure having grains can be obtained. VN precipitates in coarse austenite grains, and ferrite is formed in the austenite grains using these VNs as nuclei, so that the structure becomes fine ferrite + pearlite or fine ferrite + bainite. Thereby, the toughness of a fillet part improves remarkably.
[0011]
Furthermore, the present inventors have studied a method for suppressing strain aging by cold straightening generated in the fillet portion, and reduced the C content, the ratio of V content to N content, control of V / N and cooling. It was found that the strain aging of the fillet due to cold correction can be suppressed by controlling the stop temperature.
The present invention is configured based on the above-described knowledge.
[0012]
That is, the present invention is, in wt%, C: 0.01 to 0.15%, Si: 0.60% or less, Mn: 0.5 to 1.8%, P: 0.030% or less, S: 0.030% or less, Al: 0.021 to 0.05%, V : 0.01 to 0.10%, N: 0.0040 to 0.0120% and Ti: 0.001 to 0.030%, V / N is 3.6 or more (except 10.2 ) , the balance is Fe and inevitable impurities, and fillet This is a H-section steel with a flange thickness of less than 40 mm and excellent in fillet part toughness, characterized in that the crystal grain size of the part has a grain size of 5 or more as determined by JIS G0552.
[0013]
Further, the present invention is by weight%, C: 0.01 to 0.15%, Si: 0.60% or less, Mn: 0.5 to 1.8%, P: 0.030% or less, S: 0.030% or less, Al: 0.021 to 0.05%, V : 0.01-0.10%, N: 0.0040-0.0120% included, Cu: 0.05-0.5%, Ni: 0.05-0.5%, Cr: 0.05-0.5%, Mo: 0.01-0.3% Or two or more and Ti: 0.001 to 0.030%, V / N is 3.6 or more ( excluding 10.2 ) , the balance is Fe and inevitable impurities, and the crystal grain size of the fillet part is JIS G0552 It is an H-section steel having a flange thickness of less than 40 mm and having excellent fillet part toughness, characterized by having a grain size of 5 or more in the grain size to be judged.
[0014]
Further, the present invention is by weight%, C: 0.01 to 0.15%, Si: 0.60% or less, Mn: 0.5 to 1.8%, P: 0.030% or less, S: 0.030% or less, Al: 0.021 to 0.05%, V : 0.01-0.10%, N: 0.0040-0.0120% and Ti: 0.001-0.030%, and V / N is 3.6 or more, and the steel material consisting of the balance Fe and inevitable impurities is subjected to H After forming the shape steel, the cooling rate α (° C / sec) of the flange B / 2 part of the H-shaped steel is expressed by the following formula (1) α ≦ V / N × 3.5 (1)
And the cooling stop temperature is the following formula (2): Ar 3 = 910 −273 C + 25Si−74Mn (2)
The fillet portion is characterized in that it is subjected to forced cooling in the temperature range of (Ar 3 −50 ° C.) to (Ar 3 −200 ° C.) represented by an Ar 3 point (° C.) defined by This is a method for producing an H-section steel having a crystal grain size determined by JIS G0552 of No. 5 or more and excellent in fillet part toughness and having a flange thickness of less than 40 mm.
[0015]
Further, the present invention is by weight%, C: 0.01 to 0.15%, Si: 0.60% or less, Mn: 0.5 to 1.8%, P: 0.030% or less, S: 0.030% or less, Al: 0.021 to 0.05%, V : 0.01-0.10%, N: 0.0040-0.0120%, and Cu: 0.05-0.5%, Ni: 0.05-0.5%, Cr: 0.05-0.5%, Mo: 0.01-0.3% or one selected from Two or more types and Ti: 0.001 to 0.030%, V / N is 3.6 or more, and the steel material consisting of the remaining Fe and inevitable impurities is converted into H-shaped steel by hot rolling, and then H-shaped steel The cooling rate α (° C./sec) of the flange B / 2 part of the above satisfies the above formula (1), and the cooling stop temperature is the following formula (3): Ar 3 = 910 −273 C + 25Si−74Mn−56Ni−16Cr−9Mo -5Cu (3)
The fillet portion is characterized in that it is subjected to forced cooling in the temperature range of (Ar 3 −50 ° C.) to (Ar 3 −200 ° C.) represented by an Ar 3 point (° C.) defined by This is a method for producing an H-section steel having a crystal grain size determined by JIS G0552 of No. 5 or more and excellent in fillet part toughness and having a flange thickness of less than 40 mm.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The reason for limiting the requirements of the present invention will be described first with respect to the chemical composition of the material.
C: 0.01-0.15%
C needs to be contained in an amount of 0.01% or more in order to ensure strength. However, if it exceeds 0.15%, the base material toughness, weldability and strain aging resistance deteriorate, so C is in the range of 0.01 to 0.15%. did. A preferable range is 0.05 to 0.12%.
[0017]
Si: 0.60% or less
Si is an effective element for increasing the strength, but if it exceeds 0.60%, the weld heat affected zone (HAZ) toughness is remarkably deteriorated, so it was limited to 0.60% or less. In addition, Preferably, it is 0.01 to 0.40% from a viewpoint of red scale suppression.
Mn: 0.5 to 1.8%
Mn is an element effective for increasing the strength as Si, but if it is less than 0.5%, its effect is small, and if it exceeds 1.8%, the formation of intragranular ferrite is inhibited and the structure is coarsened, so the toughness is greatly reduced. Let For this reason, Mn was limited to the range of 0.5 to 1.8%.
[0018]
P: 0.030% or less P is an element that should be reduced as much as possible because P deteriorates the toughness of the base metal, the weld heat-affected zone, and the resistance to weld cracking. The upper limit was set to 0.030%.
S: 0.030% or less S is an element that should be reduced as much as possible because it increases the toughness and ductility of rolling anisotropy, and the upper limit was made 0.030%.
[0019]
Al: 0.021 to 0.05%
Al needs to be 0.021% or more for deoxidation, but even if added over 0.05%, the deoxidation effect is saturated, so Al was made in the range of 0.021 to 0.05%.
V: 0.01-0.10%
V precipitates in the austenite as VN during rolling cooling to form ferrite transformation nuclei, and refines the crystal grains to improve toughness. Since the structure can be refined even if the austenite grains are coarse, it is possible to refine the structure even in the fillet portion that becomes coarse austenite grains, and an improvement in toughness can be expected. V has an important role of increasing the strength of the base material and is an indispensable element for ensuring a balance between strength and toughness of the base material. In order to exert these effects, addition of 0.01% or more is necessary, but if it exceeds 0.10%, the toughness of the base material deteriorates and the balance between strength and toughness is lost, so V is in the range of 0.01 to 0.10%. Limited to. A preferable range is 0.03 to 0.08%.
[0020]
N: 0.0040-0.0120%
N combines with V to form VN, and is an important element that contributes to improving the toughness of the fillet portion and improving the strength of the base material by refining the structure. In order to exert these effects, the content of 0.0040% or more is necessary. However, if it exceeds 0.0120%, the toughness of the welded HAZ portion is remarkably deteriorated, so N is set in the range of 0.0040 to 0.0120%. A preferred range is 0.0050 to 0.0100%.
[0021]
V / N: 3.6 As described above, V and N are important elements that greatly contribute to the improvement of the toughness of the fillet part. However, when the ratio of the contents of V and N, V / N is inappropriate, In order to increase free N and increase strain aging by cold straightening, the toughness of the fillet portion is reduced. For this reason, V / N was limited to 3.6 or more. In addition, Preferably, it is 5.0 or more.
[0022]
One or more selected from Cu: 0.05-0.5%, Ni: 0.05-0.5%, Cr: 0.05-0.5%, Mo: 0.01-0.3%
Cu, Ni, Cr and Mo all lower the cooling transformation start temperature (Ar 3 point) after hot rolling, suppress ferrite transformation from austenite grain boundaries, and indirectly promote intragranular ferrite formation. In addition, it has the effect of contributing to the improvement of the toughness of the fillet portion due to the refinement of the structure. Moreover, Cu, Ni, Cr, and Mo have the effect | action which baits the 2nd phase structure other than a ferrite, and also increases the ratio of a 2nd phase structure. This increases the strength of the base material.
[0023]
When rolling of the fillet portion cannot be expected, when it is difficult to obtain a sufficient cooling rate, or when high strength is required, one or more of these elements can be added.
In order to obtain the above effects, Cu, Ni, Cr, and Mo must be added in amounts of 0.05% or more, 0.05% or more, 0.05% or more, or 0.01% or more, respectively. Since Cu deteriorates hot workability, it is necessary to add Ni at the same time when a large amount is added. Addition of Cu and Ni exceeding 0.5% is economically expensive, so the upper limit of addition of Cu and Ni is 0.5%. If Cr and Mo are added in excess of 0.50% and 0.30%, respectively, weldability and weld toughness are impaired. Therefore, Cr and Mo are made upper limits of 0.50% and 0.30%, respectively.
[0024]
Ti: 0.001 to 0.030%
Ti is an element effective for improving the toughness of the heat affected zone, and is added when high weld toughness is required. In order to improve the toughness of the weld heat affected zone, 0.001% or more of Ti is required to be added. However, if added over 0.030%, the toughness of the base metal is lowered, so Ti was set in the range of 0.001 to 0.030%.
[0025]
In addition, the balance is Fe and inevitable impurities.
Nb is not added substantially because it suppresses the recrystallization of austenite and, in particular, hinders refinement of the fillet microstructure of the H-section steel and leaves it as a coarse structure.
Next, the crystal grain size of the fillet part is set to No. 5 or more in the crystal grain size determined by JIS G0552.
[0026]
If the crystal grain size of the fillet part is less than 5 in the crystal grain size determined by JIS G0552, the toughness is lowered, so that the crystal grain size of the fillet part is 5 or more fine grains. In addition, Preferably it is 6-9.
Next, manufacturing conditions for the H-section steel will be described.
The steel having the chemical composition described above is preferably melted in a converter, electric furnace or other melting furnace, and made into a steel material of H-shaped steel by the ingot-bundling method or the continuous casting method.
[0027]
The steel material is rolled into H-section steel by hot rolling.
After rolling, the average cooling rate α (° C./sec) of the flange B / 2 part is expressed by the following formula (1) α ≦ V / N × 3.5 (1)
And the cooling stop temperature is the following (2), (3) Formula Ar 3 = 910 −273 C + 25Si−74Mn (2)
Ar 3 = 910 −273 C + 25Si−74Mn−56Ni−16Cr−9Mo −5Cu (3)
In applying forced cooling to a temperature range of Ar 3 point defined represented by (℃) (Ar 3 -50 ℃ ) ~ (Ar 3 -200 ℃), then air-cooled.
[0028]
When the average cooling rate α of the flange B / 2 part does not satisfy the formula (1), the precipitation of VN in the austenite region is suppressed, and the toughness of the fillet part is deteriorated. When the cooling stop temperature exceeds (Ar 3 −50 ° C.), the growth of ferrite is promoted and the structure of the fillet portion becomes coarse. On the other hand, when the cooling stop temperature is lower than (Ar 3 −200 ° C.), the dimensional accuracy is reduced due to an increase in residual stress, and the strain aging is increased due to an increase in the amount of cold correction. For this reason, the cooling stop temperature was set to a temperature range of (Ar 3 −50 ° C.) to (Ar 3 −200 ° C.). The calculation of the Ar 3 point, if the Ni, Cr, Mo, Cu is added, carried out using the expression (3).
[0029]
As a cooling method in the forced cooling, forced air cooling centering on the flange B / 2 portion or water cooling using a nozzle is suitable. Further, in addition to the above cooling method, forced air cooling or nozzle water cooling may be used in combination from the inner surface of the flange around the R portion.
As the hot rolling method for H-section steel, generally known methods can be applied, and the present invention is not particularly limited, but the heating temperature is more preferably in the range of 1100 to 1350 ° C., and the rolling end temperature is higher than the Ar 3 point. It is desirable. The flange may be subjected to forced air cooling or water cooling during rolling.
[0030]
【Example】
The steel having the chemical composition shown in Table 1 melted in the converter was made into a slab by continuous casting, and then rolled into an H-shaped steel of the size shown in Table 2 by hot rolling. After rolling, after cooling under the cooling conditions of cooling rate and cooling stop temperature shown in Table 2, cold correction was performed with a cold leveler to obtain a product. The cooling rate and the cooling stop temperature are data on the outer surface of the flange B / 2 part.
[0031]
With respect to the manufactured H-shaped steel, tensile test pieces and Charpy impact test pieces were sampled from the positions shown in FIG. 1, flange B / 4 part and fillet part, and examined for tensile and impact characteristics. Further, the grain size of the fillet portion was measured in accordance with the provisions of JIS G 0552. The results are shown in Table 2.
[0032]
[Table 1]
Figure 0004222073
[0033]
[Table 2]
Figure 0004222073
[0034]
[Table 3]
Figure 0004222073
[0035]
In Invention Examples No. 7 and No. 11 in which the chemical composition and the crystal grain size of the fillet part are within the scope of the present invention, the strength and toughness of the fillet part were almost equal to the strength and toughness of the flange part. On the other hand, Comparative Example No. 12, in which the cooling conditions after rolling are outside the scope of the present invention, the structure of the fillet portion is coarsened, has a bainite-based structure, and is good due to strain aging by cold straightening. Toughness was not obtained. Further, in Comparative Examples No. 15 to No. 18 in which the chemical composition, particularly V, N, or V / N is out of the scope of the present invention, the structure of the fillet portion is coarsened, and the structure is mainly bainite. Toughness was not obtained. In Comparative Example No. 19 in which N is higher than the range of the present invention, the toughness of the fillet part was good, but the toughness (vE 0 ) of the reproduced HAZ part assuming a heat input of 10 kJ / cm 2 was as low as 20 J. It is difficult to apply to steel materials for welded structures. For even present invention example, there has been investigated the toughness of the weld HAZ of the heat input 10 kJ / cm, both, vE 0 and the least 70 J, toughness was found to be a steel which can be applied as good welded structure.
[0036]
Further, in Comparative Examples No. 21 and No. 22 in which the chemical composition, particularly Nb is outside the scope of the present invention, the ferrite grains in the fillet portion are coarse, so that good toughness was not obtained.
[0037]
【The invention's effect】
INDUSTRIAL APPLICABILITY According to the present invention, the low toughness of the fillet part, which has long been a concern with rolled H-section steel, is improved, and an H-section steel having excellent fillet part toughness can be easily produced industrially, which is extremely useful in industry. There is an effect.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing the shape of a rolled H-section steel and the specimen collection position and temperature measurement position in Examples.

Claims (4)

重量%で、
C:0.01〜0.15%、
Si:0.60%以下、
Mn:0.5 〜1.8 %、
P:0.030 %以下、
S:0.030 %以下、
Al:0.021 〜0.05%、
V:0.01〜0.10%、
N:0.0040〜0.0120%
および
Ti:0.001 〜0.030 %
を含有し、かつV/Nが3.6 以上(ただし、 10.2 を除く)で、残部Feおよび不可避的不純物からなり、さらにフィレット部の結晶粒度がJIS G0552で判定される結晶粒度で5番以上を有することを特徴とするフィレット部靱性に優れたフランジ厚40mm未満のH形鋼。
% By weight
C: 0.01 to 0.15%,
Si: 0.60% or less,
Mn: 0.5-1.8%
P: 0.030% or less,
S: 0.030% or less,
Al: 0.021 to 0.05%,
V: 0.01-0.10%,
N: 0.0040-0.0120%
and
Ti: 0.001 to 0.030%
And V / N is 3.6 or more ( excluding 10.2 ) , the balance is Fe and inevitable impurities, and the crystal grain size of the fillet part is 5 or more in crystal grain size determined by JIS G0552 An H-section steel with a flange thickness of less than 40mm and excellent fillet part toughness.
重量%で、
C:0.01〜0.15%、
Si:0.60%以下、
Mn:0.5 〜1.8 %、
P:0.030 %以下、
S:0.030 %以下、
Al:0.021 〜0.05%、
V:0.01〜0.10%、
N:0.0040〜0.0120%
を含み、
Cu:0.05〜0.5 %、
Ni:0.05〜0.5 %、
Cr:0.05〜0.5 %、
Mo:0.01〜0.3 %
のうちから選ばれた1種または2種以上
および
Ti:0.001 〜0.030 %
を含有し、かつV/Nが3.6 以上(ただし、 10.2 を除く)で、残部Feおよび不可避的不純物からなり、さらにフィレット部の結晶粒度がJIS G0552で判定される結晶粒度で5番以上を有することを特徴とするフィレット部靱性に優れたフランジ厚40mm未満のH形鋼。
% By weight
C: 0.01 to 0.15%,
Si: 0.60% or less,
Mn: 0.5-1.8%
P: 0.030% or less,
S: 0.030% or less,
Al: 0.021 to 0.05%,
V: 0.01-0.10%,
N: 0.0040-0.0120%
Including
Cu: 0.05 to 0.5%,
Ni: 0.05-0.5%,
Cr: 0.05-0.5%,
Mo: 0.01-0.3%
One or more selected from among and
Ti: 0.001 to 0.030%
And V / N is 3.6 or more ( excluding 10.2 ) , the balance is Fe and inevitable impurities, and the crystal grain size of the fillet part is 5 or more in crystal grain size determined by JIS G0552 An H-section steel with a flange thickness of less than 40mm and excellent fillet part toughness.
重量%で、C:0.01〜0.15%、Si:0.60%以下、Mn:0.5 〜1.8 %、P:0.030 %以下、S:0.030 %以下、Al:0.021 〜0.05%、V:0.01〜0.10%、N:0.0040〜0.0120%、およびTi:0.001 〜0.030 %を含有し、かつV/Nが3.6 以上で、残部Feおよび不可避的不純物からなる鋼素材を、熱間圧延により、H形鋼としたのち、H形鋼のフランジB/2部の冷却速度α(℃/sec)が下記(1)式を満足し、かつ冷却停止温度が下記(2)式で定義されるAr3 点(℃)で表される(Ar3 −50℃)〜(Ar3 −200 ℃)の温度範囲となる強制冷却を施し、その後空冷することを特徴とするフィレット部の結晶粒度がJIS G0552で判定される結晶粒度で5番以上を有し、フィレット部靱性に優れたフランジ厚40mm未満のH形鋼の製造方法。

α≦V/N×3.5 ……………(1)
Ar3 =910 −273 C+25Si−74Mn ……………(2)
By weight%, C: 0.01 to 0.15%, Si: 0.60% or less, Mn: 0.5 to 1.8%, P: 0.030% or less, S: 0.030% or less, Al: 0.021 to 0.05%, V: 0.01 to 0.10%, A steel material containing N: 0.0040 to 0.0120% and Ti: 0.001 to 0.030% and having a V / N of 3.6 or more and the balance Fe and inevitable impurities is converted into an H-section steel by hot rolling. The cooling rate α (° C./sec) of the flange B / 2 part of the H-section steel satisfies the following formula (1), and the cooling stop temperature is Ar 3 point (° C.) defined by the following formula (2). The crystal grain size at which the crystal grain size of the fillet portion determined by JIS G 0552 is subjected to forced cooling in the temperature range of (Ar 3 −50 ° C.) to (Ar 3 −200 ° C.) and then air-cooled. No. 5 and above, and a method for producing an H-section steel with a flange thickness of less than 40 mm and excellent fillet part toughness.
Α ≦ V / N × 3.5 (1)
Ar 3 = 910 −273 C + 25Si−74Mn (2)
重量%で、C:0.01〜0.15%、Si:0.60%以下、Mn:0.5 〜1.8 %、P:0.030 %以下、S:0.030 %以下、Al:0.021 〜0.05%、V:0.01〜0.10%、N:0.0040〜0.0120%を含み、Cu:0.05〜0.5 %、Ni:0.05〜0.5 %、Cr:0.05〜0.5 %、Mo:0.01〜0.3 %のうちから選ばれた1種または2種以上、およびTi:0.001 〜0.030 %を含有し、かつV/Nが3.6 以上で、残部Feおよび不可避的不純物からなる鋼素材を、熱間圧延により、H形鋼としたのち、H形鋼のフランジB/2部の冷却速度α(℃/sec )が下記(1)式を満足し、かつ冷却停止温度が下記(3)式で定義されるAr3 点(℃)で表される(Ar3 −50℃)〜(Ar3 −200 ℃)の温度範囲となる強制冷却を施し、その後空冷することを特徴とするフィレット部の結晶粒度がJIS G0552で判定される結晶粒度で5番以上を有し、フィレット部靱性に優れたフランジ厚40mm未満のH形鋼の製造方法。

α≦V/N×3.5 ……(1)
Ar3 =910 −273 C+25Si−74Mn−56Ni−16Cr−9Mo −5Cu ……(3)
By weight%, C: 0.01 to 0.15%, Si: 0.60% or less, Mn: 0.5 to 1.8%, P: 0.030% or less, S: 0.030% or less, Al: 0.021 to 0.05%, V: 0.01 to 0.10%, N: 0.0040-0.0120% included, Cu: 0.05-0.5%, Ni: 0.05-0.5%, Cr: 0.05-0.5%, Mo: 0.01-0.3%, or one or more selected from A steel material containing Ti: 0.001 to 0.030% and having a V / N of 3.6 or more and the balance Fe and inevitable impurities is converted into an H-shaped steel by hot rolling, and then the flange B / The cooling rate α of 2 parts (° C./sec) satisfies the following formula (1), and the cooling stop temperature is expressed by Ar 3 point (° C.) defined by the following formula (3) (Ar 3 -50). ℃) ~ (Ar 3 -200 ℃ ) subjected to forced cooling as the temperature range of the crystal grain size in number 5 then the grain size of the fillet portion, characterized by air cooling is determined by JIS G0552 It has an upper, a manufacturing method of the H-section steel of less than flange thickness 40mm with excellent fillet toughness.
Α ≦ V / N × 3.5 (1)
Ar 3 = 910 −273 C + 25Si−74Mn−56Ni−16Cr−9Mo −5Cu (3)
JP2003067987A 2003-03-13 2003-03-13 H-section steel with excellent fillet part toughness and method for producing the same Expired - Fee Related JP4222073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003067987A JP4222073B2 (en) 2003-03-13 2003-03-13 H-section steel with excellent fillet part toughness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003067987A JP4222073B2 (en) 2003-03-13 2003-03-13 H-section steel with excellent fillet part toughness and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22280596A Division JP3440710B2 (en) 1996-08-23 1996-08-23 H-section steel excellent in toughness of fillet portion and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003268498A JP2003268498A (en) 2003-09-25
JP4222073B2 true JP4222073B2 (en) 2009-02-12

Family

ID=29208520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003067987A Expired - Fee Related JP4222073B2 (en) 2003-03-13 2003-03-13 H-section steel with excellent fillet part toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP4222073B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101458104B1 (en) 2013-12-18 2014-11-04 주식회사 세아베스틸 Method for Manufacturing Steel for Lattice Girder having High Strength and High Toughness
JP6344191B2 (en) * 2014-10-15 2018-06-20 新日鐵住金株式会社 High-strength ultra-thick H-shaped steel with excellent toughness and method for producing the same
CN105018839B (en) * 2015-08-14 2017-05-03 武钢集团昆明钢铁股份有限公司 420 MPa grade high-performance anti-shock H-type steel and preparation method thereof
CN112458364B (en) * 2020-11-04 2021-09-03 马鞍山钢铁股份有限公司 Ultra-thick hot-rolled H-shaped steel and production method thereof
CN113604735B (en) * 2021-07-20 2022-07-12 山东钢铁股份有限公司 Hot-rolled low-temperature-resistant H-shaped steel with yield strength of 420MPa and preparation method thereof
CN115011869A (en) * 2022-05-05 2022-09-06 包头钢铁(集团)有限责任公司 Ultrahigh-strength hot-rolled H-shaped steel for ocean engineering structure and production method thereof
CN115011870A (en) * 2022-05-05 2022-09-06 包头钢铁(集团)有限责任公司 Preparation method of high-strength H-shaped steel pile for building structure

Also Published As

Publication number Publication date
JP2003268498A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
EP3617337A1 (en) HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR
JP5760519B2 (en) Rolled H-section steel with excellent toughness and method for producing the same
JP6645107B2 (en) H-section steel and manufacturing method thereof
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
EP3722448B1 (en) High-mn steel and method for manufacturing same
JP2007119861A (en) Method for producing high tensile-strength steel for welding structure excellent in high temperature strength and low temperature toughness
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP4222073B2 (en) H-section steel with excellent fillet part toughness and method for producing the same
JP4279231B2 (en) High-strength steel material with excellent toughness in weld heat affected zone
JP6589503B2 (en) H-section steel and its manufacturing method
CN111051555B (en) Steel sheet and method for producing same
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JPH11131188A (en) Wide-flange shape steel for tunnel timbering, and its production
JP3440710B2 (en) H-section steel excellent in toughness of fillet portion and method for producing the same
JP2004315925A (en) Low yield ratio high strength steel having excellent toughness and weldability
JP7243826B2 (en) steel plate
JP3785940B2 (en) High toughness steel sheet pile having a web thickness of 15 mm or more and method for producing the same
JP3235416B2 (en) Manufacturing method of high strength hot rolled steel sheet with excellent workability and fatigue properties
JP3711948B2 (en) Steel sheet pile excellent in toughness and weld properties and its manufacturing method
JP2007302977A (en) Method for manufacturing high-strength steel of tensile strength of 570 mpa class having excellent toughness of weld heat affected zone
JP7273298B2 (en) Steel plates for pressure vessels with excellent low-temperature toughness
JP4357080B2 (en) Solidified grain refined steel and solidified grain refined austenitic stainless steel and their welded joints
JPH08176660A (en) Production of high strength extremely thick rolled wide flange shape steel for construction use, having fire resistance and excellent weldability and reduced in change in strength in plate thickness direction
JP5037203B2 (en) Method for producing high-strength steel material having yield stress of 470 MPa or more and tensile strength of 570 MPa or more excellent in toughness of weld heat-affected zone

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20080902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees