JP4589242B2 - Hot-rolled non-tempered steel bar excellent in toughness and method for producing the same - Google Patents

Hot-rolled non-tempered steel bar excellent in toughness and method for producing the same Download PDF

Info

Publication number
JP4589242B2
JP4589242B2 JP2006020070A JP2006020070A JP4589242B2 JP 4589242 B2 JP4589242 B2 JP 4589242B2 JP 2006020070 A JP2006020070 A JP 2006020070A JP 2006020070 A JP2006020070 A JP 2006020070A JP 4589242 B2 JP4589242 B2 JP 4589242B2
Authority
JP
Japan
Prior art keywords
less
hot
steel bar
steel
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006020070A
Other languages
Japanese (ja)
Other versions
JP2007197801A (en
Inventor
邦和 冨田
高明 豊岡
和明 福岡
哲夫 白神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Bars and Shapes Corp
Original Assignee
JFE Steel Corp
JFE Bars and Shapes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Bars and Shapes Corp filed Critical JFE Steel Corp
Priority to JP2006020070A priority Critical patent/JP4589242B2/en
Publication of JP2007197801A publication Critical patent/JP2007197801A/en
Application granted granted Critical
Publication of JP4589242B2 publication Critical patent/JP4589242B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、熱間圧延ままの非調質材であっても、引張強度TSが700MPa以上、20℃における衝撃値E20の最低値が100J/cm以上、平均値が150J/cm以上である靱性に優れた熱間圧延型非調質棒鋼及びその製造方法に関する。
尚、本発明における熱間圧延型非調質棒鋼とは、棒鋼圧延後の冷却中に微細析出物を析出させて特性の改善を図ったものであり、製品に加工後調質処理を要しない棒鋼を意味する。
In the present invention, even if it is a non-heat treated material as it is hot-rolled, the tensile strength TS is 700 MPa or more, the minimum value of the impact value U E20 at 20 ° C. is 100 J / cm 2 or more, and the average value is 150 J / cm 2 or more. The present invention relates to a hot-rolled non-tempered steel bar excellent in toughness and a method for producing the same.
The hot-rolled non-tempered steel bar in the present invention is a product in which fine precipitates are deposited during cooling after rolling the steel bar to improve the characteristics, and the product does not require post-processing tempering treatment. It means steel bar.

自動車をはじめとする輸送機械や建設機械に用いられる構造部品には、機械構造用炭素鋼や機械構造用合金鋼を焼入れ焼戻した調質鋼や焼入れ焼戻しによらずに鋼の化学成分や組織の調整により強度を確保した非調質鋼が用いられている。
このような用途に用いられる非調質鋼は、VやNbを添加したフェライトーパーライト二相組織が一般的で、調質鋼に比べると、引張強度を同程度にした場合には降伏強度、絞り値、衝撃値が低く、降伏強度を同程度とした場合には引張強度、即ち、硬度が過度に上昇し、被削性が低下するという問題があった。
Structural parts used in automobiles and other transportation equipment and construction machinery include carbon steel for machine structural use and tempered steel tempered and tempered alloy steel for machine structural use. Non-tempered steel whose strength is secured by adjustment is used.
Non-tempered steel used for such applications generally has a ferrite-pearlite dual-phase structure to which V or Nb is added. Compared to tempered steel, the yield strength can be increased when the tensile strength is the same. When the drawing value and impact value are low and the yield strength is the same, there is a problem that the tensile strength, that is, the hardness is excessively increased and the machinability is lowered.

上記問題点を解決する手法として、特許文献1及び特許文献2には高強度、高降伏比、且つ高靱性な非調質鋼を得るために、フェライト、ベイニティックフェライト、擬マルテンサイトを有する組織を備えた鋼材を冷間加工後600℃以下で時効処理し、Cu、Ti−Nb系炭化物を析出させることを特徴とする技術が開示されている。
しかしながら、実製造において複数の組織の比率を厳格に制御することは現実的ではなく、また、多量のCu添加による析出強化を利用する場合は、高温割れ防止のために高価なNiを多量に添加する必要があり、大量消費される構造部品としてはコスト的にも問題がある。
As a technique for solving the above problems, Patent Document 1 and Patent Document 2 have ferrite, bainitic ferrite, and pseudo-martensite in order to obtain a high-strength, high yield ratio, and high-toughness non-heat treated steel. A technique is disclosed in which a steel material having a structure is subjected to aging treatment at 600 ° C. or lower after cold working to precipitate Cu and Ti—Nb-based carbides.
However, it is not practical to strictly control the ratio of multiple structures in actual production, and when using precipitation strengthening by adding a large amount of Cu, a large amount of expensive Ni is added to prevent hot cracking. As a structural component that is consumed in large quantities, there is a problem in terms of cost.

そこで、本発明者らは、実製造においても生産性が低下せず、安価な成分組成で700MPa以上の引張強度と0.85以上の降伏比を有し、且つ靱性にも優れる熱間圧延型非調質棒鋼を得ることを目的に、フェライト単相組織中に粒径10nm未満の微細析出物を分散析出させる技術とそのための成分組成及び製造方法を発明した(特許文献3)。
しかしながら、特許文献3に示した技術では、靱性のばらつきが大きいという問題がある。即ち、靱性の指標である20℃における衝撃値E20は100J/cm以上と高い値が得られているが、この値は平均値であり、個々の衝撃値では50J/cm以下となる場合もあった。
特開2001−123224号公報 特開2001−131680号公報 特願2003−120402号
Therefore, the present inventors have not reduced productivity even in actual production, have a tensile strength of 700 MPa or more and a yield ratio of 0.85 or more with an inexpensive component composition, and are hot rolling molds that are excellent in toughness. In order to obtain a non-tempered steel bar, a technique for dispersing fine precipitates having a particle size of less than 10 nm in a ferrite single-phase structure and a component composition and manufacturing method therefor have been invented (Patent Document 3).
However, the technique shown in Patent Document 3 has a problem that variation in toughness is large. That is, the impact value U E20 at 20 ° C., which is an index of toughness, is as high as 100 J / cm 2 or more, but this value is an average value, and the impact value is 50 J / cm 2 or less for each impact value. There was a case.
JP 2001-123224 A JP 2001-131680 A Japanese Patent Application No. 2003-120402

そこで、本発明は、安価な成分組成で、且つ実製造において容易に製造可能な、700MPa以上の引張強度と100J/cm以上の衝撃値E20が安定して得られる熱間圧延型非調質棒鋼をその有利な製造方法と共に提供することを目的とする。 Therefore, the present invention is a hot rolling type non-adjustment which can stably obtain a tensile strength of 700 MPa or more and an impact value U E20 of 100 J / cm 2 or more which can be easily produced in actual production with an inexpensive component composition. The object is to provide a quality steel bar together with its advantageous production method.

本発明者らは、フェライト単相組織中に粒径10nm未満の微細析出物を分散析出させフェライトを析出強化すると、非調質鋼であっても、被削性を損なうことなく高強度化が図れることに加えて、Mnの偏析を低減してフェライトの結晶粒径を35μm以下に微細化すると靱性が改善され、衝撃値E20が向上すると共に、衝撃値のバラツキも減少することが明らかになった。
本発明は以上の知見に基づいて完成されたものであり、その要旨は以下の通りである。
When the present inventors have dispersed and precipitated fine precipitates having a particle size of less than 10 nm in a ferrite single-phase structure to enhance the precipitation of ferrite, the strength can be increased without impairing the machinability even with non-tempered steel. In addition to reducing the segregation of Mn and reducing the crystal grain size of ferrite to 35 μm or less, it is clear that toughness is improved, impact value U E20 is improved, and variation in impact value is also reduced. became.
The present invention has been completed based on the above findings, and the gist thereof is as follows.

発明1は、鋼の成分組成が、質量%でC:0.040〜0.150%、Si:0.5%以下、Mn:0.5〜3.0%、Al:0.1%以下、Ti:0.03〜0.35%、Mo:0.05〜0.8%、残部Fe及び不可避的不純物よりなり、Mnの偏析比Rが下記(1)式を満たし、組織が結晶粒径35μm以下のフェライト単相で、フェライト中に粒径10nm未満の微細析出物が分散することを特徴とする熱間圧延型非調質棒鋼である。
R=Mn(max)/Mn(min)≦1.5 (1)
Mn(max):Mnの最も高い部分のMn量
Mn(min):Mnの最も低い部分のMn量
In invention 1, the component composition of steel is C: 0.040 to 0.150% in mass%, Si: 0.5% or less, Mn: 0.5 to 3.0%, Al: 0.1% or less. Ti: 0.03-0.35%, Mo: 0.05-0.8%, balance Fe and inevitable impurities, Mn segregation ratio R satisfies the following formula (1), and the structure is a crystal grain A hot-rolled non-tempered steel bar having a ferrite single phase having a diameter of 35 μm or less and fine precipitates having a particle diameter of less than 10 nm dispersed in the ferrite.
R = Mn (max) / Mn (min) ≦ 1.5 (1)
Mn (max): Mn content of the highest part of Mn
Mn (min): Mn content in the lowest part of Mn

発明2は、鋼の成分組成が、下記(2)式を満たすことを特徴とする発明1記載の熱間圧延型非調質棒鋼である。
0.50≦(C/12)/[(Ti/48)+(Mo/96)]≦1.50 (2)
Invention 2 is a hot-rolled non-tempered steel bar according to Invention 1, wherein the component composition of the steel satisfies the following formula (2).
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96)] ≦ 1.50 (2)

発明3は、微細析出物がTi、Moの炭化物であることを特徴とする発明1又は2に記載の熱間圧延型非調質棒鋼である。   Invention 3 is the hot-rolled non-heat treated steel bar according to Invention 1 or 2, wherein the fine precipitate is a carbide of Ti and Mo.

発明4は、鋼の成分組成として、更に質量%でNb:0.08%以下、V:0.15%以下、W:1.5%以下の一種または二種以上を含むことを特徴とする発明1記載の熱間圧延型非調質棒鋼である。   Invention 4 is characterized by further including one or more of Nb: 0.08% or less, V: 0.15% or less, and W: 1.5% or less as a component composition of steel. It is a hot-rolling type non-tempered steel bar according to invention 1.

発明5は、更に、鋼の成分組成が下記(3)式を満たすことを特徴とする発明4記載の熱間圧延型非調質棒鋼である。
0.50≦(C/12)/[(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)]≦1.50 (3)
The invention 5 is the hot-rolled non-tempered steel bar according to the invention 4, wherein the component composition of the steel further satisfies the following formula (3).
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)] ≦ 1.50 (3)

発明6は、微細析出物がTiとMoとNb、V、Wの内の少なくとも一種とを含む炭化物であることを特徴とする発明4又は5記載の熱間圧延型非調質棒鋼である。   Invention 6 is the hot-rolled non-tempered steel bar according to Invention 4 or 5, wherein the fine precipitate is a carbide containing Ti, Mo, and at least one of Nb, V, and W.

発明7は、鋼の成分組成として、質量%でS:0.01〜0.1%であり、更にPb:0.2%以下、Ca:0.005%以下、Bi:0.1%以下、B:0.02%以下の一種又は二種以上を含むことを特徴とする発明1から6記載の熱間圧延型非調質棒鋼である。   Invention 7 is steel component composition by mass% S: 0.01-0.1%, Pb: 0.2% or less, Ca: 0.005% or less, Bi: 0.1% or less B: The hot-rolled non-tempered steel bar according to inventions 1 to 6, characterized by containing one or more of 0.02% or less.

発明8は、鋼の成分組成が、質量%でC:0.040〜0.150%、Si:0.5%以下、Mn:0.5〜3.0%、Al:0.1%以下、Ti:0.03〜0.35%、Mo:0.05〜0.8%、残部Fe及び不可避的不純物よりなり、Mnの偏析比Rが下記(1)式を満たす鋼を、1100〜1270℃に加熱し、仕上温度850〜1100℃で熱間圧延し、次いで1.0℃/s以下の冷却速度で冷却することを特徴とする熱間圧延型非調質棒鋼の製造方法である。
R=Mn(max)/Mn(min)≦1.5 (1)
Mn(max):Mnの最も高い部分のMn量
Mn(min):Mnの最も低い部分のMn量
In invention 8, the component composition of steel is C: 0.040 to 0.150% in mass%, Si: 0.5% or less, Mn: 0.5 to 3.0%, Al: 0.1% or less. , Ti: 0.03-0.35%, Mo: 0.05-0.8%, the balance Fe and unavoidable impurities, and Mn segregation ratio R satisfying the following formula (1) 1100 Heating to 1270 ° C, hot rolling at a finishing temperature of 850 to 1100 ° C, and then cooling at a cooling rate of 1.0 ° C / s or less. .
R = Mn (max) / Mn (min) ≦ 1.5 (1)
Mn (max): Mn content of the highest part of Mn
Mn (min): Mn content in the lowest part of Mn

発明9は、熱間圧延の最終2パスにおける合計減面率が30%以上であることを特徴とする発明8記載の熱間圧延型非調質棒鋼の製造方法である。
ここで、
最終2パスにおける合計減面率(%)=((最終2パスにおける圧延前の断面積)-( 最終2パスにおける圧延後の断面積))/( 最終2パスにおける圧延前の断面積)X100
A ninth aspect of the present invention is the method for producing a hot-rolled non-tempered steel bar according to the eighth aspect, wherein the total area reduction in the final two passes of the hot rolling is 30% or more.
here,
Total area reduction ratio in final 2 passes (%) = ((cross-sectional area before rolling in final 2 passes) − (cross-sectional area after rolling in final 2 passes)) / (cross-sectional area before rolling in final 2 passes) X100

発明10は、 鋼の成分組成が、下記(2)式を満たすことを特徴とする発明8又は9記載の熱間圧延型非調質棒鋼の製造方法である。
0.50≦(C/12)/[(Ti/48)+(Mo/96)]≦1.50 (2)
Invention 10 is the method for producing a hot-rolled non-tempered steel bar according to Invention 8 or 9, wherein the component composition of the steel satisfies the following formula (2).
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96)] ≦ 1.50 (2)

発明11は、鋼の成分組成として、更に質量%でNb:0.08%以下、V:0.15%以下、W:1.5%以下の一種または二種以上を含むことを特徴とする発明8から10のいずれか1つの発明に記載の熱間圧延型非調質棒鋼の製造方法である。   Invention 11 is characterized in that the composition of steel further includes one or more of Nb: 0.08% or less, V: 0.15% or less, and W: 1.5% or less in mass%. It is a manufacturing method of the hot rolling type non-tempered steel bar according to any one of inventions 8 to 10.

発明12は、更に、鋼の成分組成が下記(3)式を満たすことを特徴とする発明11記載の熱間圧延型非調質棒鋼の製造方法である。
0.50≦(C/12)/[(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)]≦1.50 (3)
Invention 12 is the method for producing a hot-rolled non-tempered steel bar according to Invention 11, wherein the component composition of the steel further satisfies the following expression (3).
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)] ≦ 1.50 (3)

発明13は、鋼の成分組成として、質量%でS:0.01〜0.1%であり、更にPb:0.2%以下、Ca:0.005%以下、Bi:0.1%以下、B:0.02%以下の一種又は二種以上を含むことを特徴とする発明8から12のいずれか1つの発明に記載の熱間圧延型非調質棒鋼の製造方法である。   Invention 13 is steel component composition by mass% S: 0.01-0.1%, Pb: 0.2% or less, Ca: 0.005% or less, Bi: 0.1% or less B: A method for producing a hot-rolled non-tempered steel bar according to any one of inventions 8 to 12, characterized by containing one or more of 0.02% or less.

本発明によれば、安価な成分組成で且つ、実製造で容易に製造可能な、700MPa以上の引張強度と100J/cm以上の衝撃値E20が安定して得られる棒鋼を調質処理を行うことなく提供可能であり、本発明は産業上極めて有用である。 According to the present invention, a steel bar having a tensile component of 700 MPa or more and an impact value U E20 of 100 J / cm 2 or more that can be easily produced by actual production with an inexpensive component composition is tempered. The present invention is extremely useful in industry.

本発明の成分組成、ミクロ組織および製造条件について、以下に具体的に説明する。
1.成分組成について
成分組成の限定理由について説明する。なお、成分組成における各元素の含有量(%)は全て質量%を意味する。
The component composition, microstructure and production conditions of the present invention will be specifically described below.
1. The reason why the component composition is limited will be described. In addition, all content (%) of each element in a component composition means the mass%.

C:0.040〜0.150%
Cが0.040%未満では微細析出物の析出量が不足し、700MPa以上の引張強度が得られない。一方0.150%を超えて添加すると析出物が粗大化し、700MPa以上の引張強度が得られないので上限を0.150%とする。
C: 0.040 to 0.150%
When C is less than 0.040%, the precipitation amount of fine precipitates is insufficient, and a tensile strength of 700 MPa or more cannot be obtained. On the other hand, if added over 0.150%, the precipitate becomes coarse and a tensile strength of 700 MPa or more cannot be obtained, so the upper limit is made 0.150%.

Si:0.5%以下
Siは冷間加工性を向上させるために添加するが、0.5%を超えて添加してもその効果が損なわれるので上限を0.5%とする。より好ましくは0.15%以下である。
Si: 0.5% or less Si is added to improve cold workability, but even if added over 0.5%, the effect is impaired, so the upper limit is made 0.5%. More preferably, it is 0.15% or less.

Mn:0.5〜3.0%
本発明では、析出物の析出挙動がオーステナイトからフェライトへの変態(以下フェライト変態という)の進行と密接に関係しており、圧延後の冷却中に生じるフェライト変態の変態開始温度と析出物の析出開始温度との差が小さく、フェライト変態と析出が競合する場合に、析出物がフェライト中に微細に分散する。Mnはフェライト変態温度を低下させフェライト変態の変態開始温度と析出物の析出開始温度との差を減少させることで、フェライト変態と析出を競合させることに寄与するが、その効果を得るためには、0.5%以上添加する必要がある。一方、3.0%を超えて添加するとフェライト以外にベイナイト等の低温変態相が生成するようになり、微細析出物による析出強化が不足し、強度が低下するため上限を3.0%とする。
Mn: 0.5 to 3.0%
In the present invention, the precipitation behavior of precipitates is closely related to the progress of transformation from austenite to ferrite (hereinafter referred to as ferrite transformation), and the transformation start temperature of ferrite transformation and precipitation of precipitates that occur during cooling after rolling. When the difference from the starting temperature is small and the ferrite transformation and precipitation compete, the precipitate is finely dispersed in the ferrite. Mn contributes to competing ferrite transformation and precipitation by lowering the ferrite transformation temperature and reducing the difference between the transformation initiation temperature of the ferrite transformation and the precipitation initiation temperature of the precipitate. , 0.5% or more needs to be added. On the other hand, if added over 3.0%, a low-temperature transformation phase such as bainite is generated in addition to ferrite, so that precipitation strengthening due to fine precipitates is insufficient and the strength is lowered, so the upper limit is made 3.0%. .

Mnの偏析比R:1.5以下
Mnはミクロ偏析を生じる元素であり、ミクロ偏析によりMn量が変動すると、それに応じてフェライト変態の変態開始温度も変動し、フェライト変態と析出との競合度合いが変動する結果、フェライト粒毎に析出物の大きさが異なるようになり、ミクロ組織が不均一化すると共に結晶粒間に強度変動を生じる。ミクロ組織の不均一や結晶粒間の強度変動により靱性が劣化するばかりでなく、そのバラツキも増大するため、Mnの偏析比Rを小さくする必要がある。ここで、Mnの偏析比RはR=Mn(max)/Mn(min) で表され、
Mn(max)はMnの最も高い部分のMn量をMn(min)はMnの最も低い部分のMn量を示す。
Mn segregation ratio R: 1.5 or less Mn is an element that causes microsegregation. When the amount of Mn varies due to microsegregation, the transformation start temperature of ferrite transformation also varies accordingly, and the degree of competition between ferrite transformation and precipitation As a result, the size of the precipitates is different for each ferrite grain, the microstructure becomes non-uniform, and the strength varies between crystal grains. Not only is the toughness deteriorated due to the unevenness of the microstructure and the strength fluctuation between the crystal grains, but also the variation thereof increases, so it is necessary to reduce the segregation ratio R of Mn. Here, the segregation ratio R of Mn is expressed by R = Mn (max) / Mn (min)
Mn (max) represents the amount of Mn in the highest portion of Mn, and Mn (min) represents the amount of Mn in the lowest portion of Mn.

図1は、0.095C-0.1Si-0.22Ti-0.41Mo-0.012P-0.012S-0.038Al-0.0031N鋼をベースにMn量を1.0〜2.0%の範囲で種々変化させると共に、鋳造時の鋳込み温度と鋳造速度を変えることで偏析比Rを変化させた鋼を準備し、これを1220℃に加熱後、最終2パスにおける合計減面率40%、仕上温度880℃で直径100mmφの棒鋼に熱間圧延した際の、引張強度TS及び衝撃値E20と偏析比Rの関係を示したものである。尚、熱間圧延後は空冷とし、その際の冷却速度(圧延後から500℃までの平均冷却速度)は0.18℃/sであった。 FIG. 1 shows that 0.095C-0.1Si-0.22Ti-0.41Mo-0.012P-0.012S-0.038Al-0.0031N steel is used as the base and Mn content is varied in the range of 1.0-2.0%. A steel with a segregation ratio R changed by changing the casting temperature and casting speed at the time of casting was prepared. After heating this to 1220 ° C, the total area reduction rate in the final two passes was 40%, the finishing temperature was 880 ° C, and the diameter was 100 mmφ. 3 shows the relationship between the tensile strength TS and impact value U E20 and the segregation ratio R when hot-rolled into a steel bar. In addition, it was set as air cooling after hot rolling, and the cooling rate in that case (average cooling rate from after rolling to 500 degreeC) was 0.18 degreeC / s.

ここで、Mnの偏析比Rの測定に当っては、任意のフェライト粒20個に対してEDX解析を行い、Mnの出力カウントをMn量とみなして、Mnの最も高いフェライト粒のMn量をMn(max)とし、Mnの最も低いフェライト粒のMn量をMn(min)とすることで、
偏析比R=Mn(max)/Mn(min)を算出した。
Here, when measuring the segregation ratio R of Mn, EDX analysis is performed on 20 arbitrary ferrite grains, and the Mn output count is regarded as the Mn amount, and the Mn amount of the ferrite grain having the highest Mn is determined. By setting Mn (max) and Mn amount of ferrite grains having the lowest Mn as Mn (min),
The segregation ratio R = Mn (max) / Mn (min) was calculated.

引張強度は平行部の直径が6mmφ、平行部長さが40mmの小型試験片を用いて測定した。衝撃値E20については、バラツキを考慮して棒鋼の任意の位置からJIS3号のUノッチ衝撃試験片を20本採取し試験に供した。 The tensile strength was measured using a small test piece having a parallel part diameter of 6 mmφ and a parallel part length of 40 mm. The impact value U E20, were taking into account the variations were subjected to arbitrary U notched impact test piece No. JIS3 from position to twenty sampled test bars.

得られた棒鋼については組織観察も併せて行った。具体的には、衝撃試験片を採取した近傍、計20カ所から組織観察用試験片を採取し、組織の同定を行うと共にそれぞれの試験片についてJIS G 0552の切断法で結晶粒の平均断面積を求めこれより相当円の直径として各試験片の結晶粒径を算出し更に計20カ所の平均値をとることで、棒鋼全体の平均値を求めた。この方法で組織の同定と結晶粒径の測定を行ったところ、組織は棒鋼の位置によらず、何れもフェライト単相であり、その結晶粒径は20〜30μmとなっていた。   The obtained steel bar was also subjected to structural observation. Specifically, specimens for tissue observation were collected from a total of 20 locations in the vicinity where the impact specimens were collected, the tissues were identified, and the average cross-sectional area of the crystal grains was determined for each specimen using the cutting method of JIS G 0552. From this, the crystal grain size of each test piece was calculated as the diameter of the equivalent circle, and the average value of the whole steel bar was obtained by taking the average value of 20 places in total. When the structure was identified and the crystal grain size was measured by this method, the structure was a ferrite single phase regardless of the position of the steel bar, and the crystal grain size was 20 to 30 μm.

図1から判るように衝撃値E20はMnの偏析比Rによって区分され、偏析比Rが1.5以下では衝撃値E20の最低値が100J/cm以上、平均値が150J/cm以上となっている。また、衝撃値の平均値が最高値に近いことから、衝撃値の平均値を下回るものは少ないといえる。これに対して、偏析比Rが1.5を超えるものでは衝撃値の最低値が60J/cm以下、平均値が130J/cm以下となっており靱性に劣る。加えて、衝撃値の平均値が最高値と最低値の中間の値を示しており、衝撃値のバラツキも大きい。引張強度TSについては偏析比の影響は、特に見られず、また衝撃値との相関も認められない。 As can be seen from FIG. 1, the impact value U E20 is classified by the segregation ratio R of Mn. When the segregation ratio R is 1.5 or less, the minimum value of the impact value U E20 is 100 J / cm 2 or more and the average value is 150 J / cm 2. That's it. Moreover, since the average value of impact values is close to the maximum value, it can be said that there are few things that are below the average value of impact values. On the other hand, when the segregation ratio R exceeds 1.5, the lowest impact value is 60 J / cm 2 or less and the average value is 130 J / cm 2 or less, which is inferior in toughness. In addition, the average value of the impact value is an intermediate value between the maximum value and the minimum value, and the variation of the impact value is large. Regarding the tensile strength TS, the influence of the segregation ratio is not particularly observed, and no correlation with the impact value is observed.

以上より、衝撃値E20の最低値が100J/cm以上、平均値が150J/cm以上という優れた靱性を得るにはMnの偏析比Rを1.5以下とする必要がある。尚、Mnの偏析比Rの測定方法については特に限定しないが、上述のようにEDX解析で複数のフェライト粒についてMnの出力カウントを測定し最大値と最小値の比を取ることで偏析比Rを評価できる。 From the above, in order to obtain excellent toughness with a minimum impact value U E20 of 100 J / cm 2 or more and an average value of 150 J / cm 2 or more, the segregation ratio R of Mn needs to be 1.5 or less. The method for measuring the segregation ratio R of Mn is not particularly limited. As described above, the segregation ratio R is obtained by measuring the output count of Mn for a plurality of ferrite grains by EDX analysis and taking the ratio between the maximum value and the minimum value. Can be evaluated.

Al:0.1%以下
Alは脱酸材として作用し、またNとAlNを形成し、Bの焼入れ効果を向上させる。
但し、0.1%を超えて添加してもその効果が飽和するので、上限は0.1%とする。より好ましくは0.05%以下である。
Al: 0.1% or less Al acts as a deoxidizer, forms N and AlN, and improves the quenching effect of B.
However, even if added over 0.1%, the effect is saturated, so the upper limit is made 0.1%. More preferably, it is 0.05% or less.

Ti:0.03〜0.35%
TiはTi系炭化物やTi−Mo系炭化物を含む析出物を微細に析出させ、強度を向上させるために添加する。引張強度700MPa以上に確保するためには0.03%以上の添加が必要であり、一方、0.35%を超えて添加すると析出物が粗大化し、強度、靱性が低下するためTiの範囲は、0.03〜0.35%とする。より好ましい範囲は0.03〜0.20%である。
Ti: 0.03-0.35%
Ti is added to finely precipitate precipitates including Ti-based carbides and Ti-Mo-based carbides, and improve strength. In order to ensure a tensile strength of 700 MPa or more, addition of 0.03% or more is necessary. On the other hand, if added over 0.35%, precipitates are coarsened, and the strength and toughness are lowered. 0.03 to 0.35%. A more preferable range is 0.03 to 0.20%.

Mo:0.05〜0.8%
MoはMo系炭化物やTi−Mo系炭化物を含む析出物を微細に析出させ、強度を向上させるために添加する。また、Moは拡散速度が遅く、Tiと共に析出する場合は、析出物の成長速度が低下し、微細な析出物が得られやすいという利点も有する。ここで、引張強度700MPa以上を確保するためには、0.05%以上の添加が必要であり、一方、0.8%を超えて添加するとフェライト以外にベイナイト等の低温変態相が生成するようになり、微細析出物による析出強化が不足し、強度が低下するため、Moの範囲は、0.05〜0.8%とする。より好ましい範囲は0.15〜0.50%である。
Mo: 0.05-0.8%
Mo is added to finely precipitate precipitates including Mo-based carbides and Ti-Mo-based carbides, and to improve strength. Further, Mo has a slow diffusion rate, and when it precipitates together with Ti, it has an advantage that the growth rate of the precipitate is reduced and a fine precipitate is easily obtained. Here, in order to ensure a tensile strength of 700 MPa or more, addition of 0.05% or more is necessary. On the other hand, addition over 0.8% seems to generate a low-temperature transformation phase such as bainite in addition to ferrite. Therefore, precipitation strengthening due to fine precipitates is insufficient and the strength is lowered, so the range of Mo is set to 0.05 to 0.8%. A more preferable range is 0.15 to 0.50%.

上記成分組成において、特にC、Ti及びMo量の原子比に関して、下記(2)式を満足させると、析出物の微細化に有利となる。
0.50≦(C/12)/[(Ti/48)+(Mo/96)]≦1.50 (2)
本パラメータは、析出物の大きさに影響を与えるもので、その範囲を0.50〜1.50とした場合に粒径が10nm未満の微細析出物の形成が容易となり好ましい。
In the above component composition, when the following formula (2) is satisfied particularly with respect to the atomic ratio of the amounts of C, Ti and Mo, it is advantageous for the refinement of precipitates.
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96)] ≦ 1.50 (2)
This parameter affects the size of the precipitate, and when the range is 0.50 to 1.50, it is preferable because the formation of fine precipitates having a particle size of less than 10 nm is facilitated.

尚、微細なTi−Mo系炭化物では、炭化物中のTi、Moは原子比でTi/Moが0.2〜2.0、更に微細な炭化物では0.7〜1.5であることが観察された。   It should be noted that Ti and Mo in the carbides of fine Ti—Mo carbides are observed to have an atomic ratio of Ti / Mo of 0.2 to 2.0, and finer carbides of 0.7 to 1.5. It was done.

以上、必須成分について説明したが、本発明では、強度や靱性等の一層の向上を図るため、Nb、V、Wの一種又は二種以上を添加することができる。   Although the essential components have been described above, in the present invention, one or more of Nb, V, and W can be added in order to further improve the strength and toughness.

Nb:0.08%以下
NbはTi、Moと共に微細析出物を形成して強度上昇に寄与する。また、組織を微細化し、結晶粒を整粒化することで延性及び靱性を向上させる。但し、0.08%を超えて添加すると過度に微細化し、かえって、靱性が低下するため、添加量は0.08%以下とする。より好ましくは0.04%以下である。
Nb: 0.08% or less Nb forms fine precipitates together with Ti and Mo and contributes to an increase in strength. Moreover, ductility and toughness are improved by refining the structure and adjusting the crystal grains. However, if added over 0.08%, it becomes excessively fine, and on the contrary, the toughness is lowered. Therefore, the added amount is made 0.08% or less. More preferably, it is 0.04% or less.

V:0.15%以下
VもTi、Moと共に微細析出物を形成して強度上昇に寄与するが、0.15%を超えて添加すると、析出物が粗大化するため添加量は0.15%以下とする。より好ましくは0.10%以下である。
V: 0.15% or less V also forms fine precipitates together with Ti and Mo and contributes to an increase in strength. However, if added over 0.15%, the precipitates become coarse, so the addition amount is 0.15 % Or less. More preferably, it is 0.10% or less.

W:1.5%以下
WもTi、Moと共に微細析出物を形成して強度上昇に寄与するが、1.5%を超えて添加すると析出物が粗大化するため添加量は1.5%以下とする。より好ましくは1.0%以下である。
W: 1.5% or less W also forms fine precipitates together with Ti and Mo and contributes to an increase in strength. However, if added over 1.5%, the precipitates become coarse, so the addition amount is 1.5%. The following. More preferably, it is 1.0% or less.

上記したNb,V,Wを添加した場合、これらの元素とC,Ti,Mo量の原子比に関して、下記(3)式を満足させると、析出物の微細化に有利となる。
0.50≦(C/12)/[(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)]≦1.50 (3)
本パラメータは析出物の大きさに影響を与えるもので、その範囲を0.50以上、1.50以下とした場合に、粒径10nm未満の微細析出物の形成が容易となり好ましい。
尚、Nb、V、Wの一種または二種以上を含む微細な炭化物では、炭化物中のTi、Mo、Nb、V、Wの原子比(Ti+Nb+V)/(Mo+W)が0.2〜2.0、更に微細な炭化物では0.7〜1.5であることが観察された。
When the above-described Nb, V, and W are added, if the following formula (3) is satisfied with respect to the atomic ratio of these elements and the amounts of C, Ti, and Mo, it is advantageous for refinement of precipitates.
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)] ≦ 1.50 (3)
This parameter affects the size of the precipitate, and when the range is set to 0.50 or more and 1.50 or less, formation of fine precipitates having a particle diameter of less than 10 nm is facilitated, which is preferable.
In addition, in the fine carbide containing one or more of Nb, V, and W, the atomic ratio (Ti + Nb + V) / (Mo + W) of Ti, Mo, Nb, V, and W in the carbide is 0. .2 to 2.0, and 0.7 to 1.5 for finer carbides were observed.

更に、本発明では、部品加工時の被削性を向上させるため、Sを0.01%以上、0.1%以下として、Pb:0.2%以下、Ca:0.005%以下、Bi:0.1%以下、B:0.02%以下の一種または二種以上を添加することができる。
ここで、Sを0.01以上、0.1%以下としたのは、Sが0.01%未満では被削性の向上が得られないためであり、0.1%を超えると、延性や靱性が低下するからである。
また、Pb、Ca、Bi,Bについても添加量がそれぞれの上限値を超えると延性や靱性が低下するため、その添加量はPb:0.2%以下、Ca:0.005%以下、Bi:0.1%以下、B:0.02%以下とする必要がある。
Furthermore, in the present invention, in order to improve the machinability at the time of processing the part, S is set to 0.01% or more and 0.1% or less, Pb: 0.2% or less, Ca: 0.005% or less, Bi : 0.1% or less, B: 0.02% or less can be added alone or in combination.
Here, the reason why S is set to 0.01 or more and 0.1% or less is that when S is less than 0.01%, machinability cannot be improved. It is because toughness falls.
In addition, since the ductility and toughness of Pb, Ca, Bi, and B exceed the respective upper limit values, ductility and toughness are reduced. Therefore, the addition amount is Pb: 0.2% or less, Ca: 0.005% or less, Bi : 0.1% or less, B: 0.02% or less.

その他、強度、延性及び靱性を向上させる目的で,Cr,Ni,Cuの一種又は二種以上をCr:0.5%以下、Ni0.5%以下、Cu0.5%以下の範囲で添加してもかまわない。
不可避的不純物であるPとNは靱性にとって好ましくない元素であるためPとNは低減することが望ましい。具体的にはPにつては0.03%以下に規制することが好ましい。Nについては0.01%以下に規制することが好ましく、更に好ましくは、0.005%以下とするのがよい。尚、これらの元素の添加の有無や含有量により、本発明の効果が損なわれることは無い。
In addition, for the purpose of improving strength, ductility and toughness, one or more of Cr, Ni and Cu are added in a range of Cr: 0.5% or less, Ni 0.5% or less, Cu 0.5% or less. It doesn't matter.
P and N, which are unavoidable impurities, are undesirable elements for toughness, so it is desirable to reduce P and N. Specifically, it is preferable to restrict P to 0.03% or less. N is preferably regulated to 0.01% or less, and more preferably 0.005% or less. In addition, the effect of this invention is not impaired by the presence or absence and content of these elements.

2.ミクロ組織について
本発明では、ミクロ組織を結晶粒径35μm以下のフェライト単相組織に粒径10nm未満の微細析出物が分散析出した組織としたので、その理由を説明する。
2. Regarding Microstructure In the present invention, the microstructure is a structure in which fine precipitates having a grain size of less than 10 nm are dispersed and precipitated in a ferrite single-phase structure having a crystal grain size of 35 μm or less. The reason will be described.

フェライト:単相組織
本発明における組織は、フェライト単相組織とすることで調質材に匹敵する靱性が得られる。ここで、フェライト単相組織とは200倍の光学顕微鏡による断面組織観察でフェライトの面積率が95%以上、好ましくは98%以上であることを指す。
Ferrite: Single-phase structure The structure in the present invention has a toughness comparable to that of the tempered material by forming a ferrite single-phase structure. Here, the ferrite single-phase structure means that the area ratio of ferrite is 95% or more, preferably 98% or more by observing the cross-sectional structure with a 200-fold optical microscope.

フェライトの結晶粒径:35μm以下
本発明ではフェライトの結晶粒径を35μm以下とすることで靱性が向上し、
衝撃値E20の最低値が100J/cm以上、平均値が150J/cm以上となる。
The crystal grain size of ferrite: 35 μm or less In the present invention, the toughness is improved by setting the crystal grain size of ferrite to 35 μm or less,
The minimum value of the impact value U E20 is 100 J / cm 2 or more, and the average value is 150 J / cm 2 or more.

以下に試験結果に基づき詳細に説明する。
鋳造時の鋳込み温度と鋳造速度を調整し、Mnの偏析比Rが1.32である0.062C-0.15Si-1.35Mn-0.12Ti-0.25Mo-0.023P-0.017S-0.033Al-0.0045N鋼を準備した。これを1130℃に加熱後、直径150mmφの棒鋼に熱間圧延し、圧延後室温まで空冷した(500℃までの平均冷却測度は0.11℃/sであった)。熱間圧延に際しては、フェライトの結晶粒径を変化させるために圧延パススケジュール(各圧下パスの温度と減面率)を種々変化させた。
The details will be described below based on the test results.
0.062C-0.15Si-1.35Mn-0.12Ti-0.25Mo-0.023P-0.017S-0.033Al-0.0045N steel with the Mn segregation ratio R of 1.32 by adjusting the casting temperature and casting speed during casting Prepared. This was heated to 1130 ° C., hot-rolled into a steel bar having a diameter of 150 mmφ, and air-cooled to room temperature after rolling (the average cooling measure up to 500 ° C. was 0.11 ° C./s). During the hot rolling, various rolling pass schedules (temperature and area reduction ratio of each rolling pass) were changed in order to change the crystal grain size of ferrite.

得られた棒鋼について組織観察を行うと共に、引張試験と衝撃試験を行った。ここで、衝撃試験については、バラツキを考慮して棒鋼の任意の位置からJIS3号のUノッチ衝撃試験片を20本採取し試験に供した。組織観察では、Mnの偏析比Rの影響を調査した際と同様の方法で組織の同定と結晶粒径の測定を行った。
組織観察の結果、何れの条件でも組織はフェライト単相となっていた。フェライト粒径は熱間圧延でのパススケジュールを変化させたので15μm程度から55μm程度まで変化していた。
The obtained steel bar was subjected to a structure observation and a tensile test and an impact test. Here, with respect to the impact test, 20 U-notch impact test pieces of JIS3 were collected from any position of the steel bar in consideration of variation, and used for the test. In the structure observation, the structure was identified and the crystal grain size was measured in the same manner as when the influence of the segregation ratio R of Mn was investigated.
As a result of the structure observation, the structure was a ferrite single phase under any condition. The ferrite grain size was changed from about 15 μm to about 55 μm because the pass schedule in hot rolling was changed.

図2にフェライト粒径と引張強度TS及び衝撃値E20との関係を示す。
衝撃値E20はフェライト粒径に依存して変化し、フェライト粒径が35μm以下のものでは、衝撃値E20の最低値が100J/cm以上、平均値が150J/cm以上となっている。これに対してフェライト粒径が35μmを超えたものでは衝撃値E20の最低値が60J/cm以下、平均値が120J/cm以下となっており、靱性の劣化が大きい。
FIG. 2 shows the relationship between the ferrite grain size, the tensile strength TS, and the impact value U E20.
The impact value U E20 varies depending on the ferrite particle size. When the ferrite particle size is 35 μm or less, the minimum value of the impact value U E20 is 100 J / cm 2 or more and the average value is 150 J / cm 2 or more. Yes. In contrast minimum value of those ferrite grain diameter exceeds 35μm impact value U E20 is 60 J / cm 2 or less, and the average value of a 120 J / cm 2 or less, a large deterioration of the toughness.

ここで、フェライト粒径が35μmを境に衝撃値E20が大きく変化するのは、フェライト粒径が35μmの場合の遷移温度が20℃前後となるためと考えられる。即ち、フェライト粒径が35μmより微細なものでは、遷移温度が20℃より低い温度となっているために高い衝撃値E20を示し、逆に、フェライト粒径が35μmより粗大なものでは、遷移温度が20℃より高い温度となっているために低い衝撃値E20しか示さないと推察される。引張強度もフェライト粒径により変化するが、その程度は30MPa程度であり、フェライト粒径依存性は小さい。また、この程度の引張試験値の変化であれば、衝撃値への影響は無視できる。
以上より、衝撃値E20の最低値が100J/cm以上、平均値が150J/cm以上という優れた靱性を得るには、フェライトの結晶粒径を35μm以下とする必要がある。
Here, it is considered that the impact value U E20 greatly changes at the boundary of the ferrite particle size of 35 μm because the transition temperature is about 20 ° C. when the ferrite particle size is 35 μm. That is, when the ferrite particle size is finer than 35 μm, the transition temperature is lower than 20 ° C., so a high impact value U E20 is shown. Conversely, when the ferrite particle size is coarser than 35 μm, the transition temperature is Since the temperature is higher than 20 ° C., it is assumed that only a low impact value U E20 is shown. Although the tensile strength also varies depending on the ferrite particle size, the degree is about 30 MPa, and the ferrite particle size dependency is small. In addition, if the tensile test value changes to such a degree, the impact on the impact value can be ignored.
From the above, in order to obtain excellent toughness with a minimum impact value U E20 of 100 J / cm 2 or more and an average value of 150 J / cm 2 or more, the crystal grain size of ferrite needs to be 35 μm or less.

フェライト中の微細析出物の粒径:10nm未満
析出物の粒径が10nm以上の場合、自動車を始めとする輸送機械や建設機械の機械構造部品として必要な引張強度700MPa以上が得られない。一方、フェライト単相組織に粒径10nm未満の微細析出物を析出させた場合、降伏比が上昇し、調質材に匹敵する高降伏比が得られる。降伏比が高いと、降伏強度の上昇に対して引張強度の上昇が抑えられ鋼の硬化が小さくできるため、調質鋼に匹敵する被削性が得られる。尚、微細析出物は熱間圧延後の冷却中に析出する。
Particle size of fine precipitates in ferrite: less than 10 nm When the particle size of precipitates is 10 nm or more, the tensile strength of 700 MPa or more necessary for machine structural parts of transport machines and construction machines including automobiles cannot be obtained. On the other hand, when a fine precipitate having a particle size of less than 10 nm is precipitated in the ferrite single phase structure, the yield ratio is increased, and a high yield ratio comparable to the tempered material is obtained. When the yield ratio is high, an increase in tensile strength is suppressed with respect to an increase in yield strength and the hardening of the steel can be reduced, so that machinability comparable to tempered steel is obtained. Fine precipitates are deposited during cooling after hot rolling.

微細析出物の粒径は、小さい程強度上昇に有効であり、望ましくは5nm、更に望ましくは3nm以下とし、微細析出物としては、Ti、Moを複合含有した炭化物、またはそれらに更にNb、V、Wの一種または二種以上を含む炭化物が好ましい。   The smaller the particle size of the fine precipitates, the more effective the strength increase. Desirably, the fine precipitate is 5 nm, more preferably 3 nm or less, and the fine precipitate is a carbide containing a composite of Ti and Mo, or further Nb, V , Carbides containing one or more of W are preferred.

微細析出物の個数については1000個/μm以上、更に望ましくは5000個/μm以上あると700MPa以上の引張強度が得やすく好適である。 With respect to the number of fine precipitates, 1000 / μm 3 or more, more desirably 5000 / μm 3 or more, it is easy to obtain a tensile strength of 700 MPa or more.

これらの微細析出物の分布形態は特に規定しないが、母相中に均一に分散析出することが望ましい。また、本発明において、析出物の大きさは、全析出物の90%以上が満足すれば目的とする引張強度700MPa以上が得られる。但し、10nm以上の大きさの析出物は析出物形成元素を徒に消費し、強度に悪影響を与えるため、50nm以下に抑えるのが好ましい。   Although the distribution form of these fine precipitates is not particularly defined, it is desirable that the fine precipitates are uniformly dispersed and precipitated in the matrix. In the present invention, if the size of the precipitate satisfies 90% or more of the total precipitate, the target tensile strength of 700 MPa or more can be obtained. However, a precipitate having a size of 10 nm or more consumes the precipitate-forming element and adversely affects the strength.

尚、上述した析出物とは別に、少量のFe炭化物を含有しても本発明の効果は損なわれないが、平均粒径が1μm以上のFe炭化物を多量に含むと靱性を阻害するため、本発明においては、含有されるFe炭化物の大きさの上限は1μm、含有率は析出物全体の1%以下とすることが望ましい。   In addition, the effect of the present invention is not impaired even if a small amount of Fe carbide is contained in addition to the above-described precipitate, but if a large amount of Fe carbide having an average particle size of 1 μm or more is contained, the toughness is inhibited. In the invention, it is desirable that the upper limit of the size of Fe carbide contained is 1 μm and the content is 1% or less of the entire precipitate.

以下に微細析出物の全析出物に占める割合の算出方法について説明する。
電子顕微鏡試料をツインジェット法を用いた電解研磨法で作成し、加速電圧200kVで観察する。その際、微細析出物が母相に対して計測可能なコントラストになるように母相の結晶方位を制御し、析出物の数え落としを最低限に抑えるため、焦点を正焦点からずらしたデフォーカス法で観察を行う。また、析出物粒子の計測を行った領域の試料厚さは電子エネルギー損失分光法を用いて、弾性散乱ピークと非弾性散乱ピーク強度を測定することで評価する。
Below, the calculation method of the ratio which occupies for all the precipitates of a fine precipitate is demonstrated.
An electron microscope sample is prepared by an electropolishing method using a twin jet method and observed at an acceleration voltage of 200 kV. At that time, the defocus is defocused from the normal focus in order to control the crystal orientation of the parent phase so that the fine precipitate has a measurable contrast with respect to the parent phase and to minimize the number of precipitates. Observe by method. Moreover, the sample thickness of the area | region which measured the deposit particle | grains is evaluated by measuring an elastic scattering peak and an inelastic scattering peak intensity using an electron energy loss spectroscopy.

この方法により、粒子数の計測と試料厚さの計測を同じ領域について実行することができる。粒子数及び粒子径の測定は試料の0.5μm x 0.5μmの領域4カ所について行い1μm2当たりに分布する析出物を粒径毎の個数として算出する。この値と試料の厚さから析出物の1μm3当たりに分布する粒子径毎の個数を算出し、粒径が10nm未満の析出物について測定した全析出物に占める割合を算出する。 By this method, the measurement of the number of particles and the measurement of the sample thickness can be executed for the same region. The number of particles and the particle size are measured at four locations of a 0.5 μm × 0.5 μm region of the sample, and the precipitates distributed per 1 μm 2 are calculated as the number for each particle size. From this value and the thickness of the sample, the number of precipitates distributed per 1 μm 3 of particle diameter is calculated, and the ratio of the precipitate having a particle diameter of less than 10 nm to the total precipitate is calculated.

3.製造条件
以下に望ましい製造条件について説明する。
3. The manufacturing conditions desirable below are described.

鋳造条件
本発明では、鋼の鋳造時にMnの偏析を抑制してMnの偏析比Rを上述した範囲とするためには、鋳造温度を1530℃以下とし、鋳造速度(引抜速度)を1.5m/min以下とする必要がある。
Casting conditions In the present invention, in order to suppress the segregation of Mn at the time of casting the steel so that the segregation ratio R of Mn is within the above range, the casting temperature is set to 1530 ° C. or less, and the casting speed (drawing speed) is 1.5 m. Must be less than / min.

加熱温度:1100〜1270℃
本発明では熱間圧延後の冷却中に析出物を微細に析出させるために、熱間圧延前の鋳片に析出している析出物を、加熱炉で固溶させる必要がある。その際、加熱温度が1100℃未満では、Ti−Mo系炭化物が十分固溶しないため、1100℃以上とする。一方、加熱温度を1270℃超えの高温にするとオーステナイト粒径が粗大化し、フェライト粒径を35μm以下とすることが難しくなるので、加熱温度の上限は1270℃とする。
Heating temperature: 1100-1270 ° C
In the present invention, in order to precipitate precipitates finely during cooling after hot rolling, it is necessary to dissolve the precipitates precipitated on the slab before hot rolling in a heating furnace. At that time, when the heating temperature is less than 1100 ° C., the Ti—Mo-based carbide is not sufficiently dissolved, so the temperature is set to 1100 ° C. or higher. On the other hand, if the heating temperature is higher than 1270 ° C., the austenite grain size becomes coarse, and it becomes difficult to make the ferrite grain size 35 μm or less, so the upper limit of the heating temperature is 1270 ° C.

仕上げ温度:850〜1100℃
本発明では、析出物の析出挙動がフェライト変態の進行と密接に関係しており、圧延後の冷却中に生じるフェライト変態の変態開始温度と析出物の析出開始温度の差が小さく、フェライト変態と析出が競合する場合に、析出物がフェライト中に微細に分散析出する。フェライト変態と析出を競合させるには、フェライト変態の開始温度を下げる必要があるが、熱間圧延における仕上温度が低い場合には圧延で導入される歪がフェライト変態の開始温度を上昇させ、析出物の微細化を阻害する。
Finishing temperature: 850-1100 ° C
In the present invention, the precipitation behavior of the precipitate is closely related to the progress of the ferrite transformation, and the difference between the transformation start temperature of the ferrite transformation that occurs during cooling after rolling and the precipitation start temperature of the precipitate is small. When precipitation competes, the precipitate is finely dispersed and precipitated in the ferrite. In order to compete with ferrite transformation and precipitation, it is necessary to lower the ferrite transformation start temperature, but when the finishing temperature in hot rolling is low, the strain introduced in the rolling increases the ferrite transformation start temperature and causes precipitation. Inhibits refinement of objects.

従って、仕上げ温度を圧延歪の影響が現れない850℃以上とする必要がある。他方、仕上温度が徒に高温になるとフェライト粒の粗大化をきたし、フェライト粒径を35μm以下とすることが困難となるので、仕上温度の上限を1100℃とする。   Therefore, it is necessary to set the finishing temperature to 850 ° C. or higher where the influence of rolling distortion does not appear. On the other hand, if the finishing temperature is too high, the ferrite grains become coarse and it becomes difficult to make the ferrite grain size 35 μm or less. Therefore, the upper limit of the finishing temperature is set to 1100 ° C.

冷却速度:1.0℃/s以下
本発明では熱間圧延後の冷却中に微細析出物を析出させる。その場合、熱間圧延後の冷却速度が1.0℃/sを超えると析出が十分に進行せず、700MPa以上の引張強度が得られなくなる。そこで熱間圧延後の冷却速度は1.0℃/s以下とする必要がある。また、冷却速度が1.0℃/s以下であれば、本発明鋼は低C鋼であるためフェライト単相が得られる。尚、析出は500℃までに実質上終了するため、熱間圧延後から500℃までを1.0℃/s以下の冷却速度で冷却すれば良い。
Cooling rate: 1.0 ° C./s or less In the present invention, fine precipitates are deposited during cooling after hot rolling. In that case, if the cooling rate after hot rolling exceeds 1.0 ° C./s, precipitation does not proceed sufficiently, and a tensile strength of 700 MPa or more cannot be obtained. Therefore, the cooling rate after hot rolling needs to be 1.0 ° C./s or less. Further, if the cooling rate is 1.0 ° C./s or less, the steel of the present invention is a low C steel, so that a ferrite single phase is obtained. In addition, since precipitation is substantially complete | finished by 500 degreeC, what is necessary is just to cool to 500 degreeC after a hot rolling by the cooling rate of 1.0 degrees C / s or less.

合計減面率:30%以上
本発明では優れた靱性を得るために、フェライトの結晶粒径を微細化する必要があるが、それには熱間圧延での減面率を増加させることが望ましい。その場合、熱間圧延の最終2パスにおける合計減面率を増加するのが有効である。具体的には、合計減面率を30%以上とすると、フェライト粒径が微細化し易くなり、好適である。
Total area reduction: 30% or more In the present invention, in order to obtain excellent toughness, it is necessary to refine the crystal grain size of ferrite. For this purpose, it is desirable to increase the area reduction in hot rolling. In that case, it is effective to increase the total area reduction in the final two passes of hot rolling. Specifically, if the total area reduction ratio is 30% or more, the ferrite grain size can be easily refined, which is preferable.

表1に示す組成の鋼を溶製し、これを表2及び表3に記載の条件で所定寸法の棒鋼に熱間圧延した。溶製に際しては、各成分元素を変化させると共に、鋳造時の鋳込み温度と鋳造速度を変えることでMnの偏析比Rも変化させた。ここで鋼番1〜24、27は鋳込み温度1530℃以下、鋳造速度1.5m/min以下であり、鋼番25,26はこの条件を満たさない条件とした。Mnの偏析比Rについては、前述したように、任意のフェライト粒20個に対してEDX解析を行い、Mnの出力カウントをMn量とみなして、Mnの最も高いフェライト粒のMn量をMn(max)とし、Mnの最も低いフェライト粒のMn量をMn(min)として両者の比から算出した。このように準備した本発明の範囲を満たす本発明鋼、本発明の範囲を外れた比較鋼に加え、従来鋼としてS45C調質材の非調質鋼(鋼番27)も溶製した。   Steels having the compositions shown in Table 1 were melted and hot-rolled into steel bars having predetermined dimensions under the conditions shown in Tables 2 and 3. During melting, each component element was changed, and the segregation ratio R of Mn was also changed by changing the casting temperature and casting speed during casting. Here, steel Nos. 1 to 24 and 27 have a casting temperature of 1530 ° C. or less and a casting speed of 1.5 m / min or less, and steel Nos. 25 and 26 are set to satisfy these conditions. Regarding the segregation ratio R of Mn, as described above, an EDX analysis is performed on 20 arbitrary ferrite grains, the output count of Mn is regarded as the Mn amount, and the Mn amount of the ferrite grain having the highest Mn is defined as Mn ( max), and the amount of Mn of the ferrite grain having the lowest Mn was calculated as Mn (min) from the ratio of the two. In addition to the steel of the present invention that satisfies the scope of the present invention prepared in this way and the comparative steel that deviates from the scope of the present invention, non-tempered steel of S45C tempered material (steel No. 27) was also melted as conventional steel.

熱間圧延においては、加熱温度、パススケジュール(各圧下パスの温度と減面率)、仕上温度及び圧延後から500℃までの冷却速度を変化させた。ここで、冷却速度については、圧延仕上寸法を変えて、これを圧延後空冷することで変化させた。   In the hot rolling, the heating temperature, pass schedule (temperature and area reduction ratio of each reduction pass), finishing temperature, and cooling rate to 500 ° C. after rolling were changed. Here, the cooling rate was changed by changing the finished dimensions of the rolling and air cooling after rolling.

このようにして得られた棒鋼について、組織観察、引張試験、衝撃試験を行った。
引張試験は平行部の直径が6mmφ、平行部長さが40mmの小型試験片を用いて測定した。
The steel bar thus obtained was subjected to structure observation, tensile test, and impact test.
The tensile test was performed using a small test piece having a parallel part diameter of 6 mmφ and a parallel part length of 40 mm.

衝撃試験については、バラツキを考慮して、棒鋼の任意の位置からJIS3号のUノッチ衝撃試験片を20本採取し、これを試験に供することで、20℃における衝撃値E20を求めた。 As for the impact test, 20 JIS3 U-notch impact test specimens were collected from arbitrary positions of the steel bar in consideration of variation, and the impact value U E20 at 20 ° C. was obtained by using the specimens for the test.

組織観察用試験片は、前述したように、衝撃試験片を採取した近傍、計20カ所から採取した。これを用いて、棒鋼断面をナイタールで腐食後、光学顕微鏡で組織の同定を行うと共に、それぞれの試験片についてJIS G 0552の切断法で結晶粒の平均断面積を求め、これより相当円の直径として各試験片の結晶粒径を算出し、更に計20カ所の平均値をとることで、棒鋼全体の平均結晶粒径を算出した。また、電解研磨にて薄膜試料を作成し、前述した方法に従い透過型電子顕微鏡(TEM)観察することで析出物の粒子径を測定すると共に、エネルギー分散型X線分光装置(EDX)を併用して析出物を同定した。   As described above, the tissue observation specimens were collected from a total of 20 locations in the vicinity of the impact specimen. Using this, after corroding the steel bar cross section with nital, the structure was identified with an optical microscope, and the average cross-sectional area of the crystal grains was determined for each test piece by the cutting method of JIS G 0552. The crystal grain size of each test piece was calculated, and the average crystal grain size of the whole steel bar was calculated by taking an average value of 20 places in total. In addition, a thin film sample is prepared by electrolytic polishing, and the particle size of the precipitate is measured by observation with a transmission electron microscope (TEM) according to the method described above, and an energy dispersive X-ray spectrometer (EDX) is used in combination. The precipitate was identified.

上記した組織観察、引張試験、衝撃試験の結果を表2及び表3に示す。
表中のNo.は個々の結果を区分するためのものであり、供試鋼と熱延条件の組合せが明示されるよう、鋼番と熱延条件を組合せて起番した(例えば、鋼番1を条件Aで熱間圧延した場合は1-Aと起番)。
Tables 2 and 3 show the results of the above-described structure observation, tensile test, and impact test.
The numbers in the table are used to classify the individual results, and the steel numbers and hot rolling conditions are combined (for example, steel numbers) so that the combination of the test steel and hot rolling conditions is clearly indicated. If 1 is hot-rolled under condition A, start with 1-A).

組織については、フェライトはF、パーライトはP、ベイナイト等の低温変態相が生成し、その体積分率が5%以上を超える場合をTと略記した。析出物については平均粒子径を記載した。尚、粒子径のバラツキは10nm未満の析出物では最大でも±1nm、それ以上の大きさの析出物では±3nmから±5nmであった。尚、組織にパーライトや低温変態相が生成した場合については、結晶粒径と析出物の粒子径の測定は割愛した。   Regarding the structure, the case where a low-temperature transformation phase such as F for ferrite, P for pearlite, or bainite is generated and its volume fraction exceeds 5% or more is abbreviated as T. The average particle size is described for the precipitate. The variation in particle diameter was ± 1 nm at the maximum for precipitates of less than 10 nm, and ± 3 nm to ± 5 nm for precipitates larger than that. In the case where pearlite or a low temperature transformation phase was generated in the structure, the measurement of the crystal grain size and the particle size of the precipitate was omitted.

表2は、熱間圧延条件は本発明範囲とし、鋼成分組成の影響を示したものであるが、鋼組成及び熱間圧延条件とも本発明範囲を満たす本発明例では700MPa以上の引張強度が得られており、衝撃値E20についても、最低値が100J/cm2以上、平均値が150J/cm2以上と従来鋼の値(No.27−A)を大幅に上回っており、優れた靱性が安定して得られることがわかる。 Table 2 shows the hot rolling conditions within the scope of the present invention, and shows the influence of the steel composition. In the present invention examples where both the steel composition and the hot rolling conditions satisfy the scope of the present invention, the tensile strength of 700 MPa or more is shown. As for the impact value U E20, the minimum value is 100 J / cm 2 or more and the average value is 150 J / cm 2 or more, which is significantly higher than the value of conventional steel (No. 27-A). It can be seen that the toughness can be obtained stably.

これに対して、鋼組成が本発明範囲を外れた比較例では、引張強度及び衝撃値E20の何れかが本発明の範囲を満たさない。
No.17-AはCが低く、微細析出物の析出量が不足しており、引張強度が低い。
No.18-AはCが高く、析出物が粗大化しており、引張強度が低い。
No.19-AはMnが低いためフェライト変態と析出が十分競合せず、析出物が粗大に析出する結果引張強度が低い。
On the other hand, in the comparative example in which the steel composition is out of the scope of the present invention, either the tensile strength or the impact value U E20 does not satisfy the scope of the present invention.
No. 17-A has low C, the amount of fine precipitates is insufficient, and the tensile strength is low.
No. 18-A has high C, precipitates are coarsened, and tensile strength is low.
No. 19-A has a low Mn, so the ferrite transformation and precipitation do not compete sufficiently, and the precipitate precipitates coarsely, resulting in low tensile strength.

No.20-AはMnが高いため低温変態相が生成し、微細析出物による析出強化が不足するため引張強度が低い。また、低温変態相の生成に起因すると思われるが、衝撃値E20についても、最低値が102J/cm、平均値が161J/cmとなっており、本発明の狙いとする値をわずかに上回る値しか示さない。 Since No. 20-A has a high Mn, a low-temperature transformation phase is generated, and the precipitation strength due to fine precipitates is insufficient, so that the tensile strength is low. Although seems to be due to formation of the low-temperature transformation phase, for the impact value U E20, minimum value 102J / cm 2, the mean value has become a 161J / cm 2, the value for the aim of the present invention only Only show values above.

No.21-AはTiが低いため微細析出物の析出量が不足し引張強度が低い。一方、
No.22-AはTiが高く、析出物が粗大化しており、引張強度が低く、衝撃値E20も狙い値を下回っている。
No. 21-A has low Ti, so the amount of fine precipitates is insufficient and the tensile strength is low. on the other hand,
No. 22-A is high in Ti, precipitates are coarsened, the tensile strength is low, and the impact value U E20 is also below the target value.

No.23-AはMoが低いため微細析出物の析出量が不足し引張強度が低い。一方、
No.24-AはMoが高いため低温変態相が生成しており、微細析出物による析出強化が不足するため引張強度が低い。また、Mnの高いNo.20-Aと同様、衝撃値E20の最低値が105J/cm、平均値が158J/cmとなっており、本発明の狙いとする値をわずかに上回る値しか示さない。
No. 23-A has low Mo, so the amount of fine precipitates is insufficient and the tensile strength is low. on the other hand,
No. 24-A has a high Mo, so a low-temperature transformation phase is formed, and the tensile strength is low due to insufficient precipitation strengthening by fine precipitates. Further, as with No. 20-A having a high Mn, the impact value U E20 has a minimum value of 105 J / cm 2 and an average value of 158 J / cm 2 , which is slightly higher than the target value of the present invention. Only show.

No.25-AはMnの偏析比Rが高いため、引張強度は狙い下限を僅かに上回るものの、衝撃値E20の最低値、平均値とも目標以下となっており、靱性に劣る。
No.26-AはMnの偏析比Rが更に高いため、衝撃値E20の最低値、平均値とも目標を大きく下回っており靱性に劣る。加えて、析出物の大きさが18nmと粗大になっており引張強度も低い。
Since No. 25-A has a high segregation ratio R of Mn, although the tensile strength is slightly higher than the target lower limit, both the minimum value and the average value of the impact value U E20 are below the target and inferior in toughness.
Since No. 26-A has a higher segregation ratio R of Mn, the minimum value and average value of the impact value U E20 are far below the target and are inferior in toughness. In addition, the size of the precipitate is as coarse as 18 nm and the tensile strength is low.

表3に本発明鋼である鋼番2を用いて種々の圧延条件で熱間圧延した結果を示す。
本発明鋼である鋼番2を本発明範囲の条件で熱間圧延した本発明例では700MPa以上の引張強度が得られており、衝撃値E20についても、最低値が100J/cm以上、平均値が150J/cm以上と従来鋼の値(No.27-A)を大幅に上回っており、優れた靱性が安定して得られる。
Table 3 shows the results of hot rolling under various rolling conditions using steel No. 2 which is the steel of the present invention.
In the present invention example in which steel No. 2 which is the present invention steel is hot-rolled under the conditions of the present invention, a tensile strength of 700 MPa or more is obtained, and the impact value U E20 also has a minimum value of 100 J / cm 2 or more, The average value is 150 J / cm 2 or more, significantly exceeding the value of conventional steel (No. 27-A), and excellent toughness can be obtained stably.

ここで、熱間圧延の最終2パスにおける合計減面率に着目すると、No.2-DからNo.2-Hの比較から判るように、合計減面率が30%未満の場合でも(No.2-G,H)、フェライト粒径は概略30μmと本発明範囲である35μm以下となっており、衝撃値E20の最低値が110J/cm程度、平均値が160J/cm程度と優れた靭性が得られるが、合計減面率が30%以上の場合には(No.2-D,E及びF)、フェライト粒径が20μm以下まで微細化し、衝撃値E20の最低値が130J/cm前後、平均値が170J/cm以上となっている。これより、熱間圧延の最終2パスにおける合計減面率を30%以上とするとフェライトの細粒化が促進し、靭性が一層向上するため、より好適な条件であるといえる。 Here, paying attention to the total area reduction rate in the final two passes of hot rolling, as can be seen from the comparison of No.2-D to No.2-H, even when the total area reduction rate is less than 30% (No .2-G, H), the ferrite grain size is approximately 30 μm, which is 35 μm or less, which is the range of the present invention, and the minimum value of the impact value U E20 is about 110 J / cm 2 and the average value is about 160 J / cm 2. Excellent toughness is obtained, but when the total area reduction is 30% or more (No.2-D, E and F), the ferrite grain size is reduced to 20 μm or less, and the minimum value of the impact value U E20 is Around 130 J / cm 2 , the average value is 170 J / cm 2 or more. From this, when the total area reduction in the final two passes of hot rolling is 30% or more, finer ferrite is promoted and the toughness is further improved.

これらに対して、熱間圧延条件が本願発明の範囲を外れた比較例では、引張強度及び衝撃値E20の何れかが本発明を満たさない。
No.2-Iは加熱温度が低く、熱間圧延前の鋳片に析出している析出物が加熱炉で十分に固溶しないため、析出物の微細析出が阻害される結果、引張強度が低い。尚、析出物に関しては、圧延後の冷却中に微細に析出したと思われるものと、鋳片で析出した析出物の溶け残りと思われるものが混在しており、析出物の平均粒子径は100nm以上となっていた。
他方、No.2-Jでは、加熱温度が高く、加熱時のオーステナイトが粗大となるため、フェライトも41μmと粗大になっており、衝撃値E20が劣る。
On the other hand, in the comparative example in which the hot rolling conditions are out of the scope of the present invention, either the tensile strength or the impact value U E20 does not satisfy the present invention.
No.2-I has a low heating temperature, and the precipitate deposited on the slab before hot rolling does not sufficiently dissolve in the heating furnace. Low. In addition, regarding the precipitate, there are a mixture of what seems to have finely precipitated during cooling after rolling, and what seems to be the undissolved residue of the precipitate deposited on the slab, and the average particle size of the precipitate is It was 100 nm or more.
On the other hand, in No. 2-J, since the heating temperature is high and the austenite at the time of heating is coarse, the ferrite is also coarsened to 41 μm, and the impact value U E20 is inferior.

No.2-Kは仕上げ温度が低く、圧延で導入される歪みがフェライト変態の開始温度を上昇させ、フェライト変態と析出の競合を妨げる結果、析出物が粗大化し、引張強度が低い。一方、No.2-Lでは、仕上げ温度が高いため、フェライトが粗大となっており、衝撃値E20が劣る。
No.2-Mは熱間圧延後の冷却速度が速いため、冷却中に微細析出物が十分析出せず、引張が低くなっている。
In No. 2-K, the finishing temperature is low, and the strain introduced by rolling raises the start temperature of the ferrite transformation and prevents competition between the ferrite transformation and precipitation, resulting in coarse precipitates and low tensile strength. On the other hand, in No.2-L, since the finishing temperature is high, the ferrite is coarse and the impact value U E20 is inferior.
Since No.2-M has a high cooling rate after hot rolling, fine precipitates are not sufficiently precipitated during cooling, and the tensile strength is low.

Figure 0004589242
Figure 0004589242

Figure 0004589242
Figure 0004589242

Figure 0004589242
Figure 0004589242

本発明は引張強度700MPa以上、衝撃値UE20が100J/cm2以上が安定して得られる熱間圧延型非調質棒鋼であり、自動車をはじめとする輸送機械や建設機械に用いられる構造部品に焼入れ焼戻した調質鋼に代替して用いることができる。 The present invention is a hot-rolled non-heat treated steel bar with a tensile strength of 700 MPa or more and an impact value U E20 of 100 J / cm 2 or more which can be stably obtained, and is a structural component used in transportation equipment and construction machinery including automobiles. It can be used in place of tempered steel that has been quenched and tempered.

Mnの偏析比Rと20℃における衝撃値E20及び引張強度の関係を示す図である。It is a diagram showing the relationship between impact value U E20 and tensile strength at segregation ratio R and 20 ° C. for Mn. フェライトの結晶粒径と20℃における衝撃値E20及び引張強度の関係を示す図である。It is a diagram showing the relationship between impact value U E20 and the tensile strength in the crystal grain size and 20 ° C. of ferrite.

Claims (13)

鋼の成分組成が、質量%でC:0.040〜0.150%、Si:0.5%以下、Mn:0.5〜3.0%、Al:0.1%以下、Ti:0.03〜0.35%、Mo:0.05〜0.8%、残部Fe及び不可避的不純物よりなり、Mnの偏析比Rが下記(1)式を満たし、組織が結晶粒径35μm以下のフェライト単相で、フェライト中に粒径10nm未満の微細析出物が分散することを特徴とする熱間圧延型非調質棒鋼。
R=Mn(max)/Mn(min)≦1.5 (1)
Mn(max):Mnの最も高い部分のMn量
Mn(min):Mnの最も低い部分のMn量
The component composition of the steel is C: 0.040 to 0.150% in mass%, Si: 0.5% or less, Mn: 0.5 to 3.0%, Al: 0.1% or less, Ti: 0 0.03 to 0.35%, Mo: 0.05 to 0.8%, balance Fe and inevitable impurities, Mn segregation ratio R satisfies the following formula (1), and the structure has a crystal grain size of 35 μm or less. A hot-rolled non-tempered steel bar having a ferrite single phase and fine precipitates having a particle size of less than 10 nm dispersed in ferrite.
R = Mn (max) / Mn (min) ≦ 1.5 (1)
Mn (max): Mn content of the highest part of Mn
Mn (min): Mn content in the lowest part of Mn
鋼の成分組成が、下記(2)式を満たすことを特徴とする請求項1記載の熱間圧延型非調質棒鋼。
0.50≦(C/12)/[(Ti/48)+(Mo/96)]≦1.50 (2)
The hot rolling type non-tempered steel bar according to claim 1, wherein the component composition of the steel satisfies the following formula (2).
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96)] ≦ 1.50 (2)
微細析出物がTi、Moの炭化物であることを特徴とする請求項1又は2に記載の熱間圧延型非調質棒鋼。   The hot-rolled non-tempered steel bar according to claim 1 or 2, wherein the fine precipitate is a carbide of Ti or Mo. 鋼の成分組成として、更に質量%でNb:0.08%以下、V:0.15%以下、W:1.5%以下の一種または二種以上を含むことを特徴とする請求項1記載の熱間圧延型非調質棒鋼。   The steel composition further comprises one or more of Nb: 0.08% or less, V: 0.15% or less, and W: 1.5% or less in terms of mass%. Hot rolled non-tempered steel bar. 更に、鋼の成分組成が下記(3)式を満たすことを特徴とする請求項4記載の熱間圧延型非調質棒鋼。
0.50≦(C/12)/[(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)]≦1.50 (3)
Furthermore, the component composition of steel satisfy | fills following (3) Formula, The hot-rolling type non-heat-treated steel bar of Claim 4 characterized by the above-mentioned.
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)] ≦ 1.50 (3)
微細析出物がTiとMoとNb、V、Wの内の少なくとも一種とを含む炭化物であることを特徴とする請求項4又は5記載の熱間圧延型非調質棒鋼。   The hot-rolled non-heat treated steel bar according to claim 4 or 5, wherein the fine precipitate is a carbide containing Ti, Mo, and at least one of Nb, V, and W. 鋼の成分組成として、質量%でS:0.01〜0.1%であり、更にPb:0.2%以下、Ca:0.005%以下、Bi:0.1%以下、B:0.02%以下の一種又は二種以上を含むことを特徴とする請求項1から6記載の熱間圧延型非調質棒鋼。   As a component composition of steel, S: 0.01 to 0.1% by mass%, Pb: 0.2% or less, Ca: 0.005% or less, Bi: 0.1% or less, B: 0 The hot-rolled non-tempered steel bar according to claim 1, comprising 0.02% or less of one kind or two or more kinds. 鋼の成分組成が、質量%でC:0.040〜0.150%、Si:0.5%以下、Mn:0.5〜3.0%、Al:0.1%以下、Ti:0.03〜0.35%、Mo:0.05〜0.8%、残部Fe及び不可避的不純物よりなり、Mnの偏析比Rが下記(1)式を満たす鋼を、1100〜1270℃に加熱し、仕上温度850〜1100℃で熱間圧延し、次いで1.0℃/s以下の冷却速度で冷却することを特徴とする熱間圧延型非調質棒鋼の製造方法。
R=Mn(max)/Mn(min)≦1.5 (1)
Mn(max):Mnの最も高い部分のMn量
Mn(min):Mnの最も低い部分のMn量
The component composition of the steel is C: 0.040 to 0.150% in mass%, Si: 0.5% or less, Mn: 0.5 to 3.0%, Al: 0.1% or less, Ti: 0 0.03 to 0.35%, Mo: 0.05 to 0.8%, balance Fe and unavoidable impurities, and Mn segregation ratio R is heated to 1100 to 1270 ° C satisfying the following formula (1) And hot-rolling at a finishing temperature of 850 to 1100 ° C., and then cooling at a cooling rate of 1.0 ° C./s or less.
R = Mn (max) / Mn (min) ≦ 1.5 (1)
Mn (max): Mn content of the highest part of Mn
Mn (min): Mn content in the lowest part of Mn
熱間圧延の最終2パスにおける合計減面率が30%以上であることを特徴とする請求項8記載の熱間圧延型非調質棒鋼の製造方法。
ここで、
最終2パスにおける合計減面率(%)=((最終2パスにおける圧延前の断面積)-( 最終2パスにおける圧延後の断面積))/( 最終2パスにおける圧延前の断面積)X100
The method for producing a hot-rolled non-tempered steel bar according to claim 8, wherein the total area reduction in the final two passes of hot rolling is 30% or more.
here,
Total area reduction ratio in final 2 passes (%) = ((cross-sectional area before rolling in final 2 passes) − (cross-sectional area after rolling in final 2 passes)) / (cross-sectional area before rolling in final 2 passes) X100
鋼の成分組成が、下記(2)式を満たすことを特徴とする請求項8又は9記載の熱間圧延型非調質棒鋼の製造方法。
0.50≦(C/12)/[(Ti/48)+(Mo/96)]≦1.50 (2)
The method for producing a hot-rolled non-heat treated steel bar according to claim 8 or 9, wherein the component composition of the steel satisfies the following formula (2).
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96)] ≦ 1.50 (2)
鋼の成分組成として、更に質量%でNb:0.08%以下、V:0.15%以下、W:1.5%以下の一種または二種以上を含むことを特徴とする請求項8から10のいずれか1項に記載の熱間圧延型非調質棒鋼の製造方法。   The component composition of the steel further includes one or more of Nb: 0.08% or less, V: 0.15% or less, and W: 1.5% or less in terms of mass%. The method for producing a hot-rolled non-heat treated steel bar according to any one of 10. 更に、鋼の成分組成が下記(3)式を満たすことを特徴とする請求項11記載の熱間圧延型非調質棒鋼の製造方法。
0.50≦(C/12)/[(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)]≦1.50 (3)
Furthermore, the component composition of steel satisfy | fills following (3) Formula, The manufacturing method of the hot-rolling type non-tempered steel bar of Claim 11 characterized by the above-mentioned.
0.50 ≦ (C / 12) / [(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)] ≦ 1.50 (3)
鋼の成分組成として、質量%でS:0.01〜0.1%であり、更にPb:0.2%以下、Ca:0.005%以下、Bi:0.1%以下、B:0.02%以下の一種又は二種以上を含むことを特徴とする請求項8から12のいずれか1項に記載の熱間圧延型非調質棒鋼の製造方法。   As a component composition of steel, S: 0.01 to 0.1% by mass%, Pb: 0.2% or less, Ca: 0.005% or less, Bi: 0.1% or less, B: 0 The method for producing a hot-rolled non-tempered steel bar according to any one of claims 8 to 12, comprising 0.02% or less of one kind or two or more kinds.
JP2006020070A 2006-01-30 2006-01-30 Hot-rolled non-tempered steel bar excellent in toughness and method for producing the same Expired - Fee Related JP4589242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006020070A JP4589242B2 (en) 2006-01-30 2006-01-30 Hot-rolled non-tempered steel bar excellent in toughness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006020070A JP4589242B2 (en) 2006-01-30 2006-01-30 Hot-rolled non-tempered steel bar excellent in toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007197801A JP2007197801A (en) 2007-08-09
JP4589242B2 true JP4589242B2 (en) 2010-12-01

Family

ID=38452685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006020070A Expired - Fee Related JP4589242B2 (en) 2006-01-30 2006-01-30 Hot-rolled non-tempered steel bar excellent in toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP4589242B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5308922B2 (en) * 2009-06-05 2013-10-09 株式会社神戸製鋼所 Machine structural steel, manufacturing method thereof, and machined part manufacturing method using machine structural steel
JP5379651B2 (en) * 2009-11-04 2013-12-25 株式会社神戸製鋼所 Cold-working steel, its manufacturing method, and cold-worked parts
JP5482342B2 (en) * 2010-03-18 2014-05-07 新日鐵住金株式会社 Hot rolled steel for direct cutting and method for producing the same
CN115058649B (en) * 2022-06-20 2023-08-25 武汉钢铁有限公司 Economical hot-rolled steel for U-shaped sheet pile and production method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162253A (en) * 1985-01-09 1986-07-22 Nippon Steel Corp Production of high-carton steel ingot
JP2002363689A (en) * 2001-06-12 2002-12-18 Sumitomo Metal Ind Ltd Hot-rolled steel plate with excellent hydrogen-induced cracking(hic) esistance, and its manufacturing method
JP2003013175A (en) * 2001-06-27 2003-01-15 Sumitomo Metal Ind Ltd Steel material superior in hydrogen-induced cracking resistance
JP2003321731A (en) * 2002-04-26 2003-11-14 Nkk Bars & Shapes Co Ltd Carburized parts and production method thereof
JP2004003011A (en) * 2002-04-26 2004-01-08 Nkk Bars & Shapes Co Ltd Non-thermally refined hot-forged product, and manufacturing method therefor
JP2004003008A (en) * 2002-04-26 2004-01-08 Nkk Bars & Shapes Co Ltd Hot-rolled non-thermally refined bar steel and manufacturing method therefor
JP2005213534A (en) * 2004-01-27 2005-08-11 Jfe Steel Kk Method for producing steel material excellent in toughness at welding heat affected zone
JP2006063425A (en) * 2004-08-30 2006-03-09 Jfe Steel Kk Hot-rolled, non-heat treated steel bar and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162253A (en) * 1985-01-09 1986-07-22 Nippon Steel Corp Production of high-carton steel ingot
JP2002363689A (en) * 2001-06-12 2002-12-18 Sumitomo Metal Ind Ltd Hot-rolled steel plate with excellent hydrogen-induced cracking(hic) esistance, and its manufacturing method
JP2003013175A (en) * 2001-06-27 2003-01-15 Sumitomo Metal Ind Ltd Steel material superior in hydrogen-induced cracking resistance
JP2003321731A (en) * 2002-04-26 2003-11-14 Nkk Bars & Shapes Co Ltd Carburized parts and production method thereof
JP2004003011A (en) * 2002-04-26 2004-01-08 Nkk Bars & Shapes Co Ltd Non-thermally refined hot-forged product, and manufacturing method therefor
JP2004003008A (en) * 2002-04-26 2004-01-08 Nkk Bars & Shapes Co Ltd Hot-rolled non-thermally refined bar steel and manufacturing method therefor
JP2005213534A (en) * 2004-01-27 2005-08-11 Jfe Steel Kk Method for producing steel material excellent in toughness at welding heat affected zone
JP2006063425A (en) * 2004-08-30 2006-03-09 Jfe Steel Kk Hot-rolled, non-heat treated steel bar and its manufacturing method

Also Published As

Publication number Publication date
JP2007197801A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
CA2941202C (en) Method for producing a high-strength flat steel product
JP5034308B2 (en) High strength thick steel plate with excellent delayed fracture resistance and method for producing the same
JPWO2019009410A1 (en) Hot rolled steel sheet and method of manufacturing the same
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP5585623B2 (en) Hot-formed steel plate member and manufacturing method thereof
CN101263239A (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
US20130037182A1 (en) Mechanical part made of steel having high properties and process for manufacturing same
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
CN111479945A (en) Wear-resistant steel having excellent hardness and impact toughness and method for manufacturing same
CN113166893B (en) High-strength steel material having excellent durability and method for producing same
EP3705596A1 (en) Steel material for welding steel pipe having excellent low-temperature toughness, steel material that has undergone post weld heat treatment, and method for manufacturing same
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP7131687B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP4589242B2 (en) Hot-rolled non-tempered steel bar excellent in toughness and method for producing the same
JP4171398B2 (en) High strength and high toughness non-heat treated steel bar and method for producing the same
JP5189959B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
CN114829654A (en) Hot rolled steel plate
JP6390573B2 (en) Cold rolled steel sheet and method for producing the same
JP4556770B2 (en) Carburizing steel and method for producing the same
JP2017066453A (en) Cold rolled steel sheet, plating steel sheet and manufacturing method of them
CN108350550B (en) High-strength cold-rolled steel sheet having excellent shear workability and method for producing same
JP3999457B2 (en) Wire rod and steel bar excellent in cold workability and manufacturing method thereof
JP4540428B2 (en) Method for producing hot rolled non-heat treated steel bar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100909

R150 Certificate of patent or registration of utility model

Ref document number: 4589242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees