JP2003013175A - Steel material superior in hydrogen-induced cracking resistance - Google Patents

Steel material superior in hydrogen-induced cracking resistance

Info

Publication number
JP2003013175A
JP2003013175A JP2001194355A JP2001194355A JP2003013175A JP 2003013175 A JP2003013175 A JP 2003013175A JP 2001194355 A JP2001194355 A JP 2001194355A JP 2001194355 A JP2001194355 A JP 2001194355A JP 2003013175 A JP2003013175 A JP 2003013175A
Authority
JP
Japan
Prior art keywords
steel
concentration
less
plate thickness
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001194355A
Other languages
Japanese (ja)
Other versions
JP3846233B2 (en
Inventor
Takahiro Kushida
隆弘 櫛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001194355A priority Critical patent/JP3846233B2/en
Publication of JP2003013175A publication Critical patent/JP2003013175A/en
Application granted granted Critical
Publication of JP3846233B2 publication Critical patent/JP3846233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high strength steel material superior in HIC(hydrogen induced cracking) resistance consisting of an inexpensive high-Mn steel used for linepipes, a cargo tanks, and pressure vessels, towers and tanks for petroleum refining. SOLUTION: The objective steel material has average Mn concentration lower in the central part of the plate thickness than in the whole steel, and maximum Mn concentration at the central part of the plate thickness, of 2.9 mass% or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、硫化水素を含む原
油や天然ガス等の輸送に使用されるラインパイプやカー
ゴタンク、あるいは石油精製の圧力容器や搭槽類用とし
て好適な、耐水素誘起割れ性に優れる鋼材に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to hydrogen-proof induction suitable for line pipes and cargo tanks used for transporting crude oil and natural gas containing hydrogen sulfide, or for pressure vessels and tanks for petroleum refining. The present invention relates to a steel material having excellent crackability.

【0002】[0002]

【従来の技術】硫化水素を含む原油や天然ガス等の輸送
に使用されるラインパイプやカーゴタンク、あるいは石
油精製の圧力容器や搭槽類として用いられる鋼材では、
しばしば水素誘起割れ(以降、HICと称する)が問題
となる。HICとは、硫化水素を含む環境で鋼材が使用
されて腐食したときに、鋼中に侵入した水素によって引
き起こされる割れのことである。
2. Description of the Related Art Line pipes and cargo tanks used for transporting crude oil and natural gas containing hydrogen sulfide, or steel materials used as pressure vessels and tanks for oil refining,
Hydrogen induced cracking (hereinafter referred to as HIC) is often a problem. HIC is a crack caused by hydrogen that has penetrated into steel when a steel material is used and corroded in an environment containing hydrogen sulfide.

【0003】連続鋳造スラブから製造される鋼材、特に
鋼板では、板厚中心部の正偏析帯で、HIC感受性が高
い。その理由は、正偏析帯においては、特にMnおよび
P濃度が母材よりも高くなり、その結果として正偏析帯
は母材よりも硬くなりやすいからである。したがって、
従来の耐水素誘起割れ性(以降、耐HIC性と称する)
に優れる鋼材は、正偏析帯の硬さをHICが発生しない
レベルまで抑えた、偏析しにくい組成、すなわち、低C
−低Mn系を基本としたものである。
Steel materials manufactured from continuous cast slabs, particularly steel sheets, have a high HIC sensitivity in the positive segregation zone at the center of the plate thickness. The reason is that in the positive segregation zone, the Mn and P concentrations are particularly higher than in the base material, and as a result, the positive segregation zone tends to be harder than the base material. Therefore,
Conventional hydrogen-induced cracking resistance (hereinafter referred to as HIC resistance)
A steel material excellent in segregation has a composition in which the hardness of the positive segregation zone is suppressed to a level at which HIC does not occur and segregation is difficult, that is, low C
-Based on low Mn system.

【0004】たとえば、特開平5−271766号公報
には、連続鋳造スラブの中心偏析を改善するため、低C
−低Mn−Nb−微量Ti添加のベース鋼に、それぞれ
0.3%以下のCr、Moを複合添加して制御圧延後、
加速冷却する方法が示されている。また、特開平11−
302776号公報には、低C−低Mn−Nb−Ti系
鋼のS、Mg、CaおよびOの含有量を厳格に制限して
制御圧延した後、加速冷却する方法が示されている。
For example, Japanese Laid-Open Patent Publication No. 5-271766 discloses a low C content in order to improve center segregation of a continuously cast slab.
-Low Mn-Nb-To each of the base steels added with a small amount of Ti, 0.3% or less of Cr and Mo are added together, and after controlled rolling,
A method of accelerated cooling is shown. In addition, JP-A-11-
Japanese Patent No. 302776 discloses a method in which the contents of S, Mg, Ca and O of a low C-low Mn-Nb-Ti steel are strictly limited and controlled rolling is performed, followed by accelerated cooling.

【0005】しかし、上記の両公報に示されている方法
では、いずれも、安価に高強度を得やすい元素であるM
nの上限を制限せざるを得ないという問題があった。具
体的には、前者の公報に示される鋼のMn含有量の上限
は1.4%であり、後者の公報に示される鋼のMn含有
量の上限は1.5%である。したがって、Mn含有量の
上限を規定するのに代えて高価なCrやMoを添加した
り、複雑なS、Mg、CaおよびOの含有量の制御をお
こなう必要があるのである。すなわち、これら従来の発
明には、安価な高Mn鋼からなる耐HIC性に優れた鋼
材を得るという技術的思想は全くない。
However, in the methods disclosed in both of the above publications, M is an element which easily obtains high strength at low cost.
There was a problem that the upper limit of n had to be limited. Specifically, the upper limit of Mn content of steel shown in the former publication is 1.4%, and the upper limit of Mn content of steel shown in the latter publication is 1.5%. Therefore, instead of defining the upper limit of the Mn content, it is necessary to add expensive Cr or Mo or to control the complex contents of S, Mg, Ca and O. That is, these conventional inventions have no technical idea of obtaining a steel material which is made of an inexpensive high Mn steel and has excellent HIC resistance.

【0006】なお、特開平6−220577号公報に
は、偏析部のMn濃度を鋼中平均Mn濃度の1.20倍
以下に規制したMn含有量の上限が2.5%の耐HIC
性に優れた高張力鋼板が示されている。しかし、そこに
示されている高張力鋼板は、必須成分として高価なC
u、Niを多量に含むので、コスト高につくという欠点
を有している。また、この公報には、高価なCu、Ni
を含まない安価な高Mn鋼の耐HIC性を向上させると
いう技術的思想は全く示されていない。
[0006] Japanese Unexamined Patent Publication (Kokai) No. 6-220577 discloses that HIC resistance in which the upper limit of the Mn content is 2.5% in which the Mn concentration in the segregated portion is regulated to 1.20 times or less the average Mn concentration in steel.
A high-strength steel sheet having excellent properties is shown. However, the high-strength steel sheet shown there is expensive C as an essential component.
Since it contains a large amount of u and Ni, it has a drawback of high cost. In addition, this publication describes expensive Cu and Ni.
No technical idea has been shown to improve the HIC resistance of an inexpensive high Mn steel containing no.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、硫化
水素を含む原油や天然ガス等の輸送に使用されるライン
パイプやカーゴタンク、あるいは石油精製の圧力容器や
搭槽類として用いられる鋼材であって、素材の鋼が安価
な高Mn鋼であっても良好な耐HIC性を発揮する高強
度鋼材を提供することにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a steel product used as a line pipe or a cargo tank used for transporting crude oil or natural gas containing hydrogen sulfide, or as a pressure vessel or tank for petroleum refining. It is an object of the present invention to provide a high-strength steel material that exhibits good HIC resistance even if the material steel is an inexpensive high Mn steel.

【0008】[0008]

【課題を解決するための手段】本発明の要旨は、次の耐
水素誘起割れ性に優れた鋼材にある。
The gist of the present invention resides in the following steel material having excellent resistance to hydrogen-induced cracking.

【0009】板厚中心部の平均Mn濃度が鋼中平均Mn
濃度よりも低く、かつ、板厚中心部における最大Mn濃
度が2.9質量%以下である耐水素誘起割れ性に優れた
鋼材。
The average Mn concentration in the central part of the plate thickness is the average Mn in steel.
A steel material having a hydrogen-induced cracking resistance that is lower than the concentration and has a maximum Mn concentration of 2.9% by mass or less in the central portion of the plate thickness.

【0010】上記本発明の鋼材は、板厚中心部の平均M
n濃度が鋼中平均Mn濃度の0.95倍以下であること
が望ましく、この場合には耐HIC性が一段と向上す
る。
The above-mentioned steel material of the present invention has an average M of the plate thickness central portion.
It is desirable that the n concentration is 0.95 times or less of the average Mn concentration in the steel, and in this case, the HIC resistance is further improved.

【0011】また、上記本発明の鋼材は、化学組成が、
質量%で、C:0.01〜0.1%、Si:0.01〜
0.5%、Mn:0.8〜2%、P:0.025%以
下、S:0.002%以下、Ca:0.0005〜0.
005%、Ti:0.005〜0.05%、Nb:0.
005〜0.1%、sol.Al:0.005〜0.05
%、N:0.01%以下を含み、残部Feおよび不純物
であることが望ましく、この場合にはラインパイプや圧
力容器用として好適である。
Further, the above steel material of the present invention has a chemical composition
% By mass, C: 0.01 to 0.1%, Si: 0.01 to
0.5%, Mn: 0.8 to 2%, P: 0.025% or less, S: 0.002% or less, Ca: 0.0005 to 0.
005%, Ti: 0.005 to 0.05%, Nb: 0.
005-0.1%, sol.Al: 0.005-0.05
%, N: 0.01% or less, and the balance is preferably Fe and impurities. In this case, it is suitable for a line pipe or a pressure vessel.

【0012】本発明の鋼材は、Feの一部に代えて、
V:0.2%以下、Cu:0.5%以下、Ni:0.5
%以下、Cr:3%以下、Mo:1.5%以下および
B:0.002%以下のうちの1種以上を含むものであ
ってもよい。
In the steel material of the present invention, instead of part of Fe,
V: 0.2% or less, Cu: 0.5% or less, Ni: 0.5
% Or less, Cr: 3% or less, Mo: 1.5% or less, and B: 0.002% or less may be included.

【0013】[0013]

【発明の実施の形態】以下、本発明の鋼材を上記のよう
に定めた理由について鋼板を例にとって詳細に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the reason why the steel material of the present invention is determined as described above will be described in detail by taking a steel sheet as an example.

【0014】従来の鋼板では、板厚中心部における合金
元素の濃度は、図1に示すような濃度分布を示す。そし
て、板厚中心部の偏析部とそれ以外の部分との合金元素
の濃度比(偏析度)は、合金元素の種類とその濃度に依
存する。
In the conventional steel sheet, the concentration of the alloying element in the central portion of the sheet thickness has a concentration distribution as shown in FIG. Then, the concentration ratio (segregation degree) of the alloy element between the segregated portion at the center of the plate thickness and the other portion depends on the type of the alloy element and its concentration.

【0015】たとえば、図1に示すMnは、前記の用途
用鋼において使用される種々の合金元素のうちでは最も
偏析度の高い合金元素の1つであり、鋼のMn濃度とC
濃度を高くすればするほど、その偏析度は上昇する。し
たがって、耐HIC性に優れる鋼板を得るには、従来は
前述したように、偏析しにくい低C−低Mn系とする以
外になかった。
For example, Mn shown in FIG. 1 is one of the alloy elements with the highest degree of segregation among the various alloy elements used in the above-mentioned steel for applications, and the Mn concentration and C
The higher the concentration, the higher the degree of segregation. Therefore, in order to obtain a steel sheet having excellent HIC resistance, as described above, conventionally, there was no choice but to use a low C-low Mn system that is difficult to segregate.

【0016】しかしながら、もし、板厚中心部の合金元
素の濃度自体が母材部の濃度よりも低い、すなわち、図
2に示すように、板厚中心部がマクロ(巨視)的に負偏
析になっていれば、その負偏析帯の中でミクロ(微視)
的に正偏析帯が生じていたとしても、負偏析帯の合金元
素の濃度が低いので偏析度自体が低下し、その正偏析帯
の合金元素濃度の絶対値が高くならないと予想される。
However, if the concentration of the alloying element in the center of the plate thickness is lower than the concentration of the base metal, that is, as shown in FIG. 2, the center of the plate has a macro (macroscopic) negative segregation. If it is, it is micro (microscopic) in the negative segregation zone.
Even if a positive segregation zone is generated, it is expected that the degree of segregation itself will decrease due to the low concentration of alloying elements in the negative segregation zone, and the absolute value of the concentration of alloying elements in the positive segregation zone will not increase.

【0017】また、日本刀が折れにくいのは、硬い芯金
が軟らかい巻金で覆われているからであり、これと同様
に、硬い正偏析帯が軟らかい負偏析帯で覆われている鋼
板では、硬さのわりには割れにくいことが期待される。
つまり、結果として、板厚中心偏析部の耐HIC性が従
来は芳しくなかった高Mn鋼も、耐HIC性が改善され
ることが期待される。
The reason why the Japanese sword is hard to break is that the hard cored bar is covered with the soft winding metal. Similarly, in the steel plate in which the hard positive segregation band is covered with the soft negative segregation band. However, it is expected that it is hard to break because of its hardness.
That is, as a result, it is expected that the HIC resistance of the high Mn steel in which the HIC resistance of the plate thickness center segregation portion was not good in the past is also improved.

【0018】そこで、本発明者は、従来は良好な耐HI
C性を確保することが困難であった高Mn鋼を用いて、
板厚中心部をマクロ的に負偏析として、その負偏析帯で
残存する正偏析部を覆うようにすることで、耐HIC性
が改善されるかどうかを実験によって検証した。
Therefore, the inventor of the present invention has hitherto been able to obtain a good HI resistance.
Using high Mn steel, which was difficult to secure C property,
It was verified by experiments whether the HIC resistance is improved by macroscopically negatively segregating the center part of the plate thickness and covering the remaining positive segregation part in the negative segregation zone.

【0019】その結果、板厚中心部の平均Mn濃度が鋼
中平均Mn濃度よりも低く、かつ、板厚中心部における
最大Mn濃度が2.9質量%以下であれば、鋼中平均M
n濃度が1.5質量%を超える高Mn鋼よりなる鋼材で
も良好な耐HIC性が確保されることを知見し、本発明
を完成させた。
As a result, if the average Mn concentration in the central portion of the plate thickness is lower than the average Mn concentration in the steel and the maximum Mn concentration in the central portion of the plate thickness is 2.9 mass% or less, the average M in the steel is M.
The inventors have found that good HIC resistance can be ensured even with a steel material made of high Mn steel having an n concentration of more than 1.5% by mass, and have completed the present invention.

【0020】さらに、上記本発明の鋼材は、連続鋳造に
よるスラブ製造時の凝固末期に圧下を加えることにより
容易に製造可能である。具体的に説明すると、例えば、
メニスカスからの離間距離が3m程度の位置において一
旦スラブ厚にして20mm程度バルジングさせた後、メ
ニスカスからの離間距離が12mの位置から17mの位
置までの間にかけてスラブ厚にして10〜20mm程度
の圧下を加えることにより容易に得ることができる。
Further, the above-mentioned steel material of the present invention can be easily manufactured by applying reduction at the end of solidification during slab manufacturing by continuous casting. More specifically, for example,
At a position where the distance from the meniscus is about 3 m, the slab thickness is once changed to about 20 mm and bulging is performed, and then a slab thickness is reduced to about 10 to 20 mm from a position where the distance from the meniscus is 12 m to 17 m. Can be easily obtained by adding.

【0021】板厚中心部における最大Mn濃度:2.9
%以下後述する実施例からも明らかなように、板厚中心
部における最大Mn濃度が2.9%を超えると、耐HI
C性が不芳となる。このため、板厚中心部における最大
Mn濃度は2.9%以下と定めた。なお、好ましくは
2.4%以下であり、この場合にはHICは全く発生し
ない。
Maximum Mn concentration in the center of plate thickness: 2.9
% As will be apparent from the examples described below, when the maximum Mn concentration in the central part of the plate thickness exceeds 2.9%, the HI resistance is high.
C property becomes unsatisfactory. Therefore, the maximum Mn concentration in the central part of the plate thickness is set to 2.9% or less. Incidentally, it is preferably 2.4% or less, and in this case, HIC does not occur at all.

【0022】板厚中心部における平均Mn濃度:鋼中平
均Mn濃度よりも低いこと後述する実施例からも明らか
なように、板厚中心部における最大Mn濃度が2.9%
以下、もしくは好ましい2.4%以下であっても、板厚
中心部における平均Mn濃度が鋼中平均Mn濃度よりも
高いと、耐HIC性が不芳となる。このため、板厚中心
部における平均Mn濃度は鋼中平均Mn濃度よりも低い
ことと定めた。
Average Mn Concentration in Plate Thickness Center: Lower than Average Mn Concentration in Steel As will be apparent from Examples described later, the maximum Mn concentration in the plate thickness center is 2.9%.
If the average Mn concentration in the central portion of the plate thickness is higher than the average Mn concentration in the steel, the HIC resistance becomes poor, even if it is less than or equal to 2.4%, which is preferable. Therefore, it was determined that the average Mn concentration in the central portion of the plate thickness is lower than the average Mn concentration in steel.

【0023】なお、板厚中心部における平均Mn濃度が
鋼中平均Mn濃度よりも低いとは、板厚中心部が安定し
て負偏析となっているという意味であり、板厚中心部に
おける平均Mn濃度は鋼中平均Mn濃度の0.95倍以
下であることが望ましい。
The fact that the average Mn concentration in the center of the plate thickness is lower than the average Mn concentration in the steel means that the center of the plate thickness is stably negatively segregated. The Mn concentration is preferably 0.95 times or less the average Mn concentration in steel.

【0024】ここで、板厚中心部とは、最終製品である
鋼板の板厚中心から板厚方向両側にそれぞれ板厚の1/
20ずつ、すなわち厚み中心部の板厚の1/10の領域
をいう。
Here, the plate thickness center portion means 1 / th of the plate thickness on both sides in the plate thickness direction from the plate thickness center of the final product steel plate.
It is 20 each, that is, a region of 1/10 of the plate thickness at the center of the thickness.

【0025】また、板厚中心部の平均Mn濃度とは、上
記に記載定義した板厚中心部の領域のMn濃度の平均値
で、MA(マッピングアナライザー)やEPMAなどを
用いて測定される値のことであり、鋼中平均Mn濃度と
は、鋼全体の平均Mn濃度のことであり、レードル値に
等しい。
The average Mn concentration in the plate thickness center is the average value of Mn concentration in the plate thickness center region defined above, and is a value measured using MA (mapping analyzer) or EPMA. The average Mn concentration in the steel means the average Mn concentration of the entire steel and is equal to the ladle value.

【0026】本発明の鋼材は、板厚中心部の平均Mn濃
度が鋼中平均Mn濃度よりも低く、かつ、板厚中心部に
おける最大Mn濃度が2.9質量%以下であればよく、
鋼材の化学組成に特別な制限はない。しかし、ラインパ
イプや圧力容器用として望ましい本発明になる鋼材の化
学組成を例示すれば、次のとおりである。なお、以下の
説明中における「%」は、特に断らない限り、「質量
%」を意味する。
In the steel material of the present invention, the average Mn concentration in the central portion of the plate thickness is lower than the average Mn concentration in the steel, and the maximum Mn concentration in the central portion of the plate thickness is 2.9 mass% or less,
There is no particular limitation on the chemical composition of steel. However, the chemical composition of the steel material according to the present invention which is desirable for line pipes and pressure vessels is as follows. In addition, "%" in the following description means "mass%" unless otherwise specified.

【0027】C:0.01〜0.1% Cには、鋼材の強度を安定して確保する作用がある。し
かし、その含有量が0.01%を下回ると強度確保が困
難となる。一方、0.1%を超えて含有させると連続鋳
造し難い包晶域となる。したがって、C含有量は0.0
1〜0.1%とするのが望ましい。より望ましい範囲は
0.03〜0.09%である。
C: 0.01 to 0.1% C has a function of stably securing the strength of the steel material. However, if the content is less than 0.01%, it becomes difficult to secure the strength. On the other hand, if the content exceeds 0.1%, the peritectic region becomes difficult to continuously cast. Therefore, the C content is 0.0
It is desirable to be 1 to 0.1%. A more desirable range is 0.03 to 0.09%.

【0028】Si:0.01〜0.5% Siは、脱酸剤として必要である。しかし、その含有量
が0.01%を下回ると充分な脱酸効果を確保できな
い。一方、0.5%を超えて含有させると靱性が低下す
る。したがって、Si含有量は0.01〜0.5%とす
るのが望ましい。より望ましい範囲は0.05〜0.3
5%である。
Si: 0.01 to 0.5% Si is necessary as a deoxidizing agent. However, if the content is less than 0.01%, a sufficient deoxidizing effect cannot be secured. On the other hand, if the content exceeds 0.5%, the toughness decreases. Therefore, it is desirable that the Si content is 0.01 to 0.5%. More desirable range is 0.05 to 0.3
5%.

【0029】Mn:0.8〜2% Mnには、鋼材の強度を安定して確保する作用がある。
また、Mnは、比較的安価な元素でもある。しかし、そ
の含有量が0.8%を下回ると安価に強度を確保するの
が困難となる。一方、2%を超えて含有させると、板厚
中央部における負偏析帯の中の正偏析帯のMn濃度を、
耐HIC性が良好な2.9%以下に制御するのが困難と
なり、湿潤HS 環境下でHICを起こしやすくな
る。したがって、Mn含有量は0.8〜2%とするのが
望ましい。より望ましい範囲は1.2〜1.8%であ
る。
Mn: 0.8-2% Mn has a function of stably securing the strength of the steel material.
Mn is also a relatively inexpensive element. However, if the content is less than 0.8%, it becomes difficult to secure the strength at low cost. On the other hand, when the content exceeds 2%, the Mn concentration in the positive segregation zone in the negative segregation zone in the central part of the plate thickness is
It becomes difficult to control the HIC resistance to 2.9% or less, which is favorable, and HIC is likely to occur in a wet H 2 S environment. Therefore, the Mn content is preferably 0.8 to 2%. A more desirable range is 1.2 to 1.8%.

【0030】P:0.025%以下 Pは、不純物元素で、上記のMnと同様に、板厚中心部
において正偏析しやすく、結果として正偏析部を硬化さ
せ、HICを発生しやすくする。このため、P含有量は
低ければ低いほど望ましいが、過度な低減はコスト上昇
を招く。しかし、その含有量が0.025%までであれ
ば特に問題ない。望ましい上限は0.015%である。
P: 0.025% or less P is an impurity element, and like the above Mn, positive segregation is likely to occur in the central portion of the plate thickness, and as a result, the positive segregation portion is hardened and HIC is likely to occur. Therefore, the lower the P content is, the more preferable it is, but excessive reduction causes an increase in cost. However, if the content is up to 0.025%, there is no particular problem. A desirable upper limit is 0.015%.

【0031】S:0.002%以下 Sは、上記のPと同様の不純物元素で、その含有量が
0.002%を超えると、下記のCa添加によって硫化
物の形態制御をおこなってもMnSが残存して耐HIC
性が損なわれる。したがって、S含有量は0.002%
以下とするのが望ましい。より望ましい上限は0.00
1%以下である。なお、S含有量は低ければ低いほどよ
い。
S: 0.002% or less S is an impurity element similar to the above P, and if the content exceeds 0.002%, MnS will be obtained even if the sulfide morphology is controlled by adding Ca as described below. Remains and HIC resistance
Sex is impaired. Therefore, the S content is 0.002%
The following is preferable. A more desirable upper limit is 0.00
It is 1% or less. The lower the S content, the better.

【0032】Ca:0.0005〜0.005% Caには、硫化物の形態を制御する作用があり、HIC
の起点となるMnSの生成を防ぐ。しかし、0.000
5%未満の含有量では、硫化物の形態制御効果が乏し
く、0.005%を超えて含有させると、硫化物の形態
制御効果が飽和するばかりか、過剰のCa介在物が靱性
および耐HIC性を損ねる。したがって、Ca含有量は
0.0005〜0.005%とするのが望ましい。より
望ましい範囲は0.001〜0.003%である。
Ca: 0.0005 to 0.005% Ca has the action of controlling the morphology of sulfides, and HIC
Of MnS which is the starting point of But 0.000
If the content is less than 5%, the sulfide morphology control effect is poor, and if the content exceeds 0.005%, not only the sulfide morphology control effect is saturated, but also excess Ca inclusions cause toughness and HIC resistance. Spoil the sex. Therefore, the Ca content is preferably 0.0005 to 0.005%. A more desirable range is 0.001 to 0.003%.

【0033】Ti:0.005〜0.05% Tiは、鋼に含まれる不純物元素のNをTiNとして固
定し、フリーNによる靱性低下を防ぐとともに、TiN
がスラブ加熱時のオーステナイト粒の成長を抑制して細
粒化を促進し、靱性を向上させる作用がある。しかし、
その含有量が0.005%未満では前記の効果が得られ
ず、0.05%を超えて含有させるとかえって靭性が低
下する。したがって、Ti含有量は0.005〜0.0
5%とするのが望ましい。より望ましい範囲は0.01
〜0.03%であり、フリーNによる靱性低下を防ぐ観
点からはTi/Nが3.4程度になるようにTiを含有
させるのが望ましい。
Ti: 0.005 to 0.05% Ti fixes the impurity element N contained in the steel as TiN, prevents the toughness from decreasing due to free N, and
Has the effect of suppressing the growth of austenite grains during slab heating, promoting grain refinement, and improving toughness. But,
If the content is less than 0.005%, the above effect cannot be obtained, and if it exceeds 0.05%, the toughness is rather lowered. Therefore, the Ti content is 0.005-0.0.
5% is preferable. More desirable range is 0.01
Is 0.03%, and from the viewpoint of preventing the toughness from being deteriorated by free N, it is desirable to add Ti so that Ti / N is about 3.4.

【0034】Nb:0.005〜0.1% Nbには、炭化物析出によって鋼を細粒化して靭性を向
上させる作用がある。しかし、その含有量が0.005
%未満では前記の効果が得られず、0.1%を超えて含
有させると溶接部の靭性低下を招く。したがって、Nb
含有量は0.005〜0.1%とするのが望ましい。よ
り望ましい範囲は0.01〜0.05%である。
Nb: 0.005 to 0.1% Nb has the function of refining the steel by carbide precipitation and improving the toughness. However, its content is 0.005
If it is less than 0.1%, the above effect cannot be obtained, and if it exceeds 0.1%, the toughness of the welded portion is lowered. Therefore, Nb
The content is preferably 0.005 to 0.1%. A more desirable range is 0.01 to 0.05%.

【0035】sol.Al:0.005〜0.05% Alは、脱酸剤として必要である。しかし、その含有量
がsol.Al含有量で0.005%を下回ると充分な脱酸
効果を確保できない。一方、0.05%を超えて含有さ
せると鋼材の清浄性および靱性が低下する。したがっ
て、sol.Al含有量は0.005〜0.05%とするの
が望ましい。より望ましい範囲は0.01〜0.04%
である。
Sol.Al: 0.005-0.05% Al is necessary as a deoxidizing agent. However, if the sol.Al content is less than 0.005%, a sufficient deoxidizing effect cannot be secured. On the other hand, if the content exceeds 0.05%, the cleanliness and toughness of the steel material deteriorate. Therefore, it is desirable that the sol.Al content be 0.005 to 0.05%. More desirable range is 0.01 to 0.04%
Is.

【0036】N:0.01%以下 Nは、上記のPおよびSと同様の不純物元素で、その含
有量が0.01%を超えると、前記のTiによりNをT
iNとして固定したとしても母材靱性が低下するように
なる。したがって、N含有量は0.01%以下とするの
が望ましい。より望ましい上限は0.005%である。
なお、N含有量は低ければ低いほどよい。
N: 0.01% or less N is an impurity element similar to the above P and S, and when the content exceeds 0.01%, N is converted to T by the above Ti.
Even if fixed as iN, the toughness of the base material is lowered. Therefore, the N content is preferably 0.01% or less. A more desirable upper limit is 0.005%.
The lower the N content, the better.

【0037】ラインパイプや圧力容器用として望ましい
鋼材の化学組成としては、上記を満たせば十分である
が、必要に応じて、以下に述べる元素のうちの1種以上
を積極的に添加含有させたものである方が好ましい。
The desirable chemical composition of the steel material for the line pipe and the pressure vessel is sufficient if the above is satisfied, but if necessary, one or more of the following elements are positively added and contained. It is preferable that it is one.

【0038】V:0.2%以下(積極添加時の好ましい
下限:0.01%) Vは、鋼を細粒化して靱性を向上させるほか、析出した
V炭化物かは鋼を強化する作用もあり、これらの効果は
不純物量レベルの含有量でも得られるが、0.01%以
上の含有量で顕著になる。したがって、前記の効果を得
たい場合には積極的に添加含有させてもよい。しかし、
0.2%を超えて含有させると、溶接部の靭性が低下す
る。このため、添加含有させる場合のV含有量は0.0
1〜0.2%とするのが望ましい。より望ましい範囲は
0.05〜0.1%である。
V: 0.2% or less (preferred lower limit at the time of positive addition: 0.01%) V not only improves the toughness by fine-graining the steel, but also the action of precipitated V carbides strengthens the steel. However, these effects can be obtained even when the content is at the impurity level, but become significant when the content is 0.01% or more. Therefore, if it is desired to obtain the above effect, it may be positively added and contained. But,
If the content of Ni exceeds 0.2%, the toughness of the welded portion is reduced. Therefore, the V content in the case of adding and containing is 0.0
It is desirable to be 1 to 0.2%. A more desirable range is 0.05 to 0.1%.

【0039】Cu:0.5%以下(積極添加時の好まし
い下限:0.05%) Ni:0.5%以下(積極添加時の好ましい下限:0.
05%) Cr:3%以下(積極添加時の好ましい下限:0.1
%) Mo:1.5%以下(積極添加時の好ましい下限:0.
05%) B:0.002%以下(積極添加時の好ましい下限:
0.0002%) これらの元素には、鋼の強度を向上させる作用があり、
この効果はいずれの元素も不純物量レベルの含有量でも
得られるが、Cu、NiおよびMoは0.05%以上、
Crは0.1%以上の含有量で顕著になる。したがっ
て、前記の効果を得たい場合には、これら元素のうちの
1種以上を積極的に添加含有させてもよい。しかし、C
uおよびNiは0.5%を超えて含有させると、その効
果が飽和するばかりか、Niについては高価な合金元素
でもあるのでコスト上昇を招く。また、Crは3%、M
oは1.5%を超えて含有させると、いずれも、溶接部
の靱性が低下するばかりか、Moについては高価な合金
元素でもあるのでコスト上昇を招く。このため、添加含
有させる場合のCuおよびNiの含有量はいずれも0.
005〜0.05%、Cr含有量は0.1〜3%、Mo
含有量は0.05〜1.5%とするのが望ましい。好ま
しいCuおよびNiの含有量範囲は0.1〜0.3%、
Crの含有量範囲は0.25〜2.5%、Moの含有量
範囲は0.1〜1.2%である。なお、Cu、Ni、C
rおよびNiには、耐食性をも向上させる作用もある。
Cu: 0.5% or less (preferred lower limit during positive addition: 0.05%) Ni: 0.5% or less (preferred lower limit during positive addition: 0.
05%) Cr: 3% or less (preferred lower limit during positive addition: 0.1
%) Mo: 1.5% or less (preferred lower limit during positive addition: 0.
05%) B: 0.002% or less (preferred lower limit during positive addition:
0.0002%) These elements have the effect of improving the strength of steel,
This effect can be obtained even when the content of each element is at the impurity level, but Cu, Ni and Mo are 0.05% or more,
Cr becomes remarkable when the content is 0.1% or more. Therefore, in order to obtain the above effect, one or more of these elements may be positively added and contained. But C
If u and Ni are contained in excess of 0.5%, not only the effect is saturated, but also Ni is an expensive alloy element, which causes a cost increase. Also, Cr is 3%, M
If the content of o exceeds 1.5%, not only does the toughness of the welded portion decrease, but also Mo is an expensive alloying element, which causes a cost increase. Therefore, the Cu and Ni contents when both are added and contained are both 0.
005-0.05%, Cr content 0.1-3%, Mo
The content is preferably 0.05 to 1.5%. A preferable Cu and Ni content range is 0.1 to 0.3%,
The Cr content range is 0.25 to 2.5%, and the Mo content range is 0.1 to 1.2%. In addition, Cu, Ni, C
r and Ni also have an effect of improving corrosion resistance.

【0040】次に、ラインパイプや圧力容器用として望
ましい本発明になる鋼材の連続鋳造によるスラブ製造後
における好ましい製造条件について説明する。
Next, preferable manufacturing conditions after manufacturing a slab by continuous casting of the steel material according to the present invention, which is desirable for line pipes and pressure vessels, will be described.

【0041】スラブの加熱温度:前述したように、偏析
度合が増した濃厚溶鋼を鋳片の軸心部から排出するため
に凝固の末期に圧下を加えて得られたスラブは、圧延や
鍛造等の熱間加工に先立ち加熱するが、その際の加熱温
度が1050℃を下回ると、スラブ中の炭化物が充分に
固溶せず、熱間加工後に所望の強度が得られないことが
ある。また、加熱温度が1250℃を上回ると、粗粒化
して靱性の低下を招くことがある。したがって、スラブ
の加熱温度は1050〜1250℃とするのが望まし
い。より望ましい範囲は1100〜1250℃である。
なお、熱間加工後に熱処理を実施する場合はこの限りで
はない。
Heating temperature of slab: As described above, the slab obtained by applying the reduction at the final stage of solidification in order to discharge the concentrated molten steel with the increased degree of segregation from the axial center of the slab is subjected to rolling, forging, etc. However, if the heating temperature at that time is lower than 1050 ° C., the carbides in the slab may not sufficiently form a solid solution, and the desired strength may not be obtained after hot working. If the heating temperature is higher than 1250 ° C, the particles may be coarsened and the toughness may be lowered. Therefore, it is desirable that the heating temperature of the slab is 1050 to 1250 ° C. A more desirable range is 1100 to 1250 ° C.
Note that this is not the case when heat treatment is performed after hot working.

【0042】熱間加工の仕上温度:最近は、製造コスト
低減の観点から、熱間加工(圧延)のままで所望の強
度、靱性が得られるように、鋼の化学組成と製造条件を
制御するのが一般的である。しかし、熱間加工(圧延)
の仕上温度が650℃を下回ると、鋼の変形抵抗が増大
して加工(圧延)が困難になり、900℃を超えると、
鋼の組織が充分微細化せず、所望の強度と靱性が圧延の
ままで得られないことがある。したがって、熱間加工
(圧延)の仕上温度は650〜900℃とするのが望ま
しい。より望ましい範囲は700〜850℃であり、熱
間加工後、以下に述べる加速冷却処理をおこなう場合に
おける好ましい仕上温度範囲はAr3〜850℃、より
好ましい範囲はAr3+30℃〜850℃である。
Finishing temperature of hot working: Recently, from the viewpoint of manufacturing cost reduction, the chemical composition and manufacturing conditions of steel are controlled so that desired strength and toughness can be obtained by hot working (rolling). Is common. However, hot working (rolling)
If the finishing temperature is less than 650 ° C, the deformation resistance of the steel increases, making it difficult to process (roll), and if it exceeds 900 ° C,
The structure of steel may not be sufficiently refined and desired strength and toughness may not be obtained as rolled. Therefore, the finishing temperature for hot working (rolling) is preferably 650 to 900 ° C. More preferred range is 700-850 ° C., after hot working, preferably a finishing temperature range when performing the accelerated cooling process described below A r3 to 850 ° C., and more preferred range is A r3 + 30 ℃ ~850 ℃ .

【0043】熱間加工後の加速冷却開始温度:最近は、
前述したように、熱間加工(圧延)のままで所望の強度
と靱性を得るにしても、より低コストの鋼組成で達成さ
れるように、熱間加工(圧延)後に水冷等の加速冷却を
おこなうのがより一般的である。しかし、加速冷却の開
始温度がAr3変態点−30℃を下回ると、その時点で
の残留オーステナイトが変態硬化して耐HIC性と耐S
SC性が損なわれることがある。したがって、加速冷却
の開始温度はAr3変態点−30℃以上とするのが望ま
しい。より望ましい下限は範囲はAr3変態点以上であ
る。
Accelerated cooling start temperature after hot working: Recently,
As mentioned above, even if the desired strength and toughness are obtained with hot working (rolling) as it is, accelerated cooling such as water cooling is performed after hot working (rolling) so as to achieve with a lower cost steel composition. It is more common to do However, when the accelerated cooling start temperature falls below the Ar3 transformation point −30 ° C., the retained austenite at that time undergoes transformation hardening and HIC resistance and S resistance.
SC property may be impaired. Therefore, it is desirable that the start temperature of the accelerated cooling is set to the Ar3 transformation point −30 ° C. or higher. A more desirable lower limit is in the range of the Ar 3 transformation point or higher.

【0044】加速冷却の冷却速度:板厚中心における冷
却速度が6℃/sを下回ると、加速冷却の効果がなく、
逆に、25℃/sを上回ると、鋼が硬化しすぎて耐HI
C性と耐SSC性が損なわれることがある。したがっ
て、加速冷却時の冷却速度は、板厚中心における冷却速
度で6〜25℃/sとするのが望ましい。より望ましい
範囲は10〜20℃/sである。
Cooling rate of accelerated cooling: When the cooling rate at the center of the plate thickness is lower than 6 ° C./s, the effect of accelerated cooling is not obtained,
On the other hand, if the temperature exceeds 25 ° C / s, the steel will harden too much and the HI resistance
C property and SSC resistance may be impaired. Therefore, the cooling rate at the time of accelerated cooling is preferably 6 to 25 ° C./s at the cooling rate at the center of the plate thickness. A more desirable range is 10 to 20 ° C / s.

【0045】加速冷却の停止温度:加速冷却の停止温度
が550℃を上回ると、加速冷却の効果がなく、逆に、
350℃を下回ると鋼が硬化しすぎて耐HIC性と耐S
SC性が損なわれることがある。したがって、加速冷却
の停止温度は550〜350℃とするのが望ましい。よ
り望ましい範囲は550〜400℃である。
Accelerated cooling stop temperature: When the accelerated cooling stop temperature exceeds 550 ° C., there is no effect of accelerated cooling, and conversely,
If the temperature is lower than 350 ° C, the steel will harden too much and HIC resistance and S resistance
SC property may be impaired. Therefore, the stop temperature of the accelerated cooling is preferably set to 550 to 350 ° C. A more desirable range is 550 to 400 ° C.

【0046】熱間加工後の熱処理:熱間加工後の熱処理
は必ずしもおこなう必要はないが、焼入れ−焼戻し処理
や焼ならし処理等の熱処理をおこなってもよく、この場
合には靱性が一段と向上し、所望の強度が安定して得ら
れる。ただし、その際の再加熱温度が850℃を下回る
と、鋼中の炭化物が充分に固溶せず、所望の強度が得ら
れないことがあり、1100℃を上回ると、粗粒化して
靱性が低下することがある。したがって、熱間加工後に
熱処理をおこなう場合の再加熱温度は、850〜110
0℃とするのが望ましい。より望ましい範囲は900〜
1050℃である。なお、熱間加工後の熱処理は、一工
程余計にかけることになり、その分だけ製造コストが上
昇するので、製造コストの低減を図る観点からは推奨で
きない。
Heat treatment after hot working: The heat treatment after hot working is not necessarily required, but heat treatment such as quenching-tempering treatment or normalizing treatment may be performed, in which case the toughness is further improved. The desired strength can be stably obtained. However, if the reheating temperature at that time is lower than 850 ° C., the carbides in the steel may not sufficiently form a solid solution and the desired strength may not be obtained. It may decrease. Therefore, the reheating temperature when performing heat treatment after hot working is 850 to 110.
It is desirable to set it to 0 ° C. A more desirable range is 900-
It is 1050 ° C. Note that the heat treatment after the hot working requires an extra process step, and the manufacturing cost increases accordingly. Therefore, it is not recommended from the viewpoint of reducing the manufacturing cost.

【0047】[0047]

【実施例】表1に示す化学組成を有する4種類の鋼を溶
製して連続鋳造により厚さ238mm、幅1800mm
のスラブにする際、メニスカスからの離間距離が3mの
位置においてスラブ厚を一旦20mmバルジングさた
後、表2に示す種々の条件で圧下を加えて中心部のMn
負偏析度合を種々に調整したスラブを得た。なお、比較
のために、一部のスラブにはバルジングおよび圧下を加
えなかった。
EXAMPLE Four kinds of steels having the chemical compositions shown in Table 1 were melted and continuously cast to have a thickness of 238 mm and a width of 1800 mm.
When the slab is made into a slab, the slab thickness is once bulged by 20 mm at a position where the distance from the meniscus is 3 m, and then the slab is pressed under various conditions shown in Table 2 to reduce the Mn of the central part.
Slabs with various degrees of negative segregation were obtained. For comparison, bulging and reduction were not applied to some slabs.

【0048】次いで、得られた各スラブの中心部から厚
みと幅の中心がスラブの中心に一致する厚さ150m
m、幅100mmの圧延用ブロックを切り出し、表2に
示す条件の熱間圧延を施した後、表2に示す条件の加速
冷却処理または大気放冷処理を施し、板厚中心部の平均
Mn偏析度合と最大Mn濃度が種々異なる板厚19.5
mm、幅110mmの鋼板とした。
Next, from the center of each obtained slab, a thickness of 150 m from which the center of thickness and width coincides with the center of the slab.
A block for rolling having a width of m and a width of 100 mm was cut out, subjected to hot rolling under the conditions shown in Table 2, and then subjected to accelerated cooling treatment or air cooling treatment under the conditions shown in Table 2 to obtain an average Mn segregation at the center of the plate thickness. Plate thickness 19.5 with various degrees and maximum Mn concentrations
mm and a width of 110 mm.

【0049】得られた各鋼板から、100mm×100
mmの全板厚試験片を採取し、NACE T0284に
規定されているHIC試験法に準拠し、5質量%NaC
l+0.5質量%CHOOH+1気圧HS飽和の温
度25℃のNACE TM0177溶液中に96時間浸
漬した。
From each of the obtained steel plates, 100 mm × 100
mm total plate thickness specimens were collected and in accordance with the HIC test method specified in NACE T0284, 5 mass% NaC
It was immersed in a NACE TM0177 solution at a temperature of 25 ° C. of 1 + 0.5 mass% CH 3 OOH + 1 atm H 2 S saturation for 96 hours.

【0050】HIC試験の評価は、浸漬後の試験片にお
けるHICによる割れの面積を超音波によるCスキャン
で測定して試験片全面積に占めるHICの割れ面積率
(CAR)を求め、CARが3%以下のものを耐HIC
性が良好、3%を超えるものを耐HIC性が不芳とし
た。
In the evaluation of the HIC test, the area of cracks due to HIC in the test piece after immersion was measured by C scanning with ultrasonic waves, and the crack area ratio (CAR) of HIC in the total area of the test piece was obtained. % Or less is HIC resistant
Good property, HIC resistance was unsatisfactory when it exceeded 3%.

【0051】なお、板厚中心部の平均Mn濃度と最大M
n濃度は、上記CAR測定後の試験片を切断して、その
板厚中心部、すなわち板厚中心から両側にそれぞれ1.
0mm、板幅中心から両側にそれぞれ20mmの領域の
Mn濃度をMA(マッピングアナライザー)を用いて2
0μmピッチで10万点測定し、各測定値の平均値を平
均Mn濃度、各測定値中の最大値を最大Mn濃度とし
た。
The average Mn concentration at the center of the plate thickness and the maximum M
For the n concentration, the test piece after the above-mentioned CAR measurement was cut, and the plate thickness center portion, that is, 1.
Using an MA (mapping analyzer), the Mn concentration in a region of 0 mm and 20 mm on each side from the center of the plate width is 2
100,000 points were measured at a pitch of 0 μm, the average value of each measured value was taken as the average Mn concentration, and the maximum value among the measured values was taken as the maximum Mn concentration.

【0052】以上の結果を、表2に、各鋼板の降伏強さ
YS(MPa)および引張強さTS(MPa)と併せて
示した。なお、降伏強さYSと引張強さTSは、各鋼板
から外径6mmの引張試験片を採取し、室温下で引張試
験をおこなって調べた値である。
The above results are shown in Table 2 together with the yield strength YS (MPa) and tensile strength TS (MPa) of each steel sheet. The yield strength YS and the tensile strength TS are values obtained by taking tensile test pieces having an outer diameter of 6 mm from each steel sheet and conducting a tensile test at room temperature.

【0053】表2に示す結果からわかるように、本発明
で規定する条件を満たす試番2〜8および試番13〜1
6の鋼板は、CARが0〜2.8%で、耐HIC性が良
好である。
As can be seen from the results shown in Table 2, trial numbers 2 to 8 and trial numbers 13 to 1 satisfying the conditions specified in the present invention.
The steel sheet of No. 6 has a CAR of 0 to 2.8% and good HIC resistance.

【0054】これに対し、板厚中心部の平均Mn濃度ま
たは板厚中心部の最大Mn濃度が本発明で規定する条件
を満たさない試番9〜12の鋼板は、CARが4.4〜
10.4%で、耐HIC性が不芳である。また、スラブ
の製造時に圧下を加えなかった試番1の鋼板は、板厚中
心部の最大Mn濃度は本発明で条件を満たすものの、板
厚中心部の平均Mn濃度が鋼中平均Mn濃度よりも高い
ため、CARが18.3%で、耐HIC性が不芳であ
る。
On the other hand, the steel sheets of trial Nos. 9 to 12 in which the average Mn concentration in the plate thickness center portion or the maximum Mn concentration in the plate thickness center portion do not satisfy the conditions specified in the present invention have CARs of 4.4 to 4.
At 10.4%, the HIC resistance is poor. Further, in the steel sheet of trial No. 1 in which reduction was not applied at the time of manufacturing the slab, the maximum Mn concentration in the central portion of the sheet thickness satisfies the condition of the present invention, but the average Mn concentration in the central portion of the sheet thickness Since it is also high, the CAR is 18.3% and the HIC resistance is poor.

【0055】[0055]

【表1】 [Table 1]

【表2】 [Table 2]

【発明の効果】本発明の鋼材は、Mn含有量が1.5%
を超える場合でも、安定して良好な耐HIC性を発揮す
る。このため、今後は益々需要が多くなる高強度鋼材を
安価な高Mn鋼で供給することができる。
The steel material of the present invention has a Mn content of 1.5%.
Even when it exceeds, it stably exhibits good HIC resistance. For this reason, high-strength steel materials, which will be in increasing demand in the future, can be supplied with inexpensive high-Mn steels.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の連続鋳造スラブより製造された鋼材(鋼
板)の板厚中心偏析部における合金元素(Mn)の濃度
分布状態を示す模式図である。
FIG. 1 is a schematic diagram showing a concentration distribution state of an alloy element (Mn) in a plate thickness center segregated portion of a steel material (steel sheet) manufactured by a conventional continuous casting slab.

【図2】本発明になる鋼材(鋼板)の板厚中心偏析部に
おける合金元素(Mn)の濃度分布状態を示す模式図で
ある。
FIG. 2 is a schematic view showing a concentration distribution state of an alloy element (Mn) in a plate thickness center segregated portion of a steel material (steel plate) according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/58 C22C 38/58 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 38/58 C22C 38/58

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】板厚中心部の平均Mn濃度が鋼中平均Mn
濃度よりも低く、かつ、板厚中心部における最大Mn濃
度が2.9質量%以下である耐水素誘起割れ性に優れた
鋼材。
1. The average Mn concentration in the central portion of the plate thickness is the average Mn in steel.
A steel material having a hydrogen-induced cracking resistance that is lower than the concentration and has a maximum Mn concentration of 2.9% by mass or less in the central portion of the plate thickness.
【請求項2】板厚中心部の平均Mn濃度が鋼中平均Mn
濃度の0.95倍以下である請求項1に記載の耐水素誘
起割れ性に優れた鋼材。
2. The average Mn concentration in the central portion of the plate thickness is the average Mn in steel.
The steel material having excellent resistance to hydrogen-induced cracking according to claim 1, having a concentration of 0.95 times or less.
【請求項3】鋼の化学組成が、質量%で、C:0.01
〜0.1%、Si:0.01〜0.5%、Mn:0.8
〜2%、P:0.025%以下、S:0.002%以
下、Ca:0.0005〜0.005%、Ti:0.0
05〜0.05%、Nb:0.005〜0.1%、sol.
Al:0.005〜0.05%、N:0.01%以下を
含み、残部Feおよび不純物である請求項1または2に
記載の耐水素誘起割れ性に優れた鋼材。
3. The chemical composition of steel in mass% is C: 0.01.
~ 0.1%, Si: 0.01-0.5%, Mn: 0.8
2%, P: 0.025% or less, S: 0.002% or less, Ca: 0.0005 to 0.005%, Ti: 0.0
05-0.05%, Nb: 0.005-0.1%, sol.
The steel material excellent in hydrogen-induced cracking resistance according to claim 1 or 2, comprising Al: 0.005 to 0.05% and N: 0.01% or less, and the balance being Fe and impurities.
【請求項4】Feの一部に代えて、質量%で、V:0.
2%以下を含む請求項3に記載の耐水素誘起割れ性に優
れた鋼材。
4. In place of a part of Fe, in mass%, V: 0.
The steel material excellent in hydrogen-induced cracking resistance according to claim 3, containing 2% or less.
【請求項5】Feの一部に代えて、質量%で、Cu:
0.5%以下、Ni:0.5%以下、Cr:3%以下、
Mo:1.5%以下およびB:0.002%以下のうち
の1種以上を含む請求項3または請求項4に記載の耐水
素誘起割れ性に優れた鋼材。
5. In place of a part of Fe, in mass%, Cu:
0.5% or less, Ni: 0.5% or less, Cr: 3% or less,
The steel material excellent in hydrogen-induced cracking resistance according to claim 3 or 4, containing at least one of Mo: 1.5% or less and B: 0.002% or less.
JP2001194355A 2001-06-27 2001-06-27 Steel with excellent resistance to hydrogen-induced cracking Expired - Fee Related JP3846233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001194355A JP3846233B2 (en) 2001-06-27 2001-06-27 Steel with excellent resistance to hydrogen-induced cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001194355A JP3846233B2 (en) 2001-06-27 2001-06-27 Steel with excellent resistance to hydrogen-induced cracking

Publications (2)

Publication Number Publication Date
JP2003013175A true JP2003013175A (en) 2003-01-15
JP3846233B2 JP3846233B2 (en) 2006-11-15

Family

ID=19032506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001194355A Expired - Fee Related JP3846233B2 (en) 2001-06-27 2001-06-27 Steel with excellent resistance to hydrogen-induced cracking

Country Status (1)

Country Link
JP (1) JP3846233B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075694A1 (en) 2004-02-04 2005-08-18 Sumitomo Metal Industries,Ltd. Steel product for line pipe excellent in resistance to hic and line pipe produced by using the steel product
JP2007197801A (en) * 2006-01-30 2007-08-09 Jfe Steel Kk Hot-rolled non-thermally refined bar steel having excellent toughness and manufacturing method therefor
JP2008007841A (en) * 2006-06-30 2008-01-17 Sumitomo Metal Ind Ltd Continuously cast ingot for thick steel plate, its manufacturing method, and thick steel plate
CN102605296A (en) * 2012-03-13 2012-07-25 宝山钢铁股份有限公司 Steel for nuclear pressure vessels and manufacturing method thereof
WO2013190750A1 (en) 2012-06-18 2013-12-27 Jfeスチール株式会社 Thick, high-strength, sour-resistant line pipe and method for producing same
WO2014010150A1 (en) 2012-07-09 2014-01-16 Jfeスチール株式会社 Thick-walled high-strength sour-resistant line pipe and method for producing same
US9130118B2 (en) 2012-01-18 2015-09-08 Seiko Epson Corporation Photoconductive antenna, terahertz wave generating device, camera, imaging device, and measuring device
WO2017111416A1 (en) * 2015-12-23 2017-06-29 주식회사 포스코 Steel material having excellent hydrogen induced cracking (hic) resistance for pressure vessel and manufacturing method therefor
KR20180053464A (en) 2016-11-11 2018-05-23 주식회사 포스코 Pressure vessel steel plate with excellent hydrogen induced cracking resistance and manufacturing method thereof
WO2019132465A1 (en) 2017-12-26 2019-07-04 주식회사 포스코 Steel material showing excellent hydrogen-induced cracking resistance and method for preparing same
KR20190078023A (en) 2017-12-26 2019-07-04 주식회사 포스코 Steel for pressure vessel having excellent resistance to hydrogen induced cracking and method of manufacturing the same
WO2020111858A1 (en) 2018-11-30 2020-06-04 주식회사 포스코 Steel plate for pressure vessel having excellent hydrogen-induced cracking resistance and method of manufacturing same
WO2020111628A1 (en) 2018-11-29 2020-06-04 주식회사 포스코 Steel material having excellent hydrogen induced cracking resistance, and manufacturing method therefor
WO2020111547A1 (en) 2018-11-30 2020-06-04 주식회사 포스코 Pressure vessel steel having excellent hydrogen induced cracking resistance, and manufacturing method therefor
KR20210080697A (en) 2019-12-20 2021-07-01 주식회사 포스코 Fitting part having excellent resistance to hydrogen induced cracking and manufacturing method for the same
KR20210080698A (en) 2019-12-20 2021-07-01 주식회사 포스코 Fitting part having excellent resistance to hydrogen induced cracking and manufacturing method for the same
US11578376B2 (en) 2016-12-23 2023-02-14 Posco Co., Ltd Steel for pressure vessels having excellent resistance to hydrogen induced cracking and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5824401B2 (en) 2012-03-30 2015-11-25 株式会社神戸製鋼所 Steel sheet with excellent resistance to hydrogen-induced cracking and method for producing the same

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075694A1 (en) 2004-02-04 2005-08-18 Sumitomo Metal Industries,Ltd. Steel product for line pipe excellent in resistance to hic and line pipe produced by using the steel product
US7648587B2 (en) 2004-02-04 2010-01-19 Sumitomo Metal Industries, Ltd. Steel product for use as line pipe having high HIC resistance and line pipe produced using such steel product
JP2007197801A (en) * 2006-01-30 2007-08-09 Jfe Steel Kk Hot-rolled non-thermally refined bar steel having excellent toughness and manufacturing method therefor
JP4589242B2 (en) * 2006-01-30 2010-12-01 Jfeスチール株式会社 Hot-rolled non-tempered steel bar excellent in toughness and method for producing the same
JP2008007841A (en) * 2006-06-30 2008-01-17 Sumitomo Metal Ind Ltd Continuously cast ingot for thick steel plate, its manufacturing method, and thick steel plate
US9130118B2 (en) 2012-01-18 2015-09-08 Seiko Epson Corporation Photoconductive antenna, terahertz wave generating device, camera, imaging device, and measuring device
US9349917B2 (en) 2012-01-18 2016-05-24 Seiko Epson Corporation Photoconductive antenna, terahertz wave generating device, camera, imaging device, and measuring device
CN102605296A (en) * 2012-03-13 2012-07-25 宝山钢铁股份有限公司 Steel for nuclear pressure vessels and manufacturing method thereof
WO2013190750A1 (en) 2012-06-18 2013-12-27 Jfeスチール株式会社 Thick, high-strength, sour-resistant line pipe and method for producing same
KR20150003322A (en) 2012-06-18 2015-01-08 제이에프이 스틸 가부시키가이샤 Thick, high-strength, sour-resistant line pipe and method for producing same
WO2014010150A1 (en) 2012-07-09 2014-01-16 Jfeスチール株式会社 Thick-walled high-strength sour-resistant line pipe and method for producing same
JP2019504210A (en) * 2015-12-23 2019-02-14 ポスコPosco Steel for pressure vessels excellent in resistance to hydrogen induced cracking (HIC) and method for producing the same
CN108368595A (en) * 2015-12-23 2018-08-03 株式会社Posco The excellent steels for pressure vessel use material of hydrogen-induced cracking resistance and its manufacturing method
WO2017111416A1 (en) * 2015-12-23 2017-06-29 주식회사 포스코 Steel material having excellent hydrogen induced cracking (hic) resistance for pressure vessel and manufacturing method therefor
US11155906B2 (en) 2016-11-11 2021-10-26 Posco Pressure vessel steel having excellent hydrogen induced cracking resistance, and manufacturing method therefor
KR20180053464A (en) 2016-11-11 2018-05-23 주식회사 포스코 Pressure vessel steel plate with excellent hydrogen induced cracking resistance and manufacturing method thereof
US11578376B2 (en) 2016-12-23 2023-02-14 Posco Co., Ltd Steel for pressure vessels having excellent resistance to hydrogen induced cracking and manufacturing method thereof
WO2019132465A1 (en) 2017-12-26 2019-07-04 주식회사 포스코 Steel material showing excellent hydrogen-induced cracking resistance and method for preparing same
KR20190077830A (en) 2017-12-26 2019-07-04 주식회사 포스코 Steel plate having excellent HIC resistance and manufacturing method for the same
KR20190078023A (en) 2017-12-26 2019-07-04 주식회사 포스코 Steel for pressure vessel having excellent resistance to hydrogen induced cracking and method of manufacturing the same
WO2019132478A1 (en) 2017-12-26 2019-07-04 주식회사 포스코 Steel material, for pressure vessel, showing excellent hydrogen-induced cracking resistance and method for preparing same
US11634785B2 (en) 2017-12-26 2023-04-25 Posco Co., Ltd Steel material showing excellent hydrogen-induced cracking resistance and method for preparing same
WO2020111628A1 (en) 2018-11-29 2020-06-04 주식회사 포스코 Steel material having excellent hydrogen induced cracking resistance, and manufacturing method therefor
KR20200065140A (en) 2018-11-29 2020-06-09 주식회사 포스코 Steel plate having excellent hic resistance and manufacturing method for thereof
KR20200066507A (en) 2018-11-30 2020-06-10 주식회사 포스코 Steel plate for pressure vessel having excellent hydrogen induced cracking resistance and method of manufacturing the same
KR20200066508A (en) 2018-11-30 2020-06-10 주식회사 포스코 Steel plate for pressure vessel having excellent hydrogen induced cracking resistance and method of manufacturing the same
WO2020111547A1 (en) 2018-11-30 2020-06-04 주식회사 포스코 Pressure vessel steel having excellent hydrogen induced cracking resistance, and manufacturing method therefor
WO2020111858A1 (en) 2018-11-30 2020-06-04 주식회사 포스코 Steel plate for pressure vessel having excellent hydrogen-induced cracking resistance and method of manufacturing same
KR20210080697A (en) 2019-12-20 2021-07-01 주식회사 포스코 Fitting part having excellent resistance to hydrogen induced cracking and manufacturing method for the same
KR20210080698A (en) 2019-12-20 2021-07-01 주식회사 포스코 Fitting part having excellent resistance to hydrogen induced cracking and manufacturing method for the same

Also Published As

Publication number Publication date
JP3846233B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
JP7201068B2 (en) Steel plate and its manufacturing method
JP3846233B2 (en) Steel with excellent resistance to hydrogen-induced cracking
WO1994022606A1 (en) Wear- and seizure-resistant roll for hot rolling
JP4363403B2 (en) Steel for line pipe excellent in HIC resistance and line pipe manufactured using the steel
JP7147960B2 (en) Steel plate and its manufacturing method
JP6212473B2 (en) Rolled material for high-strength spring and high-strength spring wire using the same
JP4751152B2 (en) Hot-dip galvanized high-strength steel sheet excellent in corrosion resistance and hole expansibility, alloyed hot-dip galvanized high-strength steel sheet, and methods for producing them
WO2015060311A1 (en) Hot-rolled steel sheet having excellent surface hardness after carburizing heat treatment and excellent drawability
JP3633515B2 (en) Hot-rolled steel sheet having excellent resistance to hydrogen-induced cracking and method for producing the same
CN112513307A (en) High Mn steel and method for producing same
JP5708349B2 (en) Steel with excellent weld heat affected zone toughness
JP3303647B2 (en) Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance
JP6509187B2 (en) High strength cold rolled steel sheet excellent in bending workability and manufacturing method thereof
WO2019180499A1 (en) A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof
JP2007284712A (en) Method for producing thick high-strength steel plate excellent in toughness and thick high-strength steel plate excellent in toughness
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP7192819B2 (en) High-strength steel plate and its manufacturing method
JP7192818B2 (en) High-strength steel plate and its manufacturing method
JP7230454B2 (en) Steel materials for seamless steel pipes
JPH06256894A (en) High strength line pipe excellent in hydrogen induced cracking resistance
JP7332692B2 (en) High-strength structural steel and its manufacturing method
JPH08232042A (en) Corrosion resisting steel for resistance welded tube
JP7429782B2 (en) Structural steel plate with excellent seawater resistance and manufacturing method thereof
JP4419572B2 (en) Method for producing a composite steel sheet having excellent fatigue properties

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent or registration of utility model

Ref document number: 3846233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees