JP3846233B2 - Steel with excellent resistance to hydrogen-induced cracking - Google Patents
Steel with excellent resistance to hydrogen-induced cracking Download PDFInfo
- Publication number
- JP3846233B2 JP3846233B2 JP2001194355A JP2001194355A JP3846233B2 JP 3846233 B2 JP3846233 B2 JP 3846233B2 JP 2001194355 A JP2001194355 A JP 2001194355A JP 2001194355 A JP2001194355 A JP 2001194355A JP 3846233 B2 JP3846233 B2 JP 3846233B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- less
- concentration
- plate thickness
- center
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Continuous Casting (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、硫化水素を含む原油や天然ガス等の輸送に使用されるラインパイプやカーゴタンク、あるいは石油精製の圧力容器や搭槽類用として好適な、耐水素誘起割れ性に優れる鋼材に関するものである。
【0002】
【従来の技術】
硫化水素を含む原油や天然ガス等の輸送に使用されるラインパイプやカーゴタンク、あるいは石油精製の圧力容器や搭槽類として用いられる鋼材では、しばしば水素誘起割れ(以降、HICと称する)が問題となる。HICとは、硫化水素を含む環境で鋼材が使用されて腐食したときに、鋼中に侵入した水素によって引き起こされる割れのことである。
【0003】
連続鋳造スラブから製造される鋼材、特に鋼板では、板厚中心部の正偏析帯で、HIC感受性が高い。その理由は、正偏析帯においては、特にMnおよびP濃度が母材よりも高くなり、その結果として正偏析帯は母材よりも硬くなりやすいからである。したがって、従来の耐水素誘起割れ性(以降、耐HIC性と称する)に優れる鋼材は、正偏析帯の硬さをHICが発生しないレベルまで抑えた、偏析しにくい組成、すなわち、低C−低Mn系を基本としたものである。
【0004】
たとえば、特開平5−271766号公報には、連続鋳造スラブの中心偏析を改善するため、低C−低Mn−Nb−微量Ti添加のベース鋼に、それぞれ0.3%以下のCr、Moを複合添加して制御圧延後、加速冷却する方法が示されている。また、特開平11−302776号公報には、低C−低Mn−Nb−Ti系鋼のS、Mg、CaおよびOの含有量を厳格に制限して制御圧延した後、加速冷却する方法が示されている。
【0005】
しかし、上記の両公報に示されている方法では、いずれも、安価に高強度を得やすい元素であるMnの上限を制限せざるを得ないという問題があった。具体的には、前者の公報に示される鋼のMn含有量の上限は1.4%であり、後者の公報に示される鋼のMn含有量の上限は1.5%である。したがって、Mn含有量の上限を規定するのに代えて高価なCrやMoを添加したり、複雑なS、Mg、CaおよびOの含有量の制御をおこなう必要があるのである。すなわち、これら従来の発明には、安価な高Mn鋼からなる耐HIC性に優れた鋼材を得るという技術的思想は全くない。
【0006】
なお、特開平6−220577号公報には、偏析部のMn濃度を鋼中平均Mn濃度の1.20倍以下に規制したMn含有量の上限が2.5%の耐HIC性に優れた高張力鋼板が示されている。しかし、そこに示されている高張力鋼板は、必須成分として高価なCu、Niを多量に含むので、コスト高につくという欠点を有している。また、この公報には、高価なCu、Niを含まない安価な高Mn鋼の耐HIC性を向上させるという技術的思想は全く示されていない。
【0007】
【発明が解決しようとする課題】
本発明の課題は、硫化水素を含む原油や天然ガス等の輸送に使用されるラインパイプやカーゴタンク、あるいは石油精製の圧力容器や搭槽類として用いられる鋼材であって、素材の鋼が安価な高Mn鋼であっても良好な耐HIC性を発揮する高強度鋼材を提供することにある。
【0008】
【課題を解決するための手段】
本発明の要旨は、次の(1)〜(4)に示す耐水素誘起割れ性に優れた鋼材にある。
【0009】
(1)鋼の化学組成が、質量%で、C:0.01〜0.1%、Si:0.01〜0.5%、Mn:0.8〜2%、P:0.025%以下、S:0.002%以下、Ca:0.0005〜0.005%、Ti:0.005〜0.05%、Nb:0.005〜0.1%、 sol. Al:0.005〜0.05%、N:0.01%以下を含み、残部Feおよび不純物であって、板厚中心部の平均Mn濃度が鋼中平均Mn濃度よりも低く、かつ、板厚中心部における最大Mn濃度が2.9質量%以下でありかつ鋼中平均Mn濃度よりも高いことを特徴とする耐水素誘起割れ性に優れた鋼材。但し、「板厚中心部」とは、鋼板の板厚中心から板厚方向両側にそれぞれ板厚の1/20ずつ、すなわち厚み中心部の板厚の1/10の領域をいう。
【0010】
(2)鋼の化学組成が、Feの一部に代えて、質量%で、V:0.2%以下を含むことを特徴とする上記(1)に記載の耐水素誘起割れ性に優れた鋼材。
【0011】
(3)鋼の化学組成が、Feの一部に代えて、質量%で、Cu:0.5%以下、Ni:0.5%以下、Cr:3%以下、Mo:1.5%以下およびB:0.002%以下のうちの1種以上を含むことを特徴とする上記(1)または(2)に記載の耐水素誘起割れ性に優れた鋼材。
【0012】
(4)板厚中心部の平均Mn濃度が鋼中平均Mn濃度の0.95倍以下であることを特徴とする上記(1)から(3)までのいずれかに記載の耐水素誘起割れ性に優れた鋼材。
【0013】
【発明の実施の形態】
以下、本発明の鋼材を上記のように定めた理由について鋼板を例にとって詳細に説明する。
【0014】
従来の鋼板では、板厚中心部における合金元素の濃度は、図1に示すような濃度分布を示す。そして、板厚中心部の偏析部とそれ以外の部分との合金元素の濃度比(偏析度)は、合金元素の種類とその濃度に依存する。
【0015】
たとえば、図1に示すMnは、前記の用途用鋼において使用される種々の合金元素のうちでは最も偏析度の高い合金元素の1つであり、鋼のMn濃度とC濃度を高くすればするほど、その偏析度は上昇する。したがって、耐HIC性に優れる鋼板を得るには、従来は前述したように、偏析しにくい低C−低Mn系とする以外になかった。
【0016】
しかしながら、もし、板厚中心部の合金元素の濃度自体が母材部の濃度よりも低い、すなわち、図2に示すように、板厚中心部がマクロ(巨視)的に負偏析になっていれば、その負偏析帯の中でミクロ(微視)的に正偏析帯が生じていたとしても、負偏析帯の合金元素の濃度が低いので偏析度自体が低下し、その正偏析帯の合金元素濃度の絶対値が高くならないと予想される。
【0017】
また、日本刀が折れにくいのは、硬い芯金が軟らかい巻金で覆われているからであり、これと同様に、硬い正偏析帯が軟らかい負偏析帯で覆われている鋼板では、硬さのわりには割れにくいことが期待される。つまり、結果として、板厚中心偏析部の耐HIC性が従来は芳しくなかった高Mn鋼も、耐HIC性が改善されることが期待される。
【0018】
そこで、本発明者は、従来は良好な耐HIC性を確保することが困難であった高Mn鋼を用いて、板厚中心部をマクロ的に負偏析として、その負偏析帯で残存する正偏析部を覆うようにすることで、耐HIC性が改善されるかどうかを実験によって検証した。
【0019】
その結果、鋼の化学組成が、質量%で、C:0.01〜0.1%、Si:0.01〜0.5%、Mn:0.8〜2%、P:0.025%以下、S:0.002%以下、Ca:0.0005〜0.005%、Ti:0.005〜0.05%、Nb:0.005〜0.1%、 sol. Al:0.005〜0.05%、N:0.01%以下を含み、更に、必要に応じて、(a)V:0.2%以下及び/又は(b)Cu:0.5%以下、Ni:0.5%以下、Cr:3%以下、Mo:1.5%以下およびB:0.002%以下のうちの1種以上を含み、残部Feおよび不純物であって、板厚中心部の平均Mn濃度が鋼中平均Mn濃度よりも低く、かつ、板厚中心部における最大Mn濃度が2.9質量%以下でかつ鋼中平均Mn濃度よりも高ければ、鋼中平均Mn濃度が1.5質量%を超える高Mn鋼よりなる鋼材でも良好な耐HIC性が確保されることを知見し、本発明を完成させた。
【0020】
さらに、上記本発明の鋼材は、連続鋳造によるスラブ製造時の凝固末期に圧下を加えることにより容易に製造可能である。具体的に説明すると、例えば、メニスカスからの離間距離が3m程度の位置において一旦スラブ厚にして20mm程度バルジングさせた後、メニスカスからの離間距離が12mの位置から17mの位置までの間にかけてスラブ厚にして10〜20mm程度の圧下を加えることにより容易に得ることができる。
【0021】
板厚中心部における最大Mn濃度:2.9%以下でありかつ鋼中平均Mn濃度よりも高い
後述する実施例からも明らかなように、板厚中心部における最大Mn濃度が2.9%を超えると、耐HIC性が不芳となる。なお、板厚中心部における最大Mn濃度が鋼中平均Mn濃度よりも高くても2.9質量%以下であれば、鋼中平均Mn濃度が1.5質量%を超える高Mn鋼よりなる鋼材でも良好な耐HIC性が確保される。このため、板厚中心部における最大Mn濃度は2.9%以下でありかつ鋼中平均Mn濃度よりも高いと定めた。なお、板厚中心部における最大Mn濃度が2.4%以下の場合にはHICは全く発生しない。
【0022】
板厚中心部における平均Mn濃度:鋼中平均Mn濃度よりも低いこと
後述する実施例からも明らかなように、板厚中心部における最大Mn濃度が2.9%以下、もしくは好ましい2.4%以下であっても、板厚中心部における平均Mn濃度が鋼中平均Mn濃度よりも高いと、耐HIC性が不芳となる。このため、板厚中心部における平均Mn濃度は鋼中平均Mn濃度よりも低いことと定めた。
【0023】
なお、板厚中心部における平均Mn濃度が鋼中平均Mn濃度よりも低いとは、板厚中心部が安定して負偏析となっているという意味であり、板厚中心部における平均Mn濃度は鋼中平均Mn濃度の0.95倍以下であることが望ましい。
【0024】
ここで、板厚中心部とは、最終製品である鋼板の板厚中心から板厚方向両側にそれぞれ板厚の1/20ずつ、すなわち厚み中心部の板厚の1/10の領域をいう。
【0025】
また、板厚中心部の平均Mn濃度とは、上記に記載定義した板厚中心部の領域のMn濃度の平均値で、MA(マッピングアナライザー)やEPMAなどを用いて測定される値のことであり、鋼中平均Mn濃度とは、鋼全体の平均Mn濃度のことであり、レードル値に等しい。
【0026】
本発明の鋼材は、鋼の化学組成が、質量%で、C:0.01〜0.1%、Si:0.01〜0.5%、Mn:0.8〜2%、P:0.025%以下、S:0.002%以下、Ca:0.0005〜0.005%、Ti:0.005〜0.05%、Nb:0.005〜0.1%、 sol. Al:0.005〜0.05%、N:0.01%以下を含み、更に、必要に応じて、(a)V:0.2%以下及び/又は(b)Cu:0.5%以下、Ni:0.5%以下、Cr:3%以下、Mo:1.5%以下およびB:0.002%以下のうちの1種以上を含み、残部Feおよび不純物であって、板厚中心部の平均Mn濃度が鋼中平均Mn濃度よりも低く、かつ、板厚中心部における最大Mn濃度が2.9質量%以下でありかつ鋼中平均Mn濃度よりも高いことを特徴とするものである。この鋼材は、ラインパイプや圧力容器用として望ましい。なお、以下の説明中における「%」は、特に断らない限り、「質量%」を意味する。
【0027】
C:0.01〜0.1%
Cには、鋼材の強度を安定して確保する作用がある。しかし、その含有量が0.01%を下回ると強度確保が困難となる。一方、0.1%を超えて含有させると連続鋳造し難い包晶域となる。したがって、C含有量を0.01〜0.1%とした。C含有量の望ましい範囲は0.03〜0.09%である。
【0028】
Si:0.01〜0.5%
Siは、脱酸剤として必要である。しかし、その含有量が0.01%を下回ると充分な脱酸効果を確保できない。一方、0.5%を超えて含有させると靱性が低下する。したがって、Si含有量を0.01〜0.5%とした。Si含有量の望ましい範囲は0.05〜0.35%である。
【0029】
Mn:0.8〜2%
Mnには、鋼材の強度を安定して確保する作用がある。また、Mnは、比較的安価な元素でもある。しかし、その含有量が0.8%を下回ると安価に強度を確保するのが困難となる。一方、2%を超えて含有させると、板厚中央部における負偏析帯の中の正偏析帯のMn濃度を、耐HIC性が良好な2.9%以下に制御するのが困難となり、湿潤H2S環境下でHICを起こしやすくなる。したがって、Mn含有量を0.8〜2%とした。Mn含有量の望ましい範囲は1.2〜1.8%である。
【0030】
P:0.025%以下
Pは、不純物元素で、上記のMnと同様に、板厚中心部において正偏析しやすく、結果として正偏析部を硬化させ、HICを発生しやすくする。このため、P含有量は低ければ低いほど望ましいが、過度な低減はコスト上昇を招く。しかし、その含有量が0.025%までであれば特に問題ない。望ましい上限は0.015%である。
【0031】
S:0.002%以下
Sは、上記のPと同様の不純物元素で、その含有量が0.002%を超えると、下記のCa添加によって硫化物の形態制御をおこなってもMnSが残存して耐HIC性が損なわれる。したがって、S含有量を0.002%以下とした。S含有量は0.001%以下であることが望ましい。なお、S含有量は低ければ低いほどよい。
【0032】
Ca:0.0005〜0.005%
Caには、硫化物の形態を制御する作用があり、HICの起点となるMnSの生成を防ぐ。しかし、0.0005%未満の含有量では、硫化物の形態制御効果が乏しく、0.005%を超えて含有させると、硫化物の形態制御効果が飽和するばかりか、過剰のCa介在物が靱性および耐HIC性を損ねる。したがって、Ca含有量を0.0005〜0.005%とした。Ca含有量の望ましい範囲は0.001〜0.003%である。
【0033】
Ti:0.005〜0.05%
Tiは、鋼に含まれる不純物元素のNをTiNとして固定し、フリーNによる靱性低下を防ぐとともに、TiNがスラブ加熱時のオーステナイト粒の成長を抑制して細粒化を促進し、靱性を向上させる作用がある。しかし、その含有量が0.005%未満では前記の効果が得られず、0.05%を超えて含有させるとかえって靭性が低下する。したがって、Ti含有量を0.005〜0.05%とした。Ti含有量の望ましい範囲は0.01〜0.03%であり、フリーNによる靱性低下を防ぐ観点からはTi/Nが3.4程度になるようにTiを含有させるのが望ましい。
【0034】
Nb:0.005〜0.1%
Nbには、炭化物析出によって鋼を細粒化して靭性を向上させる作用がある。しかし、その含有量が0.005%未満では前記の効果が得られず、0.1%を超えて含有させると溶接部の靭性低下を招く。したがって、Nb含有量を0.005〜0.1%とした。Nb含有量の望ましい範囲は0.01〜0.05%である。
【0035】
sol.Al:0.005〜0.05%
Alは、脱酸剤として必要である。しかし、その含有量がsol.Al含有量で0.005%を下回ると充分な脱酸効果を確保できない。一方、0.05%を超えて含有させると鋼材の清浄性および靱性が低下する。したがって、sol.Al含有量を0.005〜0.05%とした。sol. Al含有量の望ましい範囲は0.01〜0.04%である。
【0036】
N:0.01%以下
Nは、上記のPおよびSと同様の不純物元素で、その含有量が0.01%を超えると、前記のTiによりNをTiNとして固定したとしても母材靱性が低下するようになる。したがって、N含有量を0.01%以下とした。N含有量の望ましい上限は0.005%である。なお、N含有量は低ければ低いほどよい。
【0037】
本発明に係る鋼材の化学組成としては、上記を満たせば十分であるが、必要に応じて、以下に述べる元素のうちの1種以上を積極的に添加含有させたものである方が好ましい。
【0038】
V:0.2%以下(積極添加時の好ましい下限:0.01%)
Vは、鋼を細粒化して靱性を向上させるほか、析出したV炭化物かは鋼を強化する作用もあり、これらの効果は不純物量レベルの含有量でも得られるが、0.01%以上の含有量で顕著になる。したがって、前記の効果を得たい場合には積極的に添加含有させてもよい。しかし、0.2%を超えて含有させると、溶接部の靭性が低下する。このため、添加含有させる場合のV含有量は0.01〜0.2%とするのが望ましい。より望ましい範囲は0.05〜0.1%である。
【0039】
Cu:0.5%以下(積極添加時の好ましい下限:0.05%)
Ni:0.5%以下(積極添加時の好ましい下限:0.05%)
Cr:3%以下(積極添加時の好ましい下限:0.1%)
Mo:1.5%以下(積極添加時の好ましい下限:0.05%)
B:0.002%以下(積極添加時の好ましい下限:0.0002%)
これらの元素には、鋼の強度を向上させる作用があり、この効果はいずれの元素も不純物量レベルの含有量でも得られるが、Cu、NiおよびMoは0.05%以上、Crは0.1%以上の含有量で顕著になる。したがって、前記の効果を得たい場合には、これら元素のうちの1種以上を積極的に添加含有させてもよい。しかし、CuおよびNiは0.5%を超えて含有させると、その効果が飽和するばかりか、Niについては高価な合金元素でもあるのでコスト上昇を招く。また、Crは3%、Moは1.5%を超えて含有させると、いずれも、溶接部の靱性が低下するばかりか、Moについては高価な合金元素でもあるのでコスト上昇を招く。このため、添加含有させる場合のCuおよびNiの含有量はいずれも0.005〜0.05%、Cr含有量は0.1〜3%、Mo含有量は0.05〜1.5%とするのが望ましい。好ましいCuおよびNiの含有量範囲は0.1〜0.3%、Crの含有量範囲は0.25〜2.5%、Moの含有量範囲は0.1〜1.2%である。なお、Cu、Ni、CrおよびNiには、耐食性をも向上させる作用もある。
【0040】
次に、ラインパイプや圧力容器用として望ましい本発明になる鋼材の連続鋳造によるスラブ製造後における好ましい製造条件について説明する。
【0041】
スラブの加熱温度:
前述したように、偏析度合が増した濃厚溶鋼を鋳片の軸心部から排出するために凝固の末期に圧下を加えて得られたスラブは、圧延や鍛造等の熱間加工に先立ち加熱するが、その際の加熱温度が1050℃を下回ると、スラブ中の炭化物が充分に固溶せず、熱間加工後に所望の強度が得られないことがある。また、加熱温度が1250℃を上回ると、粗粒化して靱性の低下を招くことがある。したがって、スラブの加熱温度は1050〜1250℃とするのが望ましい。より望ましい範囲は1100〜1250℃である。なお、熱間加工後に熱処理を実施する場合はこの限りではない。
【0042】
熱間加工の仕上温度:
最近は、製造コスト低減の観点から、熱間加工(圧延)のままで所望の強度、靱性が得られるように、鋼の化学組成と製造条件を制御するのが一般的である。しかし、熱間加工(圧延)の仕上温度が650℃を下回ると、鋼の変形抵抗が増大して加工(圧延)が困難になり、900℃を超えると、鋼の組織が充分微細化せず、所望の強度と靱性が圧延のままで得られないことがある。したがって、熱間加工(圧延)の仕上温度は650〜900℃とするのが望ましい。より望ましい範囲は700〜850℃であり、熱間加工後、以下に述べる加速冷却処理をおこなう場合における好ましい仕上温度範囲はAr3〜850℃、より好ましい範囲はAr3+30℃〜850℃である。
【0043】
熱間加工後の加速冷却開始温度:
最近は、前述したように、熱間加工(圧延)のままで所望の強度と靱性を得るにしても、より低コストの鋼組成で達成されるように、熱間加工(圧延)後に水冷等の加速冷却をおこなうのがより一般的である。しかし、加速冷却の開始温度がAr3変態点−30℃を下回ると、その時点での残留オーステナイトが変態硬化して耐HIC性と耐SSC性が損なわれることがある。したがって、加速冷却の開始温度はAr3変態点−30℃以上とするのが望ましい。より望ましい下限は範囲はAr3変態点以上である。
【0044】
加速冷却の冷却速度:
板厚中心における冷却速度が6℃/sを下回ると、加速冷却の効果がなく、逆に、25℃/sを上回ると、鋼が硬化しすぎて耐HIC性と耐SSC性が損なわれることがある。したがって、加速冷却時の冷却速度は、板厚中心における冷却速度で6〜25℃/sとするのが望ましい。より望ましい範囲は10〜20℃/sである。
【0045】
加速冷却の停止温度:
加速冷却の停止温度が550℃を上回ると、加速冷却の効果がなく、逆に、350℃を下回ると鋼が硬化しすぎて耐HIC性と耐SSC性が損なわれることがある。したがって、加速冷却の停止温度は550〜350℃とするのが望ましい。より望ましい範囲は550〜400℃である。
【0046】
熱間加工後の熱処理:
熱間加工後の熱処理は必ずしもおこなう必要はないが、焼入れ−焼戻し処理や焼ならし処理等の熱処理をおこなってもよく、この場合には靱性が一段と向上し、所望の強度が安定して得られる。ただし、その際の再加熱温度が850℃を下回ると、鋼中の炭化物が充分に固溶せず、所望の強度が得られないことがあり、1100℃を上回ると、粗粒化して靱性が低下することがある。したがって、熱間加工後に熱処理をおこなう場合の再加熱温度は、850〜1100℃とするのが望ましい。より望ましい範囲は900〜1050℃である。なお、熱間加工後の熱処理は、一工程余計にかけることになり、その分だけ製造コストが上昇するので、製造コストの低減を図る観点からは推奨できない。
【0047】
【実施例】
表1に示す化学組成を有する4種類の鋼を溶製して連続鋳造により厚さ238mm、幅1800mmのスラブにする際、メニスカスからの離間距離が3mの位置においてスラブ厚を一旦20mmバルジングさた後、表2に示す種々の条件で圧下を加えて中心部のMn負偏析度合を種々に調整したスラブを得た。なお、比較のために、一部のスラブにはバルジングおよび圧下を加えなかった。
【0048】
次いで、得られた各スラブの中心部から厚みと幅の中心がスラブの中心に一致する厚さ150mm、幅100mmの圧延用ブロックを切り出し、表2に示す条件の熱間圧延を施した後、表2に示す条件の加速冷却処理または大気放冷処理を施し、板厚中心部の平均Mn偏析度合と最大Mn濃度が種々異なる板厚19.5mm、幅110mmの鋼板とした。
【0049】
得られた各鋼板から、100mm×100mmの全板厚試験片を採取し、NACE T0284に規定されているHIC試験法に準拠し、5質量%NaCl+0.5質量%CH3OOH+1気圧H2S飽和の温度25℃のNACE TM0177溶液中に96時間浸漬した。
【0050】
HIC試験の評価は、浸漬後の試験片におけるHICによる割れの面積を超音波によるCスキャンで測定して試験片全面積に占めるHICの割れ面積率(CAR)を求め、CARが3%以下のものを耐HIC性が良好、3%を超えるものを耐HIC性が不芳とした。
【0051】
なお、板厚中心部の平均Mn濃度と最大Mn濃度は、上記CAR測定後の試験片を切断して、その板厚中心部、すなわち板厚中心から両側にそれぞれ1.0mm、板幅中心から両側にそれぞれ20mmの領域のMn濃度をMA(マッピングアナライザー)を用いて20μmピッチで10万点測定し、各測定値の平均値を平均Mn濃度、各測定値中の最大値を最大Mn濃度とした。
【0052】
以上の結果を、表2に、各鋼板の降伏強さYS(MPa)および引張強さTS(MPa)と併せて示した。なお、降伏強さYSと引張強さTSは、各鋼板から外径6mmの引張試験片を採取し、室温下で引張試験をおこなって調べた値である。
【0053】
表2に示す結果からわかるように、本発明で規定する条件、つまり、鋼の化学組成が本発明で規定する範囲にあり、しかも、板厚中心部の平均Mn濃度が鋼中平均Mn濃度よりも低く、かつ、板厚中心部における最大Mn濃度が2.9質量%以下でありかつ鋼中平均Mn濃度よりも高いという条件を満たす試番2〜8および試番13〜16の鋼板は、CARが0〜2.8%で、耐HIC性が良好である。
【0054】
これに対し、板厚中心部の平均Mn濃度または板厚中心部の最大Mn濃度が本発明で規定する条件を満たさない試番9〜12の鋼板は、CARが4.4〜10.4%で、耐HIC性が不芳である。また、スラブの製造時に圧下を加えなかった試番1の鋼板は、板厚中心部の最大Mn濃度は本発明で条件を満たすものの、板厚中心部の平均Mn濃度が鋼中平均Mn濃度よりも高いため、CARが18.3%で、耐HIC性が不芳である。
【0055】
【表1】
【表2】
【発明の効果】
本発明の鋼材は、Mn含有量が1.5%を超える場合でも、安定して良好な耐HIC性を発揮する。このため、今後は益々需要が多くなる高強度鋼材を安価な高Mn鋼で供給することができる。
【図面の簡単な説明】
【図1】従来の連続鋳造スラブより製造された鋼材(鋼板)の板厚中心偏析部における合金元素(Mn)の濃度分布状態を示す模式図である。
【図2】本発明になる鋼材(鋼板)の板厚中心偏析部における合金元素(Mn)の濃度分布状態を示す模式図である。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a steel material excellent in resistance to hydrogen-induced cracking, which is suitable for line pipes and cargo tanks used for transportation of crude oil and natural gas containing hydrogen sulfide, or pressure vessels and tanks for petroleum refining. It is.
[0002]
[Prior art]
Hydrogen-induced cracking (hereinafter referred to as HIC) is often a problem in steel pipes and cargo tanks used for transportation of crude oil and natural gas containing hydrogen sulfide, or pressure vessels and tanks for oil refining. It becomes. HIC is a crack caused by hydrogen that has penetrated into steel when steel is used and corroded in an environment containing hydrogen sulfide.
[0003]
Steel materials manufactured from continuous cast slabs, particularly steel plates, are highly segregated at the center of the plate thickness and have high HIC sensitivity. The reason is that in the positive segregation zone, the Mn and P concentrations are particularly higher than that of the base material, and as a result, the positive segregation zone tends to be harder than the base material. Therefore, a conventional steel material having excellent resistance to hydrogen-induced cracking (hereinafter referred to as HIC resistance) has a composition that is hard to segregate, in which the hardness of the positive segregation zone is suppressed to a level at which HIC does not occur, that is, low C-low It is based on Mn.
[0004]
For example, in Japanese Patent Laid-Open No. 5-271766, in order to improve center segregation of continuously cast slabs, 0.3% or less of Cr and Mo are respectively added to a base steel added with low C-low Mn-Nb-trace amount Ti. A method of accelerating cooling after compound rolling and controlled rolling is shown. Japanese Patent Application Laid-Open No. 11-302767 discloses a method of accelerating cooling after controlled rolling by strictly limiting the contents of S, Mg, Ca and O in a low C-low Mn-Nb-Ti steel. It is shown.
[0005]
However, the methods disclosed in both of the above publications have a problem that the upper limit of Mn, which is an element that easily obtains high strength at low cost, has to be limited. Specifically, the upper limit of the Mn content of the steel shown in the former publication is 1.4%, and the upper limit of the Mn content of the steel shown in the latter publication is 1.5%. Therefore, instead of defining the upper limit of the Mn content, it is necessary to add expensive Cr or Mo, or to control the complicated contents of S, Mg, Ca and O. In other words, these conventional inventions have no technical idea of obtaining a steel material excellent in HIC resistance made of an inexpensive high Mn steel.
[0006]
In JP-A-6-220577, the upper limit of the Mn content in which the Mn concentration of the segregation part is regulated to 1.20 times or less of the average Mn concentration in steel is 2.5%, which is excellent in HIC resistance. A tensile steel plate is shown. However, the high-tensile steel sheet shown therein has a drawback of high cost because it contains a large amount of expensive Cu and Ni as essential components. In addition, this publication does not show any technical idea of improving the HIC resistance of an inexpensive high Mn steel that does not contain expensive Cu and Ni.
[0007]
[Problems to be solved by the invention]
An object of the present invention is a steel material used as a line pipe or cargo tank used for transportation of crude oil or natural gas containing hydrogen sulfide, or a pressure vessel or tank for petroleum refining, and the material steel is inexpensive. An object of the present invention is to provide a high-strength steel material that exhibits good HIC resistance even with a high-Mn steel.
[0008]
[Means for Solving the Problems]
The gist of the present invention resides in steel materials excellent in hydrogen-induced crack resistance as shown in the following (1) to (4) .
[0009]
(1) Steel has a chemical composition of mass%, C: 0.01 to 0.1%, Si: 0.01 to 0.5%, Mn: 0.8 to 2%, P: 0.025% Hereinafter, S: 0.002% or less, Ca: 0.0005 to 0.005%, Ti: 0.005 to 0.05 %, Nb: 0.005 to 0.1%, sol. Al: 0.005 0.05%, N: 0.01% or less, the balance being Fe and impurities, the average Mn concentration at the center of the plate thickness being lower than the average Mn concentration in the steel, and the maximum at the center of the plate thickness A steel material excellent in hydrogen-induced crack resistance, characterized in that the Mn concentration is 2.9% by mass or less and is higher than the average Mn concentration in steel. However, the “plate thickness center portion” means an area of 1/20 of the plate thickness from the plate thickness center of the steel plate to both sides in the plate thickness direction, that is, 1/10 of the plate thickness of the thickness center portion.
[0010]
(2) The chemical composition of the steel is excellent in hydrogen-induced crack resistance as described in (1) above, wherein the chemical composition of the steel contains, in mass%, V: 0.2% or less instead of a part of Fe. Steel material.
[0011]
(3) The chemical composition of the steel is mass% instead of part of Fe, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 3% or less, Mo: 1.5% or less And B: The steel material having excellent resistance to hydrogen-induced cracking as described in (1) or (2) above, comprising one or more of 0.002% or less.
[0012]
(4) Hydrogen-induced crack resistance according to any one of (1) to (3) above, wherein the average Mn concentration at the center of the plate thickness is 0.95 times or less of the average Mn concentration in steel Excellent steel material.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reason why the steel material of the present invention is determined as described above will be described in detail by taking a steel plate as an example.
[0014]
In the conventional steel plate, the concentration of the alloy element in the center portion of the plate thickness shows a concentration distribution as shown in FIG. The concentration ratio (segregation degree) of the alloy element between the segregation part at the center of the plate thickness and the other part depends on the type and concentration of the alloy element.
[0015]
For example, Mn shown in FIG. 1 is one of the alloy elements having the highest segregation degree among the various alloy elements used in the above-described steel for applications, and the Mn concentration and the C concentration of the steel are increased. The degree of segregation increases. Therefore, in order to obtain a steel sheet having excellent HIC resistance, conventionally, there has been no other way but to use a low C-low Mn system that is difficult to segregate.
[0016]
However, if the concentration of the alloy element in the central portion of the plate thickness itself is lower than the concentration of the base material portion, that is, as shown in FIG. 2, the central portion of the plate thickness is macro (macroscopic) negative segregation. For example, even if a micro (microscopic) positive segregation zone is generated in the negative segregation zone, the concentration of the alloy element in the negative segregation zone is low, so the segregation degree itself decreases, and the alloy in the positive segregation zone The absolute value of elemental concentration is not expected to increase.
[0017]
In addition, Japanese swords are hard to break because the hard metal core is covered with a soft winding metal, and in the same way, the steel plate with a hard positive segregation band covered with a soft negative segregation band has a hardness. Instead, it is expected to be difficult to break. That is, as a result, it is expected that the high Mn steel, in which the HIC resistance of the plate thickness center segregation part has not been satisfactory, is improved.
[0018]
Therefore, the present inventor made high-Mn steel, which has conventionally been difficult to ensure good HIC resistance, macroscopically segregates the central portion of the plate thickness, and remains in the negative segregation zone. Whether or not the HIC resistance is improved by covering the segregated portion was verified by experiments.
[0019]
As a result, the chemical composition of the steel was, by mass, C: 0.01 to 0.1%, Si: 0.01 to 0.5%, Mn: 0.8 to 2%, P: 0.025% Hereinafter, S: 0.002% or less, Ca: 0.0005 to 0.005%, Ti: 0.005 to 0.05 %, Nb: 0.005 to 0.1%, sol. Al: 0.005 -0.05%, N: 0.01% or less, and, if necessary, (a) V: 0.2% or less and / or (b) Cu: 0.5% or less, Ni: 0 0.5% or less, Cr: 3% or less, Mo: 1.5% or less, and B: 0.002% or less, the balance being Fe and impurities, and the average Mn at the center of the plate thickness If the concentration is lower than the average Mn concentration in steel and the maximum Mn concentration at the center of the plate thickness is 2.9% by mass or less and higher than the average Mn concentration in steel, Mn concentration was found that good HIC resistance even steel made of a high Mn steel of more than 1.5 mass% is ensured, thereby completing the present invention.
[0020]
Furthermore, the steel material of the present invention can be easily manufactured by applying a reduction at the end of solidification when producing a slab by continuous casting. More specifically, for example, after the slab thickness is temporarily bulged by about 20 mm at a position where the distance from the meniscus is about 3 m, the slab thickness is increased from the position where the distance from the meniscus is 12 m to the position of 17 m. Thus, it can be easily obtained by applying a reduction of about 10 to 20 mm.
[0021]
Maximum Mn concentration in the center of plate thickness: As is apparent from Examples described later is higher than the average Mn concentration in 2.9% or less der Li Kui steel, the maximum Mn concentration in the center of plate thickness 2.9% Exceeding HIC resistance becomes unsatisfactory. In addition, if the maximum Mn concentration at the center of the plate thickness is higher than the average Mn concentration in the steel even if it is 2.9% by mass or less, the steel material made of high Mn steel having the average Mn concentration in the steel exceeding 1.5% by mass However, good HIC resistance is ensured. For this reason, it was determined that the maximum Mn concentration at the center of the plate thickness was 2.9% or less and higher than the average Mn concentration in steel . In the case of the maximum Mn concentration of 2.4% or less in the sheet thickness center HIC is not generated.
[0022]
Average Mn concentration at the center of the plate thickness: lower than the average Mn concentration in the steel As is clear from the examples described later, the maximum Mn concentration at the center of the plate thickness is 2.9% or less, or preferably 2.4%. Even if it is below, if the average Mn concentration in the center portion of the plate thickness is higher than the average Mn concentration in the steel, the HIC resistance becomes unsatisfactory. For this reason, it determined that the average Mn density | concentration in plate thickness center part is lower than the average Mn density | concentration in steel.
[0023]
The average Mn concentration in the center of the plate thickness is lower than the average Mn concentration in the steel means that the center of the plate thickness is stably negative segregation, and the average Mn concentration in the center of the plate thickness is It is desirable that the average Mn concentration in steel is 0.95 times or less.
[0024]
Here, the center portion of the plate thickness refers to an area of 1/20 of the plate thickness from the plate thickness center of the steel plate as the final product to both sides in the plate thickness direction, that is, 1/10 of the plate thickness of the thickness center portion.
[0025]
The average Mn concentration at the center of the plate thickness is the average value of the Mn concentration in the region of the center of the plate thickness defined above, and is a value measured using MA (mapping analyzer) or EPMA. Yes, the average Mn concentration in steel is the average Mn concentration of the whole steel and is equal to the ladle value.
[0026]
In the steel material of the present invention, the chemical composition of the steel is mass%, C: 0.01 to 0.1%, Si: 0.01 to 0.5%, Mn: 0.8 to 2%, P: 0 0.025% or less, S: 0.002% or less, Ca: 0.0005 to 0.005%, Ti: 0.005 to 0.05%, Nb: 0.005 to 0.1%, sol. Al: 0.005 to 0.05%, N: 0.01% or less, and, if necessary, (a) V: 0.2% or less and / or (b) Cu: 0.5% or less, Ni: 0.5% or less, Cr: 3% or less, Mo: 1.5% or less, and B: 0.002% or less, the balance being Fe and impurities, the center of the plate thickness average Mn concentration is lower than the average Mn concentration in the steel of, and us go higher than the maximum Mn concentration is less 2.9 wt% and an average Mn concentration in the steel at the center of plate thickness The one in which the features. This steel is not to demand for the line pipe and pressure vessels. Your name, "%" in the following description, unless otherwise specified, means "% by weight".
[0027]
C: 0.01 to 0.1%
C has an effect of ensuring the strength of the steel material stably. However, when the content is less than 0.01%, it is difficult to ensure the strength. On the other hand, if the content exceeds 0.1%, the peritectic region is difficult to continuously cast. Therefore, the C content is set to 0.01% to 0.1%. A desirable range for the C content is 0.03 to 0.09%.
[0028]
Si: 0.01 to 0.5%
Si is necessary as a deoxidizer. However, if the content is less than 0.01%, a sufficient deoxidation effect cannot be ensured. On the other hand, if the content exceeds 0.5%, the toughness decreases. Therefore, the Si content is 0.01-0.5%. A desirable range of the Si content is 0.05 to 0.35%.
[0029]
Mn: 0.8-2%
Mn has an effect of ensuring the strength of the steel material stably. Mn is also a relatively inexpensive element. However, when the content is less than 0.8%, it is difficult to secure strength at a low cost. On the other hand, if the content exceeds 2%, it becomes difficult to control the Mn concentration of the positive segregation zone in the negative segregation zone at the center of the plate thickness to 2.9% or less, which has good HIC resistance. HIC is likely to occur in an H 2 S environment. Accordingly, and with 0.8 to 2% of Mn content. A desirable range of the Mn content is 1.2 to 1.8%.
[0030]
P: 0.025% or less P is an impurity element and, like Mn described above, easily segregates positively at the center of the plate thickness. As a result, the positive segregated part is hardened and HIC is easily generated. For this reason, the lower the P content, the better. However, excessive reduction leads to an increase in cost. However, there is no particular problem if the content is up to 0.025%. A desirable upper limit is 0.015%.
[0031]
S: 0.002% or less S is an impurity element similar to P described above. If the content exceeds 0.002%, MnS remains even if the form control of sulfide is performed by the following Ca addition. Thus, the HIC resistance is impaired. Therefore, the S content is set to 0.002% or less. The S content is desirably 0.001% or less. In addition, the lower the S content, the better.
[0032]
Ca: 0.0005 to 0.005%
Ca has an action of controlling the form of sulfide, and prevents the generation of MnS which is the starting point of HIC. However, when the content is less than 0.0005%, the effect of controlling the form of sulfide is poor. When the content exceeds 0.005%, the effect of controlling the form of sulfide is saturated, and excessive Ca inclusions are present. Impairs toughness and HIC resistance. Thus, it was 0.0005 to 0.005% of Ca content. A desirable range for the Ca content is 0.001 to 0.003%.
[0033]
Ti: 0.005 to 0.05%
Ti fixes the impurity element N contained in the steel as TiN, prevents toughness deterioration due to free N, and TiN suppresses the growth of austenite grains during slab heating, promotes finer grain, and improves toughness There is an action to make. However, if the content is less than 0.005%, the above effect cannot be obtained, and if the content exceeds 0.05%, the toughness decreases. Thus, it was from 0.005 to 0.05% of Ti content. The desirable range of Ti content is 0.01 to 0.03%, and from the viewpoint of preventing toughness deterioration due to free N, it is desirable to contain Ti so that Ti / N is about 3.4.
[0034]
Nb: 0.005 to 0.1%
Nb has the effect of improving the toughness by refining steel by carbide precipitation. However, if the content is less than 0.005%, the above effect cannot be obtained. If the content exceeds 0.1%, the toughness of the welded portion is reduced. Thus, it was 0.005% to 0.1% of Nb content. A desirable range of Nb content is 0.01 to 0.05 %.
[0035]
sol.Al: 0.005 to 0.05%
Al is necessary as a deoxidizer. However, if the content is less than 0.005% by sol.Al content, sufficient deoxidation effect cannot be secured. On the other hand, if the content exceeds 0.05%, the cleanliness and toughness of the steel material are lowered. Thus, it was from 0.005 to 0.05% of sol.Al content. The desirable range of sol. Al content is 0.01-0.04%.
[0036]
N: 0.01% or less N is an impurity element similar to P and S described above. When the content exceeds 0.01%, the toughness of the base metal is improved even if N is fixed as TiN by Ti. It begins to decline. Therefore, the N content is set to 0.01% or less. A desirable upper limit of the N content is 0.005%. The lower the N content, the better.
[0037]
The chemical composition of the steel material according to the present invention is sufficient if the above is satisfied, but it is preferable that one or more of the elements described below are positively added and contained as necessary.
[0038]
V: 0.2% or less (preferred lower limit during active addition: 0.01%)
V improves the toughness by refining the steel, and the precipitated V carbide also has the effect of strengthening the steel. These effects can be obtained even at a content level of impurities, but not less than 0.01%. It becomes remarkable by the content. Therefore, when it is desired to obtain the above effect, it may be added and contained positively. However, if the content exceeds 0.2%, the toughness of the welded portion decreases. For this reason, when V is added, the V content is preferably 0.01 to 0.2%. A more desirable range is 0.05 to 0.1%.
[0039]
Cu: 0.5% or less (preferable lower limit during positive addition: 0.05%)
Ni: 0.5% or less (preferable lower limit during active addition: 0.05%)
Cr: 3% or less (preferred lower limit during positive addition: 0.1%)
Mo: 1.5% or less (preferred lower limit during positive addition: 0.05%)
B: 0.002% or less (preferred lower limit during positive addition: 0.0002%)
These elements have the effect of improving the strength of the steel, and this effect can be obtained even when the content of any element is at the impurity level. However, Cu, Ni and Mo are 0.05% or more, and Cr is 0.2%. It becomes remarkable when the content is 1% or more. Therefore, when it is desired to obtain the above effect, one or more of these elements may be positively added and contained. However, if Cu and Ni are contained in excess of 0.5%, not only the effect is saturated, but also Ni is an expensive alloy element, resulting in an increase in cost. Further, if Cr is contained in an amount exceeding 3% and Mo is contained in an amount exceeding 1.5%, not only the toughness of the welded portion is lowered, but also Mo is an expensive alloy element, which causes an increase in cost. For this reason, the content of Cu and Ni when added and contained is 0.005 to 0.05%, Cr content is 0.1 to 3%, and Mo content is 0.05 to 1.5%. It is desirable to do. A preferable Cu and Ni content range is 0.1 to 0.3%, a Cr content range is 0.25 to 2.5%, and a Mo content range is 0.1 to 1.2%. Note that Cu, Ni, Cr, and Ni also have an effect of improving corrosion resistance.
[0040]
Next, preferable manufacturing conditions after manufacturing the slab by continuous casting of the steel material according to the present invention desirable for a line pipe or a pressure vessel will be described.
[0041]
Slab heating temperature:
As described above, the slab obtained by applying a reduction at the end of solidification to discharge concentrated molten steel with increased segregation degree from the axial center of the slab is heated prior to hot working such as rolling or forging. However, when the heating temperature at that time is lower than 1050 ° C., the carbide in the slab does not sufficiently dissolve, and the desired strength may not be obtained after hot working. Moreover, when heating temperature exceeds 1250 degreeC, it may coarsen and the fall of toughness may be caused. Therefore, the heating temperature of the slab is preferably set to 1050 to 1250 ° C. A more desirable range is 1100 to 1250 ° C. Note that this is not the case when heat treatment is performed after hot working.
[0042]
Hot working finishing temperature:
Recently, from the viewpoint of manufacturing cost reduction, it is common to control the chemical composition and manufacturing conditions of steel so that desired strength and toughness can be obtained with hot working (rolling). However, if the finishing temperature of hot working (rolling) is lower than 650 ° C., the deformation resistance of the steel increases and working (rolling) becomes difficult, and if it exceeds 900 ° C., the structure of the steel is not sufficiently refined. The desired strength and toughness may not be obtained as rolled. Therefore, it is desirable that the finishing temperature for hot working (rolling) is 650 to 900 ° C. A more desirable range is 700 to 850 ° C., and a preferable finishing temperature range when performing the accelerated cooling treatment described below after hot working is A r3 to 850 ° C., and a more preferable range is A r3 + 30 ° C. to 850 ° C. .
[0043]
Accelerated cooling start temperature after hot working:
Recently, as described above, even if desired strength and toughness can be obtained with hot working (rolling), water cooling or the like after hot working (rolling) can be achieved with a lower cost steel composition. It is more common to perform accelerated cooling. However, when the start temperature of accelerated cooling is lower than the Ar3 transformation point of −30 ° C., the retained austenite at that time may undergo transformation hardening, and HIC resistance and SSC resistance may be impaired. Therefore, it is desirable that the start temperature of accelerated cooling be Ar 3 transformation point −30 ° C. or higher. The more desirable lower limit is the range above the Ar3 transformation point.
[0044]
Accelerated cooling rate:
If the cooling rate at the center of the plate thickness is less than 6 ° C / s, there is no effect of accelerated cooling. Conversely, if the rate exceeds 25 ° C / s, the steel will be hardened too much and the HIC resistance and SSC resistance will be impaired. There is. Therefore, the cooling rate at the time of accelerated cooling is preferably 6 to 25 ° C./s as the cooling rate at the center of the plate thickness. A more desirable range is 10 to 20 ° C./s.
[0045]
Accelerated cooling stop temperature:
When the stop temperature of accelerated cooling exceeds 550 ° C., the effect of accelerated cooling is not obtained. Conversely, when the temperature is lower than 350 ° C., the steel is excessively hardened and the HIC resistance and SSC resistance may be impaired. Therefore, it is desirable that the accelerated cooling stop temperature is 550 to 350 ° C. A more desirable range is 550 to 400 ° C.
[0046]
Heat treatment after hot working:
Heat treatment after hot working is not necessarily performed, but heat treatment such as quenching-tempering treatment or normalizing treatment may be performed. In this case, the toughness is further improved and the desired strength is stably obtained. It is done. However, if the reheating temperature at that time is lower than 850 ° C., the carbides in the steel are not sufficiently dissolved, and the desired strength may not be obtained. May decrease. Therefore, the reheating temperature when heat treatment is performed after hot working is desirably 850 to 1100 ° C. A more desirable range is 900 to 1050 ° C. Note that the heat treatment after the hot working requires one extra step, and the manufacturing cost increases accordingly, so that it cannot be recommended from the viewpoint of reducing the manufacturing cost.
[0047]
【Example】
When four types of steel having the chemical composition shown in Table 1 were melted and made into a slab having a thickness of 238 mm and a width of 1800 mm by continuous casting, the slab thickness was temporarily bulged by 20 mm at a position where the distance from the meniscus was 3 m. Thereafter, reduction was performed under various conditions shown in Table 2 to obtain a slab in which the degree of Mn negative segregation in the center was variously adjusted. For comparison, bulging and reduction were not applied to some slabs.
[0048]
Next, after cutting out a block for rolling having a thickness of 150 mm and a width of 100 mm in which the center of thickness and width coincides with the center of the slab from the center of each obtained slab, and after performing hot rolling under the conditions shown in Table 2, An accelerated cooling treatment or an air cooling treatment under the conditions shown in Table 2 was applied to obtain a steel plate having a thickness of 19.5 mm and a width of 110 mm in which the average Mn segregation degree and the maximum Mn concentration in the central portion of the thickness were different.
[0049]
A 100 mm × 100 mm total thickness test piece was taken from each of the obtained steel plates, and 5 mass% NaCl + 0.5 mass% CH 3 OOH + 1 atm H 2 S saturation in accordance with the HIC test method specified in NACE T0284. Was immersed in NACE TM0177 solution at a temperature of 25 ° C. for 96 hours.
[0050]
In the evaluation of the HIC test, the cracked area ratio (CAR) of the HIC occupying the total area of the test piece is obtained by measuring the area of the HIC crack in the test piece after immersion by ultrasonic C-scan, and the CAR is 3% or less. Goods had good HIC resistance, and over 3% had poor HIC resistance.
[0051]
Note that the average Mn concentration and the maximum Mn concentration at the center of the plate thickness are obtained by cutting the test piece after the CAR measurement, 1.0 mm from the plate thickness center, that is, from the plate thickness center to both sides, and from the plate width center. The Mn concentration in the region of 20 mm on each side is measured with MA (mapping analyzer) at a pitch of 20 μm, the average value of each measured value is the average Mn concentration, and the maximum value in each measured value is the maximum Mn concentration. did.
[0052]
The above results are shown in Table 2 together with the yield strength YS (MPa) and tensile strength TS (MPa) of each steel plate. The yield strength YS and the tensile strength TS are values obtained by collecting a tensile test piece having an outer diameter of 6 mm from each steel plate and conducting a tensile test at room temperature.
[0053]
As can be seen from the results shown in Table 2, the conditions defined in the present invention, that is, the chemical composition of the steel is within the range defined by the present invention, and the average Mn concentration at the center of the plate thickness is more than the average Mn concentration in the steel. And the steel plates of Test Nos. 2 to 8 and Test Nos. 13 to 16 satisfying the condition that the maximum Mn concentration in the central portion of the plate thickness is 2.9% by mass or less and higher than the average Mn concentration in the steel, CAR is 0 to 2.8%, and HIC resistance is good.
[0054]
On the other hand, in the steel plates of trial numbers 9 to 12 in which the average Mn concentration in the center portion of the plate thickness or the maximum Mn concentration in the center portion of the plate thickness does not satisfy the conditions specified in the present invention, the CAR is 4.4 to 10.4%. Therefore, the HIC resistance is unsatisfactory. Further, in the steel plate of trial No. 1 in which no reduction was applied during the production of the slab, although the maximum Mn concentration in the center portion of the plate thickness satisfies the conditions of the present invention, the average Mn concentration in the center portion of the plate thickness is higher than the average Mn concentration in the steel. Therefore, the CAR is 18.3% and the HIC resistance is unsatisfactory.
[0055]
[Table 1]
[Table 2]
【The invention's effect】
The steel material of the present invention stably exhibits good HIC resistance even when the Mn content exceeds 1.5%. For this reason, it is possible to supply high-strength steel materials, which will be increasingly demanded in the future, with inexpensive high-Mn steels.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a concentration distribution state of an alloy element (Mn) in a thickness center segregation portion of a steel material (steel plate) manufactured from a conventional continuous cast slab.
FIG. 2 is a schematic diagram showing a concentration distribution state of an alloy element (Mn) in a thickness center segregation portion of a steel material (steel plate) according to the present invention.
Claims (4)
但し、「板厚中心部」とは、鋼板の板厚中心から板厚方向両側にそれぞれ板厚の1/20ずつ、すなわち厚み中心部の板厚の1/10の領域をいう。 Steel has a chemical composition of mass%, C: 0.01 to 0.1%, Si: 0.01 to 0.5%, Mn: 0.8 to 2%, P: 0.025% or less, S : 0.002% or less, Ca: 0.0005-0.005%, Ti: 0.005-0.05%, Nb : 0.005-0.1 %, sol. Al: 0.005-0. 05%, N: 0.01% or less, balance Fe and impurities, the average Mn concentration in the center of the plate thickness is lower than the average Mn concentration in the steel, and the maximum Mn concentration in the center of the plate thickness is A steel material excellent in hydrogen-induced crack resistance, characterized by being 2.9% by mass or less and higher than the average Mn concentration in steel.
However, the “plate thickness center portion” means an area of 1/20 of the plate thickness from the plate thickness center of the steel plate to both sides in the plate thickness direction, that is, 1/10 of the plate thickness of the thickness center portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001194355A JP3846233B2 (en) | 2001-06-27 | 2001-06-27 | Steel with excellent resistance to hydrogen-induced cracking |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001194355A JP3846233B2 (en) | 2001-06-27 | 2001-06-27 | Steel with excellent resistance to hydrogen-induced cracking |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003013175A JP2003013175A (en) | 2003-01-15 |
JP3846233B2 true JP3846233B2 (en) | 2006-11-15 |
Family
ID=19032506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001194355A Expired - Fee Related JP3846233B2 (en) | 2001-06-27 | 2001-06-27 | Steel with excellent resistance to hydrogen-induced cracking |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3846233B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2644729A2 (en) | 2012-03-30 | 2013-10-02 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Steel plate with excellent hydrogen induced cracking resistance, and manufacturing method of the same |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0418503B1 (en) | 2004-02-04 | 2017-03-21 | Nippon Steel & Sumitomo Metal Corp | steel product with high resistance to hic for use as pipe |
JP4589242B2 (en) * | 2006-01-30 | 2010-12-01 | Jfeスチール株式会社 | Hot-rolled non-tempered steel bar excellent in toughness and method for producing the same |
JP4725437B2 (en) * | 2006-06-30 | 2011-07-13 | 住友金属工業株式会社 | Continuous cast slab for thick steel plate, method for producing the same, and thick steel plate |
JP6003063B2 (en) | 2012-01-18 | 2016-10-05 | セイコーエプソン株式会社 | Photoconductive antenna, terahertz wave generator, camera, imaging device, and measuring device |
CN102605296A (en) * | 2012-03-13 | 2012-07-25 | 宝山钢铁股份有限公司 | Steel for nuclear pressure vessels and manufacturing method thereof |
CN104364406B (en) | 2012-06-18 | 2016-09-28 | 杰富意钢铁株式会社 | Thick section and high strength acid resistance line pipe and manufacture method thereof |
CN104428437B (en) | 2012-07-09 | 2017-03-08 | 杰富意钢铁株式会社 | Thick section and high strength acid resistance line pipe and its manufacture method |
KR101736638B1 (en) * | 2015-12-23 | 2017-05-30 | 주식회사 포스코 | Pressure vessel steel plate with excellent hydrogen induced cracking resistance and manufacturing method thereof |
KR101867701B1 (en) | 2016-11-11 | 2018-06-15 | 주식회사 포스코 | Pressure vessel steel plate with excellent hydrogen induced cracking resistance and manufacturing method thereof |
KR101899691B1 (en) | 2016-12-23 | 2018-10-31 | 주식회사 포스코 | Pressure vessel steel plate with excellent hydrogen induced cracking resistance and manufacturing method thereof |
KR101999027B1 (en) | 2017-12-26 | 2019-07-10 | 주식회사 포스코 | Steel for pressure vessel having excellent resistance to hydrogen induced cracking and method of manufacturing the same |
KR101999024B1 (en) | 2017-12-26 | 2019-07-10 | 주식회사 포스코 | Steel plate having excellent HIC resistance and manufacturing method for the same |
KR102164116B1 (en) | 2018-11-29 | 2020-10-13 | 주식회사 포스코 | Steel plate having excellent hic resistance and manufacturing method for thereof |
KR102131536B1 (en) | 2018-11-30 | 2020-07-08 | 주식회사 포스코 | Steel plate for pressure vessel having excellent hydrogen induced cracking resistance and method of manufacturing the same |
KR102131537B1 (en) | 2018-11-30 | 2020-07-08 | 주식회사 포스코 | Steel plate for pressure vessel having excellent hydrogen induced cracking resistance and method of manufacturing the same |
KR20210080698A (en) | 2019-12-20 | 2021-07-01 | 주식회사 포스코 | Fitting part having excellent resistance to hydrogen induced cracking and manufacturing method for the same |
KR20210080697A (en) | 2019-12-20 | 2021-07-01 | 주식회사 포스코 | Fitting part having excellent resistance to hydrogen induced cracking and manufacturing method for the same |
-
2001
- 2001-06-27 JP JP2001194355A patent/JP3846233B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2644729A2 (en) | 2012-03-30 | 2013-10-02 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Steel plate with excellent hydrogen induced cracking resistance, and manufacturing method of the same |
US9068253B2 (en) | 2012-03-30 | 2015-06-30 | Kobe Steel, Ltd. | Steel plate with excellent hydrogen induced cracking resistance, and manufacturing method of the same |
KR20150085506A (en) | 2012-03-30 | 2015-07-23 | 가부시키가이샤 고베 세이코쇼 | Steel plate with excellent hydrogen induced cracking resistance, and manufacturing method of the same |
Also Published As
Publication number | Publication date |
---|---|
JP2003013175A (en) | 2003-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3846233B2 (en) | Steel with excellent resistance to hydrogen-induced cracking | |
JP7147960B2 (en) | Steel plate and its manufacturing method | |
WO1994022606A1 (en) | Wear- and seizure-resistant roll for hot rolling | |
JP4700740B2 (en) | Manufacturing method of steel plate for sour line pipe | |
JP5504717B2 (en) | Manufacturing method of ERW steel pipe for sour line pipe | |
JP6954475B2 (en) | High Mn steel and its manufacturing method | |
JPH07173536A (en) | Production of steel sheet for high strength line pipe excellent in sour resistance | |
CN111788325B (en) | High Mn steel and method for producing same | |
JP3633515B2 (en) | Hot-rolled steel sheet having excellent resistance to hydrogen-induced cracking and method for producing the same | |
JP4093177B2 (en) | Steel material for hydrofoam, electric sewing tube for hydrofoam, and manufacturing method thereof | |
JP5034392B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP4341395B2 (en) | High strength steel and weld metal for high heat input welding | |
JP3303647B2 (en) | Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance | |
WO2019180499A1 (en) | A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof | |
JP5157030B2 (en) | Manufacturing method of high strength line pipe steel with excellent HIC resistance | |
JPH06179910A (en) | Production of steel plate excellent in hydrogen induced cracking resistance | |
JPH05295434A (en) | Production of high tensile strength steel plate excellent in hydrogen induced cracking resistance, sulfide stress corrosion cracking resistance, and toughness at low temperature | |
JP2003293078A (en) | Steel pipe having excellent weld heat affected zone toughness and deformability and method of producing steel sheet for steel pipe | |
JPH08232042A (en) | Corrosion resisting steel for resistance welded tube | |
JPH07268467A (en) | Production of hot coil for steel tube having high toughness and sour resistance | |
JPH08199236A (en) | Production of martensitic stainless steel plate for line pipe | |
JPH06256894A (en) | High strength line pipe excellent in hydrogen induced cracking resistance | |
JP2000054065A (en) | High tensile strength steel material for welding, excellent in toughness in weld heat-affected zone, and its production | |
JP5126790B2 (en) | Steel material excellent in fatigue crack growth resistance and method for producing the same | |
JP7429782B2 (en) | Structural steel plate with excellent seawater resistance and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040608 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050927 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051004 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060801 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060814 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3846233 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090901 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100901 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110901 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120901 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120901 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130901 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130901 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130901 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |