JPH06256894A - High strength line pipe excellent in hydrogen induced cracking resistance - Google Patents

High strength line pipe excellent in hydrogen induced cracking resistance

Info

Publication number
JPH06256894A
JPH06256894A JP4686893A JP4686893A JPH06256894A JP H06256894 A JPH06256894 A JP H06256894A JP 4686893 A JP4686893 A JP 4686893A JP 4686893 A JP4686893 A JP 4686893A JP H06256894 A JPH06256894 A JP H06256894A
Authority
JP
Japan
Prior art keywords
hydrogen
induced cracking
less
segregation
effective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4686893A
Other languages
Japanese (ja)
Inventor
Akihiko Takahashi
明彦 高橋
Hiroyuki Ogawa
洋之 小川
Takuya Hara
卓也 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4686893A priority Critical patent/JPH06256894A/en
Publication of JPH06256894A publication Critical patent/JPH06256894A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of hydrogen induced cracking on a line pipe even in an NACE environment by specifying the compsn. and furthermore limiting the size and P concn. of the spot segregated parts of Mn and the effective Ca content required for the control of the form of sulfides. CONSTITUTION:This pipe line contains, by weight, 0.03 to 0.09% C, 0.1 to 0.6% Si, 1.1 to 1.5% Mn, <=0.015% P, <=0.0010% S, 0.010 to 0.050% Nb, 0.005 to 0.05% Al and 0.002 to 0.004% Ca and contains one or more kinds among 0.005 to 0.025% Ti, 0.01 to 0.1% V, respectively 1.0% of Ni, Cu and Cr and <=0.5% Mo, and the balance iron. Then, the size of Mn segregated spots, the areas in which the concn. of Mn is >=1.32 is regulated to <500mum, the concn. of P in the segregated party is regulated to <0.035 and the effective Ca ratio by the formula: effective Ca ratio [(%Ca) (1-98(%O))}/(%S) is regulated to >=1.7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、湿潤な硫化水素環境に
おける耐水素誘起割れ性を有するAPIグレードX60
からX70のラインパイプに関するものである。
This invention relates to API grade X60, which has hydrogen-induced cracking resistance in a moist hydrogen sulfide environment.
To X70 line pipe.

【0002】[0002]

【従来の技術】近年生産される石油、天然ガス中に硫化
水素を含む場合が非常に多くなっているため、これらの
石油、天然ガスを輸送するラインパイプは海水等の水が
共存した硫化水素環境(サワー環境)にさらされる可能
性が高くなっている。サワー環境中では、鋼表面の腐食
による鋼中への水素の侵入が硫化水素の触媒作用により
促進され、外部からの付加応力がない場合でもいわゆる
水素誘起割れが生じることがある。従って、サワー環境
にさらされる可能性があるラインパイプには耐水素誘起
割れ性が求められる。
2. Description of the Related Art Since oil and natural gas produced in recent years contain hydrogen sulfide very often, the line pipes for transporting these oil and natural gas are hydrogen sulfide in the presence of water such as seawater. More likely to be exposed to the environment (sour environment). In the sour environment, hydrogen penetration into the steel due to corrosion of the steel surface is promoted by the catalytic action of hydrogen sulfide, and so-called hydrogen-induced cracking may occur even when there is no additional stress from the outside. Therefore, hydrogen-induced cracking resistance is required for line pipes that may be exposed to sour environments.

【0003】この水素誘起割れの発生機構については、
種々の研究がなされており、熱間圧延によって延伸した
非金属介在物と地鉄との界面に、侵入水素が拡散、集積
し、分子状水素となる際のガス圧により割れが生じると
いう機構が広く認められている。この延伸介在物の代表
がMnSである。さらに、連続鋳造で製造された鋳片中
には、一般に中心偏析が存在するため、Mnの偏析によ
りMnSが形成され易くなるのに加えて、Mn,Pの偏
析により割れの伝播を助長する硬度の高い領域が生じ
る。
Regarding the mechanism of occurrence of this hydrogen-induced cracking,
Various studies have been conducted, and there is a mechanism that cracks occur due to gas pressure when infiltrating hydrogen diffuses and accumulates at the interface between the nonmetallic inclusions stretched by hot rolling and the base iron, and becomes molecular hydrogen. Widely recognized. A representative of this stretched inclusion is MnS. Further, in the slab produced by continuous casting, since center segregation is generally present, MnS is likely to be formed due to segregation of Mn, and hardness that promotes crack propagation due to segregation of Mn and P. Area of high.

【0004】以上の割れ発生機構に関する研究に基づい
て、従来より次のような水素誘起割れ防止対策が採ら
れ、ラインパイプの生産において実用化され効果を上げ
ている。 (1)高純化 製鋼段階でSをできる限り低減し、MnSの量を低減す
る。また、Pをできるだけ低減し、偏析部の硬度を低く
する。 (2)マクロ中心偏析の低減 連続鋳造の凝固末端部において、鋳片のバルジングを防
止する等の手段を講じマクロ偏析を低減する。
Based on the above-mentioned research on the crack generation mechanism, the following hydrogen-induced crack prevention measures have heretofore been adopted and put into practical use in the production of line pipes, and the effects have been improved. (1) Highly purified S is reduced as much as possible in the steelmaking stage to reduce the amount of MnS. Further, P is reduced as much as possible to reduce the hardness of the segregated portion. (2) Reduction of macro center segregation At the solidification end of continuous casting, measures such as preventing bulging of the slab are taken to reduce macro segregation.

【0005】(3)硫化物の形態制御 二次精錬においてCa処理により、硫化物の形態をMn
Sから熱間圧延時に延伸化しにくいCaSとする。 (4)制御圧延、加速冷却による組織制御 鋼管用原板の圧延段階で、制御圧延、加速冷却を適用
し、金属組織をできるだけ均一にして、割れ抵抗を増大
する(例えば、特開昭58−133348号公報)。
(3) Morphology control of sulfides The sulfide morphology is changed to Mn by Ca treatment in the secondary refining.
From S to CaS that is difficult to be stretched during hot rolling. (4) Controlled Rolling, Microstructure Control by Accelerated Cooling At the rolling stage of the steel pipe original plate, controlled rolling and accelerated cooling are applied to make the metallographic structure as uniform as possible to increase the crack resistance (for example, JP-A-58-133348). Issue).

【0006】[0006]

【発明が解決しようとする課題】耐水素誘起割れ性を評
価する試験法として、NACEで規格化されたTM02
84が広く用いられている。これはラインパイプから切
り出した短冊状試験片をサワー環境で浸漬試験し、試験
片の断面の観察を行って水素誘起割れの発生率を判定す
るものである。同規格の試験環境は、PHが約5である
が、最近の油井環境のサワー化に伴って、NACE規格
TM0177−90 Method Aに規定するPH
約3の環境(以降NACE環境と言う)で評価すること
が一般的となってきた。
As a test method for evaluating hydrogen-induced cracking resistance, TM02 standardized by NACE is used.
84 is widely used. In this method, a strip-shaped test piece cut out from a line pipe is subjected to an immersion test in a sour environment, and the cross section of the test piece is observed to determine the rate of hydrogen-induced cracking. The test environment of the standard has a PH of about 5, but with the recent shift to the sour environment of oil wells, the PH specified by NACE standard TM0177-90 Method A
It has become common to evaluate in about 3 environments (hereinafter referred to as NACE environment).

【0007】さらに、割れ発生の判定に関して、断面観
察を行うのではなく、試験片を超音波で探傷してより厳
密に割れを判定すること、すなわち、より厳しい品質保
証が求められるようになっている。しかるに、上記従来
技術の適用だけでは、NACE環境の浸漬試験で、超音
波で探傷される割れを皆無にするまでには至っていな
い。かかる観点から、超音波探傷で検出される、NAC
E環境で生じる水素誘起割れを防止する条件を設定する
ことが、耐水素誘起割れ性に優れた高強度ラインパイプ
を製造するにあたっての課題となる。
Further, regarding the determination of the occurrence of cracks, rather than observing the cross section, the test piece is ultrasonically flaw-tested to determine the crack more strictly, that is, more strict quality assurance is required. There is. However, only by applying the above-mentioned conventional technique, it is not possible to completely eliminate the cracks detected by ultrasonic waves in the immersion test in the NACE environment. From this viewpoint, NAC detected by ultrasonic flaw detection
Setting a condition for preventing hydrogen-induced cracking that occurs in the E environment is an issue in manufacturing a high-strength line pipe having excellent hydrogen-induced cracking resistance.

【0008】[0008]

【課題を解決するための手段】本発明は、上記の課題を
有利に解決するもので、水素誘起割れの発生起点となる
Mnのスポット偏析部の大きさ、偏析部のP濃度、硫化
物の形態制御に必要な有効Ca量を限定して、NACE
環境で水素誘起割れを生じなくするというものである。
Means for Solving the Problems The present invention advantageously solves the above-mentioned problems, and is the size of the spot segregated portion of Mn, the P concentration of the segregated portion, and the sulfide content which are the starting points of hydrogen-induced cracking. NACE by limiting the amount of effective Ca required for morphology control
It is to prevent hydrogen-induced cracking in the environment.

【0009】すなわち、本発明の要旨とするところは、
重量%で、C:0.03〜0.09%、Si:0.1〜
0.6%、Mn:1.1〜1.5%、P:0.015%
以下、S:0.0010%以下、Nb:0.010〜
0.050%、Al:0.005〜0.05%、Ca:
0.002〜0.004%を含有し、Ti:0.005
〜0.025%、V:0.01〜0.1%、Ni:1.
0%以下、Cu:1.0%以下、Cr:1.0%以下、
Mo:0.5%以下の一種または二種以上を含有し、残
部が鉄及び不可避不純物からなり、Mnの濃度が平均M
n濃度の1.32以上の領域であるMn偏析スポットの
大きさが500μm未満、かつ偏析部のPの濃度が0.
035%未満、かつ(1)式で計算される有効Ca比が
1.7以上であることを特徴とする耐水素誘起割れ性に
優れた高強度ラインパイプにある。 有効Ca比={(%Ca)(1−98(%O))}/(%S) ………(1)
That is, the gist of the present invention is that
% By weight, C: 0.03 to 0.09%, Si: 0.1
0.6%, Mn: 1.1 to 1.5%, P: 0.015%
Hereinafter, S: 0.0010% or less, Nb: 0.010
0.050%, Al: 0.005-0.05%, Ca:
Contains 0.002-0.004%, Ti: 0.005
.About.0.025%, V: 0.01 to 0.1%, Ni: 1.
0% or less, Cu: 1.0% or less, Cr: 1.0% or less,
Mo: contains 0.5% or less of one or more kinds, the balance is iron and inevitable impurities, and the concentration of Mn is an average M
The size of the Mn segregation spot, which is a region of 1.32 or more of the n concentration, is less than 500 μm, and the concentration of P in the segregation portion is 0.
A high-strength line pipe excellent in hydrogen-induced cracking resistance, characterized in that it is less than 035% and the effective Ca ratio calculated by the formula (1) is 1.7 or more. Effective Ca ratio = {(% Ca) (1-98 (% O))} / (% S) ……… (1)

【0010】[0010]

【作用】本発明者らは、水素誘起割れ防止対策である
(1)高純化、(2)マクロ中心偏析の低減、(3)硫
化物の形態制御、(4)制御圧延、加速冷却による組織
制御を施してもなお発生する水素誘起割れの破面を観察
し、発生原因を考察した。その結果、マクロ的な中心偏
析が除かれた後でも、水素誘起割れは群状のMnSを起
点として発生しており、この群状MnSが存在する領域
は、Mnのスポット的な偏析部に対応し、その中ではP
の偏析が認められる上、Ca処理が有効に作用していな
いことを知見した。
The present inventors have taken measures to prevent hydrogen-induced cracking (1) high purity, (2) reduction of macro center segregation, (3) morphology control of sulfide, (4) controlled rolling, microstructure by accelerated cooling. The fracture surface of hydrogen-induced cracking, which is still generated even with the control, was observed, and the cause was considered. As a result, even after the macro-center segregation is removed, hydrogen-induced cracking starts from the group-like MnS, and the region where the group-like MnS exists corresponds to the spot-like segregation part of Mn. And in that P
It was found that the Ca treatment did not act effectively in addition to the segregation of

【0011】この結果に基づき、実機で製造したX60
からX70グレードの種々のUOEラインパイプについ
て、Mnスポット偏析部のサイズ、及び偏析部のP濃度
とNACE環境中の水素誘起割れの発生の関係を調べ、
図1に示すように、Mnの濃度が平均Mn濃度の1.3
2以上の領域をMnスポット偏析部と定義した場合、M
nスポット偏析部のサイズが500μm未満で、かつ、
偏析部のP濃度が0.035%未満の場合に下記の有効
Caに関する条件が満たされていれば、水素誘起割れが
生じないという知見を得た。図1は有効Ca比が1.7
以上の場合に、Mnスポット偏析部のサイズが500μ
m未満で、かつ、偏析部のP濃度が0.035%未満で
あれば水素誘起割れが生じないことを示す。
Based on this result, the X60 manufactured by an actual machine
To various XOE grade UOE line pipes, the relationship between the size of the Mn spot segregation part, the P concentration of the segregation part and the occurrence of hydrogen-induced cracking in the NACE environment was investigated.
As shown in FIG. 1, the Mn concentration was 1.3 times the average Mn concentration.
When two or more regions are defined as Mn spot segregation parts, M
n spot segregation portion size is less than 500 μm, and
It was found that hydrogen-induced cracking does not occur if the following conditions regarding effective Ca are satisfied when the P concentration in the segregated portion is less than 0.035%. Figure 1 shows an effective Ca ratio of 1.7.
In the above case, the size of the Mn spot segregation part is 500μ.
If it is less than m and the P concentration in the segregated portion is less than 0.035%, it indicates that hydrogen-induced cracking does not occur.

【0012】また、本発明者らは上記の偏析に関する条
件に併せて、硫化物の形態制御を十分に行うために必要
なCa量の条件を検討した。その結果、図2に示すよう
に(1)式で表される有効Ca比が1.7以上の場合
に、上記の偏析に関する条件が満たされれば、水素誘起
割れが生じないという知見を得た。図2はMnスポット
偏析部のサイズが500μm未満で、かつ、偏析部のP
濃度が0.035%未満の場合に有効Ca比が1.7以
上であれば水素誘起割れが生じないことを示す。
In addition to the above-mentioned segregation-related conditions, the present inventors have examined the conditions for the amount of Ca necessary for sufficiently controlling the sulfide morphology. As a result, as shown in FIG. 2, when the effective Ca ratio represented by the equation (1) is 1.7 or more, it was found that hydrogen-induced cracking does not occur if the above-mentioned conditions for segregation are satisfied. . FIG. 2 shows that the size of the Mn spot segregated portion is less than 500 μm and the P of the segregated portion is P.
If the effective Ca ratio is 1.7 or more when the concentration is less than 0.035%, hydrogen-induced cracking does not occur.

【0013】(1)式は酸化物として消費されるCaを
除いたCa、すなわち硫化物の形成に作用するCaとS
の比を示したもので、理論的には、1以上でMnSの形
態制御が可能となるはずであるが、実際にはMnのスポ
ット偏析部が形成されるために1.7以上とする必要が
ある。 有効Ca比={(%Ca)(1−98(%O))}/(%S) ………(1)
Formula (1) is Ca excluding Ca consumed as oxides, that is, Ca and S acting on the formation of sulfides.
Theoretically, it should be possible to control the morphology of MnS at 1 or more, but in reality, the MnS spot segregation portion is formed, so the ratio must be 1.7 or more. There is. Effective Ca ratio = {(% Ca) (1-98 (% O))} / (% S) ……… (1)

【0014】以上の事実に基づき、後述する理由で化学
成分を限定した上で、Mnのスポット偏析部の大きさ、
偏析部のP濃度、硫化物の形態制御に必要な有効Ca量
を限定すれば、NACE環境での耐水素誘起割れ性に優
れたAPIグレードX60からX70のラインパイプの
製造が可能であるという結論を得た。
Based on the above facts, the chemical composition is limited for the reasons described below, and the size of the Mn spot segregation portion is
It was concluded that it is possible to manufacture API grade X60 to X70 line pipes with excellent hydrogen-induced cracking resistance in a NACE environment by limiting the P concentration in the segregation part and the amount of effective Ca required for morphology control of sulfide. Got

【0015】次に本発明における成分限定理由を述べ
る。Cは、強化元素であるため、所望の強度を得るため
に0.03%以上とする。一方、多量に添加すると、ラ
インパイプの母材、溶接部の硬度が高くなり、靭性が低
下することに加え、硫化水素環境中では、硫化物応力割
れが生じやすくなるため0.09%以下とする。
Next, the reasons for limiting the components in the present invention will be described. Since C is a strengthening element, it is made 0.03% or more to obtain a desired strength. On the other hand, if added in a large amount, the hardness of the base material of the line pipe and the welded portion will increase, the toughness will decrease, and sulfide stress cracking will easily occur in a hydrogen sulfide environment, so 0.09% or less. To do.

【0016】Siは脱酸元素であり、0.1%未満で
は、十分な脱酸力が得られないため、また、0.6%を
超えると鋼を脆化させるため0.1〜0.6%とする。
Mnは、水素誘起割れの発生起点となるMnSを形成す
るとともに、鋼の脆化を促進するPと共偏析して、水素
誘起割れの伝播、進展を助長するので、Mnの添加量
は、できるだけ低い方が望ましい。しかし、Mnは強
度、靭性を得る上で、不可欠な元素であるため、X60
からX70のラインパイプの強度を得るため、1.1〜
1.5%とする。
Si is a deoxidizing element, and if it is less than 0.1%, sufficient deoxidizing power cannot be obtained, and if it exceeds 0.6%, the steel becomes brittle, so that 0.1 to 0.1%. 6%.
Mn forms MnS, which is the starting point of hydrogen-induced cracking, and co-segregates with P, which promotes embrittlement of steel, to promote the propagation and progress of hydrogen-induced cracking. The lower the better. However, since Mn is an essential element for obtaining strength and toughness, X60
To obtain the strength of the X70 line pipe from 1.1 to
1.5%.

【0017】Pは偏析により水素誘起割れの伝播を起こ
しやすくする元素で、低い方が望ましく、0.015%
を上限とする。SはMnと結びついて水素誘起割れの発
生起点であるMnSを形成するため、極力低い方が望ま
しい。ラインパイプのNACE環境中での水素誘起割れ
を防止する観点から、0.0010%を上限とする。N
bは圧延組織の細粒化、焼入性の向上と析出硬化のため
0.010%以上添加するが、0.050%を超えて添
加しても多量に添加する効果は小さく、むしろ、粗大な
炭化物を形成して耐水素誘起割れ性を低下するので、
0.05%を上限とする。
P is an element that facilitates the propagation of hydrogen-induced cracking due to segregation, and the lower the better, 0.015%.
Is the upper limit. Since S is combined with Mn to form MnS, which is the starting point of hydrogen-induced cracking, S is preferably as low as possible. From the viewpoint of preventing hydrogen-induced cracking of the line pipe in the NACE environment, the upper limit is 0.0010%. N
b is added in an amount of 0.010% or more for the purpose of refining the rolling structure, improving the hardenability and precipitation hardening, but if added in excess of 0.050%, the effect of adding a large amount is small, but rather coarse. Form carbides and reduce hydrogen-induced cracking resistance.
The upper limit is 0.05%.

【0018】Alは脱酸元素として重要であるが、多量
に添加すると鋼を汚染し、また靭性を低下させるので、
0.005%から0.05%とする。CaはMnS等の
硫化物系介在物の形状を制御するために、0.002%
以上添加するが、多量に添加すると鋼が汚染されるので
0.004%以下とする。本発明では、上記元素に加え
てTi,V,Ni,Cu,Cr,Moの一種または二種
以上を添加する。
Al is important as a deoxidizing element, but if added in a large amount, it contaminates the steel and lowers toughness.
It is set to 0.005% to 0.05%. Ca is 0.002% in order to control the shape of sulfide inclusions such as MnS.
The above is added, but if added in a large amount, the steel is contaminated, so the content is made 0.004% or less. In the present invention, one or more of Ti, V, Ni, Cu, Cr and Mo are added to the above elements.

【0019】Ti添加量の下限0.005%は、微細な
TiNを形成し、ミクロ組織の細粒化が期待される最小
量であり、上限はTiCによる靭性低下が起きない条件
から0.025%とする。Vは強化元素として0.01
%以上添加し、過剰に添加すると靭性を低下させるので
0.1%以下とする。Ni,Cu,Cr,Moはいずれ
も鋼の焼入性を増大し、強度を増加する必要がある場合
に添加するが、過度の添加により低温変態生成物が形成
され靭性及び耐水素誘起割れ性が損なわれるので、N
i,Cu,Crはそれぞれ1.0%、Moは0.5%を
上限とする。
The lower limit of the Ti addition amount of 0.005% is the minimum amount at which fine TiN is formed and the microstructure is expected to be finely grained, and the upper limit is 0.025 from the condition that the toughness is not deteriorated by TiC. %. V is 0.01 as a strengthening element
% Or more, and if added excessively, the toughness decreases, so 0.1% or less. Ni, Cu, Cr, and Mo are added when it is necessary to increase the hardenability of steel and increase the strength, but excessive addition forms a low temperature transformation product, resulting in toughness and hydrogen-induced cracking resistance. Is lost, so N
The upper limit of i, Cu, and Cr is 1.0%, and the upper limit of Mo is 0.5%.

【0020】本発明は、上記成分を有するラインパイプ
に関して、Mnの偏析部の大きさ、偏析部のP濃度を限
定し、さらに、有効なCa添加量を調整して、優れた耐
水素誘起割れ性を付与する。
The present invention relates to a line pipe having the above-mentioned components, by limiting the size of the Mn segregation portion and the P concentration in the segregation portion, and by adjusting the effective Ca addition amount, excellent hydrogen-induced cracking resistance can be obtained. Imparts sex.

【0021】中心偏析が低減され、マクロ的な中心偏析
が除かれた後でも、スポット状のMnの偏析部が存在す
れば、Ca処理を行っていても当該スポット偏析部では
MnSが群状に形成され、水素誘起割れの発生起点とし
て作用する。また、Mnの偏析部ではPも偏析する傾向
があり、水素誘起割れの進展を助長する。
Even after the central segregation is reduced and the macroscopic central segregation is removed, if there is a spot-like Mn segregation portion, MnS is grouped in the spot segregation portion even if Ca treatment is performed. It is formed and acts as a starting point of hydrogen-induced cracking. Also, P tends to segregate in the Mn segregation portion, which promotes the progress of hydrogen-induced cracking.

【0022】このスポット偏析部を皆無にすることは現
状では相当に困難であるが、そのサイズを小さくするこ
とによりNACE環境中での水素誘起割れの発生起点と
して作用しなくなる。この場合の前提として、Caによ
る硫化物の形態制御は必須で、Sと結合してMn偏析部
が実質的に水素誘起割れの発生に関して無害となるだけ
の有効なCa量の確保が必要である。
It is quite difficult to eliminate the spot segregation portion at present, but by reducing the size of the spot segregation portion, it does not act as a starting point of hydrogen-induced cracking in the NACE environment. As a premise in this case, morphology control of sulfide by Ca is essential, and it is necessary to secure an effective amount of Ca that is combined with S to make the Mn segregated portion substantially harmless with respect to occurrence of hydrogen-induced cracking. .

【0023】かかる観点から、NACE環境での水素誘
起割れを防止する条件として、Mnの濃度が平均Mn濃
度の1.32以上の領域をMnスポット偏析部と定義し
た場合、Mnスポット偏析部のサイズ(圧延方向に直角
な方向の長さ、即ちMnスポット偏析部の幅)を500
μm未満、かつ、偏析部のP濃度を0.035%未満と
し、(1)式で表される有効Ca比を1.7以上とす
る。 有効Ca比={(%Ca)(1−98(%O))}/(%S) ………(1)
From this point of view, as a condition for preventing hydrogen-induced cracking in the NACE environment, when a region where the Mn concentration is 1.32 or more of the average Mn concentration is defined as the Mn spot segregation portion, the size of the Mn spot segregation portion is (Length in the direction perpendicular to the rolling direction, that is, the width of the Mn spot segregation portion) is 500
It is less than μm, the P concentration in the segregated portion is less than 0.035%, and the effective Ca ratio represented by the formula (1) is 1.7 or more. Effective Ca ratio = {(% Ca) (1-98 (% O))} / (% S) ……… (1)

【0024】[0024]

【実施例】表1に化学成分を示す鋼を溶製し、連続鋳造
でスラブを製造し、厚板圧延を実施後、UOE鋼管に造
管した。鋼管のサイズは、外径が約30インチ、管厚が
約20mmで、各鋼管は成分により異なるがAPI規格X
60からX70を満足する。シーム溶接部から180°
離れた鋼管の母材部よりNACE規格TM0284に従
い浸漬試験片を作製し、NACE規格TM0177−9
0 MethodAの環境条件で、TM0284の手順
に従い、浸漬試験を実施した。
Example A steel having the chemical composition shown in Table 1 was melted, a slab was manufactured by continuous casting, and after rolling a thick plate, a UOE steel pipe was formed. The outer diameter of the steel pipe is about 30 inches, and the pipe thickness is about 20 mm. API specifications X
Satisfies 60 to X70. 180 ° from seam weld
Immersion test pieces were prepared from the base material of the separated steel pipe according to NACE standard TM0284, and NACE standard TM0177-9 was prepared.
The immersion test was performed according to the procedure of TM0284 under the environmental conditions of 0 MethodA.

【0025】同一鋼管からの試験片は5本とした。浸漬
試験終了後、試験片を周波数25MHz の超音波探傷装置
により走査し、試験片の幅×長さ2000mm2 中、何%
の割合で水素誘起割れが生じているかを検出した値、C
AR(%)を求め、CAR=0をもって耐水素誘起割れ
性を有するとした。水素誘起割れが生じた場合、5本の
試験片のCARの平均値をその鋼管のCARとした。
There were 5 test pieces from the same steel pipe. After the completion of the immersion test, the test piece was scanned with an ultrasonic flaw detector with a frequency of 25 MHz, and the percentage of the width x length of 2000 mm 2
The value detected whether hydrogen-induced cracking occurs at a ratio of C, C
AR (%) was determined, and CAR = 0 was defined as having hydrogen-induced cracking resistance. When hydrogen-induced cracking occurred, the average value of the CAR of the five test pieces was taken as the CAR of the steel pipe.

【0026】また、割れの断面をEPMAで測定し、M
nスポット偏析サイズ、偏析部のP濃度を測定した。一
方、水素誘起割れが生じなかった場合は、電解チャージ
法により試験片に水素を侵入させ、生じた水素割れの断
面においてMnスポット偏析サイズ、偏析部のP濃度を
測定した。表1に示すように、本発明に従う条件では、
いずれの場合もCAR=0%であり優れた耐水素誘起割
れ性が得られた。
The cross section of the crack was measured by EPMA, and M
The n-spot segregation size and the P concentration in the segregation part were measured. On the other hand, when hydrogen-induced cracking did not occur, hydrogen was introduced into the test piece by the electrolytic charging method, and the Mn spot segregation size and the P concentration in the segregation portion were measured in the cross section of the hydrogen cracking that occurred. As shown in Table 1, under the conditions according to the present invention,
In each case, CAR = 0%, and excellent hydrogen-induced cracking resistance was obtained.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】しかし、比較例1及び2ではMnスポット
偏析サイズが、比較例3ではMn量、Mnスポット偏析
サイズが、比較例4では偏析部のP濃度が、比較例5で
はMnスポット偏析サイズ、偏析部のP濃度が、比較例
6ではP量と偏析部のP濃度が、比較例7では有効Ca
比が、比較例8ではCa量と有効Ca比が、比較例9で
はS量と有効Ca比が本発明の範囲を逸脱するために、
それぞれ水素誘起割れが生じる。
However, the Mn spot segregation size in Comparative Examples 1 and 2, the Mn amount and the Mn spot segregation size in Comparative Example 3, the P concentration in the segregation portion in Comparative Example 4, the Mn spot segregation size in Comparative Example 5, The P concentration in the segregated portion, the P amount in Comparative Example 6 and the P concentration in the segregated portion, the effective Ca in Comparative Example 7
In the comparative example 8, the Ca amount and the effective Ca ratio in Comparative Example 8 and the S amount and the effective Ca ratio in Comparative Example 9 are outside the scope of the present invention.
Hydrogen-induced cracking occurs respectively.

【0031】[0031]

【発明の効果】本発明により、湿潤な硫化水素環境にお
ける耐水素誘起割れ性を有する、APIグレードX60
からX70のラインパイプが得られるため、工業的効果
は著しく大きい。
According to the present invention, API grade X60 having hydrogen-induced cracking resistance in a humid hydrogen sulfide environment.
X70 line pipe is obtained from the above, the industrial effect is remarkably large.

【図面の簡単な説明】[Brief description of drawings]

【図1】偏析部P濃度とMnスポット偏析サイズの図表
である。
FIG. 1 is a diagram showing a P concentration in a segregated portion and a Mn spot segregated size.

【図2】水素誘起割れ率と有効Ca比の図表である。FIG. 2 is a chart of hydrogen-induced cracking rate and effective Ca ratio.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.03〜0.09%、 Si:0.1〜0.6%、 Mn:1.1〜1.5%、 P :0.015%以下、 S :0.0010%以下、 Nb:0.010〜0.050%、 Al:0.005〜0.05%、 Ca:0.002〜0.004% を含有し、 Ti:0.005〜0.025%、 V :0.01〜0.1%、 Ni:1.0%以下、 Cu:1.0%以下、 Cr:1.0%以下、 Mo:0.5%以下 の一種または二種以上を含有し、残部が鉄及び不可避不
純物からなり、Mnの濃度が平均Mn濃度の1.32以
上の領域であるMn偏析スポットの大きさが500μm
未満、かつ偏析部のPの濃度が0.035%未満、かつ
(1)式で計算される有効Ca比が1.7以上であるこ
とを特徴とする耐水素誘起割れ性に優れた高強度ライン
パイプ。 有効Ca比={(%Ca)(1−98(%O))}/(%S) ………(1)
1. By weight%, C: 0.03 to 0.09%, Si: 0.1 to 0.6%, Mn: 1.1 to 1.5%, P: 0.015% or less, S: 0.0010% or less, Nb: 0.010 to 0.050%, Al: 0.005 to 0.05%, Ca: 0.002 to 0.004%, Ti: 0.005 to 0.005% 0.025%, V: 0.01 to 0.1%, Ni: 1.0% or less, Cu: 1.0% or less, Cr: 1.0% or less, Mo: 0.5% or less, or The size of the Mn segregation spot, which is a region containing two or more kinds, the balance being iron and unavoidable impurities, and having a Mn concentration of 1.32 or more of the average Mn concentration, is 500 μm.
Less, the P concentration in the segregated portion is less than 0.035%, and the effective Ca ratio calculated by the formula (1) is 1.7 or more. High strength excellent in hydrogen-induced cracking resistance. Line pipe. Effective Ca ratio = {(% Ca) (1-98 (% O))} / (% S) ……… (1)
JP4686893A 1993-03-08 1993-03-08 High strength line pipe excellent in hydrogen induced cracking resistance Withdrawn JPH06256894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4686893A JPH06256894A (en) 1993-03-08 1993-03-08 High strength line pipe excellent in hydrogen induced cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4686893A JPH06256894A (en) 1993-03-08 1993-03-08 High strength line pipe excellent in hydrogen induced cracking resistance

Publications (1)

Publication Number Publication Date
JPH06256894A true JPH06256894A (en) 1994-09-13

Family

ID=12759328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4686893A Withdrawn JPH06256894A (en) 1993-03-08 1993-03-08 High strength line pipe excellent in hydrogen induced cracking resistance

Country Status (1)

Country Link
JP (1) JPH06256894A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186162A (en) * 2003-12-02 2005-07-14 Jfe Steel Kk High toughness thick welded steel tube excellent in sour-resistant characteristic
KR100584748B1 (en) * 2001-12-22 2006-05-30 주식회사 포스코 Continuous Cast Steel Slab for Linepipe with Superior Hydrogen Induced Crack Resistance
WO2010093053A1 (en) * 2009-02-12 2010-08-19 新日本製鐵株式会社 High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
WO2010093057A1 (en) * 2009-02-12 2010-08-19 新日本製鐵株式会社 High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
WO2013147197A1 (en) 2012-03-30 2013-10-03 新日鐵住金株式会社 High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same
CN115386784A (en) * 2022-09-15 2022-11-25 哈尔滨工程大学 Metallurgical method for effectively improving hydrogen damage resistance of pipeline steel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100584748B1 (en) * 2001-12-22 2006-05-30 주식회사 포스코 Continuous Cast Steel Slab for Linepipe with Superior Hydrogen Induced Crack Resistance
JP2005186162A (en) * 2003-12-02 2005-07-14 Jfe Steel Kk High toughness thick welded steel tube excellent in sour-resistant characteristic
JP4631414B2 (en) * 2003-12-02 2011-02-16 Jfeスチール株式会社 High tough, thick welded steel pipe with excellent sour resistance
WO2010093053A1 (en) * 2009-02-12 2010-08-19 新日本製鐵株式会社 High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
WO2010093057A1 (en) * 2009-02-12 2010-08-19 新日本製鐵株式会社 High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
JP2010209460A (en) * 2009-02-12 2010-09-24 Nippon Steel Corp High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
JP2010209461A (en) * 2009-02-12 2010-09-24 Nippon Steel Corp High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
KR101312901B1 (en) * 2009-02-12 2013-09-30 신닛테츠스미킨 카부시키카이샤 High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
WO2013147197A1 (en) 2012-03-30 2013-10-03 新日鐵住金株式会社 High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same
CN115386784A (en) * 2022-09-15 2022-11-25 哈尔滨工程大学 Metallurgical method for effectively improving hydrogen damage resistance of pipeline steel
CN115386784B (en) * 2022-09-15 2023-08-01 哈尔滨工程大学 Metallurgical method for effectively improving hydrogen damage resistance of pipeline steel

Similar Documents

Publication Publication Date Title
EP2105513B1 (en) High strength thick welded steel pipe for a line pipe superior in low temperature toughness and process for producing the same.
KR100628360B1 (en) Hot-rolled steel strip for high strength electric resistance welding pipe
EP2036995B1 (en) High-strength steel pipe with excellent low-temperature toughness for line pipe, high-strength steel plate for line pipe, and processes for producing these
KR101524397B1 (en) High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
KR100673425B1 (en) Hot-rolled steel sheet for high-strength electric-resistance welded pipe having sour-gas resistance and excellent weld toughness, and method for manufacturing the same
EP2505682B1 (en) Welded steel pipe for linepipe with superior compressive strength, and process for producing same
EP1435399B1 (en) A welding method for improving resistance to cold cracking
WO2013147197A1 (en) High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same
JP4363403B2 (en) Steel for line pipe excellent in HIC resistance and line pipe manufactured using the steel
JP2006063351A (en) High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe
JPH07216500A (en) High strength steel material excellent in corrosion resistance and its production
JP3846233B2 (en) Steel with excellent resistance to hydrogen-induced cracking
JPH06220577A (en) High tensile strength steel excellent in hic resistance and its production
EP2093302B1 (en) Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP3633515B2 (en) Hot-rolled steel sheet having excellent resistance to hydrogen-induced cracking and method for producing the same
EP3199657B1 (en) Steel strip for electric-resistance-welded steel pipe or tube, electric-resistance-welded steel pipe or tube, and process for producing steel strip for electric-resistance-welded steel pipe or tube
JP3303647B2 (en) Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance
JPH06256894A (en) High strength line pipe excellent in hydrogen induced cracking resistance
JP4709568B2 (en) UO steel pipe with excellent sour resistance
JPH06271974A (en) Line pipe excellent in hydrogen induced cracking resistance
KR20070105347A (en) Linepipe steel
JPH07292416A (en) Production of ultrahigh strength steel plate for line pipe
JP2770718B2 (en) High strength hot rolled steel strip excellent in HIC resistance and method for producing the same
EP4116453A1 (en) Steel pipe and steel sheet
JP2002339037A (en) High tensile strength steel having excellent low temperature joint toughness and ssc resistance, and production method therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509