JP5504717B2 - Manufacturing method of ERW steel pipe for sour line pipe - Google Patents

Manufacturing method of ERW steel pipe for sour line pipe Download PDF

Info

Publication number
JP5504717B2
JP5504717B2 JP2009161942A JP2009161942A JP5504717B2 JP 5504717 B2 JP5504717 B2 JP 5504717B2 JP 2009161942 A JP2009161942 A JP 2009161942A JP 2009161942 A JP2009161942 A JP 2009161942A JP 5504717 B2 JP5504717 B2 JP 5504717B2
Authority
JP
Japan
Prior art keywords
steel pipe
less
sour
resistance
ceq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009161942A
Other languages
Japanese (ja)
Other versions
JP2011017048A (en
Inventor
充 澤村
均 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009161942A priority Critical patent/JP5504717B2/en
Publication of JP2011017048A publication Critical patent/JP2011017048A/en
Application granted granted Critical
Publication of JP5504717B2 publication Critical patent/JP5504717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、靭性及び硫化水素(H2S)を含んだ環境における耐水素誘起割れ性、即ち、耐サワー性に優れた電縫鋼管の製造方法に関するものである。 The present invention relates to a method for manufacturing an electric resistance welded steel pipe excellent in toughness and resistance to hydrogen-induced cracking in an environment containing hydrogen sulfide (H 2 S), that is, sour resistance.

硫化水素を含むサワーオイル、サワーガスを輸送するラインパイプに使用される鋼管や、パイプラインの付属設備などに使用される鋼板には、耐サワー性が要求される。なお、耐サワー性とは、硫化水素を含む腐食環境における耐水素誘起割れ性(耐HIC性)及び耐応力割れ性(耐SSC性)である。   Sour resistance is required for steel pipes used for sour oils containing hydrogen sulfide, line pipes for transporting sour gas, and pipes attached to the pipes. The sour resistance is hydrogen-induced crack resistance (HIC resistance) and stress crack resistance (SSC resistance) in a corrosive environment containing hydrogen sulfide.

耐サワー性は、圧延方向に延伸化したMnSの生成や、クラスター状の介在物の生成によって劣化することが知られている。また、極めて厳しい腐食環境における耐サワー性を向上させるために、P、S、O、Nの含有量を低下させ、Caを添加して、中心偏析に生じるMnSの形態を制御した鋼材を制御圧延し、水冷する方法が提案されている(例えば、特許文献1)。   It is known that the sour resistance deteriorates due to the generation of MnS stretched in the rolling direction and the generation of cluster-like inclusions. In addition, in order to improve the sour resistance in an extremely severe corrosive environment, the steel material in which the content of P, S, O, N is reduced and Ca is added to control the form of MnS generated in the center segregation is controlled rolling. And the method of water-cooling is proposed (for example, patent document 1).

また、特に電縫鋼管については、550〜850℃に加熱して歪みを回復させ、水素誘起割れを低減する方法が提案されている(例えば、特許文献2、参照)。また同様に650℃以上850℃以下でかつAc点以上で熱処理する方法も提案されている(例えば、特許文献3、参照)。 In particular, for ERW steel pipes, a method has been proposed in which strain is recovered by heating to 550 to 850 ° C. to reduce hydrogen-induced cracking (see, for example, Patent Document 2). Similarly, a method of heat treatment at 650 ° C. or more and 850 ° C. or less and at one or more points of Ac has been proposed (see, for example, Patent Document 3).

特開昭62−112722号公報JP-A-62-112722 特開平2003−164908号公報Japanese Patent Laid-Open No. 2003-164908 特開平2004−115871号公報Japanese Patent Laid-Open No. 2004-115881

一般に、鋼管の水素誘起割れ(HIC)を防止するための熱処理としては、加熱温度が高い方が望ましい。一方、鋼管を高温に加熱すると、強度が低下するため、加熱温度の上限を制限することが必要である。また、特に、電縫鋼管の場合、原因は明確になっていないが、成分によっては、HICの抑制と強度の確保の両立が困難であった。   In general, a higher heating temperature is desirable as a heat treatment for preventing hydrogen induced cracking (HIC) of a steel pipe. On the other hand, when the steel pipe is heated to a high temperature, the strength decreases, so it is necessary to limit the upper limit of the heating temperature. In particular, in the case of ERW steel pipe, the cause is not clear, but depending on the component, it is difficult to achieve both suppression of HIC and securing of strength.

本発明は、このような問題を解決するものであって、API 5L X65グレード以上のラインパイプ用電縫鋼管を、比較的、低温での熱処理によって、耐サワー性及び強度の確保するための製造方法を提供することを目的とするものである。なお、API 5L X65グレード以上の高強度鋼管は、引張強度が530MPa以上である。   The present invention solves such a problem, and manufactures an electric resistance welded steel pipe of API 5L X65 grade or higher for line pipe by heat treatment at a relatively low temperature to ensure sour resistance and strength. It is intended to provide a method. A high strength steel pipe of API 5L X65 grade or higher has a tensile strength of 530 MPa or higher.

本発明は、熱処理の加熱温度の下限値を下記で定義される鋼材のCeqに応じて制御することにより、鋼管の強度を確保し、かつ耐HIC性を高めることができるという知見に基づいてなされたものであり、その要旨は以下のとおりである。   The present invention is made on the basis of the knowledge that the strength of the steel pipe can be secured and the HIC resistance can be improved by controlling the lower limit value of the heating temperature of the heat treatment according to the Ceq of the steel material defined below. The summary is as follows.

(1) 引張強度が530MPa以上である耐サワーラインパイプ用電縫鋼管の製造方法であって、質量%で、
C :0.01〜0.08%、
Si:0.1〜0.5%、
Mn:1.0〜1.5%、
Nb:0.010〜0.060%、
Ca:0.001〜0.004%、
Ti:0.005〜0.060%、
V :0.005〜0.039
を含有し、
Al:0.08%以下、
P: 0.015%以下、
S: 0.0010%以下、
O: 0.0030%以下、
N: 0.0050%以下
に制限し、残部がFe及び不可避的不純物からなり、
Ca、O、及び、Sの含有量[質量%]が、
1.05≦Ca(1−124O)/1.25S≦1.97
上式を満足し、下記(式1)で求められるCeqが0.22〜0.30である電縫鋼管に、下限温度を1250Ceq+225℃以上、上限温度を前記電縫鋼管のオーステナイトへの変態開始温度(Ac点)又は700℃のどちらか低い方とする熱処理を施すことを特徴とする耐サワーラインパイプ用電縫鋼管の製造方法。
Ceq=C+Mn/6+(Ni+Cu)/15+(Cr+Mo+V)/5 ・・(式1)
ここで、C、Mn、Ni、Cu、Cr、Mo、Vは各元素の含有量[質量%]である。
(1) A method for producing an electric resistance welded steel pipe for a sour line pipe having a tensile strength of 530 MPa or more, in mass%,
C: 0.01 to 0.08%,
Si: 0.1 to 0.5%,
Mn: 1.0 to 1.5%
Nb: 0.010 to 0.060%,
Ca: 0.001 to 0.004%,
Ti: 0.005 to 0.060%,
V: 0.005~ 0.039%
Containing
Al: 0.08% or less,
P: 0.015% or less,
S: 0.0010% or less,
O: 0.0030% or less,
N: limited to 0.0050% or less, with the balance being Fe and inevitable impurities,
Content of Ca, O, and S [% by mass]
1.05 ≦ Ca (1-124O) /1.25S≦1.97
An ERW steel pipe satisfying the above equation and having a Ceq of 0.22 to 0.30 obtained by the following (Equation 1), a lower limit temperature of 1250 Ceq + 225 ° C. or more, and an upper limit temperature of the ERW steel pipe being transformed into austenite. A method of manufacturing an electric resistance welded steel pipe for a sour line pipe, characterized by performing a heat treatment at a temperature (Ac 1 point) or 700 ° C, whichever is lower.
Ceq = C + Mn / 6 + (Ni + Cu) / 15 + (Cr + Mo + V) / 5 (Expression 1)
Here, C, Mn, Ni, Cu, Cr, Mo, and V are contents [mass%] of each element.

(2) 前記電縫鋼管が、更に、質量%で、
Ni:0.5%以下、
Cu:0.5%以下、
Cr:0.5%以下、
Mo:0.5%以下
の1種又は2種以上を含有することを特徴とする上記(1)に記載の耐サワーラインパイプ用電縫鋼管の製造方法。
(2) The ERW steel pipe is further in mass%,
Ni: 0.5% or less,
Cu: 0.5% or less,
Cr: 0.5% or less,
Mo: 1 type or 2 types or more of 0.5% or less is contained, The manufacturing method of the ERW steel pipe for sour-resistant pipes as described in said (1) characterized by the above-mentioned.

(3) 前記電縫鋼管が、更に、質量%で、
B:0.0020%以下
を含有することを特徴とする上記(1)又は(2)に記載の耐サワーラインパイプ用電縫鋼管の製造方法。
(3) The ERW steel pipe is further in mass%,
B: 0.0020% or less is contained, The manufacturing method of the ERW steel pipe for sour-resistant pipes as described in said (1) or (2) characterized by the above-mentioned.

本発明によれば、耐サワー性に優れたラインパイプ用電縫鋼管を提供することが可能になり、産業上の貢献が極めて顕著である。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the electric resistance welded steel pipe for line pipes excellent in sour resistance, and the industrial contribution is very remarkable.

鋼管の硬度及び耐HIC性と熱処理温度との関係を示す。The relationship between the hardness and HIC resistance of a steel pipe and the heat treatment temperature is shown.

鋼管の成分及び熱処理の加熱温度と、耐サワー性との関係を示す。The relationship between the composition of the steel pipe and the heating temperature of the heat treatment and the sour resistance is shown.

本発明の電縫鋼管は、API 5L X65グレード以上の高強度鋼管であり、引張強度は530MPa以上である。まず、本発明者らは、鋼管の硬度及び耐HIC性と熱処理温度との関係について検討を行った。表1に示す成分を有する電縫鋼管に熱処理を施し、ビッカース硬さを測定し、NACE(National Association of Corrosion and Engineer)のTM0284に準拠し、NACE試験を行った。NACE試験は、5%NaCl溶液+0.5%酢酸、pH2.7の溶液中に硫化水素ガスを飽和させて、96時間後に割れの発生の有無、破面率を調査する試験方法である。NACE試験により、HIC破面率が5%程度以下であれば、耐サワー特性が良好であると評価する。結果を図1に示す。図1において、横軸は熱処理温度(℃)を表し、縦軸は、右側がHIC破面率(CAR)を表し、左側が硬度(Hv)を表している。   The electric resistance welded steel pipe of the present invention is a high-strength steel pipe of API 5L X65 grade or higher and has a tensile strength of 530 MPa or higher. First, the present inventors examined the relationship between the hardness and HIC resistance of a steel pipe and the heat treatment temperature. The ERW steel pipe having the components shown in Table 1 was heat-treated, the Vickers hardness was measured, and a NACE test was performed in accordance with TM0284 of NACE (National Association of Corrosion and Engineer). The NACE test is a test method in which hydrogen sulfide gas is saturated in a solution of 5% NaCl solution + 0.5% acetic acid, pH 2.7, and the presence or absence of cracking and the fracture rate are investigated after 96 hours. According to the NACE test, if the HIC fracture surface ratio is about 5% or less, it is evaluated that the sour resistance is good. The results are shown in FIG. In FIG. 1, the horizontal axis represents the heat treatment temperature (° C.), and the vertical axis represents the HIC fracture surface ratio (CAR) on the right side and the hardness (Hv) on the left side.

Figure 0005504717
Figure 0005504717

図1に示したように、加熱温度が700℃を超えると、ビッカース硬さが低下する。また、本発明者らは、成分及び熱処理の加熱温度が、鋼管の強度に及ぼす影響について検討を行った。その結果、オーステナイトへの変態が開始するAcを超える温度に加熱すると、加熱後の冷却速度によって強度が大きく変化することがわかった。したがって、鋼管の加熱温度は、オーステナイトへの変態が開始する温度(Ac)又は700℃の低い方を上限とする。 As shown in FIG. 1, when the heating temperature exceeds 700 ° C., the Vickers hardness decreases. In addition, the present inventors examined the influence of the components and the heating temperature of the heat treatment on the strength of the steel pipe. As a result, it was found that, when heated to a temperature exceeding Ac 1 at which transformation to austenite starts, the strength greatly changes depending on the cooling rate after heating. Therefore, the upper limit of the heating temperature of the steel pipe is the temperature (Ac 1 ) at which transformation to austenite starts or the lower one of 700 ° C.

一方、図1に示したように、HIC破面率を低下させるためには、すなわち、CAR耐サワー性を向上させるためには、加熱温度を上昇させることが必要であることがわかる。そこで、本発明者らは、耐サワー性を向上させる熱処理の加熱温度の下限値を明確にするため、鋼管の成分及び熱処理の加熱温度と、耐サワー性との関係について検討を行った。その結果を図2に示す。図2において、横軸はCeqを表し、縦軸は熱処理温度を表し、○は耐サワー性の向上が良好であったことを示し、×は耐サワー性の向上が不良であったことを示している。   On the other hand, as shown in FIG. 1, in order to reduce the HIC fracture surface ratio, that is, in order to improve the CAR sour resistance, it is understood that it is necessary to raise the heating temperature. Therefore, the present inventors have examined the relationship between the components of the steel pipe and the heating temperature of the heat treatment and the sour resistance in order to clarify the lower limit of the heating temperature of the heat treatment that improves the sour resistance. The result is shown in FIG. In FIG. 2, the horizontal axis represents Ceq, the vertical axis represents the heat treatment temperature, ◯ indicates that the improvement in sour resistance was good, and x indicates that the improvement in sour resistance was poor. ing.

図2に示したように、耐サワー性が向上する熱処理の加熱温度は、鋼管のCeqとともに上昇する。また、図2の実線は1250Ceq+225の計算値であり、実線より高い加熱温度では、耐サワー性の向上が良好であることが示されているから、熱処理の加熱温度を1250Ceq+225℃以上とすることが必要であることがわかる。   As shown in FIG. 2, the heating temperature of the heat treatment that improves the sour resistance increases with the Ceq of the steel pipe. In addition, the solid line in FIG. 2 is a calculated value of 1250 Ceq + 225, and it is shown that the sour resistance is improved at a higher heating temperature than the solid line. Therefore, the heating temperature of the heat treatment may be set to 1250 Ceq + 225 ° C. or higher. It turns out that it is necessary.

以下、本発明について、詳細に説明する。なお、以下、%は、質量%を意味する。
C:0.01〜0.08%
C:Cは、鋼の強度を向上させる元素であり、その有効な量として、0.01%以上の添加が必要である。一方、C量が0.08%を超えると、炭化物の生成が促進されて、耐HIC性が損なわれるので、上限を0.08%とする。また、さらに耐HIC性の低下を抑制するには、C量は、0.06%以下が好ましい。
Hereinafter, the present invention will be described in detail. Hereinafter, “%” means mass%.
C: 0.01 to 0.08%
C: C is an element that improves the strength of steel, and as an effective amount thereof, addition of 0.01% or more is necessary. On the other hand, if the amount of C exceeds 0.08%, the formation of carbides is promoted and the HIC resistance is impaired, so the upper limit is made 0.08%. In order to further suppress the decrease in HIC resistance, the C content is preferably 0.06% or less.

Si:0.1〜0.5%
Si:Siは、脱酸元素であり、0.1%以上の添加が必要である。一方、Si量が0.5%を超えると、電縫溶接部の靱性を低下させるので、上限を0.5%とする。
Si: 0.1 to 0.5%
Si: Si is a deoxidizing element and needs to be added in an amount of 0.1% or more. On the other hand, if the amount of Si exceeds 0.5%, the toughness of the ERW weld is reduced, so the upper limit is made 0.5%.

Mn:1.0〜1.5%
Mn:Mnは、強度及び靱性を向上させる元素であり、1.0%以上の添加が必要である。一方、Mnは、MnSを生成して、耐サワー性を劣化させる元素であるので、HICを抑制するには、Mn量の上限を1.5%とすることが必要である。
Mn: 1.0 to 1.5%
Mn: Mn is an element that improves strength and toughness, and it is necessary to add 1.0% or more. On the other hand, Mn is an element that generates MnS and degrades sour resistance. Therefore, in order to suppress HIC, the upper limit of the amount of Mn needs to be 1.5%.

Nb:0.010〜0.060%
Nb:Nbは、未再結晶温度域を拡大して結晶粒径を微細化し、炭化物、窒化物を形成し、強度の向上に寄与する元素であり、0.010%以上の添加が必要である。一方、中心偏析部に粗大な炭化物生成による、耐HIC性の低下を抑制するには、上限を0.060%にすることが必要である。
Nb: 0.010 to 0.060%
Nb: Nb is an element that expands the non-recrystallization temperature range, refines the crystal grain size, forms carbides and nitrides, and contributes to improving the strength, and needs to be added in an amount of 0.010% or more. . On the other hand, in order to suppress the decrease in HIC resistance due to the formation of coarse carbide in the central segregation part, the upper limit needs to be 0.060%.

Ca:0.001〜0.004%
Ca:Caは、硫化物CaSを生成し、圧延方向に伸長するMnSの生成を抑制し、耐HIC性の改善に顕著に寄与する元素である。Caの添加量が0.001%未満では、効果が得られないため、下限値を0.001%とする。一方、Caの添加量が0.004%を超えると、酸化物が集積し、耐HIC性を損なうため、上限を0.004%とする。
Ca: 0.001 to 0.004%
Ca: Ca is an element that produces sulfide CaS, suppresses the production of MnS extending in the rolling direction, and contributes significantly to the improvement of HIC resistance. If the addition amount of Ca is less than 0.001%, the effect cannot be obtained, so the lower limit is set to 0.001%. On the other hand, if the amount of Ca exceeds 0.004%, oxides accumulate and the HIC resistance is impaired, so the upper limit is made 0.004%.

Ti:0.005〜0.060%
Ti:Tiは、脱酸剤や窒化物形成元素として結晶粒の細粒化に利用される元素であり、0.005%以上を添加する必要がある。一方、Tiを過剰に添加すると、Nbと同様に粗大な窒化物の形成によって、耐HIC性が低下するので、上限を0.060%とする。
Ti: 0.005-0.060%
Ti: Ti is an element used for refining crystal grains as a deoxidizer or nitride-forming element, and it is necessary to add 0.005% or more. On the other hand, when Ti is added excessively, the HIC resistance is lowered due to the formation of coarse nitrides similar to Nb, so the upper limit is made 0.060%.

V:0.005〜0.039%
V:Vは、炭化物、窒化物を形成し、強度の向上に寄与する元素であり、効果を得るためには、0.005%以上の添加が好ましい。一方、0.060%を超えるVを添加すると、靱性の低下を招くことがあるので、上限を0.060%とすることが好ましい。V量の上限は、実施例に基づいて、0.039%以下とする。
V: 0.005-0.039%
V: V is an element that forms carbides and nitrides and contributes to the improvement of strength. In order to obtain the effect, 0.005% or more is preferably added. On the other hand, if V exceeding 0.060% is added, toughness may be lowered, so the upper limit is preferably made 0.060%. The upper limit of the V amount is set to 0.039% or less based on the example.

Al:0.08%以下
Al:Alは、脱酸元素であるが、添加量が0.08%を超えると、Al酸化物の集積クラスターが生成し、耐サワー性が損なわれるので、0.08%以下に制限する。また、靭性が要求される場合には、Al量の上限を0.03%にすることが好ましい。Al量の下限は特に限定しないが、溶鋼中の酸素量を低減させるためには、Alを0.0005%以上添加することが好ましい。
Al: 0.08% or less Al: Al is a deoxidizing element. However, if the addition amount exceeds 0.08%, an accumulation cluster of Al oxide is generated and sour resistance is impaired. Limit to 08% or less. Moreover, when toughness is requested | required, it is preferable to make the upper limit of Al amount into 0.03%. The lower limit of the amount of Al is not particularly limited, but it is preferable to add 0.0005% or more of Al in order to reduce the amount of oxygen in the molten steel.

P:0.015%以下
P:Pは、不純物であり、含有量が0.015%を超えると、耐HIC性を損なう。したがって、Pの含有量の上限を0.015%とする。
P: 0.015% or less P: P is an impurity. If the content exceeds 0.015%, the HIC resistance is impaired. Therefore, the upper limit of the P content is 0.015%.

S:0.0010%以下
S:Sは、熱間圧延時に圧延方向に延伸するMnSを生成して、耐HIC性を低下させる元素である。したがって、本発明では、S量を低減することが必要であり、上限を0.0010%に制限する。S量は、少ないほど好ましいが、0.0001%未満にすることは困難である。また、製造コストの観点からも、0.0001%以上にすることが好ましい。
S: 0.0010% or less S: S is an element that generates MnS that extends in the rolling direction during hot rolling, and decreases the HIC resistance. Therefore, in the present invention, it is necessary to reduce the amount of S, and the upper limit is limited to 0.0010%. The smaller the amount of S, the better, but it is difficult to make it less than 0.0001%. Moreover, it is preferable to make it 0.0001% or more also from a viewpoint of manufacturing cost.

N:0.0050%以下
N:Nは、不純物であり、Nの含有量が0.0050%を超えると、TiとNbの炭窒化物が集積しやすくなり、耐HIC性を損なう。したがって、N量の上限を0.0050%とする。またTiN、NbNなどの窒化物を利用し、加熱時のオーステナイト粒径の微細化を図る場合は、0.0010%以上のNを含有させることが好ましい。
N: 0.0050% or less N: N is an impurity. If the content of N exceeds 0.0050%, carbonitrides of Ti and Nb are likely to accumulate, and the HIC resistance is impaired. Therefore, the upper limit of the N amount is set to 0.0050%. Moreover, when using nitrides, such as TiN and NbN, and refinement | miniaturization of the austenite particle size at the time of a heating, it is preferable to contain 0.0010% or more of N.

O:0.0030%以下
O:Oは、不純物であり、酸化物の集積を抑制して耐HIC性を向上させるためには、上限を0.0030%に制限することが必要である。MnSの生成を抑制するCaが有効にSと結びつくためには、O量を0.0020%以下とすることが好ましい。
O: 0.0030% or less O: O is an impurity, and it is necessary to limit the upper limit to 0.0030% in order to suppress the accumulation of oxides and improve the HIC resistance. In order for Ca, which suppresses the generation of MnS, to be effectively combined with S, the O content is preferably 0.0020% or less.

1.05≦Ca(1−124O)/1.25S≦1.97
本発明では、Ca(1−124O)/1.25S、即ち、ESSP値を大きくすることが必要である。なお、Ca、O、Sは、各元素の含有量を質量%で表記したものである。ESSP値は、Caが酸化物を形成することを考慮し、CaSを生成させるために必要な、S量に対するCa量の比である。耐HIC性を向上させるには、ESSP値は1を超えることが必要である。一方、ESSP値を2超にするには、S量を低減させることが必要になり、製造コストが増加する。したがって、ESSP値は1超、2以下とする。ESSP値は、実施例に基づいて、1.05以上、1.97以下とする。
1.05 ≦ Ca (1-124O) /1.25S≦ 1.97
In the present invention, it is necessary to increase Ca (1-124O) /1.25S, that is, the ESSP value. In addition, Ca, O, and S represent the content of each element in mass%. The ESSP value is a ratio of the Ca amount to the S amount necessary for generating CaS considering that Ca forms an oxide. In order to improve the HIC resistance, the ESSP value needs to exceed 1. On the other hand, in order to increase the ESSP value to more than 2, it is necessary to reduce the amount of S, which increases the manufacturing cost. Therefore, the ESSP value is more than 1 and 2 or less. The ESSP value is 1.05 or more and 1.97 or less based on the example.

Ceq:0.22〜0.30
Ceqは、下記の式で定義される焼入れ性の指標であり、本発明では、耐サワー性の観点から、加熱温度の下限値にも影響する重要な指標である。Ceqが0.22未満であると、熱処理後、X65以上の強度を確保することができない。一方、耐サワー性を向上させるために、本発明では、熱処理の加熱温度の下限値を、1250Ceq+225℃以上としている。そのため、Ceqが0.30を超えると、耐サワー性を向上させるための加熱温度の範囲が狭くなる。したがって、Ceqは、0.22〜0.30とする。
Ceq: 0.22 to 0.30
Ceq is an index of hardenability defined by the following formula. In the present invention, Ceq is an important index that also affects the lower limit of the heating temperature from the viewpoint of sour resistance. If Ceq is less than 0.22, strength of X65 or more cannot be ensured after heat treatment. On the other hand, in order to improve the sour resistance, in the present invention, the lower limit value of the heating temperature of the heat treatment is set to 1250 Ceq + 225 ° C. or higher. Therefore, when Ceq exceeds 0.30, the range of the heating temperature for improving the sour resistance is narrowed. Therefore, Ceq is set to 0.22 to 0.30.

Ceqは、Mn、Ni、Cu、Cr、Mo、Vの含有量から、下記(式1)によって求める。なお、Ni、Cu、Cr、Moを含有しない場合は、0とする。
Ceq=C+Mn/6+(Ni+Cu)/15+(Cr+Mo+V)/5 ・・(式1)
Ceq is determined by the following (formula 1) from the contents of Mn, Ni, Cu, Cr, Mo, and V. In the case where Ni, Cu, Cr, or Mo is not contained, 0 is set.
Ceq = C + Mn / 6 + (Ni + Cu) / 15 + (Cr + Mo + V) / 5 (Expression 1)

なお、本発明においては、強度及び靱性を改善する元素として、Ni、Cu、Cr、Mo、Bのうち、1種又は2種以上の元素を添加することが好ましい。   In the present invention, it is preferable to add one or more elements of Ni, Cu, Cr, Mo, and B as elements for improving strength and toughness.

Ni:0.5%以下
Ni:Niは、靱性及び強度の改善に有効な元素であり、耐食性の向上にも寄与するため、0.01%以上の添加が好ましい。一方、Niは高価な元素であり、製造コストを削減するためには、上限を、0.5%に制限することが好ましい。
Ni: 0.5% or less Ni: Ni is an element effective for improving toughness and strength, and contributes to improvement of corrosion resistance. Therefore, addition of 0.01% or more is preferable. On the other hand, Ni is an expensive element, and it is preferable to limit the upper limit to 0.5% in order to reduce manufacturing costs.

Cu:0.5%以下
Cu:Cuは、強度の上昇に有効な元素であり、耐食性の向上にも寄与するため、0.01%以上の添加が好ましい。一方、Cuも高価な元素であり、製造コストを削減するためには、上限を、0.5%に制限することが好ましい。
Cu: 0.5% or less Cu: Cu is an element effective for increasing the strength, and contributes to the improvement of corrosion resistance. Therefore, addition of 0.01% or more is preferable. On the other hand, Cu is also an expensive element, and it is preferable to limit the upper limit to 0.5% in order to reduce manufacturing costs.

Cr:0.5%以下
Cr:Crは、強度の上昇に有効な元素であり、0.01%以上の添加が好ましい。一方、多量に添加すると、焼入れ性が高くなり、靱性が低下することがあるため、上限を0.5%とすることが好ましい。
Cr: 0.5% or less Cr: Cr is an element effective for increasing the strength, and is preferably added in an amount of 0.01% or more. On the other hand, if added in a large amount, the hardenability becomes high and the toughness may be lowered, so the upper limit is preferably made 0.5%.

Mo:0.5%以下
Mo:Moは、焼入れ性を向上させると同時に、炭窒化物を形成し強度を改善する元素であり、その効果を得るためには、0.01%以上の添加が好ましい。一方、Moは高価な元素であり、製造コストを削減するために、上限を0.5%にすることが好ましい。また、鋼の強度が上昇すると、HIC性及び靱性が低下することがあるので、好ましい上限を0.3%とする。
Mo: 0.5% or less Mo: Mo is an element that improves hardenability and at the same time forms carbonitride to improve strength. To obtain the effect, addition of 0.01% or more is necessary. preferable. On the other hand, Mo is an expensive element, and the upper limit is preferably set to 0.5% in order to reduce manufacturing costs. Moreover, since the HIC property and toughness may decrease when the strength of the steel increases, the preferable upper limit is set to 0.3%.

B:0.0020%以下
B:Bは、鋼の粒界に偏析して焼入れ性の向上に著しく寄与する元素である。この効果を得るには、0.0001%以上のBの添加が好ましい。一方。Bを過剰に添加すると、粒界への偏析が過剰になり、靱性の低下を招くことがあるので、上限を0.0020%とすることが好ましい。
B: 0.0020% or less B: B is an element that segregates at the grain boundaries of steel and contributes significantly to improving the hardenability. In order to obtain this effect, 0.0001% or more of B is preferably added. on the other hand. When B is added excessively, segregation to the grain boundary becomes excessive and the toughness may be lowered, so the upper limit is preferably made 0.0020%.

次に、本発明の電縫鋼管の製造方法について説明する。まず、製鋼工程で溶製した鋼を連続鋳造により鋼片とする。鋼片を加熱し、熱間圧延を行い、巻き取って、熱延鋼帯とする。その後、熱延鋼帯をロール成形し、電縫溶接により電縫鋼管とする。   Next, the manufacturing method of the ERW steel pipe of this invention is demonstrated. First, the steel melted in the steel making process is made into a steel slab by continuous casting. The steel slab is heated, hot-rolled, wound up to obtain a hot-rolled steel strip. Thereafter, the hot-rolled steel strip is roll-formed and made into an ERW steel pipe by ERW welding.

本発明では、造管された電縫鋼管の熱処理を行う。電縫鋼管の熱処理は、誘導加熱によって連続的に行ってもよく、加熱炉などバッチ式の方法でもよい。   In the present invention, heat treatment is performed on the formed ERW steel pipe. The heat treatment of the ERW steel pipe may be performed continuously by induction heating, or may be a batch method such as a heating furnace.

加熱温度の下限値は、上述のように、耐サワー性を向上させるために、1250 Ceq +225℃以上とすることが必要である。耐サワー性は、加熱温度の上昇によって向上するため、好ましくは、1250Ceq+225℃又は600℃の高い方を加熱温度の下限とする。一方、鋼管の加熱温度は、鋼管の強度を確保するために、Ac又は700℃の低い方を上限とする。加熱温度を下げると鋼管の強度が上昇するため、好ましくは、Ac又は650℃の低い方を加熱温度の上限とする。 As described above, the lower limit of the heating temperature needs to be 1250 Ceq + 225 ° C. or higher in order to improve the sour resistance. Since sour resistance is improved by increasing the heating temperature, the higher one of 1250 Ceq + 225 ° C. or 600 ° C. is preferably set as the lower limit of the heating temperature. On the other hand, in order to ensure the strength of the steel pipe, the lower limit of Ac 1 or 700 ° C. is set as the upper limit for the heating temperature of the steel pipe. Since the strength of the steel pipe increases when the heating temperature is lowered, the lower one of Ac 1 or 650 ° C. is preferably set as the upper limit of the heating temperature.

熱処理の保持時間は特に定めないが、HICの発生を抑制するために、30秒以上保持することが好ましい。また、保持時間の上限は、生産性の観点から、1時間以下とすることが好ましい。   Although the heat treatment holding time is not particularly defined, it is preferably held for 30 seconds or more in order to suppress the generation of HIC. In addition, the upper limit of the holding time is preferably 1 hour or less from the viewpoint of productivity.

表2に示す化学成分を有する鋼を溶製し、連続鋳造で250mm厚の鋼片を製造した。得られた鋼片を表3に示す条件で熱間圧延し、熱延コイルとして巻き取った。その後熱延コイルをロール成形及び電縫溶接により造管し、電縫鋼管に表3に示す条件で熱処理を施した。熱処理後、電縫鋼管のHIC性をNACE試験によって評価した。   Steel having chemical components shown in Table 2 was melted, and a steel piece having a thickness of 250 mm was produced by continuous casting. The obtained steel slab was hot rolled under the conditions shown in Table 3 and wound up as a hot rolled coil. Thereafter, a hot-rolled coil was formed by roll forming and ERW welding, and the ERW steel pipe was subjected to heat treatment under the conditions shown in Table 3. After the heat treatment, the HIC property of the ERW steel pipe was evaluated by the NACE test.

NACE試験の条件は、5%NaCl溶液+0.5%酢酸、pH2.7の溶液中に硫化水素ガスを飽和させて、浸漬時間を96時間とした。試験後、割れの有無を観察し、HIC破面率(CAR)を測定した。また、電縫衝合部から90°の位置で、平行部の直径が6mmである引張試験片を採取し、評点距離を24mmとし、JIS Z 2241に準拠して引張試験を行い、引張強度を測定した。結果を表3に示す。   The NACE test was performed by saturating hydrogen sulfide gas in a solution of 5% NaCl solution + 0.5% acetic acid, pH 2.7, and dipping time was 96 hours. After the test, the presence or absence of cracks was observed, and the HIC fracture surface ratio (CAR) was measured. In addition, a tensile test piece having a parallel part diameter of 6 mm is taken at a position of 90 ° from the electro-sewing contact part, the evaluation distance is 24 mm, a tensile test is performed in accordance with JIS Z 2241, and the tensile strength is determined. It was measured. The results are shown in Table 3.

成分及び製造条件が本発明の範囲内である本発明例は、CARが5%以下となり、良好な耐サワー性を有している。一方、製造No.1、3、15のように熱処理を行わない比較例、製造No.6、9、12のように熱処理温度が本発明の熱処理温度範囲より低い比較例は、CARが5%を超える値となり、耐サワー性が改善しない。製造No.17、20は、Ceqが高く、熱処理温度が1250Ceq+225℃よりも低くなり、やはりCARが5%を超える値となり、耐サワー性が改善していない。   The examples of the present invention in which the components and production conditions are within the scope of the present invention have a CAR of 5% or less and have good sour resistance. On the other hand, production No. No. 1, 3, 15 Comparative example in which no heat treatment is performed, Production No. In Comparative Examples in which the heat treatment temperature is lower than the heat treatment temperature range of the present invention, such as 6, 9, and 12, the CAR exceeds 5%, and sour resistance is not improved. Production No. Nos. 17 and 20 have a high Ceq, the heat treatment temperature is lower than 1250 Ceq + 225 ° C., and the CAR also exceeds 5%, so the sour resistance is not improved.

また、No.19は、ESSP値が0.93と本発明の範囲より低く、適正な熱処理を施しても耐サワー性が改善しない(CARは9.3%)。製造No.18はCeqが0.196と本発明の範囲より低く、製造No.5は熱処理温度が780℃と本発明の熱処理温度範囲より高く、引張強度が530MPaより低下している。   No. No. 19 has an ESSP value of 0.93, which is lower than the range of the present invention, and does not improve sour resistance even when an appropriate heat treatment is performed (CAR is 9.3%). Production No. No. 18 has a Ceq of 0.196, which is lower than the range of the present invention. No. 5 has a heat treatment temperature of 780 ° C., which is higher than the heat treatment temperature range of the present invention, and the tensile strength is lower than 530 MPa.

Figure 0005504717
Figure 0005504717

Figure 0005504717
Figure 0005504717

本発明によれば、耐サワー性に優れたラインパイプ用電縫鋼管を提供することが可能になり、産業上の貢献が極めて顕著である。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the electric resistance welded steel pipe for line pipes excellent in sour resistance, and the industrial contribution is very remarkable.

Claims (3)

引張強度が530MPa以上である耐サワーラインパイプ用電縫鋼管の製造方法であって、質量%で、
C :0.01〜0.08%、
Si:0.1〜0.5%、
Mn:1.0〜1.5%、
Nb:0.010〜0.060%、
Ca:0.001〜0.004%、
Ti:0.005〜0.060%、
V :0.005〜0.039
を含有し、
Al:0.08%以下、
P: 0.015%以下、
S: 0.0010%以下、
O: 0.0030%以下、
N: 0.0050%以下
に制限し、残部がFe及び不可避的不純物からなり、
Ca、O、及び、Sの含有量[質量%]が、
1.05≦Ca(1−124O)/1.25S≦1.97
を満足し、下記(式1)で求められるCeqが0.22〜0.30である電縫鋼管に、下限温度を1250Ceq+225℃以上、上限温度を前記電縫鋼管のオーステナイトへの変態開始温度(Ac点)又は700℃のどちらか低い方とする熱処理を施すことを特徴とする耐サワーラインパイプ用電縫鋼管の製造方法。
Ceq=C+Mn/6+(Ni+Cu)/15+(Cr+Mo+V)/5
・・・(式1)
ここで、C、Mn、Ni、Cu、Cr、Mo、Vは各元素の含有量[質量%]である。
A method for producing an electric resistance steel pipe for sour line pipes having a tensile strength of 530 MPa or more, wherein the tensile strength is% by mass,
C: 0.01 to 0.08%,
Si: 0.1 to 0.5%,
Mn: 1.0 to 1.5%
Nb: 0.010 to 0.060%,
Ca: 0.001 to 0.004%,
Ti: 0.005 to 0.060%,
V: 0.005~ 0.039%
Containing
Al: 0.08% or less,
P: 0.015% or less,
S: 0.0010% or less,
O: 0.0030% or less,
N: limited to 0.0050% or less, with the balance being Fe and inevitable impurities,
Content of Ca, O, and S [% by mass]
1.05 ≦ Ca (1-124O) /1.25S≦1.97
The ERW steel pipe having a Ceq of 0.22 to 0.30 determined by the following (Equation 1), the lower limit temperature is 1250 Ceq + 225 ° C. or higher, and the upper limit temperature is the transformation start temperature of the ERW steel pipe to austenite ( ( 1 Ac) or 700 ° C., whichever is lower, a method for producing an electric resistance welded steel pipe for sour line pipes.
Ceq = C + Mn / 6 + (Ni + Cu) / 15 + (Cr + Mo + V) / 5
... (Formula 1)
Here, C, Mn, Ni, Cu, Cr, Mo, and V are contents [mass%] of each element.
前記電縫鋼管が、更に、質量%で、
Ni:0.5%以下、
Cu:0.5%以下、
Cr:0.5%以下、
Mo:0.5%以下
の1種又は2種以上を含有することを特徴とする請求項1に記載の耐サワーラインパイプ用電縫鋼管の製造方法。
The ERW steel pipe is further in mass%,
Ni: 0.5% or less,
Cu: 0.5% or less,
Cr: 0.5% or less,
Mo: 0.5% or less of 1 type or 2 types or more are contained, The manufacturing method of the ERW steel pipe for sour-resistant pipes of Claim 1 characterized by the above-mentioned.
前記電縫鋼管が、更に、質量%で、
B:0.0020%以下
を含有することを特徴とする請求項1又は2に記載の耐サワーラインパイプ用電縫鋼管の製造方法。
The ERW steel pipe is further in mass%,
B: 0.0020% or less is contained, The manufacturing method of the ERW steel pipe for sour-resistant pipes of Claim 1 or 2 characterized by the above-mentioned.
JP2009161942A 2009-07-08 2009-07-08 Manufacturing method of ERW steel pipe for sour line pipe Active JP5504717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009161942A JP5504717B2 (en) 2009-07-08 2009-07-08 Manufacturing method of ERW steel pipe for sour line pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009161942A JP5504717B2 (en) 2009-07-08 2009-07-08 Manufacturing method of ERW steel pipe for sour line pipe

Publications (2)

Publication Number Publication Date
JP2011017048A JP2011017048A (en) 2011-01-27
JP5504717B2 true JP5504717B2 (en) 2014-05-28

Family

ID=43595038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009161942A Active JP5504717B2 (en) 2009-07-08 2009-07-08 Manufacturing method of ERW steel pipe for sour line pipe

Country Status (1)

Country Link
JP (1) JP5504717B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133558A1 (en) * 2011-03-30 2012-10-04 新日本製鐵株式会社 Electroseamed steel pipe and process for producing same
WO2016051727A1 (en) * 2014-09-30 2016-04-07 Jfeスチール株式会社 Welded steel pipe, steel plate, and manufacturing method therefor
JP6394261B2 (en) * 2014-10-14 2018-09-26 新日鐵住金株式会社 ERW steel pipe for oil well and manufacturing method thereof
CN105063482B (en) * 2015-08-27 2017-05-31 攀钢集团西昌钢钒有限公司 X60 pipe line steels and its production method
CN105063483B (en) * 2015-08-27 2017-08-25 攀钢集团西昌钢钒有限公司 X65 pipe line steels and its production method
EP3686304A4 (en) 2017-09-19 2021-01-27 Nippon Steel Corporation Steel tube and steel sheet
WO2020178943A1 (en) * 2019-03-04 2020-09-10 日本製鉄株式会社 Electric resistance welded steel pipe for line pipes
EP4006180A4 (en) 2019-07-31 2022-10-12 JFE Steel Corporation High-strength steel sheet for sour resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour resistant line pipe
EP4116453A4 (en) 2020-03-04 2023-03-22 Nippon Steel Corporation Steel pipe and steel sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4165292B2 (en) * 2003-05-21 2008-10-15 Jfeスチール株式会社 Manufacturing method of ERW steel pipe for high-strength line pipe with excellent hydrogen cracking resistance
JP5151008B2 (en) * 2005-03-29 2013-02-27 Jfeスチール株式会社 Hot-rolled steel sheet for sour-resistant and high-strength ERW pipe with excellent HIC resistance and weld toughness and method for producing the same

Also Published As

Publication number Publication date
JP2011017048A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
JP5504717B2 (en) Manufacturing method of ERW steel pipe for sour line pipe
JP5423324B2 (en) Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking
JP4700741B2 (en) Manufacturing method of steel plate for thick-walled sour line pipe with excellent toughness
JP5884201B2 (en) Hot-rolled steel sheet for high-strength line pipe with a tensile strength of 540 MPa or more
JP4700740B2 (en) Manufacturing method of steel plate for sour line pipe
JP4696570B2 (en) Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance
JP6394261B2 (en) ERW steel pipe for oil well and manufacturing method thereof
JP5195413B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and toughness anisotropy and method for producing the same
JP5884202B2 (en) Hot-rolled steel sheet for high-strength line pipe
JP2014218707A (en) Heat treated steel sheet excellent in hydrogen-induced cracking resistance and method of producing the same
JP5742123B2 (en) High-tensile hot-rolled steel sheet for high-strength welded steel pipe for line pipe and method for producing the same
JP5408398B1 (en) Spring steel
JP4802450B2 (en) Thick hot-rolled steel sheet with excellent HIC resistance and manufacturing method thereof
JP2023022159A (en) Steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen-induced cracking (hic) resistance, and method of manufacturing steel thereof
JP5157030B2 (en) Manufacturing method of high strength line pipe steel with excellent HIC resistance
JP2017008343A (en) Steel plate for lpg storage tank and production method therefor
CN111183238A (en) High-strength steel sheet for acid-resistant line pipe, method for producing same, and high-strength steel pipe using high-strength steel sheet for acid-resistant line pipe
CN115135786A (en) Stainless seamless steel pipe for oil well pipe and method for producing same
JP3896915B2 (en) High strength steel plate with excellent HIC resistance and method for producing the same
KR20140042108A (en) Hot-rolled steel sheet and method of manufacturing the same
KR20140042107A (en) Hot-rolled steel sheet and method of manufacturing the same
KR101344665B1 (en) Method for manufacturing hot-rolled steel sheet
KR20210052949A (en) High-strength steel sheet having excellent fatigue resistance, method for manufacturing thereof, and welded steel pipe using thereof
JP3952922B2 (en) Manufacturing method of high strength steel plate with excellent HIC resistance
KR20130013545A (en) Hot-rolled steel sheet, method of manufacturing the hot-rolled steel sheet and method of manufacturing oil tubular country goods using the hot-rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R151 Written notification of patent or utility model registration

Ref document number: 5504717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350