WO2020178943A1 - Electric resistance welded steel pipe for line pipes - Google Patents
Electric resistance welded steel pipe for line pipes Download PDFInfo
- Publication number
- WO2020178943A1 WO2020178943A1 PCT/JP2019/008380 JP2019008380W WO2020178943A1 WO 2020178943 A1 WO2020178943 A1 WO 2020178943A1 JP 2019008380 W JP2019008380 W JP 2019008380W WO 2020178943 A1 WO2020178943 A1 WO 2020178943A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- pipe
- grain size
- content
- test
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/50—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
Definitions
- the present disclosure relates to an electric resistance welded steel pipe for a line pipe.
- a line pipe is widely known as one of transportation means for crude oil, natural gas and the like.
- various studies have been made on electric resistance sewn steel pipes used as line pipes (that is, electric sewn steel pipes for line pipes).
- Patent Document 1 describes a hot-rolled steel plate for high-strength line pipes having excellent HIC resistance, which is suitable as a material for high-strength electric sewing pipe line pipes of API X70 or higher, and has a specific chemical composition.
- the metal structure of the segregation part is a bainitic ferrite structure with an area fraction of 95% or more, the average particle size of the bainitic ferrite structure is 8.0 ⁇ m or less, and a heat for high strength line pipe with a tensile strength of 540 MPa or more.
- a rolled steel sheet is disclosed.
- an electric resistance welded steel pipe for a line pipe having excellent sour resistance, having a certain degree of tensile strength and yield strength, a reduced yield ratio, and excellent toughness of a base material portion and an electric resistance welded portion has a specific chemical composition, the area ratio of the first phase made of ferrite is 40 to 80%, the remaining second phase contains tempered bainite, and the yield strength in the tube axial direction is 390 to 562 MPa.
- the tensile strength in the pipe axis direction is 520 to 690 MPa, the yield ratio in the pipe axis direction is 93% or less, and the Charpy absorbed energy in the pipe circumferential direction in the base material is 100 J or more at 0° C.
- An electrosewn steel pipe for a line pipe having a charpy absorption energy in the pipe circumferential direction at a sewing welded portion of 80 J or more at 0 ° C. is disclosed.
- Patent Document 3 in order to suppress an increase in Y / T during pipe making of a thick-walled electric resistance steel pipe, the structure of a hot-rolled steel sheet serving as a base steel sheet is controlled to bend and bend back.
- a thick-walled ERW steel pipe of API X60 to X70 grade which has low Y/T so that buckling does not occur and has excellent low temperature toughness, it has a specific chemical composition and the metal structure of the base steel sheet is ,
- the polygonal ferrite having an area ratio of 50 to 92%, the average particle diameter of the polygonal ferrite is 15 ⁇ m or less, the hardness of the electric resistance welded portion is Hv160 to 240, and the structure of the electric resistance welded portion is
- thick-walled welded steel pipes which are bainite, fine-grained ferrite and pearlite, or fine-grained ferrite and bainite.
- An object of the present disclosure is to provide an electric resistance welded steel pipe for a line pipe that has excellent sour resistance after strain is applied.
- Means for solving the above problems include the following aspects. ⁇ 1> Including a base material portion and an electric resistance welded portion,
- the chemical composition of the base material part is mass%, C: 0.03 to 0.10%, Si: 0.03 to 0.60%, Mn: 0.30 to 1.60%, P: 0 to 0.030%, S: 0 to 0.0015%, Ti: 0.010 to 0.200%, Al: 0.005 to 0.500%, Nb: 0.010 to 0.050%, N: 0 to 0.006%, O: 0 to 0.004%, Ca: 0.0001 to 0.0200%, Cu: 0 to 1.000%, Ni: 0 to 1.000%, Cr: 0 to 1.00%, Mo: 0 to 0.50%, V: 0 to 0.200%, W: 0 to 0.100%, B: 0 to 0.0050%, Mg: 0-0.0200%, Zr: 0 to 0.0200%, REM: 0 to 0.0200%, and The balance: Fe and im
- the tensile strength in the tube axis direction is 400 to 700 MPa
- the yield strength in the tube axis direction is 300 to 650 MPa
- the yield ratio in the tube axis direction is 95% or less
- ERW steel pipe for line pipe whose yield elongation is observed when a tensile test is conducted in the pipe axial direction.
- Ceq C+Mn/6+Cr/5+(Ni+Cu)/15+Nb+Mo+V... Formula (1)
- EESP Ca ⁇ (1-124O)/1.25S... Formula (2) [In Formula (1) and Formula (2), each element symbol represents the mass% of each element.
- the chemical composition of the base material part is% by mass, Cu: more than 0% and 1.000% or less, Ni: more than 0% and 1.000% or less, Cr: more than 0% and 1.00% or less, Mo: more than 0% and 0.5% or less, V: more than 0% and 0.200% or less, W: more than 0% and 0.100% or less, B: more than 0% and 0.0050% or less, Mg: more than 0% and 0.0200% or less, Zr: more than 0% and 0.0200% or less, and REM: The electrosewn steel pipe for a line pipe according to ⁇ 1>, which contains at least one selected from the group consisting of more than 0% and 0.0200% or less.
- ⁇ 3> The electric resistance welded steel pipe for a line pipe according to ⁇ 1> or ⁇ 2>, wherein the dislocation density in the central portion of the thickness of the base material is 2.0 ⁇ 10 15 m ⁇ 2 or less.
- ⁇ 4> The electric resistance welded steel pipe for a line pipe according to any one of ⁇ 1> to ⁇ 3>, having a wall thickness of 5 to 20 mm and an outer diameter of 100 to 400 mm.
- an electric resistance welded steel pipe for a line pipe having excellent sour resistance after being subjected to strain is provided.
- the numerical range represented by using “-” means a range including the numerical values before and after "-” as the lower limit value and the upper limit value.
- “%” indicating the content of the component (element) means “mass %”.
- the content of C (carbon) may be referred to as “C content”.
- the contents of other elements may be expressed in the same manner.
- the term “process” is included in this term as long as the intended purpose of the process is achieved not only as an independent process but also when it cannot be clearly distinguished from other processes. ..
- the electric-sewn steel pipe for line pipes (hereinafter, also simply referred to as “electrically-sewn steel pipe”) of the present disclosure includes a base material portion and an electric sewing welded portion, and the chemical composition of the base metal portion is mass% and C: 0.
- the particle size ratio is 3.0 or less
- the tensile strength in the pipe axis direction is 400 to 700 MPa
- the yield strength in the pipe axis direction is 300 to 650 MPa
- the yield ratio in the pipe axis direction is 95% or less.
- This is a bainite steel pipe in which yield elongation is observed when a tensile test in the axial direction of the pipe is performed.
- the chemical composition of the base metal portion described above (including a Ceq of 0.10 to 0.50 and an ESSP of 0 to 10.00) is also referred to as the chemical composition in the present disclosure.
- the electric resistance welded steel pipe of the present disclosure includes a base material portion and an electric resistance welded portion.
- ERW steel pipe is generally formed by forming a hot-rolled steel sheet into a tube (hereinafter, also referred to as “roll forming”) to form an open pipe, and the resulting open pipe is welded by electric resistance welding. It is manufactured by forming a portion (electric resistance welded portion) (hereinafter, the process up to here is also referred to as “pipe making”), and then subjecting the electric resistance welded portion to seam heat treatment, if necessary.
- the base metal portion refers to a portion other than the electric resistance welded portion and the heat affected zone.
- the heat affected zone (hereinafter, also referred to as “HAZ”) refers to the influence of heat due to electric resistance welding (when seam heat treatment is performed after electric resistance welding, heat due to electric resistance welding and seam heat treatment). (Influenced by) refers to the affected part.
- the hot-rolled steel plate which is a material for ERW steel pipe, is manufactured using a hot strip mill. Specifically, a hot strip mill manufactures a long hot-rolled steel sheet (hereinafter, also referred to as a hot coil) wound into a coil.
- the hot-rolled steel plate which is a material of the electric resistance welded pipe, is different from a steel plate manufactured by using a plate mill in that it is a long steel plate. Since a steel plate is not a continuous steel sheet, it cannot be used for roll forming, which is a continuous bending process.
- the electrosewn steel pipe is clearly distinguished from the welded steel pipe (for example, UOE steel pipe) manufactured by using the thick steel plate in that it is manufactured by using the hot-rolled steel plate described above.
- the electric resistance welded steel pipe of the present disclosure yield elongation is observed when a tensile test in the pipe axial direction is performed.
- the fact that the yield elongation is observed when performing the pipe axial tensile test indicates that the electric resistance welded steel pipe of the present disclosure is the electric resistance welded steel pipe manufactured by subjecting it to heat treatment after pipe forming. ..
- the electric resistance welded steel pipe of the present disclosure is heat-treated before pipe making (that is, a hot-rolled steel sheet that is a raw material) and is not heat treated after pipe making, and before pipe making
- no yield elongation is observed when the pipe axial tensile test is performed.
- the electric resistance welded steel pipe of the present disclosure Yield elongation is observed when performing a pipe axial tensile test,
- the tensile strength in the pipe axis direction is 700 MPa or less
- the area ratio of ferrite is 60 to 90% in the metal structure of the central portion of the wall thickness of the base material, and
- the fact that the total area ratio of martensite and tempered martensite in the balance is less than 1% with respect to the entire balance means that the electric resistance welded steel pipe of the present disclosure is tempered without being quenched after pipe forming (hereinafter, "pipe forming"). It is indicated that this is an electric resistance welded steel pipe manufactured by performing "tempering".
- the area ratio of the ferrite is less than 60%, and the total area ratio of martensite and tempered martensite in the balance is Is more than 1%, and the tensile strength in the tube axis direction exceeds 700 MPa.
- the electric resistance welded steel pipe of the present disclosure has a tensile strength in the above range, a yield strength in the above range, and a yield ratio in the above range. This ensures the performance as a line pipe. Under this premise, the electric resistance welded steel pipe of the present disclosure has excellent sour resistance after being subjected to strain.
- the "sour resistance” in the present disclosure means resistance to hydrogen-induced cracking (HIC) (hereinafter, also referred to as "HIC resistance").
- the electric resistance welded steel pipe for a line pipe may be required for the electric resistance welded steel pipe for a line pipe to further improve the sour resistance after the strain is applied.
- the electric resistance welded steel pipe of the present disclosure satisfies such requirements.
- the reeling method has been often adopted as a method of laying the electric resistance welded steel pipe for line pipes.
- the reeling method is to first wind the ERW steel pipe for a line pipe around a drum on land, then carry the ERW steel pipe for a line pipe around the drum to the sea, and then the line around the drum.
- the effect of excellent sour resistance after strain is applied is mainly due to the effect.
- the chemical composition of the base material part is the chemical composition according to the present disclosure.
- the area ratio of ferrite is 60 to 90% in the metal structure at the center of the wall thickness of the base metal part (generally speaking, the metal structure is mainly ferrite).
- the average ferrite grain size is 10 ⁇ m or less (generally speaking, the ferrite grains are miniaturized).
- the ratio of the maximum ferrite grain size to the average ferrite grain size is 3.0 or less (generally speaking, the ferrite grains are sized.
- the lath wall becomes a barrier, and crystal grains that are difficult to deform with respect to the maximum principal stress and easily deform It is considered that there are crystal grains, and as a result, a portion having a large deformation and a portion having a small deformation are generated. Then, it is considered that excessive dislocations are introduced at the site where the deformation is large, and the dislocation density at that site increases locally.
- dislocations can move freely in 12 slip systems when strain is applied by the reeling method, etc., so that it is almost uniform in each crystal grain.
- dislocations are dispersed in. As a result, it is considered that the occurrence of locally high dislocation density is suppressed and the sour resistance is improved. Further, since ferrite is generated by diffusion transformation, it is advantageous from the viewpoint of reducing the initial dislocation density (that is, the dislocation density before strain is applied) as compared with bainite or martensite generated by shear deformation. is there.
- the reason why the above (4) contributes to the above effect is presumed as follows.
- the dislocation density within the grains of the crystal grains is low, and the dislocation density of the grain boundaries surrounding the crystal grains is high. Specifically, it is considered that grain boundaries surrounding coarse crystal grains) are generated.
- the above (4) is satisfied (that is, the ferrite grains are sized and the generation of coarse crystal grains is suppressed), the occurrence of locally high dislocation density is suppressed. Therefore, it is considered that the sour resistance is improved.
- the reason why the above (5) contributes to the above effect is presumed as follows.
- the dislocation density (before) is reduced, it is believed that the dislocation density in the steel after strain is also reduced.
- hydrogen trap sites locations where the dislocation density is locally high
- HIC hydrogen-induced cracking
- the specific upper limit of the initial dislocation density is not particularly limited, but the upper limit is, for example, 2.0 ⁇ 10 15 m- 2 .
- the sour resistance (that is, HIC resistance) after strain is applied is evaluated as follows.
- a test piece specified in NACE (National Association of Corrosion and Engineer) TM0284-2003 is collected from the 180 ° position of the base metal of the electric resistance pipe.
- the longitudinal direction of this test piece is the pipe axis direction of the electric resistance welded steel pipe.
- a tensile tester is used to apply a tensile strain (strain amount 5%) in the longitudinal direction of the test piece (that is, the tube axis direction) to the test piece.
- test piece to which tensile strain is applied the HIC resistance test is carried out in accordance with NACE TM0284-2003 as follows.
- test liquid a test liquid (pH 2.7) obtained by saturating Solution A liquid (5 mass% NaCl+0.5 mass% glacial acetic acid aqueous solution) with 1 atm of H 2 S gas is used.
- the test piece to which the above tensile strain is applied is immersed in this test solution for 96 hours.
- the total area of cracks on the upper surface (the surface with the largest area) of the test piece after immersion for 96 hours is measured by an ultrasonic flaw detector.
- the ratio (%) of the total area of cracks to the area of the upper surface is obtained, and the obtained ratio (%) is defined as CAR (crack area ratio) (%).
- CAR crack area ratio
- C 0.03 to 0.10% C is an element that improves the strength of steel. From the viewpoint of obtaining such effects, the C content is 0.03% or more. The C content is preferably 0.04% or more, more preferably 0.05% or more. On the other hand, if the C content exceeds 0.10%, the formation of carbides may be promoted and the sour resistance may deteriorate. Therefore, the C content is 0.10% or less. The C content is 0.09% or less, more preferably 0.08% or less.
- Si 0.03 to 0.60% Si is a deoxidizing element. From the viewpoint of obtaining such effects, the Si content is 0.03% or more.
- the Si content is preferably 0.10% or more, more preferably 0.20% or more.
- the Si content is 0.60% or less.
- the Si content is preferably 0.50% or less, more preferably 0.40% or less.
- Mn 0.30 to 1.60% Mn is an element that improves the strength of steel. From the viewpoint of obtaining such an effect, the Mn content is 0.30% or more. The Mn content is preferably 0.40% or more, and more preferably 0.50% or more. On the other hand, if the Mn content exceeds 1.60%, coarse MnS may be generated and the sour resistance may deteriorate. Therefore, the Mn content is 1.60% or less. The Mn content is preferably 1.40% or less, more preferably 1.30% or less.
- P 0 to 0.030%
- P is an impurity element, and the smaller the amount, the better. If the P content exceeds 0.030%, the sour resistance may deteriorate. Therefore, the P content is 0.030% or less.
- the P content is preferably 0.020% or less.
- the P content may be 0%. From the viewpoint of reducing the dephosphorization cost, the P content may be more than 0%, may be 0.001% or more, and may be 0.010% or more.
- S 0 to 0.0015%
- S is an impurity element, and the smaller the amount, the better. If the S content exceeds 0.0015%, coarse MnS elongated in the rolling direction may occur, and the sour resistance may deteriorate. Therefore, the S content is 0.0015% or less.
- the S content is preferably 0.0014% or less.
- the S content may be 0%. From the viewpoint of reducing the desulfurization cost, the S content may be more than 0%, may be 0.0001% or more, and may be 0.0005% or more.
- Ti 0.010 to 0.200%
- Ti is an element necessary for refining the ⁇ grain size by the pinning effect and consequently refining the ferrite grain size. From the viewpoint of obtaining such effects, the Ti content is 0.010% or more.
- the Ti content is preferably 0.020% or more, more preferably 0.030% or more.
- the Ti content is 0.200% or less.
- the Ti content is preferably 0.150% or less, more preferably 0.110% or less, and further preferably 0.100% or less.
- Al 0.005 to 0.500%
- Al is a deoxidizing element. From the viewpoint of obtaining such effects, the Al content is 0.005% or more.
- the Al content is preferably 0.010% or more, more preferably 0.020% or more.
- the Al content is 0.500% or less.
- the Al content is preferably 0.200% or less, more preferably 0.100% or less, still more preferably 0.050% or less.
- Nb 0.010 to 0.050%
- Nb is an element necessary for refining the ⁇ grain size due to the pinning effect, and as a result, refining the ferrite grain size. From the viewpoint of obtaining such effects, the Nb content is 0.010% or more. The Nb content is preferably 0.020% or more. On the other hand, if the Nb content exceeds 0.050%, coarse Nb carbonitrides may be generated, and the sour resistance may deteriorate. Therefore, the Nb content is 0.050% or less. The Nb content is preferably 0.040% or less.
- N 0 to 0.006%
- N is an impurity element, and a small amount is preferable. If the N content exceeds 0.006%, coarse nitrides (for example, TiN, NbN, etc.) are generated, and sour resistance may deteriorate. Therefore, the N content is 0.006% or less.
- the N content is preferably 0.005% or less.
- the N content may be 0%. From the viewpoint of reducing the denitrification cost, the N content may be more than 0%, may be 0.001% or more, and may be 0.003% or more.
- O is an impurity element, and the smaller the amount, the better. If the O content exceeds 0.004%, the formation of CaO may impair the effect of Ca described later and deteriorate the sour resistance. Therefore, the O content is 0.004% or less.
- the O content is preferably 0.003% or less.
- the O content may be 0%. From the viewpoint of reducing the deoxidation cost, the O content may be more than 0% or may be 0.001% or more.
- Ca 0.0001 to 0.0200%
- Ca is an element that forms composite inclusions together with MnS and is finely dispersed in the form of composite inclusions to improve sour resistance. From the viewpoint of obtaining such effects, the Ca content is 0.0001% or more. The Ca content is preferably 0.0005% or more. On the other hand, when the Ca content exceeds 0.0200%, coarse Al—Ca-based inclusions are generated, and sour resistance may deteriorate. Therefore, the Ca content is 0.0200% or less.
- the Ca content is preferably 0.0150% or less, more preferably 0.0100% or less.
- Cu 0 to 1.000% Cu is an arbitrary element. That is, the Cu content may be 0%. Cu is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such effects, the Cu content may be more than 0%, may be 0.001% or more, and may be 0.010% or more. On the other hand, if the Cu content exceeds 1.000%, the effect may be saturated and the cost may be increased. Therefore, the Cu content is 1.000% or less.
- the Cu content is preferably 0.500% or less, more preferably 0.200% or less, and further preferably 0.100% or less.
- Ni 0 to 1.000%
- Ni is an arbitrary element. That is, the Ni content may be 0%. Ni is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such effects, the Ni content may be more than 0%, may be 0.001% or more, and may be 0.010% or more. On the other hand, if the Ni content exceeds 1.000%, the effect may be saturated and the cost may increase. Therefore, the Ni content is 1.000% or less.
- the Ni content is preferably 0.500% or less, more preferably 0.200% or less.
- Cr 0 to 1.00% Cr is an arbitrary element. That is, the Cr content may be 0%. Cr is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such an effect, the Cr content may be more than 0%, 0.01% or more, or 0.05% or more. On the other hand, when the Cr content exceeds 1.00%, the effect is saturated and the cost may be increased. Therefore, the Cr content is 1.00% or less.
- the Cr content is preferably 0.50% or less, more preferably 0.20% or less.
- Mo 0 to 0.50% Mo is an arbitrary element. That is, the Mo content may be 0%. Mo is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such effects, the Mo content may be more than 0%, 0.01% or more, and may be 0.05% or more. On the other hand, if the Mo content exceeds 0.50%, the effect may be saturated and the cost may increase. Therefore, the Mo content is 0.50% or less. The Mo content is preferably 0.30% or less, more preferably 0.20% or less.
- V 0 to 0.200%
- V is an arbitrary element. That is, the V content may be 0%. V is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such effects, the V content may be more than 0%, may be 0.001% or more, and may be 0.005% or more. On the other hand, if the V content exceeds 0.200%, the effect may be saturated and the cost may increase. Therefore, the V content is 0.200% or less.
- the V content is preferably 0.100% or less, more preferably 0.050% or less, and further preferably 0.020% or less.
- W 0 to 0.100% W is an arbitrary element. That is, the W content may be 0%. W is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such effects, the W content may be more than 0%, may be 0.001% or more, and may be 0.005% or more. On the other hand, when the W content exceeds 0.100%, the effect is saturated and the cost may be increased. Therefore, the W content is 0.100% or less.
- the W content is preferably 0.050% or less, more preferably 0.020% or less.
- B 0 to 0.0050%
- B is an arbitrary element. That is, the B content may be 0%. B is an element that can contribute to the strength improvement of steel. From the viewpoint of obtaining such effects, the B content may be more than 0%, may be 0.0001% or more, and may be 0.0005% or more. On the other hand, if the B content exceeds 0.0050%, the effect may be saturated and the cost may increase. Therefore, the B content is 0.0050% or less.
- the B content is preferably 0.0040% or less, more preferably 0.0020% or less.
- Mg 0-0.0200%
- Mg is an optional element. That is, the Mg content may be 0%. Mg is an element that can contribute to the strength improvement of steel. From the viewpoint of obtaining such an effect, the Mg content may be more than 0% or 0.0001% or more. On the other hand, if the Mg content exceeds 0.0200%, the effect may be saturated and the cost may increase. Therefore, the Mg content is 0.0200% or less.
- the Mg content is preferably 0.0040% or less, more preferably 0.0020% or less.
- Zr 0 to 0.0200%
- Zr is an arbitrary element. That is, the Zr content may be 0%. Zr is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such an effect, the Zr content may be more than 0% or may be 0.0001% or more. On the other hand, if the Zr content exceeds 0.0200%, the effect is saturated and the cost may increase. Therefore, the Zr content is 0.0200% or less.
- the Zr content is preferably 0.0040% or less, more preferably 0.0020% or less.
- REM 0-0.0200% REM is an arbitrary element. Therefore, the REM content may be 0%.
- "REM" is a rare earth element, that is, a group consisting of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
- REM is an element that controls inclusions in steel and can contribute to improving the strength of steel. From the viewpoint of obtaining such effects, the REM content may be more than 0%, may be 0.0001% or more, and may be 0.0010% or more.
- the REM content is 0.0200% or less.
- the REM content is preferably 0.0100% or less, more preferably 0.0050% or less.
- the chemical composition of the base material portion is Cu: more than 0% and not more than 1.000%, Ni: more than 0% and not more than 1.000%, Cr: more than 0% and not more than 1.00% from the viewpoint of obtaining the effect of the above-mentioned arbitrary element.
- Mo more than 0% and 0.5% or less
- V more than 0% and 0.200% or less
- W more than 0% and 0.100% or less
- B more than 0% and 0.0050% or less
- Mg 0% It may contain at least one selected from the group consisting of super 0.0200% or less, Zr: 0% and 0.0200% or less, and REM: 0% and 0.0200% or less.
- the more preferable content of each arbitrary element is as described above.
- Remaining part Fe and impurities
- the balance excluding each element described above is Fe and impurities.
- the impurity refers to a component contained in the raw material or a component mixed in the manufacturing process and not intentionally contained in the steel.
- the impurities include all elements other than the above-mentioned elements.
- the element as an impurity may be only one kind or two or more kinds. Examples of the impurities include Sb, Sn, Co, As, Pb, Bi, and H.
- Sb, Sn, Co, and As are mixed with a content of 0.1% or less
- Pb and Bi are mixed with a content of 0.005% or less
- H are contained with a content of, for example.
- Ceq 0.10 to 0.50
- Ceq represented by the following formula (1) is 0.10 to 0.50.
- Ceq C+Mn/6+Cr/5+(Ni+Cu)/15+Nb+Mo+V...
- Formula (1) [In the formula (1), each element symbol represents mass% of each element. ]
- Ceq When Ceq is less than 0.10, the strength of steel may be insufficient. Therefore, Ceq is 0.10. Ceq is preferably 0.12 or more, more preferably 0.14 or more. If Ceq is more than 0.50, sour resistance may decrease. Therefore, Ceq is 0.50 or less. Ceq is preferably 0.45 or less, more preferably 0.42 or less.
- EESP 0 to 10.00
- EESP represented by the following formula (2) is 0 to 10.00.
- EESP Ca ⁇ (1-124O)/1.25S... Formula (2) [In the formula (2), each element symbol represents mass% of each element. ]
- EESP When the EESP is more than 10.00, the sour resistance may decrease. Therefore, EESP is 10.00 or less. EESP is preferably 9.50 or less, and more preferably 9.26 or less. EESP may be 0, may be more than 0, may be 0.01 or more, and may be 0.06 or more.
- the area ratio of ferrite (hereinafter, also referred to as “ferrite fraction”) is 60 to 90% in the metal structure of the central portion of the wall thickness of the base material, and the balance is tempered bainite and It contains at least one selected from the group consisting of pearlite, and the total area ratio of martensite and tempered martensite in the balance is less than 1% of the total balance.
- the average ferrite grain size is 10 ⁇ m or less in the metal structure of the central portion of the wall thickness of the base metal portion, and the ratio of the maximum ferrite grain size to the average ferrite grain size is 3.0 or less. is there.
- the above-mentioned features in the metal structure of the central part of the wall thickness of the base material include the chemical composition of the base material and the manufacturing conditions of the electrosewn steel pipe (the manufacturing conditions of the hot-rolled steel sheet as the material and the tempering conditions after the pipe making). For example, each of the following conditions in the production method A) can be realized.
- the metal structure of the central portion of the base metal portion is confirmed by observing the metal structure of the central portion of the wall thickness in the L cross section at the position of 180 ° of the base metal.
- the central portion of the wall thickness in the L cross section at the 180 ° position of the base metal is only a position selected as a representative position of the base metal portion. Therefore, in the electric resistance welded steel pipe of the present disclosure, the metal structure at a position other than the central portion of the wall thickness in the L section at the base material 180° position in the base material portion may have the above characteristics.
- the "base metal 180 ° position” means a position displaced by 180 ° in the pipe circumferential direction from the electric sewing welded portion.
- the base material 180° position is a position selected as a representative position of the base material portion.
- the “L cross section” refers to a cross section parallel to the tube axis direction and the wall thickness direction.
- the area ratio of ferrite (ferrite fraction) in the metal structure of the central portion of the wall thickness of the base material is 60 to 90%.
- the fact that the ferrite fraction is 60% or more (that is, the metal structure in the central portion of the base metal portion is mainly ferrite) contributes to the improvement of sour resistance.
- the ferrite fraction is preferably 65% or more.
- the ferrite fraction of 90% or less contributes to the improvement of the tensile strength in the axial direction of the electric resistance welded steel pipe.
- the ferrite fraction is preferably 85% or less.
- the ferrite fraction is measured according to JIS G 0551:2013. Specifically, first, the central portion of the wall thickness of the E-welded steel pipe in the L section at the 180° position of the base material is polished, and then etched with a nital corrosive solution. A photograph of the etched metal structure of the central portion of the wall thickness is taken with an optical microscope at a magnification of 1000 times. The metal structure photograph is taken for three visual fields (one visual field is in the range of 100 ⁇ m ⁇ 100 ⁇ m). The obtained metal structure photographs of the three visual fields are image-processed to obtain the ferrite fraction (that is, the area ratio of ferrite in the entire metal structure). The image processing is performed using, for example, a small general-purpose image analyzer LUZEX AP manufactured by Nireco Corporation.
- the rest (that is, the portion other than ferrite) contains at least one selected from the group consisting of tempered bainite and pearlite, and the remaining martensite and tempered martensite.
- the total area ratio of the site is less than 1% of the rest.
- the remaining part is confirmed based on the metallographic photographs of the three fields of view used for measuring the ferrite fraction.
- the concept of "bainite” in the present disclosure includes both an upper bainite in which the morphology of bainitic ferrite is lath-shaped and a lower bainite in which the morphology of bainitic ferrite is platy [eg, Japan Metallurgical Society "Materia” Vol.46 (2007), No.5, pp.321-326].
- “Tempered bainite” in the present disclosure is distinguished from bainite that is not tempered bainite in that it contains granular cementite in its structure.
- the concept of "pearlite” in the present disclosure includes not only typical pearlite containing layered cementite, but also pseudo pearlite, tempered pearlite, tempered pseudo pearlite and the like.
- the total area ratio of martensite and tempered martensite is less than 1% with respect to the whole balance, that the metal structure of the base metal part does not substantially contain martensite and tempered martensite.
- the metal structure of the base material is substantially free of martensite having a lath structure and tempered martensite, local concentration of dislocations is suppressed (that is, dislocations are dispersed), and as a result, sour resistance is increased. The property is improved.
- the metal structure of the base material does not substantially contain martensite and tempered martensite, it is possible to prevent the tensile strength of the electric resistance welded steel pipe in the pipe axis direction from becoming excessive.
- the total area ratio of martensite and tempered martensite in the balance may be 0%.
- the average ferrite grain size is 10 ⁇ m or less. As described above, the average ferrite grain size of 10 ⁇ m or less contributes to the improvement of sour resistance. There is no particular lower limit to the average ferrite grain size. From the viewpoint of suitability for manufacturing steel, the average ferrite grain size is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more.
- the average ferrite grain size is measured based on the metallographic photographs of the three fields of view used for the measurement of the ferrite fraction. From these metallographic photographs, 100 ferrite grains are arbitrarily extracted, and the equivalent circle diameter of each ferrite grain is determined as the particle size. The obtained 100 measured values (particle size) are arithmetically averaged, and the obtained arithmetic mean value is taken as the average ferrite particle size.
- the ratio of the maximum ferrite grain size to the average ferrite grain size (hereinafter, also referred to as "maximum ferrite grain size / average ferrite grain size ratio”) is 3.0 or less in the metal structure at the center of the wall thickness of the base metal portion. .. As described above, the maximum ferrite grain size/average ferrite grain size ratio of 3.0 or less contributes to the improvement of sour resistance.
- the lower limit of the maximum ferrite grain size/average ferrite grain size ratio is ideally 1.0. From the viewpoint of suitability for manufacturing steel, the lower limit of the maximum ferrite grain size/average ferrite grain size ratio may be 1.5 or 1.8.
- the measurement of the maximum ferrite grain size/average ferrite grain size ratio is performed based on the metallographic photographs of the three visual fields used for the measurement of the ferrite fraction. From these metallographic photographs, ferrite grains with the largest equivalent circle diameter are selected. The circle equivalent diameter of the selected ferrite grains is the maximum ferrite grain size. The maximum ferrite grain size/average ferrite grain size ratio is determined by dividing the obtained maximum ferrite grain size by the above-mentioned average ferrite grain size.
- the dislocation density at the central portion of the wall thickness of the base material there is no particular limitation on the specific upper limit of the dislocation density at the central portion of the wall thickness of the base material.
- the upper limit of the dislocation density in the central portion of the thickness of the base material is, for example, 2.0 ⁇ 10 15 m ⁇ 2 .
- the dislocation density at the center of the wall thickness of the base metal portion is the dislocation density (that is, the initial dislocation density) before strain is applied by reeling laying or the like.
- the lower the initial dislocation density the lower the dislocation density after strain is applied, and as a result, the sour resistance after strain is applied can be further improved. Therefore, when the dislocation density in the central portion of the thickness of the base material is 2.0 ⁇ 10 15 m ⁇ 2 or less, the sour resistance after the strain is applied can be further improved.
- the dislocation density in the central portion of the thickness of the base material is determined as follows.
- the half-widths of the (110) plane, the (211) plane, and the (220) plane were measured by X-ray diffraction for the central portion of the wall thickness in the L cross section at the base material 180° position, and based on the measured values, Williamson
- the dislocation density is calculated according to the -Hall method (specifically, the method described in ACTA METALLURGICA Vol.1, JAN. 1953, pp.22-31). The above measurement and calculation are performed at three points in the central portion of the wall thickness, and the arithmetic mean value of the obtained three calculated values is defined as the dislocation density in the present disclosure.
- the conditions of X-ray diffraction are as follows.
- X-ray diffraction device used for X-ray diffraction for example, "RINT2200" manufactured by Rigaku Corporation is used.
- Tube Mo tube (tube using Mo as a target)
- Target output 50KV, 40mA
- Slit Divergence 1/2°, scattering 1°, received light 0.15mm
- Sampling width 0.010 ° Measuring range (2 ⁇ ): 34.2° to 36.2° Maximum count: 3000 or more
- the electric resistance welded steel pipe of the present disclosure has a tensile strength (TS) in the pipe axis direction of 400 to 700 MPa.
- TS in the pipe axis direction is 400 MPa or more, the strength of the electric resistance welded steel pipe for a line pipe is secured.
- the TS in the tube axis direction is preferably 450 MPa or more, more preferably 490 MPa or more.
- TS in the pipe axis direction is 700 MPa or less, bending deformability (that is, bending ease) when laying the electric resistance welded steel pipe for line pipe is further improved, and the buckling of the electric resistance welded steel pipe for line pipe is further improved. Is more suppressed.
- TS in the tube axis direction is preferably 650 MPa or less.
- the electric resistance welded steel pipe of the present disclosure has a yield strength (YS) in the pipe axis direction of 300 to 650 MPa.
- YS in the pipe axis direction is 300 MPa or more, the strength of the electric resistance welded steel pipe for a line pipe is secured.
- the YS in the tube axis direction is preferably 350 MPa or more, more preferably 360 MPa or more.
- TS in the tube axis direction is preferably 620 MPa or less.
- YR in the tube axis direction is preferably 91% or less.
- the lower limit of YR in the pipe axis direction is preferably 80% or more, more preferably 85% or more, still more preferably 88% or more, from the viewpoint of suitability for manufacturing electric resistance welded steel pipe.
- a YR of 95% or less in the pipe axis direction can be achieved by tempering after pipe making. It is considered that the reason for this is that the dislocation density decreases and YS decreases due to tempering after tube formation, and work hardening increases (that is, TS increases) due to the precipitation of cementite on the dislocations.
- TS in the tube axis direction, YS in the tube axis direction, and YR in the tube axis direction mean values measured as follows, respectively. From the 180 ° position of the base metal of the electric resistance pipe, a test piece for a tensile test is collected in a direction in which the test direction (tensile direction) of the tensile test is the pipe axial direction of the electric resistance pipe.
- the shape of the test piece is a flat plate shape conforming to the American Petroleum Institute standard API 5L (hereinafter, simply referred to as “API 5L”).
- a tensile test (that is, a pipe axial direction tensile test) in which the test direction is the pipe axial direction of the electric resistance welded steel pipe is performed, and the result of the pipe axial direction tensile test Based on the above, TS in the pipe axial direction of the electric resistance pipe and YS in the pipe axial direction of the electric resistance pipe are obtained.
- the TS in the above range, the YS in the above range, and the YR in the above range are the manufacturing conditions (materials) of the electric resistance pipe including the chemical composition of the base material and the manufacturing method of the hot-rolled steel sheet which is the raw material. Including the manufacturing conditions of the hot rolled steel sheet and the tempering conditions after pipe making;
- the wall thickness of the electric resistance welded steel pipe of the present disclosure is, for example, 5 to 20 mm, preferably 10 to 20 mm.
- the outer diameter of the electric resistance welded steel pipe of the present disclosure is preferably 100 to 400 mm, more preferably 150 to 400 mm, and further preferably 200 to 400 mm.
- Yield elongation is observed in the electrosewn steel pipe of the present disclosure when a tensile test is performed in the axial direction of the pipe.
- “the yield elongation is observed when a pipe axial tensile test is performed” means that a substantial yield elongation (specifically, in the pipe axial tensile test described above for determining TS, YS, and YR). This means that a yield elongation of 1% or more) is observed.
- the yield elongation is observed when the pipe axial tensile test is performed.
- Manufacturing Method A is a manufacturing method of an electrosewn steel pipe according to an embodiment described later.
- Manufacturing method A is A slab preparation step of preparing a slab having a chemical composition according to the present disclosure; A hot-rolling process in which the prepared slab is hot-rolled under the conditions described below to obtain a hot-rolled steel sheet, A cooling process in which the hot-rolled steel sheet is cooled until the temperature of the outer surface of the hot-rolled steel sheet reaches a winding temperature of 450 to 650 ° C. A winding process of obtaining a hot coil made of a hot-rolled steel sheet by winding a hot-rolled steel sheet cooled to the above-mentioned winding temperature at the above-mentioned winding temperature.
- a pipe-making process to obtain Azroll ERW steel pipe A post-pipe forming tempering process for tempering an Azroll electric resistance welded pipe under conditions of a tempering temperature of 500 to 700° C. and a tempering time of 1 to 120 minutes; including.
- as-roll ERW steel pipe means ERW steel pipe that has not undergone heat treatment other than seam heat treatment after pipe making.
- the electric resistance welded steel pipe of the present disclosure can be manufactured.
- each step in the manufacturing method A will be described.
- the slab preparation step in production method A is a step of preparing a slab having the chemical composition according to the present disclosure.
- the step of preparing the slab may be a step of manufacturing the slab, or may be a step of simply preparing a slab that has been manufactured in advance.
- molten steel having the chemical composition according to the present disclosure is manufactured, and the manufactured molten steel is used to manufacture the slab.
- a slab may be produced by a continuous casting method, or an ingot may be produced using molten steel, and the ingot may be lump-rolled to produce a slab.
- the hot-rolling step in the manufacturing method A is a step of heating the slab prepared above and hot-rolling the heated slab to obtain a hot-rolled steel sheet.
- the slab heating temperature when heating the slab is 1100 ° C to 1240 ° C.
- the slab heating temperature is 1100° C. or higher, so that the remaining undissolved precipitate is further suppressed.
- the slab heating temperature is 1240° C.
- the average ferrite grain size is 10 ⁇ m or less, and the maximum ferrite grain size/average ferrite grain size ratio is 3.0 or less. Easy to achieve.
- the slab heating temperature is preferably 1220° C. or lower.
- the slab heated to the slab heating temperature has a rough rolling finish temperature of 950° C. or higher, a finish rolling start temperature of 850° C. to 950° C., and a finish rolling finish temperature of 800° C.
- the temperature is 890 ° C.
- the ratio of the unrecrystallized area rolling rate to the recrystallized area rolling rate (hereinafter, also referred to as “unrecrystallized area rolling rate / recrystallized area rolling rate ratio”) is 0.8 to 1.6.
- Hot rolling is performed under the conditions to obtain a hot rolled steel sheet.
- the average ferrite grain size is 10 ⁇ m or less and the maximum ferrite grain size / average ferrite grain size ratio is 3.0 or less.
- the finish rolling start temperature of 850° C. or higher suppresses the generation of ferrite grains and strain-induced grain growth during rolling, and as a result, the coarsening of ferrite grains is suppressed. Therefore, in the finally obtained electric resistance welded steel pipe, it is easy to achieve that the average ferrite grain size is 10 ⁇ m or less and the maximum ferrite grain size / average ferrite grain size ratio is 3.0 or less.
- the finish rolling start temperature is 950 ° C. or lower, the shear band in the ⁇ grains increases, so that the coarsening of the ferrite grains is suppressed. Therefore, in the finally obtained electric resistance welded steel pipe, it is easy to achieve that the average ferrite grain size is 10 ⁇ m or less and the maximum ferrite grain size / average ferrite grain size ratio is 3.0 or less.
- the finish rolling end temperature is 800° C. or higher, so that the generation of ferrite grains and the strain-induced grain growth during rolling are suppressed, and as a result, the coarsening of ferrite grains is suppressed. Therefore, in the finally obtained electric resistance welded steel pipe, it is easy to achieve that the average ferrite grain size is 10 ⁇ m or less and the maximum ferrite grain size / average ferrite grain size ratio is 3.0 or less.
- the finish rolling end temperature is 890 ° C. or lower, the shear band in the ⁇ grains increases, so that the coarsening of the ferrite grains is suppressed. Therefore, in the finally obtained electric resistance welded steel pipe, it is easy to achieve that the average ferrite grain size is 10 ⁇ m or less and the maximum ferrite grain size / average ferrite grain size ratio is 3.0 or less.
- the hot rolling in the hot rolling step is performed under the condition that the ratio of reduction ratio of non-recrystallization region/reduction ratio of recrystallization region is 0.8 to 1.6.
- the reduction ratio in the non-recrystallization region means the reduction ratio in the temperature region of 950°C or lower
- the reduction ratio in the recrystallization region means the reduction ratio in the temperature region of 950°C or higher.
- the nucleation site of ferrite increases because the ratio of the unrecrystallized region reduction rate / the recrystallized region reduction ratio is 0.8 or more.
- the ferrite fraction is 60% or more, the average ferrite grain size is 10 ⁇ m or less, and the maximum ferrite grain size/average ferrite grain size ratio is 3. It is easy to achieve 0 or less.
- the ⁇ grains are refined in the recrystallization region, so that the ferrite grains are refined. easy.
- the average ferrite grain size is 10 ⁇ m or less and the maximum ferrite grain size / average ferrite grain size ratio is 3.0 or less in the finally obtained electric resistance welded steel pipe.
- the cooling step in production method A is a step of cooling the hot rolled steel sheet obtained in the hot rolling step until the temperature of the outer surface of the hot rolled steel sheet reaches a coiling temperature of 450 to 650°C.
- the winding step in the production method A is a step of obtaining a hot coil made of a hot rolled steel sheet by winding the hot rolled steel sheet cooled to the above winding temperature at the above winding temperature.
- the winding temperature is 450° C. or higher, the formation of bainite or martensite is suppressed.
- the ferrite fraction is 60% or more.
- the winding temperature is 650° C. or lower, the growth (that is, coarsening) of ferrite grains is suppressed.
- the average ferrite grain size is 10 ⁇ m or less and the maximum ferrite grain size / average ferrite grain size ratio is 3.0 or less in the finally obtained electric resistance welded steel pipe.
- a hot-rolled steel sheet is unwound from a hot coil, and the unrolled hot-rolled steel sheet is roll-formed into an open pipe. It is a step of obtaining a s-roll electric resistance welded steel pipe by forming a sewn welded portion.
- Each operation in the pipe making step is performed according to a known method.
- the pipe making process if necessary, Seam heat treatment of ERW welds; After the formation of the electrosewn weld (after the seam heat treatment if the seam heat treatment is performed as described above), the shape of the azurol electric resistance pipe is adjusted by a sizer; Etc. may be included.
- the post-pipe-making tempering step in the production method A is a step of subjecting the as-roll electric resistance welded steel tube to a tempering temperature of 500 to 700° C. and a tempering time of 1 to 120 minutes. Since the manufacturing method A has a tempering step after pipe making, an electrosewn steel pipe in which yield elongation is observed when a tensile test in the pipe axial direction is performed can be obtained. In the tempering process after pipe forming, the tempering temperature is 500° C. or higher, so that distortion due to pipe forming is reduced. As a result, in the finally obtained electric resistance welded steel pipe, it is easy to achieve that YR in the pipe axis direction is 95% or less.
- the tempering temperature is 700 ° C. or lower, so that the formation of bainite or martensite is suppressed.
- the ferrite fraction is 60% or more and the TS in the pipe axial direction is 700 MPa or less in the finally obtained electric resistance steel pipe.
- the tempering time is 1 minute or more, so that strain due to pipe forming is reduced.
- YR in the pipe axis direction is 95% or less.
- the tempering time of 120 minutes or less is advantageous from the viewpoint of productivity (manufacturing cost).
- each step of the above-mentioned production method A does not affect the chemical composition of steel. Therefore, the chemical composition of the base material of the electric resistance welded steel pipe manufactured by the manufacturing method A can be regarded as the same as the chemical composition of the raw material (molten steel or slab).
- test No. 1-Test No. No. 10 is an example within the scope of the present disclosure
- test No. 11-Test No. 47 is a comparative example that is outside the scope of the present disclosure.
- a molten steel having the chemical compositions (steel A to steel J, steel AA, steel AB, steel AC, and steel AD) shown in Table 1 was melted in a furnace, and then a slab having a thickness of 250 mm was prepared by casting (slab preparation). Process).
- Table 1 the numerical value shown in the column of each element is the mass% of each element.
- the blank column means that the corresponding element is not contained.
- the balance excluding the elements shown in Table 1 is Fe and impurities.
- REM in Steel H is La.
- Ceq is a Ceq represented by the above-mentioned formula (1)
- EESP is an EESP represented by the above-mentioned formula (2). Underlines in Tables 1 to 3 indicate outside the scope of the present disclosure.
- the slab obtained above was heated to the slab heating temperature shown in Table 2, and the hot rolling conditions shown in Table 2 were applied to the heated slab (specifically, rough rolling end temperature, finish rolling start temperature, And hot rolling at the finish rolling end temperature) to obtain a hot rolled steel sheet (hot rolling step).
- the hot rolled steel sheet obtained in the hot rolling step is cooled to the winding temperature shown in Table 2 and wound at this winding temperature to obtain a hot coil made of a hot rolled steel sheet having a thickness of 15 mm. Obtained (cooling step and winding step).
- the hot rolling process, cooling process, and winding process described above were performed using a hot strip mill.
- Test No. 43 a hot-rolled steel sheet was unwound from the hot coil, and the unwound hot-rolled steel sheet was subjected to pre-pipe-making tempering under the conditions (tempering temperature and tempering time) shown in Table 2 and then again hot-rolled steel sheet. Wound up. The wound hot-rolled steel sheet was unwound again, and the unwound hot-rolled steel sheet was used to obtain Test No. In the same manner as in No. 1, an azurol electric resistance pipe having an outer diameter of 300 mm and a wall thickness of 15 mm was obtained.
- Test No. 42 and test No. In No. 43 the Azroll electric resistance welded steel pipe was not tempered after pipe making. Test No. In No.
- the Azroll electric resistance welded steel pipe is subjected to quenching with a quenching temperature of 950° C., a quenching time of 5 minutes, a water cooling cooling method, a tempering temperature of 600° C., and a quenching time of 60 minutes.
- a quenching temperature of 950° C. a quenching temperature of 950° C.
- a quenching time of 5 minutes a water cooling cooling method
- a tempering temperature of 600° C. a quenching time of 60 minutes.
- TB, P includes at least one of tempered bainite and pearlite, and the balance is substantially free of martensite and tempered martensite (that is, the total area ratio of martensite and tempered martensite in the balance). However, it is less than 1% of the total balance), and "TB + TM” means that it contains both tempered baynite and tempered martensite.
- the average ferrite grain size, the maximum ferrite grain size / average ferrite grain size ratio, and the dislocation density were measured by the methods described above.
- As the X-ray diffractometer for measuring the dislocation density "RINT2200" manufactured by Rigaku Corporation was used. The results are shown in Table 3.
- the ferrite content is 60 to 90%
- the balance contains at least one selected from the group consisting of tempered bainite and pearlite, and martensite in the balance.
- the total area ratio of tempered martensite is less than 1% with respect to the entire balance
- the average ferrite particle size is 10 ⁇ m or less in the metal structure at the center of the wall thickness of the base metal part, and the maximum ferrite particle size / average ferrite.
- the particle size ratio is 3.0 or less
- the TS in the tube axis direction is 400 to 700 MPa
- the YS in the tube axis direction is 300 to 650 MPa
- the YR in the tube axis direction is 95% or less
- the tube axis direction is 3.0 or less
- the TS in the tube axis direction is 400 to 700 MPa
- the YS in the tube axis direction is 300 to 650 MPa
- the YR in the tube axis direction is 95% or less
- the tube axis direction The tempered steel pipes of Examples (Test No. 1 to Test No. 10) in which yield elongation is observed when a tensile test is performed have a sour resistance (CAR of the HIC test) after strain is applied. It was excellent.
- the average ferrite grain size was more than 10 ⁇ m
- the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0
- the sour resistance (CAR in the HIC resistance test) after strain was deteriorated. Test No. with too much Ti content. In No. 20, sour resistance (CAR in HIC resistance test) after the strain was applied deteriorated. Test No. with too little Al content. In No. 21, sour resistance (CAR in HIC resistance test) after the strain was applied deteriorated. Test No. with too much Al content. In No. 22, sour resistance (CAR in HIC resistance test) after the strain was applied deteriorated. Test No. with too low Nb content. In No.
- the average ferrite grain size was more than 10 ⁇ m
- the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0
- the sour resistance (CAR in the HIC resistance test) after strain was deteriorated. Test No. with too much Nb content. In No. 24, the sour resistance (CAR in the HIC resistance test) after the strain was applied deteriorated.
- Each element is within the specified range, but Ceq is too large.
- the ferrite fraction became too low, and tempered bainite and tempered martensite were present in the balance, TS and YS became excessive, and sour resistance (CAR in HIC resistance test) after strain was imparted deteriorated. ..
- Each element is within the specified range, but ESSP is too large.
- Test No. which satisfies the chemical composition of the present disclosure but the slab heating temperature is too high.
- the average ferrite grain size was more than 10 ⁇ m
- the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0
- the sour resistance (CAR in the HIC resistance test) after strain was deteriorated Although the chemical composition of the present disclosure was satisfied, the rough rolling finish temperature was too low.
- the average ferrite grain size was more than 10 ⁇ m
- the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0
- the average ferrite grain size was more than 10 ⁇ m, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in HIC resistance test) after strain was deteriorated.
- the average ferrite grain size was more than 10 ⁇ m, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated. Test No.
- the finish rolling end temperature is too high.
- the average ferrite grain size was more than 10 ⁇ m, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
- the winding temperature was too low.
- the ferrite fraction was less than 60%, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
- the chemical composition of the present disclosure is satisfied, the winding temperature was too high.
- the average ferrite grain size was more than 10 ⁇ m, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
- No. 35 although the average ferrite grain size of 10 ⁇ m or less was satisfied, the ferrite fraction was less than 60%, the maximum ferrite grain size/average ferrite grain size ratio was over 3.0, and the sour resistance after strain was applied. The property (CAR of HIC resistance test) deteriorated. Test No. which satisfies the chemical composition of the present disclosure, but the unrecrystallized region reduction ratio / recrystallized region reduction ratio was too small. In No.
- the ferrite fraction was less than 60%, the average ferrite grain size was more than 10 ⁇ m, and the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, sour resistance (strain resistance after strain was given). CAR of HIC test) deteriorated. Test No. which satisfies the chemical composition of the present disclosure, but the ratio of unrecrystallized area reduction rate / recrystallized area reduction rate is too large. 36 and test No. In No. 46, the average ferrite grain size was more than 10 ⁇ m, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
- the yield elongation was not observed, YR became excessive, and further, the sour resistance (CAR in the HIC resistance test) after the strain was applied deteriorated.
- the yield elongation was not observed, YR was excessive, and the sour resistance (CAR in the HIC resistance test) after the strain was applied was deteriorated.
- Test No. which satisfies the chemical composition of the present disclosure, is subjected to quenching at 950 ° C. after tube formation and then tempering.
- the ferrite fraction was less than 60%
- tempered bainite and tempered martensite were generated
- TS and YS were excessive
- sour resistance (CAR in HIC resistance test) after strain was deteriorated.
- Test No. with too much O content At 47, the sour resistance (CAR of the HIC resistance test) after the strain was applied deteriorated.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
An electric resistance welded steel pipe for line pipes, in which a matrix part has a chemical composition comprising, in % by mass, 0.03 to 0.10% of C, 0.03 to 0.60% of Si, 0.30 to 1.60% of Mn, 0.010 to 0.200% of Ti, 0.005 to 0.500% of Al, 0.010 to 0.050% of Nb, 0.0001 to 0.0200% of Ca, and a remainder made up by Fe and impurities, wherein the area ratio of ferrite is 60% or more, the average ferrite grain diameter is 10 μm or less and the ratio of the largest ferrite grain diameter to the average ferrite grain diameter is 3.0 or less in the metal structure of a center part of the matrix part as observed in the thickness direction of the matrix part, the TS is 400 to 700 MPa, the YS is 300 to 650 MPa, the YR is 95% or less, and yield elongation is observed when a tensile test in the tube axis direction is carried out.
Description
本開示は、ラインパイプ用電縫鋼管に関する。
The present disclosure relates to an electric resistance welded steel pipe for a line pipe.
原油、天然ガス等の輸送手段の一つとして、ラインパイプが広く知られている。
近年、ラインパイプとして用いられる電縫鋼管(即ち、ラインパイプ用電縫鋼管)に関し、種々な検討がなされている。 A line pipe is widely known as one of transportation means for crude oil, natural gas and the like.
In recent years, various studies have been made on electric resistance sewn steel pipes used as line pipes (that is, electric sewn steel pipes for line pipes).
近年、ラインパイプとして用いられる電縫鋼管(即ち、ラインパイプ用電縫鋼管)に関し、種々な検討がなされている。 A line pipe is widely known as one of transportation means for crude oil, natural gas and the like.
In recent years, various studies have been made on electric resistance sewn steel pipes used as line pipes (that is, electric sewn steel pipes for line pipes).
例えば、特許文献1には、API X70以上の高強度電縫管ラインパイプの素材として好適な、耐HIC性に優れた高強度ラインパイプ用熱延鋼板として、特定の化学組成を有し、中心偏析部の金属組織が面積分率で95%以上のベイニティックフェライト組織であり、ベイニティックフェライト組織の平均粒径が8.0μm以下である引張強さ540MPa以上の高強度ラインパイプ用熱延鋼板が開示されている。
For example, Patent Document 1 describes a hot-rolled steel plate for high-strength line pipes having excellent HIC resistance, which is suitable as a material for high-strength electric sewing pipe line pipes of API X70 or higher, and has a specific chemical composition. The metal structure of the segregation part is a bainitic ferrite structure with an area fraction of 95% or more, the average particle size of the bainitic ferrite structure is 8.0 μm or less, and a heat for high strength line pipe with a tensile strength of 540 MPa or more. A rolled steel sheet is disclosed.
また、特許文献2には、耐サワー性に優れ、ある程度の引張強度及び降伏強度を有し、降伏比が低減され、母材部及び電縫溶接部の靭性に優れたラインパイプ用電縫鋼管として、特定の化学組成を有し、フェライトからなる第一相の面積率が40~80%であり、残部である第二相が焼戻しベイナイトを含み、管軸方向の降伏強度が390~562MPaであり、管軸方向の引張強度が520~690MPaであり、管軸方向の降伏比が93%以下であり、母材部における管周方向のシャルピー吸収エネルギーが、0℃において100J以上であり、電縫溶接部における管周方向のシャルピー吸収エネルギーが、0℃において80J以上であるラインパイプ用電縫鋼管が開示されている。
Further, in Patent Document 2, an electric resistance welded steel pipe for a line pipe having excellent sour resistance, having a certain degree of tensile strength and yield strength, a reduced yield ratio, and excellent toughness of a base material portion and an electric resistance welded portion. Has a specific chemical composition, the area ratio of the first phase made of ferrite is 40 to 80%, the remaining second phase contains tempered bainite, and the yield strength in the tube axial direction is 390 to 562 MPa. The tensile strength in the pipe axis direction is 520 to 690 MPa, the yield ratio in the pipe axis direction is 93% or less, and the Charpy absorbed energy in the pipe circumferential direction in the base material is 100 J or more at 0° C. An electrosewn steel pipe for a line pipe having a charpy absorption energy in the pipe circumferential direction at a sewing welded portion of 80 J or more at 0 ° C. is disclosed.
また、特許文献3には、厚肉電縫鋼管の造管時のY/Tの上昇を抑制するために、母材鋼板となる熱延鋼板の組織制御を行うことにより、曲げ、曲げ戻し変形によって座屈が生じないような低Y/Tを有し、低温靱性にも優れるAPI X60~X70級の厚肉電縫鋼管として、特定の化学組成を有し、上記母材鋼板の金属組織が、面積率で50~92%のポリゴナルフェライトを含み、上記ポリゴナルフェライトの平均粒径が15μm以下であり、電縫溶接部の硬さがHv160~240であり、上記電縫溶接部の組織がベイナイト、細粒フェライト及びパーライト、又は、細粒フェライト及びベイナイトである厚肉電縫鋼管が開示されている。
Further, in Patent Document 3, in order to suppress an increase in Y / T during pipe making of a thick-walled electric resistance steel pipe, the structure of a hot-rolled steel sheet serving as a base steel sheet is controlled to bend and bend back. As a thick-walled ERW steel pipe of API X60 to X70 grade, which has low Y/T so that buckling does not occur and has excellent low temperature toughness, it has a specific chemical composition and the metal structure of the base steel sheet is , The polygonal ferrite having an area ratio of 50 to 92%, the average particle diameter of the polygonal ferrite is 15 μm or less, the hardness of the electric resistance welded portion is Hv160 to 240, and the structure of the electric resistance welded portion is There are disclosed thick-walled welded steel pipes which are bainite, fine-grained ferrite and pearlite, or fine-grained ferrite and bainite.
ところで、ラインパイプ用電縫鋼管に対し、ひずみが付与された後における耐サワー性(即ち、サワーガスに対する耐性)をより向上させることが求められる場合がある。
本開示の課題は、ひずみが付与された後における耐サワー性に優れたラインパイプ用電縫鋼管を提供することである。 By the way, it may be required to further improve the sour resistance (that is, the resistance to sour gas) after strain is applied to the electrosewn steel pipe for line pipes.
An object of the present disclosure is to provide an electric resistance welded steel pipe for a line pipe that has excellent sour resistance after strain is applied.
本開示の課題は、ひずみが付与された後における耐サワー性に優れたラインパイプ用電縫鋼管を提供することである。 By the way, it may be required to further improve the sour resistance (that is, the resistance to sour gas) after strain is applied to the electrosewn steel pipe for line pipes.
An object of the present disclosure is to provide an electric resistance welded steel pipe for a line pipe that has excellent sour resistance after strain is applied.
上記課題を解決する手段には、以下の態様が含まれる。
<1> 母材部及び電縫溶接部を含み、
前記母材部の化学組成が、質量%で、
C:0.03~0.10%、
Si:0.03~0.60%、
Mn:0.30~1.60%、
P:0~0.030%、
S:0~0.0015%、
Ti:0.010~0.200%、
Al:0.005~0.500%、
Nb:0.010~0.050%、
N:0~0.006%、
O:0~0.004%、
Ca:0.0001~0.0200%、
Cu:0~1.000%、
Ni:0~1.000%、
Cr:0~1.00%、
Mo:0~0.50%、
V:0~0.200%、
W:0~0.100%、
B:0~0.0050%、
Mg:0~0.0200%、
Zr:0~0.0200%、
REM:0~0.0200%、並びに、
残部:Fe及び不純物からなり、
下記式(1)で表されるCeqが0.10~0.50であり、
下記式(2)で表されるESSPが0~10.00であり、
前記母材部の肉厚中央部の金属組織において、フェライトの面積率が60~90%であり、残部が、焼戻しベイナイト及びパーライトからなる群から選択される少なくとも1種を含み、かつ、残部におけるマルテンサイト及び焼戻しマルテンサイトの合計面積率が残部全体に対して1%未満であり、
前記母材部の肉厚中央部の金属組織において、平均フェライト粒径が10μm以下であり、平均フェライト粒径に対する最大フェライト粒径の比が3.0以下であり、
管軸方向の引張強度が400~700MPaであり、
管軸方向の降伏強度が300~650MPaであり、
管軸方向の降伏比が95%以下であり、
管軸方向引張試験を行った場合に降伏伸びが観測されるラインパイプ用電縫鋼管。
Ceq = C+Mn/6+Cr/5+(Ni+Cu)/15+Nb+Mo+V … 式(1)
EESP = Ca×(1-124O)/1.25S … 式(2)
〔式(1)及び式(2)中、各元素記号は、各元素の質量%を表す。〕
<2> 前記母材部の化学組成が、質量%で、
Cu:0%超1.000%以下、
Ni:0%超1.000%以下、
Cr:0%超1.00%以下、
Mo:0%超0.5%以下、
V:0%超0.200%以下、
W:0%超0.100%以下、
B:0%超0.0050%以下、
Mg:0%超0.0200%以下、
Zr:0%超0.0200%以下、及び、
REM:0%超0.0200%以下からなる群から選択される1種以上を含有する<1>に記載のラインパイプ用電縫鋼管。
<3> 前記母材部の肉厚中央部の転位密度が、2.0×1015m-2以下である<1>又は<2>に記載のラインパイプ用電縫鋼管。
<4> 肉厚が5~20mmであり、外径が100~400mmである<1>~<3>のいずれか1つに記載のラインパイプ用電縫鋼管。 Means for solving the above problems include the following aspects.
<1> Including a base material portion and an electric resistance welded portion,
The chemical composition of the base material part is mass%,
C: 0.03 to 0.10%,
Si: 0.03 to 0.60%,
Mn: 0.30 to 1.60%,
P: 0 to 0.030%,
S: 0 to 0.0015%,
Ti: 0.010 to 0.200%,
Al: 0.005 to 0.500%,
Nb: 0.010 to 0.050%,
N: 0 to 0.006%,
O: 0 to 0.004%,
Ca: 0.0001 to 0.0200%,
Cu: 0 to 1.000%,
Ni: 0 to 1.000%,
Cr: 0 to 1.00%,
Mo: 0 to 0.50%,
V: 0 to 0.200%,
W: 0 to 0.100%,
B: 0 to 0.0050%,
Mg: 0-0.0200%,
Zr: 0 to 0.0200%,
REM: 0 to 0.0200%, and
The balance: Fe and impurities,
Ceq represented by the following formula (1) is 0.10 to 0.50,
The ESSP represented by the following formula (2) is 0 to 10.00,
In the metal structure of the central part of the wall thickness of the base material, the area ratio of ferrite is 60 to 90%, the balance contains at least one selected from the group consisting of tempered bainite and pearlite, and the balance The total area ratio of martensite and tempered martensite is less than 1% with respect to the entire balance,
In the metal structure at the center of the wall thickness of the base metal portion, the average ferrite grain size is 10 μm or less, and the ratio of the maximum ferrite grain size to the average ferrite grain size is 3.0 or less.
The tensile strength in the tube axis direction is 400 to 700 MPa,
The yield strength in the tube axis direction is 300 to 650 MPa,
The yield ratio in the tube axis direction is 95% or less,
ERW steel pipe for line pipe whose yield elongation is observed when a tensile test is conducted in the pipe axial direction.
Ceq=C+Mn/6+Cr/5+(Ni+Cu)/15+Nb+Mo+V... Formula (1)
EESP=Ca×(1-124O)/1.25S... Formula (2)
[In Formula (1) and Formula (2), each element symbol represents the mass% of each element. ]
<2> The chemical composition of the base material part is% by mass,
Cu: more than 0% and 1.000% or less,
Ni: more than 0% and 1.000% or less,
Cr: more than 0% and 1.00% or less,
Mo: more than 0% and 0.5% or less,
V: more than 0% and 0.200% or less,
W: more than 0% and 0.100% or less,
B: more than 0% and 0.0050% or less,
Mg: more than 0% and 0.0200% or less,
Zr: more than 0% and 0.0200% or less, and
REM: The electrosewn steel pipe for a line pipe according to <1>, which contains at least one selected from the group consisting of more than 0% and 0.0200% or less.
<3> The electric resistance welded steel pipe for a line pipe according to <1> or <2>, wherein the dislocation density in the central portion of the thickness of the base material is 2.0×10 15 m −2 or less.
<4> The electric resistance welded steel pipe for a line pipe according to any one of <1> to <3>, having a wall thickness of 5 to 20 mm and an outer diameter of 100 to 400 mm.
<1> 母材部及び電縫溶接部を含み、
前記母材部の化学組成が、質量%で、
C:0.03~0.10%、
Si:0.03~0.60%、
Mn:0.30~1.60%、
P:0~0.030%、
S:0~0.0015%、
Ti:0.010~0.200%、
Al:0.005~0.500%、
Nb:0.010~0.050%、
N:0~0.006%、
O:0~0.004%、
Ca:0.0001~0.0200%、
Cu:0~1.000%、
Ni:0~1.000%、
Cr:0~1.00%、
Mo:0~0.50%、
V:0~0.200%、
W:0~0.100%、
B:0~0.0050%、
Mg:0~0.0200%、
Zr:0~0.0200%、
REM:0~0.0200%、並びに、
残部:Fe及び不純物からなり、
下記式(1)で表されるCeqが0.10~0.50であり、
下記式(2)で表されるESSPが0~10.00であり、
前記母材部の肉厚中央部の金属組織において、フェライトの面積率が60~90%であり、残部が、焼戻しベイナイト及びパーライトからなる群から選択される少なくとも1種を含み、かつ、残部におけるマルテンサイト及び焼戻しマルテンサイトの合計面積率が残部全体に対して1%未満であり、
前記母材部の肉厚中央部の金属組織において、平均フェライト粒径が10μm以下であり、平均フェライト粒径に対する最大フェライト粒径の比が3.0以下であり、
管軸方向の引張強度が400~700MPaであり、
管軸方向の降伏強度が300~650MPaであり、
管軸方向の降伏比が95%以下であり、
管軸方向引張試験を行った場合に降伏伸びが観測されるラインパイプ用電縫鋼管。
Ceq = C+Mn/6+Cr/5+(Ni+Cu)/15+Nb+Mo+V … 式(1)
EESP = Ca×(1-124O)/1.25S … 式(2)
〔式(1)及び式(2)中、各元素記号は、各元素の質量%を表す。〕
<2> 前記母材部の化学組成が、質量%で、
Cu:0%超1.000%以下、
Ni:0%超1.000%以下、
Cr:0%超1.00%以下、
Mo:0%超0.5%以下、
V:0%超0.200%以下、
W:0%超0.100%以下、
B:0%超0.0050%以下、
Mg:0%超0.0200%以下、
Zr:0%超0.0200%以下、及び、
REM:0%超0.0200%以下からなる群から選択される1種以上を含有する<1>に記載のラインパイプ用電縫鋼管。
<3> 前記母材部の肉厚中央部の転位密度が、2.0×1015m-2以下である<1>又は<2>に記載のラインパイプ用電縫鋼管。
<4> 肉厚が5~20mmであり、外径が100~400mmである<1>~<3>のいずれか1つに記載のラインパイプ用電縫鋼管。 Means for solving the above problems include the following aspects.
<1> Including a base material portion and an electric resistance welded portion,
The chemical composition of the base material part is mass%,
C: 0.03 to 0.10%,
Si: 0.03 to 0.60%,
Mn: 0.30 to 1.60%,
P: 0 to 0.030%,
S: 0 to 0.0015%,
Ti: 0.010 to 0.200%,
Al: 0.005 to 0.500%,
Nb: 0.010 to 0.050%,
N: 0 to 0.006%,
O: 0 to 0.004%,
Ca: 0.0001 to 0.0200%,
Cu: 0 to 1.000%,
Ni: 0 to 1.000%,
Cr: 0 to 1.00%,
Mo: 0 to 0.50%,
V: 0 to 0.200%,
W: 0 to 0.100%,
B: 0 to 0.0050%,
Mg: 0-0.0200%,
Zr: 0 to 0.0200%,
REM: 0 to 0.0200%, and
The balance: Fe and impurities,
Ceq represented by the following formula (1) is 0.10 to 0.50,
The ESSP represented by the following formula (2) is 0 to 10.00,
In the metal structure of the central part of the wall thickness of the base material, the area ratio of ferrite is 60 to 90%, the balance contains at least one selected from the group consisting of tempered bainite and pearlite, and the balance The total area ratio of martensite and tempered martensite is less than 1% with respect to the entire balance,
In the metal structure at the center of the wall thickness of the base metal portion, the average ferrite grain size is 10 μm or less, and the ratio of the maximum ferrite grain size to the average ferrite grain size is 3.0 or less.
The tensile strength in the tube axis direction is 400 to 700 MPa,
The yield strength in the tube axis direction is 300 to 650 MPa,
The yield ratio in the tube axis direction is 95% or less,
ERW steel pipe for line pipe whose yield elongation is observed when a tensile test is conducted in the pipe axial direction.
Ceq=C+Mn/6+Cr/5+(Ni+Cu)/15+Nb+Mo+V... Formula (1)
EESP=Ca×(1-124O)/1.25S... Formula (2)
[In Formula (1) and Formula (2), each element symbol represents the mass% of each element. ]
<2> The chemical composition of the base material part is% by mass,
Cu: more than 0% and 1.000% or less,
Ni: more than 0% and 1.000% or less,
Cr: more than 0% and 1.00% or less,
Mo: more than 0% and 0.5% or less,
V: more than 0% and 0.200% or less,
W: more than 0% and 0.100% or less,
B: more than 0% and 0.0050% or less,
Mg: more than 0% and 0.0200% or less,
Zr: more than 0% and 0.0200% or less, and
REM: The electrosewn steel pipe for a line pipe according to <1>, which contains at least one selected from the group consisting of more than 0% and 0.0200% or less.
<3> The electric resistance welded steel pipe for a line pipe according to <1> or <2>, wherein the dislocation density in the central portion of the thickness of the base material is 2.0×10 15 m −2 or less.
<4> The electric resistance welded steel pipe for a line pipe according to any one of <1> to <3>, having a wall thickness of 5 to 20 mm and an outer diameter of 100 to 400 mm.
本開示によれば、ひずみが付与された後における耐サワー性に優れたラインパイプ用電縫鋼管が提供される。
According to the present disclosure, an electric resistance welded steel pipe for a line pipe having excellent sour resistance after being subjected to strain is provided.
本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本開示において、成分(元素)の含有量を示す「%」は、「質量%」を意味する。
本開示において、C(炭素)の含有量を、「C含有量」と表記することがある。他の元素の含有量についても同様に表記することがある。
本開示において、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。 In the present disclosure, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
In the present disclosure, “%” indicating the content of the component (element) means “mass %”.
In the present disclosure, the content of C (carbon) may be referred to as “C content”. The contents of other elements may be expressed in the same manner.
In the present disclosure, the term “process” is included in this term as long as the intended purpose of the process is achieved not only as an independent process but also when it cannot be clearly distinguished from other processes. ..
本開示において、成分(元素)の含有量を示す「%」は、「質量%」を意味する。
本開示において、C(炭素)の含有量を、「C含有量」と表記することがある。他の元素の含有量についても同様に表記することがある。
本開示において、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。 In the present disclosure, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
In the present disclosure, “%” indicating the content of the component (element) means “mass %”.
In the present disclosure, the content of C (carbon) may be referred to as “C content”. The contents of other elements may be expressed in the same manner.
In the present disclosure, the term “process” is included in this term as long as the intended purpose of the process is achieved not only as an independent process but also when it cannot be clearly distinguished from other processes. ..
本開示のラインパイプ用電縫鋼管(以下、単に「電縫鋼管」ともいう)は、母材部及び電縫溶接部を含み、母材部の化学組成が、質量%で、C:0.03~0.10%、Si:0.03~0.60%、Mn:0.30~1.60%、P:0~0.030%、S:0~0.0015%、Ti:0.010~0.200%、Al:0.005~0.500%、Nb:0.010~0.050%、N:0~0.006%、O:0~0.004%、Ca:0.0001~0.0200%、Cu:0~1.000%、Ni:0~1.000%、Cr:0~1.00%、Mo:0~0.50%、V:0~0.200%、W:0~0.100%、B:0~0.0050%、Mg:0~0.0200%、Zr:0~0.0200%、REM:0~0.0200%、並びに、残部:Fe及び不純物からなり、下記式(1)で表されるCeqが0.10~0.50であり、下記式(2)で表されるESSPが0~10.00であり、母材部の肉厚中央部の金属組織において、フェライトの面積率が60~90%であり、残部が、焼戻しベイナイト及びパーライトからなる群から選択される少なくとも1種を含み、かつ、残部におけるマルテンサイト及び焼戻しマルテンサイトの合計面積率が残部全体に対して1%未満であり、母材部の肉厚中央部の金属組織において、平均フェライト粒径が10μm以下であり、平均フェライト粒径に対する最大フェライト粒径の比が3.0以下であり、管軸方向の引張強度が400~700MPaであり、管軸方向の降伏強度が300~650MPaであり、管軸方向の降伏比が95%以下であり、管軸方向引張試験を行った場合に降伏伸びが観測される電縫鋼管である。
The electric-sewn steel pipe for line pipes (hereinafter, also simply referred to as “electrically-sewn steel pipe”) of the present disclosure includes a base material portion and an electric sewing welded portion, and the chemical composition of the base metal portion is mass% and C: 0. 03-0.10%, Si: 0.03-0.60%, Mn: 0.30-1.60%, P:0-0.030%, S:0-0.0015%, Ti:0 0.010 to 0.200%, Al: 0.005 to 0.500%, Nb: 0.010 to 0.050%, N: 0 to 0.006%, O: 0 to 0.004%, Ca: 0.0001 to 0.0200%, Cu: 0 to 1.000%, Ni: 0 to 1.000%, Cr: 0 to 1.00%, Mo: 0 to 0.50%, V: 0 to 0 200%, W:0 to 0.100%, B:0 to 0.0050%, Mg:0 to 0.0200%, Zr:0 to 0.0200%, REM:0 to 0.0200%, and The balance: Fe and impurities, Ceq represented by the following formula (1) is 0.10 to 0.50, ESSP represented by the following formula (2) is 0 to 10.00, and mother In the metallographic structure of the central part of the thickness of the material, the area ratio of ferrite is 60 to 90%, the balance contains at least one selected from the group consisting of tempered bainite and pearlite, and the martensite in the balance And the total area ratio of tempered martensite is less than 1% with respect to the rest, the average ferrite grain size is 10 μm or less in the metal structure of the central portion of the wall thickness of the base material, and the maximum ferrite with respect to the average ferrite grain size. The particle size ratio is 3.0 or less, the tensile strength in the pipe axis direction is 400 to 700 MPa, the yield strength in the pipe axis direction is 300 to 650 MPa, and the yield ratio in the pipe axis direction is 95% or less. This is a bainite steel pipe in which yield elongation is observed when a tensile test in the axial direction of the pipe is performed.
Ceq = C+Mn/6+Cr/5+(Ni+Cu)/15+Nb+Mo+V … 式(1)
EESP = Ca×(1-124O)/1.25S … 式(2)
〔式(1)及び式(2)中、各元素記号は、各元素の質量%を表す。〕 Ceq=C+Mn/6+Cr/5+(Ni+Cu)/15+Nb+Mo+V... Formula (1)
EESP=Ca×(1-124O)/1.25S... Formula (2)
[In Formula (1) and Formula (2), each element symbol represents the mass% of each element. ]
EESP = Ca×(1-124O)/1.25S … 式(2)
〔式(1)及び式(2)中、各元素記号は、各元素の質量%を表す。〕 Ceq=C+Mn/6+Cr/5+(Ni+Cu)/15+Nb+Mo+V... Formula (1)
EESP=Ca×(1-124O)/1.25S... Formula (2)
[In Formula (1) and Formula (2), each element symbol represents the mass% of each element. ]
本開示では、上述した母材部の化学組成(Ceqが0.10~0.50であること、及び、ESSPが0~10.00であることを含む。)を、本開示における化学組成ともいう。
In the present disclosure, the chemical composition of the base metal portion described above (including a Ceq of 0.10 to 0.50 and an ESSP of 0 to 10.00) is also referred to as the chemical composition in the present disclosure. Say.
本開示の電縫鋼管は、母材部及び電縫溶接部を含む。
電縫鋼管は、一般的に、熱延鋼板を管状に成形(以下、「ロール成形」ともいう)することによりオープン管とし、得られたオープン管の突合せ部を電縫溶接して電縫溶接部(electric resistance welded portion)を形成し(以下、ここまでのプロセスを「造管」ともいう)、次いで、必要に応じ、電縫溶接部をシーム熱処理することによって製造される。
本開示の電縫鋼管において、母材部(base metal portion)とは、電縫溶接部及び熱影響部以外の部分を指す。
ここで、熱影響部(heat affected zone;以下、「HAZ」とも称する)とは、電縫溶接による熱の影響(電縫溶接後にシーム熱処理を行う場合には、電縫溶接及びシーム熱処理による熱の影響)を受けた部分を指す。 The electric resistance welded steel pipe of the present disclosure includes a base material portion and an electric resistance welded portion.
ERW steel pipe is generally formed by forming a hot-rolled steel sheet into a tube (hereinafter, also referred to as "roll forming") to form an open pipe, and the resulting open pipe is welded by electric resistance welding. It is manufactured by forming a portion (electric resistance welded portion) (hereinafter, the process up to here is also referred to as “pipe making”), and then subjecting the electric resistance welded portion to seam heat treatment, if necessary.
In the electric resistance welded steel pipe of the present disclosure, the base metal portion refers to a portion other than the electric resistance welded portion and the heat affected zone.
Here, the heat affected zone (hereinafter, also referred to as “HAZ”) refers to the influence of heat due to electric resistance welding (when seam heat treatment is performed after electric resistance welding, heat due to electric resistance welding and seam heat treatment). (Influenced by) refers to the affected part.
電縫鋼管は、一般的に、熱延鋼板を管状に成形(以下、「ロール成形」ともいう)することによりオープン管とし、得られたオープン管の突合せ部を電縫溶接して電縫溶接部(electric resistance welded portion)を形成し(以下、ここまでのプロセスを「造管」ともいう)、次いで、必要に応じ、電縫溶接部をシーム熱処理することによって製造される。
本開示の電縫鋼管において、母材部(base metal portion)とは、電縫溶接部及び熱影響部以外の部分を指す。
ここで、熱影響部(heat affected zone;以下、「HAZ」とも称する)とは、電縫溶接による熱の影響(電縫溶接後にシーム熱処理を行う場合には、電縫溶接及びシーム熱処理による熱の影響)を受けた部分を指す。 The electric resistance welded steel pipe of the present disclosure includes a base material portion and an electric resistance welded portion.
ERW steel pipe is generally formed by forming a hot-rolled steel sheet into a tube (hereinafter, also referred to as "roll forming") to form an open pipe, and the resulting open pipe is welded by electric resistance welding. It is manufactured by forming a portion (electric resistance welded portion) (hereinafter, the process up to here is also referred to as “pipe making”), and then subjecting the electric resistance welded portion to seam heat treatment, if necessary.
In the electric resistance welded steel pipe of the present disclosure, the base metal portion refers to a portion other than the electric resistance welded portion and the heat affected zone.
Here, the heat affected zone (hereinafter, also referred to as “HAZ”) refers to the influence of heat due to electric resistance welding (when seam heat treatment is performed after electric resistance welding, heat due to electric resistance welding and seam heat treatment). (Influenced by) refers to the affected part.
電縫鋼管の素材である熱延鋼板は、ホットストリップミル(Hot strip mill)を用いて製造される。詳細には、ホットストリップミルにより、コイル状に巻き取られた長尺の熱延鋼板(以下、ホットコイルともいう)が製造される。
電縫鋼管の素材である熱延鋼板は、長尺の鋼板(continuous steel sheet)である点で、厚板ミル(plate mill)を用いて製造される厚鋼板(steel plate)とは異なる。
厚鋼板(steel plate)は、長尺の鋼板(continuous steel sheet)ではないため、連続的な曲げ加工である、ロール成形に使用することはできない。
電縫鋼管は、上述した熱延鋼板を用いる製造される点で、厚鋼板を用いて製造される溶接鋼管(例えば、UOE鋼管)とは明確に区別される。 The hot-rolled steel plate, which is a material for ERW steel pipe, is manufactured using a hot strip mill. Specifically, a hot strip mill manufactures a long hot-rolled steel sheet (hereinafter, also referred to as a hot coil) wound into a coil.
The hot-rolled steel plate, which is a material of the electric resistance welded pipe, is different from a steel plate manufactured by using a plate mill in that it is a long steel plate.
Since a steel plate is not a continuous steel sheet, it cannot be used for roll forming, which is a continuous bending process.
The electrosewn steel pipe is clearly distinguished from the welded steel pipe (for example, UOE steel pipe) manufactured by using the thick steel plate in that it is manufactured by using the hot-rolled steel plate described above.
電縫鋼管の素材である熱延鋼板は、長尺の鋼板(continuous steel sheet)である点で、厚板ミル(plate mill)を用いて製造される厚鋼板(steel plate)とは異なる。
厚鋼板(steel plate)は、長尺の鋼板(continuous steel sheet)ではないため、連続的な曲げ加工である、ロール成形に使用することはできない。
電縫鋼管は、上述した熱延鋼板を用いる製造される点で、厚鋼板を用いて製造される溶接鋼管(例えば、UOE鋼管)とは明確に区別される。 The hot-rolled steel plate, which is a material for ERW steel pipe, is manufactured using a hot strip mill. Specifically, a hot strip mill manufactures a long hot-rolled steel sheet (hereinafter, also referred to as a hot coil) wound into a coil.
The hot-rolled steel plate, which is a material of the electric resistance welded pipe, is different from a steel plate manufactured by using a plate mill in that it is a long steel plate.
Since a steel plate is not a continuous steel sheet, it cannot be used for roll forming, which is a continuous bending process.
The electrosewn steel pipe is clearly distinguished from the welded steel pipe (for example, UOE steel pipe) manufactured by using the thick steel plate in that it is manufactured by using the hot-rolled steel plate described above.
本開示の電縫鋼管では、管軸方向引張試験を行った場合に降伏伸びが観測される。
管軸方向引張試験を行った場合に降伏伸びが観測されることは、本開示の電縫鋼管が、造管後に熱処理が施されることによって製造された電縫鋼管であることを示している。
本開示の電縫鋼管に対し、造管前に(即ち、素材である熱延鋼板に対して)熱処理が施され、造管後には熱処理が施されなかった電縫鋼管、及び、造管前にも造管後にも熱処理が施されなかった電縫鋼管では、いずれも、管軸方向引張試験を行った場合に降伏伸びが観測されない。 In the electric resistance welded steel pipe of the present disclosure, yield elongation is observed when a tensile test in the pipe axial direction is performed.
The fact that the yield elongation is observed when performing the pipe axial tensile test indicates that the electric resistance welded steel pipe of the present disclosure is the electric resistance welded steel pipe manufactured by subjecting it to heat treatment after pipe forming. ..
The electric resistance welded steel pipe of the present disclosure is heat-treated before pipe making (that is, a hot-rolled steel sheet that is a raw material) and is not heat treated after pipe making, and before pipe making In addition, in the electrosewn steel pipes that have not been heat-treated even after the pipes are made, no yield elongation is observed when the pipe axial tensile test is performed.
管軸方向引張試験を行った場合に降伏伸びが観測されることは、本開示の電縫鋼管が、造管後に熱処理が施されることによって製造された電縫鋼管であることを示している。
本開示の電縫鋼管に対し、造管前に(即ち、素材である熱延鋼板に対して)熱処理が施され、造管後には熱処理が施されなかった電縫鋼管、及び、造管前にも造管後にも熱処理が施されなかった電縫鋼管では、いずれも、管軸方向引張試験を行った場合に降伏伸びが観測されない。 In the electric resistance welded steel pipe of the present disclosure, yield elongation is observed when a tensile test in the pipe axial direction is performed.
The fact that the yield elongation is observed when performing the pipe axial tensile test indicates that the electric resistance welded steel pipe of the present disclosure is the electric resistance welded steel pipe manufactured by subjecting it to heat treatment after pipe forming. ..
The electric resistance welded steel pipe of the present disclosure is heat-treated before pipe making (that is, a hot-rolled steel sheet that is a raw material) and is not heat treated after pipe making, and before pipe making In addition, in the electrosewn steel pipes that have not been heat-treated even after the pipes are made, no yield elongation is observed when the pipe axial tensile test is performed.
更に詳細には、本開示の電縫鋼管において、
管軸方向引張試験を行った場合に降伏伸びが観測されること、
管軸方向の引張強度が700MPa以下であること、
母材部の肉厚中央部の金属組織においてフェライトの面積率が60~90%であること、及び、
残部におけるマルテンサイト及び焼戻しマルテンサイトの合計面積率が残部全体に対して1%未満であることは、本開示の電縫鋼管が、造管後、焼入れを経ずに焼戻し(以下、「造管後焼戻し」ともいう)が施されて製造された電縫鋼管であることを示している。
本開示の電縫鋼管に対し、造管後に焼入れ及び焼戻しが施されて製造された電縫鋼管では、上記フェライトの面積率が60%未満となり、残部におけるマルテンサイト及び焼戻しマルテンサイトの合計面積率が1%超となり、管軸方向の引張強度が700MPaを超える。 More specifically, in the electric resistance welded steel pipe of the present disclosure,
Yield elongation is observed when performing a pipe axial tensile test,
The tensile strength in the pipe axis direction is 700 MPa or less,
The area ratio of ferrite is 60 to 90% in the metal structure of the central portion of the wall thickness of the base material, and
The fact that the total area ratio of martensite and tempered martensite in the balance is less than 1% with respect to the entire balance means that the electric resistance welded steel pipe of the present disclosure is tempered without being quenched after pipe forming (hereinafter, "pipe forming"). It is indicated that this is an electric resistance welded steel pipe manufactured by performing "tempering".
With respect to the electric resistance welded steel pipe of the present disclosure, in the electric resistance welded steel pipe manufactured by quenching and tempering after pipe manufacturing, the area ratio of the ferrite is less than 60%, and the total area ratio of martensite and tempered martensite in the balance is Is more than 1%, and the tensile strength in the tube axis direction exceeds 700 MPa.
管軸方向引張試験を行った場合に降伏伸びが観測されること、
管軸方向の引張強度が700MPa以下であること、
母材部の肉厚中央部の金属組織においてフェライトの面積率が60~90%であること、及び、
残部におけるマルテンサイト及び焼戻しマルテンサイトの合計面積率が残部全体に対して1%未満であることは、本開示の電縫鋼管が、造管後、焼入れを経ずに焼戻し(以下、「造管後焼戻し」ともいう)が施されて製造された電縫鋼管であることを示している。
本開示の電縫鋼管に対し、造管後に焼入れ及び焼戻しが施されて製造された電縫鋼管では、上記フェライトの面積率が60%未満となり、残部におけるマルテンサイト及び焼戻しマルテンサイトの合計面積率が1%超となり、管軸方向の引張強度が700MPaを超える。 More specifically, in the electric resistance welded steel pipe of the present disclosure,
Yield elongation is observed when performing a pipe axial tensile test,
The tensile strength in the pipe axis direction is 700 MPa or less,
The area ratio of ferrite is 60 to 90% in the metal structure of the central portion of the wall thickness of the base material, and
The fact that the total area ratio of martensite and tempered martensite in the balance is less than 1% with respect to the entire balance means that the electric resistance welded steel pipe of the present disclosure is tempered without being quenched after pipe forming (hereinafter, "pipe forming"). It is indicated that this is an electric resistance welded steel pipe manufactured by performing "tempering".
With respect to the electric resistance welded steel pipe of the present disclosure, in the electric resistance welded steel pipe manufactured by quenching and tempering after pipe manufacturing, the area ratio of the ferrite is less than 60%, and the total area ratio of martensite and tempered martensite in the balance is Is more than 1%, and the tensile strength in the tube axis direction exceeds 700 MPa.
本開示の電縫鋼管は、上述した範囲の引張強度、上述した範囲の降伏強度、及び上述した範囲の降伏比を有する。これにより、ラインパイプとしての性能が確保される。この前提の下で、本開示の電縫鋼管は、ひずみが付与された後における耐サワー性に優れる。
本開示における「耐サワー性」は、水素誘起割れ(HIC;Hydrogen-Induced Cracking)に対する耐性(以下、「耐HIC性」ともいう)を意味する。 The electric resistance welded steel pipe of the present disclosure has a tensile strength in the above range, a yield strength in the above range, and a yield ratio in the above range. This ensures the performance as a line pipe. Under this premise, the electric resistance welded steel pipe of the present disclosure has excellent sour resistance after being subjected to strain.
The "sour resistance" in the present disclosure means resistance to hydrogen-induced cracking (HIC) (hereinafter, also referred to as "HIC resistance").
本開示における「耐サワー性」は、水素誘起割れ(HIC;Hydrogen-Induced Cracking)に対する耐性(以下、「耐HIC性」ともいう)を意味する。 The electric resistance welded steel pipe of the present disclosure has a tensile strength in the above range, a yield strength in the above range, and a yield ratio in the above range. This ensures the performance as a line pipe. Under this premise, the electric resistance welded steel pipe of the present disclosure has excellent sour resistance after being subjected to strain.
The "sour resistance" in the present disclosure means resistance to hydrogen-induced cracking (HIC) (hereinafter, also referred to as "HIC resistance").
前述したとおり、ラインパイプ用電縫鋼管に対し、ひずみが付与された後における耐サワー性をより向上させることが求められる場合がある。本開示の電縫鋼管は、かかる要求を満足するものである。
例えば、近年、ラインパイプ用電縫鋼管の敷設コストを低減する観点から、ラインパイプ用電縫鋼管の敷設工法として、リーリング工法が採用されることが多くなっている。ここで、リーリング工法とは、まず、陸上でラインパイプ用電縫鋼管をドラムに巻き付け、次いで、ドラムに巻き付けられたラインパイプ用電縫鋼管を海上に運び、次いで、ドラムに巻き付けられたラインパイプ用電縫鋼管を海上で巻きほぐしながら、海底に敷設していく工法である。リーリング工法では、ラインパイプ用電縫鋼管をドラムに巻き付ける際、及び、ラインパイプ用電縫鋼管を巻きほぐす際に、ラインパイプ用電縫鋼管に対してひずみが付与される。従って、例えば、リーリング工法に使用されるラインパイプ用電縫鋼管では、ひずみが付与された後の耐サワー性をより向上させることが求められる場合がある。 As described above, it may be required for the electric resistance welded steel pipe for a line pipe to further improve the sour resistance after the strain is applied. The electric resistance welded steel pipe of the present disclosure satisfies such requirements.
For example, in recent years, from the viewpoint of reducing the laying cost of the electric resistance welded steel pipe for line pipes, the reeling method has been often adopted as a method of laying the electric resistance welded steel pipe for line pipes. Here, the reeling method is to first wind the ERW steel pipe for a line pipe around a drum on land, then carry the ERW steel pipe for a line pipe around the drum to the sea, and then the line around the drum. It is a method of laying on the seabed while unwinding the ERW steel pipe for pipes on the sea. In the reeling method, strain is applied to the ERW steel pipe for a line pipe when the ERW steel pipe for a line pipe is wound around a drum and when the ERW steel pipe for a line pipe is unwound. Therefore, for example, in an electrosewn steel pipe for a line pipe used in a reeling method, it may be required to further improve sour resistance after strain is applied.
例えば、近年、ラインパイプ用電縫鋼管の敷設コストを低減する観点から、ラインパイプ用電縫鋼管の敷設工法として、リーリング工法が採用されることが多くなっている。ここで、リーリング工法とは、まず、陸上でラインパイプ用電縫鋼管をドラムに巻き付け、次いで、ドラムに巻き付けられたラインパイプ用電縫鋼管を海上に運び、次いで、ドラムに巻き付けられたラインパイプ用電縫鋼管を海上で巻きほぐしながら、海底に敷設していく工法である。リーリング工法では、ラインパイプ用電縫鋼管をドラムに巻き付ける際、及び、ラインパイプ用電縫鋼管を巻きほぐす際に、ラインパイプ用電縫鋼管に対してひずみが付与される。従って、例えば、リーリング工法に使用されるラインパイプ用電縫鋼管では、ひずみが付与された後の耐サワー性をより向上させることが求められる場合がある。 As described above, it may be required for the electric resistance welded steel pipe for a line pipe to further improve the sour resistance after the strain is applied. The electric resistance welded steel pipe of the present disclosure satisfies such requirements.
For example, in recent years, from the viewpoint of reducing the laying cost of the electric resistance welded steel pipe for line pipes, the reeling method has been often adopted as a method of laying the electric resistance welded steel pipe for line pipes. Here, the reeling method is to first wind the ERW steel pipe for a line pipe around a drum on land, then carry the ERW steel pipe for a line pipe around the drum to the sea, and then the line around the drum. It is a method of laying on the seabed while unwinding the ERW steel pipe for pipes on the sea. In the reeling method, strain is applied to the ERW steel pipe for a line pipe when the ERW steel pipe for a line pipe is wound around a drum and when the ERW steel pipe for a line pipe is unwound. Therefore, for example, in an electrosewn steel pipe for a line pipe used in a reeling method, it may be required to further improve sour resistance after strain is applied.
ひずみが付与された後における耐サワー性に優れるという効果には、主として、
(1)母材部の化学組成が本開示における化学組成であること、
(2)母材部の肉厚中央部の金属組織において、フェライトの面積率が60~90%であること(概略的に言えば、金属組織がフェライト主体の組織であること)、
(3)母材部の肉厚中央部の金属組織において、平均フェライト粒径が10μm以下であること(概略的に言えば、フェライト粒が微細化されていること)、
(4)母材部の肉厚中央部の金属組織において、平均フェライト粒径に対する最大フェライト粒径の比が3.0以下であること(概略的に言えば、フェライト粒が整粒化されていること)、及び、
(5)管軸方向引張試験を行った場合に降伏伸びが観測され、管軸方向の引張強度が700MPa以下であり、母材部の肉厚中央部の金属組織においてフェライトの面積率が60~90%であり、残部におけるマルテンサイト及び焼戻しマルテンサイトの合計面積率が残部全体に対して1%未満であること(即ち、造管後焼戻しが施されることによって製造された電縫鋼管であること)
が、寄与していると考えられる。 The effect of excellent sour resistance after strain is applied is mainly due to the effect.
(1) The chemical composition of the base material part is the chemical composition according to the present disclosure,
(2) The area ratio of ferrite is 60 to 90% in the metal structure at the center of the wall thickness of the base metal part (generally speaking, the metal structure is mainly ferrite).
(3) In the metal structure at the center of the wall thickness of the base metal portion, the average ferrite grain size is 10 μm or less (generally speaking, the ferrite grains are miniaturized).
(4) In the metal structure at the center of the wall thickness of the base metal, the ratio of the maximum ferrite grain size to the average ferrite grain size is 3.0 or less (generally speaking, the ferrite grains are sized. Being) and
(5) Yield elongation was observed when a tensile test in the pipe axis direction was performed, the tensile strength in the pipe axis direction was 700 MPa or less, and the area ratio of ferrite was 60 to 60 in the metal structure of the central portion of the wall thickness of the base material. 90%, and the total area ratio of martensite and tempered martensite in the balance is less than 1% with respect to the entire balance (that is, it is an electric resistance welded steel pipe manufactured by tempering after pipe forming). thing)
However, it is considered that they have contributed.
(1)母材部の化学組成が本開示における化学組成であること、
(2)母材部の肉厚中央部の金属組織において、フェライトの面積率が60~90%であること(概略的に言えば、金属組織がフェライト主体の組織であること)、
(3)母材部の肉厚中央部の金属組織において、平均フェライト粒径が10μm以下であること(概略的に言えば、フェライト粒が微細化されていること)、
(4)母材部の肉厚中央部の金属組織において、平均フェライト粒径に対する最大フェライト粒径の比が3.0以下であること(概略的に言えば、フェライト粒が整粒化されていること)、及び、
(5)管軸方向引張試験を行った場合に降伏伸びが観測され、管軸方向の引張強度が700MPa以下であり、母材部の肉厚中央部の金属組織においてフェライトの面積率が60~90%であり、残部におけるマルテンサイト及び焼戻しマルテンサイトの合計面積率が残部全体に対して1%未満であること(即ち、造管後焼戻しが施されることによって製造された電縫鋼管であること)
が、寄与していると考えられる。 The effect of excellent sour resistance after strain is applied is mainly due to the effect.
(1) The chemical composition of the base material part is the chemical composition according to the present disclosure,
(2) The area ratio of ferrite is 60 to 90% in the metal structure at the center of the wall thickness of the base metal part (generally speaking, the metal structure is mainly ferrite).
(3) In the metal structure at the center of the wall thickness of the base metal portion, the average ferrite grain size is 10 μm or less (generally speaking, the ferrite grains are miniaturized).
(4) In the metal structure at the center of the wall thickness of the base metal, the ratio of the maximum ferrite grain size to the average ferrite grain size is 3.0 or less (generally speaking, the ferrite grains are sized. Being) and
(5) Yield elongation was observed when a tensile test in the pipe axis direction was performed, the tensile strength in the pipe axis direction was 700 MPa or less, and the area ratio of ferrite was 60 to 60 in the metal structure of the central portion of the wall thickness of the base material. 90%, and the total area ratio of martensite and tempered martensite in the balance is less than 1% with respect to the entire balance (that is, it is an electric resistance welded steel pipe manufactured by tempering after pipe forming). thing)
However, it is considered that they have contributed.
上記効果に対して上記(1)が寄与している理由については、後述の化学組成の説明中で適宜述べる。
The reason why (1) above contributes to the above effect will be described in the chemical composition description below.
上記効果に対して上記(2)が寄与している理由は、以下のように推測される。
鋼の組織中、局所的に転位密度が高い箇所が存在する場合、その箇所が水素のトラップサイトとなり、その結果、水素誘起割れ(HIC)が発生しやすくなると考えられる。このため、耐サワー性(即ち、耐HIC性)を向上させるためには、局所的に転位密度が高い箇所が発生することを抑制することが効果的と考えられる。
鋼の組織が、ラス構造を有するベイナイト又はマルテンサイトである場合、リーリング工法等によってひずみが付与された際に、ラス壁が障壁となり、最大主応力に対し変形し難い結晶粒と変形しやすい結晶粒とが存在し、その結果、変形の大きな部位と変形の小さな部位とが発生すると考えられる。すると、変形が大きな部位に過剰の転位が導入され、その部位の転位密度が局所的に高くなると考えられる。
これに対し、鋼の組織がフェライト主体組織である場合には、リーリング工法等によってひずみが付与された際に、12個のすべり系で自由に転位が移動できるので、各結晶粒にほぼ均一に転位が分散されると考えられる。その結果、局所的に転位密度が高い箇所が発生することが抑制され、耐サワー性が向上されると考えられる。
また、フェライトは、拡散変態によって生じるため、せん断変形によって生じるベイナイト又はマルテンサイトと比較して、初期の転位密度(即ち、ひずみが付与される前の転位密度)の低減の観点からみても有利である。 The reason why the above (2) contributes to the above effect is presumed as follows.
When there is a locally high dislocation density part in the structure of steel, that part becomes a hydrogen trap site, and as a result, hydrogen induced cracking (HIC) is likely to occur. Therefore, in order to improve the sour resistance (that is, the HIC resistance), it is considered effective to suppress the occurrence of locally high dislocation density portions.
When the structure of steel is bainite or martensite having a lath structure, when strain is applied by the Reeling method etc., the lath wall becomes a barrier, and crystal grains that are difficult to deform with respect to the maximum principal stress and easily deform It is considered that there are crystal grains, and as a result, a portion having a large deformation and a portion having a small deformation are generated. Then, it is considered that excessive dislocations are introduced at the site where the deformation is large, and the dislocation density at that site increases locally.
On the other hand, when the structure of steel is mainly ferrite, dislocations can move freely in 12 slip systems when strain is applied by the reeling method, etc., so that it is almost uniform in each crystal grain. It is considered that dislocations are dispersed in. As a result, it is considered that the occurrence of locally high dislocation density is suppressed and the sour resistance is improved.
Further, since ferrite is generated by diffusion transformation, it is advantageous from the viewpoint of reducing the initial dislocation density (that is, the dislocation density before strain is applied) as compared with bainite or martensite generated by shear deformation. is there.
鋼の組織中、局所的に転位密度が高い箇所が存在する場合、その箇所が水素のトラップサイトとなり、その結果、水素誘起割れ(HIC)が発生しやすくなると考えられる。このため、耐サワー性(即ち、耐HIC性)を向上させるためには、局所的に転位密度が高い箇所が発生することを抑制することが効果的と考えられる。
鋼の組織が、ラス構造を有するベイナイト又はマルテンサイトである場合、リーリング工法等によってひずみが付与された際に、ラス壁が障壁となり、最大主応力に対し変形し難い結晶粒と変形しやすい結晶粒とが存在し、その結果、変形の大きな部位と変形の小さな部位とが発生すると考えられる。すると、変形が大きな部位に過剰の転位が導入され、その部位の転位密度が局所的に高くなると考えられる。
これに対し、鋼の組織がフェライト主体組織である場合には、リーリング工法等によってひずみが付与された際に、12個のすべり系で自由に転位が移動できるので、各結晶粒にほぼ均一に転位が分散されると考えられる。その結果、局所的に転位密度が高い箇所が発生することが抑制され、耐サワー性が向上されると考えられる。
また、フェライトは、拡散変態によって生じるため、せん断変形によって生じるベイナイト又はマルテンサイトと比較して、初期の転位密度(即ち、ひずみが付与される前の転位密度)の低減の観点からみても有利である。 The reason why the above (2) contributes to the above effect is presumed as follows.
When there is a locally high dislocation density part in the structure of steel, that part becomes a hydrogen trap site, and as a result, hydrogen induced cracking (HIC) is likely to occur. Therefore, in order to improve the sour resistance (that is, the HIC resistance), it is considered effective to suppress the occurrence of locally high dislocation density portions.
When the structure of steel is bainite or martensite having a lath structure, when strain is applied by the Reeling method etc., the lath wall becomes a barrier, and crystal grains that are difficult to deform with respect to the maximum principal stress and easily deform It is considered that there are crystal grains, and as a result, a portion having a large deformation and a portion having a small deformation are generated. Then, it is considered that excessive dislocations are introduced at the site where the deformation is large, and the dislocation density at that site increases locally.
On the other hand, when the structure of steel is mainly ferrite, dislocations can move freely in 12 slip systems when strain is applied by the reeling method, etc., so that it is almost uniform in each crystal grain. It is considered that dislocations are dispersed in. As a result, it is considered that the occurrence of locally high dislocation density is suppressed and the sour resistance is improved.
Further, since ferrite is generated by diffusion transformation, it is advantageous from the viewpoint of reducing the initial dislocation density (that is, the dislocation density before strain is applied) as compared with bainite or martensite generated by shear deformation. is there.
上記効果に対して上記(3)が寄与している理由は、以下のように推測される。
ひずみが付与された際に鋼の組織に導入される転位は、粒界に集まり易い。このため、ひずみが付与された際、粒界の転位密度が高くなり、粒内の転位密度が低くなると考えられる。
上記(3)を満足する場合(即ち、フェライト粒が微細化されている場合)には、転位密度が低い粒内の領域が狭くなるため、鋼の組織全体として見た場合、局所的に転位密度が高い箇所が発生することが抑制されると考えられる。その結果、耐サワー性が向上されると考えられる。 The reason why the above (3) contributes to the above effect is presumed as follows.
Dislocations introduced into the structure of steel when strain is applied are likely to collect at grain boundaries. Therefore, it is considered that when strain is applied, the dislocation density in the grain boundaries becomes high and the dislocation density in the grains becomes low.
When the above (3) is satisfied (that is, when the ferrite grains are refined), the region within the grains with a low dislocation density becomes narrower, so when viewed as the entire steel structure, dislocations locally occur. It is considered that the generation of high density areas is suppressed. As a result, sour resistance is considered to be improved.
ひずみが付与された際に鋼の組織に導入される転位は、粒界に集まり易い。このため、ひずみが付与された際、粒界の転位密度が高くなり、粒内の転位密度が低くなると考えられる。
上記(3)を満足する場合(即ち、フェライト粒が微細化されている場合)には、転位密度が低い粒内の領域が狭くなるため、鋼の組織全体として見た場合、局所的に転位密度が高い箇所が発生することが抑制されると考えられる。その結果、耐サワー性が向上されると考えられる。 The reason why the above (3) contributes to the above effect is presumed as follows.
Dislocations introduced into the structure of steel when strain is applied are likely to collect at grain boundaries. Therefore, it is considered that when strain is applied, the dislocation density in the grain boundaries becomes high and the dislocation density in the grains becomes low.
When the above (3) is satisfied (that is, when the ferrite grains are refined), the region within the grains with a low dislocation density becomes narrower, so when viewed as the entire steel structure, dislocations locally occur. It is considered that the generation of high density areas is suppressed. As a result, sour resistance is considered to be improved.
上記効果に対して上記(4)が寄与している理由は、以下のように推測される。
鋼の組織中に粗大な結晶粒が存在する場合、その結晶粒の粒内の転位密度が低く、その結晶粒を囲む粒界の転位密度が高くなるので、局所的に転位密度が高い箇所(具体的には、粗大な結晶粒を囲む粒界)が発生すると考えられる。
上記(4)を満足する場合(即ち、フェライト粒が整粒化され、粗大な結晶粒の発生が抑制されている場合)には、局所的に転位密度が高い箇所が発生することが抑制されるので、耐サワー性が向上されると考えられる。 The reason why the above (4) contributes to the above effect is presumed as follows.
When coarse crystal grains are present in the structure of steel, the dislocation density within the grains of the crystal grains is low, and the dislocation density of the grain boundaries surrounding the crystal grains is high. Specifically, it is considered that grain boundaries surrounding coarse crystal grains) are generated.
When the above (4) is satisfied (that is, the ferrite grains are sized and the generation of coarse crystal grains is suppressed), the occurrence of locally high dislocation density is suppressed. Therefore, it is considered that the sour resistance is improved.
鋼の組織中に粗大な結晶粒が存在する場合、その結晶粒の粒内の転位密度が低く、その結晶粒を囲む粒界の転位密度が高くなるので、局所的に転位密度が高い箇所(具体的には、粗大な結晶粒を囲む粒界)が発生すると考えられる。
上記(4)を満足する場合(即ち、フェライト粒が整粒化され、粗大な結晶粒の発生が抑制されている場合)には、局所的に転位密度が高い箇所が発生することが抑制されるので、耐サワー性が向上されると考えられる。 The reason why the above (4) contributes to the above effect is presumed as follows.
When coarse crystal grains are present in the structure of steel, the dislocation density within the grains of the crystal grains is low, and the dislocation density of the grain boundaries surrounding the crystal grains is high. Specifically, it is considered that grain boundaries surrounding coarse crystal grains) are generated.
When the above (4) is satisfied (that is, the ferrite grains are sized and the generation of coarse crystal grains is suppressed), the occurrence of locally high dislocation density is suppressed. Therefore, it is considered that the sour resistance is improved.
上記効果に対して上記(5)が寄与している理由は、以下のように推測される。
上記(5)を満足する場合(即ち、造管後焼戻しが施されることによって製造された電縫鋼管である場合)には、造管後焼戻しにより、初期の(即ち、ひずみが付与される前の)転位密度が低減されるので、ひずみが付与された後の鋼中の転位密度も低減されると考えられる。その結果、水素のトラップサイト(転位密度が局所的に高い箇所)が低減されるので、水素誘起割れ(HIC)が抑制される(即ち、耐サワー性が向上される)と考えられる。
初期の転位密度の具体的な上限には特に制限はないが、上限は、例えば2.0×1015m-2である。 The reason why the above (5) contributes to the above effect is presumed as follows.
When the above (5) is satisfied (that is, in the case of an electric resistance welded steel pipe manufactured by being subjected to tempering after pipe forming), the initial (ie, strain is imparted by the tempering after pipe forming. Since the dislocation density (before) is reduced, it is believed that the dislocation density in the steel after strain is also reduced. As a result, hydrogen trap sites (locations where the dislocation density is locally high) are reduced, and it is considered that hydrogen-induced cracking (HIC) is suppressed (that is, sour resistance is improved).
The specific upper limit of the initial dislocation density is not particularly limited, but the upper limit is, for example, 2.0 × 10 15 m- 2 .
上記(5)を満足する場合(即ち、造管後焼戻しが施されることによって製造された電縫鋼管である場合)には、造管後焼戻しにより、初期の(即ち、ひずみが付与される前の)転位密度が低減されるので、ひずみが付与された後の鋼中の転位密度も低減されると考えられる。その結果、水素のトラップサイト(転位密度が局所的に高い箇所)が低減されるので、水素誘起割れ(HIC)が抑制される(即ち、耐サワー性が向上される)と考えられる。
初期の転位密度の具体的な上限には特に制限はないが、上限は、例えば2.0×1015m-2である。 The reason why the above (5) contributes to the above effect is presumed as follows.
When the above (5) is satisfied (that is, in the case of an electric resistance welded steel pipe manufactured by being subjected to tempering after pipe forming), the initial (ie, strain is imparted by the tempering after pipe forming. Since the dislocation density (before) is reduced, it is believed that the dislocation density in the steel after strain is also reduced. As a result, hydrogen trap sites (locations where the dislocation density is locally high) are reduced, and it is considered that hydrogen-induced cracking (HIC) is suppressed (that is, sour resistance is improved).
The specific upper limit of the initial dislocation density is not particularly limited, but the upper limit is, for example, 2.0 × 10 15 m- 2 .
〔ひずみが付与された後における耐サワー性の評価方法〕
本開示において、ひずみが付与された後における耐サワー性(即ち、耐HIC性)は、以下のようにして評価する。
電縫鋼管の母材180°位置から、NACE(National Association of Corrosion and Engineer)TM0284-2003に規定される試験片を採取する。この試験片の長手方向は、電縫鋼管の管軸方向である。
上記試験片に対し、引張試験機を用い、試験片の長手方向(即ち、管軸方向)の引張ひずみ(ひずみ量5%)を付与する。
引張ひずみが付与された試験片を用い、NACE TM0284-2003に準拠し、以下のようにして、耐HIC試験を実施する。
試験液としては、Solution A液(5mass%NaCl+0.5mass%氷酢酸水溶液)に1atmのH2Sガスを飽和させた試験液(pH2.7)を用いる。
この試験液中に、上記引張ひずみが付与された試験片を96時間浸漬させる。96時間浸漬後の試験片の上面(面積が最も広い面)における割れの合計面積を、超音波探傷機によって測定する。
測定結果に基づき、上記上面の面積に対する割れの合計面積の割合(%)を求め、得られた割合(%)を、CAR(crack area ratio)(%)とする。
CAR(%)が小さい程、ひずみが付与された後における耐サワー性に優れている。 [Evaluation method of sour resistance after strain is applied]
In the present disclosure, the sour resistance (that is, HIC resistance) after strain is applied is evaluated as follows.
A test piece specified in NACE (National Association of Corrosion and Engineer) TM0284-2003 is collected from the 180 ° position of the base metal of the electric resistance pipe. The longitudinal direction of this test piece is the pipe axis direction of the electric resistance welded steel pipe.
A tensile tester is used to apply a tensile strain (strain amount 5%) in the longitudinal direction of the test piece (that is, the tube axis direction) to the test piece.
Using the test piece to which tensile strain is applied, the HIC resistance test is carried out in accordance with NACE TM0284-2003 as follows.
As the test liquid, a test liquid (pH 2.7) obtained by saturating Solution A liquid (5 mass% NaCl+0.5 mass% glacial acetic acid aqueous solution) with 1 atm of H 2 S gas is used.
The test piece to which the above tensile strain is applied is immersed in this test solution for 96 hours. The total area of cracks on the upper surface (the surface with the largest area) of the test piece after immersion for 96 hours is measured by an ultrasonic flaw detector.
Based on the measurement result, the ratio (%) of the total area of cracks to the area of the upper surface is obtained, and the obtained ratio (%) is defined as CAR (crack area ratio) (%).
The smaller the CAR (%), the better the sour resistance after the strain is applied.
本開示において、ひずみが付与された後における耐サワー性(即ち、耐HIC性)は、以下のようにして評価する。
電縫鋼管の母材180°位置から、NACE(National Association of Corrosion and Engineer)TM0284-2003に規定される試験片を採取する。この試験片の長手方向は、電縫鋼管の管軸方向である。
上記試験片に対し、引張試験機を用い、試験片の長手方向(即ち、管軸方向)の引張ひずみ(ひずみ量5%)を付与する。
引張ひずみが付与された試験片を用い、NACE TM0284-2003に準拠し、以下のようにして、耐HIC試験を実施する。
試験液としては、Solution A液(5mass%NaCl+0.5mass%氷酢酸水溶液)に1atmのH2Sガスを飽和させた試験液(pH2.7)を用いる。
この試験液中に、上記引張ひずみが付与された試験片を96時間浸漬させる。96時間浸漬後の試験片の上面(面積が最も広い面)における割れの合計面積を、超音波探傷機によって測定する。
測定結果に基づき、上記上面の面積に対する割れの合計面積の割合(%)を求め、得られた割合(%)を、CAR(crack area ratio)(%)とする。
CAR(%)が小さい程、ひずみが付与された後における耐サワー性に優れている。 [Evaluation method of sour resistance after strain is applied]
In the present disclosure, the sour resistance (that is, HIC resistance) after strain is applied is evaluated as follows.
A test piece specified in NACE (National Association of Corrosion and Engineer) TM0284-2003 is collected from the 180 ° position of the base metal of the electric resistance pipe. The longitudinal direction of this test piece is the pipe axis direction of the electric resistance welded steel pipe.
A tensile tester is used to apply a tensile strain (strain amount 5%) in the longitudinal direction of the test piece (that is, the tube axis direction) to the test piece.
Using the test piece to which tensile strain is applied, the HIC resistance test is carried out in accordance with NACE TM0284-2003 as follows.
As the test liquid, a test liquid (pH 2.7) obtained by saturating Solution A liquid (5 mass% NaCl+0.5 mass% glacial acetic acid aqueous solution) with 1 atm of H 2 S gas is used.
The test piece to which the above tensile strain is applied is immersed in this test solution for 96 hours. The total area of cracks on the upper surface (the surface with the largest area) of the test piece after immersion for 96 hours is measured by an ultrasonic flaw detector.
Based on the measurement result, the ratio (%) of the total area of cracks to the area of the upper surface is obtained, and the obtained ratio (%) is defined as CAR (crack area ratio) (%).
The smaller the CAR (%), the better the sour resistance after the strain is applied.
〔母材部の化学組成〕
以下、母材部の化学組成(即ち、本開示における化学組成)に関し、まず、化学組成における各成分について説明し、引き続き、Ceq及びEESPについて説明する。 [Chemical composition of base metal part]
Hereinafter, regarding the chemical composition of the base material portion (that is, the chemical composition in the present disclosure), first, each component in the chemical composition will be described, and then Ceq and EESP will be described.
以下、母材部の化学組成(即ち、本開示における化学組成)に関し、まず、化学組成における各成分について説明し、引き続き、Ceq及びEESPについて説明する。 [Chemical composition of base metal part]
Hereinafter, regarding the chemical composition of the base material portion (that is, the chemical composition in the present disclosure), first, each component in the chemical composition will be described, and then Ceq and EESP will be described.
C:0.03~0.10%
Cは、鋼の強度を向上させる元素である。かかる効果を得る観点から、C含有量は、0.03%以上である。C含有量は、好ましくは0.04%以上であり、より好ましくは0.05%以上である。
一方、C含有量が0.10%を超えると、炭化物の生成が促進されて耐サワー性が劣化する場合がある。従って、C含有量は、0.10%以下である。C含有量は、0.09%以下であり、より好ましくは0.08%以下である。 C: 0.03 to 0.10%
C is an element that improves the strength of steel. From the viewpoint of obtaining such effects, the C content is 0.03% or more. The C content is preferably 0.04% or more, more preferably 0.05% or more.
On the other hand, if the C content exceeds 0.10%, the formation of carbides may be promoted and the sour resistance may deteriorate. Therefore, the C content is 0.10% or less. The C content is 0.09% or less, more preferably 0.08% or less.
Cは、鋼の強度を向上させる元素である。かかる効果を得る観点から、C含有量は、0.03%以上である。C含有量は、好ましくは0.04%以上であり、より好ましくは0.05%以上である。
一方、C含有量が0.10%を超えると、炭化物の生成が促進されて耐サワー性が劣化する場合がある。従って、C含有量は、0.10%以下である。C含有量は、0.09%以下であり、より好ましくは0.08%以下である。 C: 0.03 to 0.10%
C is an element that improves the strength of steel. From the viewpoint of obtaining such effects, the C content is 0.03% or more. The C content is preferably 0.04% or more, more preferably 0.05% or more.
On the other hand, if the C content exceeds 0.10%, the formation of carbides may be promoted and the sour resistance may deteriorate. Therefore, the C content is 0.10% or less. The C content is 0.09% or less, more preferably 0.08% or less.
Si:0.03~0.60%
Siは、脱酸元素である。かかる効果を得る観点から、Si含有量は、0.03%以上である。Si含有量は、好ましくは0.10%以上であり、より好ましくは0.20%以上である。
一方、Si含有量が0.60%を超えると、Siの酸化物が多数生じ、耐サワー性が劣化する場合がある。従って、Si含有量は、0.60%以下である。Si含有量は、好ましくは0.50%以下であり、更に好ましくは0.40%以下である。 Si: 0.03 to 0.60%
Si is a deoxidizing element. From the viewpoint of obtaining such effects, the Si content is 0.03% or more. The Si content is preferably 0.10% or more, more preferably 0.20% or more.
On the other hand, if the Si content exceeds 0.60%, a large amount of Si oxide is generated, which may deteriorate the sour resistance. Therefore, the Si content is 0.60% or less. The Si content is preferably 0.50% or less, more preferably 0.40% or less.
Siは、脱酸元素である。かかる効果を得る観点から、Si含有量は、0.03%以上である。Si含有量は、好ましくは0.10%以上であり、より好ましくは0.20%以上である。
一方、Si含有量が0.60%を超えると、Siの酸化物が多数生じ、耐サワー性が劣化する場合がある。従って、Si含有量は、0.60%以下である。Si含有量は、好ましくは0.50%以下であり、更に好ましくは0.40%以下である。 Si: 0.03 to 0.60%
Si is a deoxidizing element. From the viewpoint of obtaining such effects, the Si content is 0.03% or more. The Si content is preferably 0.10% or more, more preferably 0.20% or more.
On the other hand, if the Si content exceeds 0.60%, a large amount of Si oxide is generated, which may deteriorate the sour resistance. Therefore, the Si content is 0.60% or less. The Si content is preferably 0.50% or less, more preferably 0.40% or less.
Mn:0.30~1.60%
Mnは、鋼の強度を向上させる元素である。かかる効果を得る観点から、Mn含有量は、0.30%以上である。Mn含有量は、好ましくは0.40%以上であり、更に好ましくは0.50%以上である。
一方、Mn含有量が1.60%を超えると、粗大なMnSが生じ耐サワー性が劣化する場合がある。従って、Mn含有量は、1.60%以下である。Mn含有量は、好ましくは1.40%以下であり、より好ましくは1.30%以下である。 Mn: 0.30 to 1.60%
Mn is an element that improves the strength of steel. From the viewpoint of obtaining such an effect, the Mn content is 0.30% or more. The Mn content is preferably 0.40% or more, and more preferably 0.50% or more.
On the other hand, if the Mn content exceeds 1.60%, coarse MnS may be generated and the sour resistance may deteriorate. Therefore, the Mn content is 1.60% or less. The Mn content is preferably 1.40% or less, more preferably 1.30% or less.
Mnは、鋼の強度を向上させる元素である。かかる効果を得る観点から、Mn含有量は、0.30%以上である。Mn含有量は、好ましくは0.40%以上であり、更に好ましくは0.50%以上である。
一方、Mn含有量が1.60%を超えると、粗大なMnSが生じ耐サワー性が劣化する場合がある。従って、Mn含有量は、1.60%以下である。Mn含有量は、好ましくは1.40%以下であり、より好ましくは1.30%以下である。 Mn: 0.30 to 1.60%
Mn is an element that improves the strength of steel. From the viewpoint of obtaining such an effect, the Mn content is 0.30% or more. The Mn content is preferably 0.40% or more, and more preferably 0.50% or more.
On the other hand, if the Mn content exceeds 1.60%, coarse MnS may be generated and the sour resistance may deteriorate. Therefore, the Mn content is 1.60% or less. The Mn content is preferably 1.40% or less, more preferably 1.30% or less.
P:0~0.030%
Pは、不純物元素であり、少ない方が好ましい。P含有量が0.030%を超えると、耐サワー性が劣化する場合がある。従って、P含有量は0.030%以下である。P含有量は、好ましくは0.020%以下である。
P含有量は0%であってもよい。脱燐コスト低減の観点から、P含有量は、0%超であってもよく、0.001%以上であってもよく、0.010%以上であってもよい。 P: 0 to 0.030%
P is an impurity element, and the smaller the amount, the better. If the P content exceeds 0.030%, the sour resistance may deteriorate. Therefore, the P content is 0.030% or less. The P content is preferably 0.020% or less.
The P content may be 0%. From the viewpoint of reducing the dephosphorization cost, the P content may be more than 0%, may be 0.001% or more, and may be 0.010% or more.
Pは、不純物元素であり、少ない方が好ましい。P含有量が0.030%を超えると、耐サワー性が劣化する場合がある。従って、P含有量は0.030%以下である。P含有量は、好ましくは0.020%以下である。
P含有量は0%であってもよい。脱燐コスト低減の観点から、P含有量は、0%超であってもよく、0.001%以上であってもよく、0.010%以上であってもよい。 P: 0 to 0.030%
P is an impurity element, and the smaller the amount, the better. If the P content exceeds 0.030%, the sour resistance may deteriorate. Therefore, the P content is 0.030% or less. The P content is preferably 0.020% or less.
The P content may be 0%. From the viewpoint of reducing the dephosphorization cost, the P content may be more than 0%, may be 0.001% or more, and may be 0.010% or more.
S:0~0.0015%
Sは、不純物元素であり、少ない方が好ましい。S含有量が0.0015%を超えると、圧延方向に伸長した粗大なMnSが生じ、耐サワー性が劣化する場合がある。従って、S含有量は0.0015%以下である。S含有量は、好ましくは0.0014%以下である。
S含有量は0%であってもよい。脱硫コスト低減の観点から、S含有量は、0%超であってもよく、0.0001%以上であってもよく、0.0005%以上であってもよい。 S: 0 to 0.0015%
S is an impurity element, and the smaller the amount, the better. If the S content exceeds 0.0015%, coarse MnS elongated in the rolling direction may occur, and the sour resistance may deteriorate. Therefore, the S content is 0.0015% or less. The S content is preferably 0.0014% or less.
The S content may be 0%. From the viewpoint of reducing the desulfurization cost, the S content may be more than 0%, may be 0.0001% or more, and may be 0.0005% or more.
Sは、不純物元素であり、少ない方が好ましい。S含有量が0.0015%を超えると、圧延方向に伸長した粗大なMnSが生じ、耐サワー性が劣化する場合がある。従って、S含有量は0.0015%以下である。S含有量は、好ましくは0.0014%以下である。
S含有量は0%であってもよい。脱硫コスト低減の観点から、S含有量は、0%超であってもよく、0.0001%以上であってもよく、0.0005%以上であってもよい。 S: 0 to 0.0015%
S is an impurity element, and the smaller the amount, the better. If the S content exceeds 0.0015%, coarse MnS elongated in the rolling direction may occur, and the sour resistance may deteriorate. Therefore, the S content is 0.0015% or less. The S content is preferably 0.0014% or less.
The S content may be 0%. From the viewpoint of reducing the desulfurization cost, the S content may be more than 0%, may be 0.0001% or more, and may be 0.0005% or more.
Ti:0.010~0.200%
Tiは、ピンニング効果によりγ粒径を微細化し、結果フェライト粒径を微細化させるために必要な元素である。かかる効果を得る観点から、Ti含有量は、0.010%以上である。Ti含有量は、好ましくは0.020%以上であり、より好ましくは0.030%以上である。
一方、Ti含有量が0.200%を超えると、TiN等の粗大な介在物が生じ耐サワー性が劣化する場合がある。従って、Ti含有量は0.200%以下である。Ti含有量は、好ましくは0.150%以下であり、より好ましくは0.110%以下であり、更に好ましくは0.100%以下である。 Ti: 0.010 to 0.200%
Ti is an element necessary for refining the γ grain size by the pinning effect and consequently refining the ferrite grain size. From the viewpoint of obtaining such effects, the Ti content is 0.010% or more. The Ti content is preferably 0.020% or more, more preferably 0.030% or more.
On the other hand, when the Ti content exceeds 0.200%, coarse inclusions such as TiN may occur and the sour resistance may deteriorate. Therefore, the Ti content is 0.200% or less. The Ti content is preferably 0.150% or less, more preferably 0.110% or less, and further preferably 0.100% or less.
Tiは、ピンニング効果によりγ粒径を微細化し、結果フェライト粒径を微細化させるために必要な元素である。かかる効果を得る観点から、Ti含有量は、0.010%以上である。Ti含有量は、好ましくは0.020%以上であり、より好ましくは0.030%以上である。
一方、Ti含有量が0.200%を超えると、TiN等の粗大な介在物が生じ耐サワー性が劣化する場合がある。従って、Ti含有量は0.200%以下である。Ti含有量は、好ましくは0.150%以下であり、より好ましくは0.110%以下であり、更に好ましくは0.100%以下である。 Ti: 0.010 to 0.200%
Ti is an element necessary for refining the γ grain size by the pinning effect and consequently refining the ferrite grain size. From the viewpoint of obtaining such effects, the Ti content is 0.010% or more. The Ti content is preferably 0.020% or more, more preferably 0.030% or more.
On the other hand, when the Ti content exceeds 0.200%, coarse inclusions such as TiN may occur and the sour resistance may deteriorate. Therefore, the Ti content is 0.200% or less. The Ti content is preferably 0.150% or less, more preferably 0.110% or less, and further preferably 0.100% or less.
Al:0.005~0.500%
Alは、脱酸元素である。かかる効果を得る観点から、Al含有量は0.005%以上である。Al含有量は、好ましくは0.010%以上であり、より好ましくは0.020%以上である。
一方、Al含有量が0.500%を超えると、粗大なAl-Ca系介在物が多数生じて耐サワー性が劣化する。従って、Al含有量は、0.500%以下である。Al含有量は、好ましくは0.200%以下であり、より好ましくは0.100%以下であり、更に好ましくは0.050%以下である。 Al: 0.005 to 0.500%
Al is a deoxidizing element. From the viewpoint of obtaining such effects, the Al content is 0.005% or more. The Al content is preferably 0.010% or more, more preferably 0.020% or more.
On the other hand, if the Al content exceeds 0.500%, a large number of coarse Al—Ca-based inclusions are generated, and the sour resistance deteriorates. Therefore, the Al content is 0.500% or less. The Al content is preferably 0.200% or less, more preferably 0.100% or less, still more preferably 0.050% or less.
Alは、脱酸元素である。かかる効果を得る観点から、Al含有量は0.005%以上である。Al含有量は、好ましくは0.010%以上であり、より好ましくは0.020%以上である。
一方、Al含有量が0.500%を超えると、粗大なAl-Ca系介在物が多数生じて耐サワー性が劣化する。従って、Al含有量は、0.500%以下である。Al含有量は、好ましくは0.200%以下であり、より好ましくは0.100%以下であり、更に好ましくは0.050%以下である。 Al: 0.005 to 0.500%
Al is a deoxidizing element. From the viewpoint of obtaining such effects, the Al content is 0.005% or more. The Al content is preferably 0.010% or more, more preferably 0.020% or more.
On the other hand, if the Al content exceeds 0.500%, a large number of coarse Al—Ca-based inclusions are generated, and the sour resistance deteriorates. Therefore, the Al content is 0.500% or less. The Al content is preferably 0.200% or less, more preferably 0.100% or less, still more preferably 0.050% or less.
Nb:0.010~0.050%
Nbは、ピンニング効果によりγ粒径を微細化し、その結果として、フェライト粒径を微細化させるために必要な元素である。かかる効果を得る観点から、Nb含有量は、0.010%以上である。Nb含有量は、好ましくは0.020%以上である。
一方、Nb含有量が0.050%を超えると、粗大なNb炭窒化物が生じ、耐サワー性が劣化する場合がある。従って、Nb含有量は、0.050%以下である。Nb含有量は、好ましくは0.040%以下である。 Nb: 0.010 to 0.050%
Nb is an element necessary for refining the γ grain size due to the pinning effect, and as a result, refining the ferrite grain size. From the viewpoint of obtaining such effects, the Nb content is 0.010% or more. The Nb content is preferably 0.020% or more.
On the other hand, if the Nb content exceeds 0.050%, coarse Nb carbonitrides may be generated, and the sour resistance may deteriorate. Therefore, the Nb content is 0.050% or less. The Nb content is preferably 0.040% or less.
Nbは、ピンニング効果によりγ粒径を微細化し、その結果として、フェライト粒径を微細化させるために必要な元素である。かかる効果を得る観点から、Nb含有量は、0.010%以上である。Nb含有量は、好ましくは0.020%以上である。
一方、Nb含有量が0.050%を超えると、粗大なNb炭窒化物が生じ、耐サワー性が劣化する場合がある。従って、Nb含有量は、0.050%以下である。Nb含有量は、好ましくは0.040%以下である。 Nb: 0.010 to 0.050%
Nb is an element necessary for refining the γ grain size due to the pinning effect, and as a result, refining the ferrite grain size. From the viewpoint of obtaining such effects, the Nb content is 0.010% or more. The Nb content is preferably 0.020% or more.
On the other hand, if the Nb content exceeds 0.050%, coarse Nb carbonitrides may be generated, and the sour resistance may deteriorate. Therefore, the Nb content is 0.050% or less. The Nb content is preferably 0.040% or less.
N:0~0.006%
Nは、不純物元素であり、少ない方が好ましい。N含有量が0.006%を超えると、粗大な窒化物(例えば、TiN、NbN等)が生じ、耐サワー性が劣化する場合がある。従って、N含有量は、0.006%以下である。N含有量は、好ましくは0.005%以下である。
N含有量は0%であってもよい。脱窒コスト低減の観点から、N含有量は、0%超であってもよく、0.001%以上であってもよく、0.003%以上であってもよい。 N: 0 to 0.006%
N is an impurity element, and a small amount is preferable. If the N content exceeds 0.006%, coarse nitrides (for example, TiN, NbN, etc.) are generated, and sour resistance may deteriorate. Therefore, the N content is 0.006% or less. The N content is preferably 0.005% or less.
The N content may be 0%. From the viewpoint of reducing the denitrification cost, the N content may be more than 0%, may be 0.001% or more, and may be 0.003% or more.
Nは、不純物元素であり、少ない方が好ましい。N含有量が0.006%を超えると、粗大な窒化物(例えば、TiN、NbN等)が生じ、耐サワー性が劣化する場合がある。従って、N含有量は、0.006%以下である。N含有量は、好ましくは0.005%以下である。
N含有量は0%であってもよい。脱窒コスト低減の観点から、N含有量は、0%超であってもよく、0.001%以上であってもよく、0.003%以上であってもよい。 N: 0 to 0.006%
N is an impurity element, and a small amount is preferable. If the N content exceeds 0.006%, coarse nitrides (for example, TiN, NbN, etc.) are generated, and sour resistance may deteriorate. Therefore, the N content is 0.006% or less. The N content is preferably 0.005% or less.
The N content may be 0%. From the viewpoint of reducing the denitrification cost, the N content may be more than 0%, may be 0.001% or more, and may be 0.003% or more.
O:0~0.004%
Oは、不純物元素であり、少ない方が好ましい。O含有量が0.004%を超えると、CaOが形成されることにより、後述するCaの効果が損なわれ、耐サワー性が劣化する場合がある。従って、O含有量は、0.004%以下である。O含有量は、好ましくは0.003%以下である。
O含有量は0%であってもよい。脱酸コスト低減の観点から、O含有量は、0%超であってもよく、0.001%以上であってもよい。 O: 0 to 0.004%
O is an impurity element, and the smaller the amount, the better. If the O content exceeds 0.004%, the formation of CaO may impair the effect of Ca described later and deteriorate the sour resistance. Therefore, the O content is 0.004% or less. The O content is preferably 0.003% or less.
The O content may be 0%. From the viewpoint of reducing the deoxidation cost, the O content may be more than 0% or may be 0.001% or more.
Oは、不純物元素であり、少ない方が好ましい。O含有量が0.004%を超えると、CaOが形成されることにより、後述するCaの効果が損なわれ、耐サワー性が劣化する場合がある。従って、O含有量は、0.004%以下である。O含有量は、好ましくは0.003%以下である。
O含有量は0%であってもよい。脱酸コスト低減の観点から、O含有量は、0%超であってもよく、0.001%以上であってもよい。 O: 0 to 0.004%
O is an impurity element, and the smaller the amount, the better. If the O content exceeds 0.004%, the formation of CaO may impair the effect of Ca described later and deteriorate the sour resistance. Therefore, the O content is 0.004% or less. The O content is preferably 0.003% or less.
The O content may be 0%. From the viewpoint of reducing the deoxidation cost, the O content may be more than 0% or may be 0.001% or more.
Ca:0.0001~0.0200%
Caは、MnSとともに複合介在物を形成し、複合介在物の形態で微細分散化されることにより、耐サワー性を向上させる元素である。
かかる効果を得る観点から、Ca含有量は、0.0001%以上である。Ca含有量は、好ましくは0.0005%以上である。
一方、Ca含有量が0.0200%を超えると、粗大なAl-Ca系介在物が生じ、耐サワー性が劣化する場合がある。従って、Ca含有量は、0.0200%以下である。Ca含有量は、好ましくは0.0150%以下であり、より好ましくは0.0100%以下である。 Ca: 0.0001 to 0.0200%
Ca is an element that forms composite inclusions together with MnS and is finely dispersed in the form of composite inclusions to improve sour resistance.
From the viewpoint of obtaining such effects, the Ca content is 0.0001% or more. The Ca content is preferably 0.0005% or more.
On the other hand, when the Ca content exceeds 0.0200%, coarse Al—Ca-based inclusions are generated, and sour resistance may deteriorate. Therefore, the Ca content is 0.0200% or less. The Ca content is preferably 0.0150% or less, more preferably 0.0100% or less.
Caは、MnSとともに複合介在物を形成し、複合介在物の形態で微細分散化されることにより、耐サワー性を向上させる元素である。
かかる効果を得る観点から、Ca含有量は、0.0001%以上である。Ca含有量は、好ましくは0.0005%以上である。
一方、Ca含有量が0.0200%を超えると、粗大なAl-Ca系介在物が生じ、耐サワー性が劣化する場合がある。従って、Ca含有量は、0.0200%以下である。Ca含有量は、好ましくは0.0150%以下であり、より好ましくは0.0100%以下である。 Ca: 0.0001 to 0.0200%
Ca is an element that forms composite inclusions together with MnS and is finely dispersed in the form of composite inclusions to improve sour resistance.
From the viewpoint of obtaining such effects, the Ca content is 0.0001% or more. The Ca content is preferably 0.0005% or more.
On the other hand, when the Ca content exceeds 0.0200%, coarse Al—Ca-based inclusions are generated, and sour resistance may deteriorate. Therefore, the Ca content is 0.0200% or less. The Ca content is preferably 0.0150% or less, more preferably 0.0100% or less.
Cu:0~1.000%
Cuは、任意元素である。即ち、Cu含有量は、0%であってもよい。
Cuは、鋼の強度向上に寄与し得る元素である。かかる効果を得る観点から、Cu含有量は、0%超であってもよく、0.001%以上であってもよく、0.010%以上であってもよい。
一方、Cu含有量が1.000%を越えると、効果が飽和し、コストの上昇を招くおそれがある。従って、Cu含有量は、1.000%以下である。Cu含有量は、好ましくは0.500%以下であり、より好ましくは0.200%以下であり、更に好ましくは0.100%以下である。 Cu: 0 to 1.000%
Cu is an arbitrary element. That is, the Cu content may be 0%.
Cu is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such effects, the Cu content may be more than 0%, may be 0.001% or more, and may be 0.010% or more.
On the other hand, if the Cu content exceeds 1.000%, the effect may be saturated and the cost may be increased. Therefore, the Cu content is 1.000% or less. The Cu content is preferably 0.500% or less, more preferably 0.200% or less, and further preferably 0.100% or less.
Cuは、任意元素である。即ち、Cu含有量は、0%であってもよい。
Cuは、鋼の強度向上に寄与し得る元素である。かかる効果を得る観点から、Cu含有量は、0%超であってもよく、0.001%以上であってもよく、0.010%以上であってもよい。
一方、Cu含有量が1.000%を越えると、効果が飽和し、コストの上昇を招くおそれがある。従って、Cu含有量は、1.000%以下である。Cu含有量は、好ましくは0.500%以下であり、より好ましくは0.200%以下であり、更に好ましくは0.100%以下である。 Cu: 0 to 1.000%
Cu is an arbitrary element. That is, the Cu content may be 0%.
Cu is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such effects, the Cu content may be more than 0%, may be 0.001% or more, and may be 0.010% or more.
On the other hand, if the Cu content exceeds 1.000%, the effect may be saturated and the cost may be increased. Therefore, the Cu content is 1.000% or less. The Cu content is preferably 0.500% or less, more preferably 0.200% or less, and further preferably 0.100% or less.
Ni:0~1.000%
Niは、任意元素である。即ち、Ni含有量は、0%であってもよい。
Niは、鋼の強度向上に寄与し得る元素である。かかる効果を得る観点から、Ni含有量は、0%超であってもよく、0.001%以上であってもよく、0.010%以上であってもよい。
一方、Ni含有量が1.000%を越えると、効果が飽和し、コストの上昇を招くおそれがある。従って、Ni含有量は、1.000%以下である。Ni含有量は、好ましくは0.500%以下であり、より好ましくは0.200%以下である。 Ni: 0 to 1.000%
Ni is an arbitrary element. That is, the Ni content may be 0%.
Ni is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such effects, the Ni content may be more than 0%, may be 0.001% or more, and may be 0.010% or more.
On the other hand, if the Ni content exceeds 1.000%, the effect may be saturated and the cost may increase. Therefore, the Ni content is 1.000% or less. The Ni content is preferably 0.500% or less, more preferably 0.200% or less.
Niは、任意元素である。即ち、Ni含有量は、0%であってもよい。
Niは、鋼の強度向上に寄与し得る元素である。かかる効果を得る観点から、Ni含有量は、0%超であってもよく、0.001%以上であってもよく、0.010%以上であってもよい。
一方、Ni含有量が1.000%を越えると、効果が飽和し、コストの上昇を招くおそれがある。従って、Ni含有量は、1.000%以下である。Ni含有量は、好ましくは0.500%以下であり、より好ましくは0.200%以下である。 Ni: 0 to 1.000%
Ni is an arbitrary element. That is, the Ni content may be 0%.
Ni is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such effects, the Ni content may be more than 0%, may be 0.001% or more, and may be 0.010% or more.
On the other hand, if the Ni content exceeds 1.000%, the effect may be saturated and the cost may increase. Therefore, the Ni content is 1.000% or less. The Ni content is preferably 0.500% or less, more preferably 0.200% or less.
Cr:0~1.00%
Crは、任意元素である。即ち、Cr含有量は、0%であってもよい。
Crは、鋼の強度向上に寄与し得る元素である。かかる効果を得る観点から、Cr含有量は、0%超であってもよく、0.01%以上であってもよく、0.05%以上であってもよい。
一方、Cr含有量が1.00%を越えると、効果が飽和し、コストの上昇を招くおそれがある。従って、Cr含有量は、1.00%以下である。Cr含有量は、好ましくは0.50%以下であり、より好ましくは0.20%以下である。 Cr: 0 to 1.00%
Cr is an arbitrary element. That is, the Cr content may be 0%.
Cr is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such an effect, the Cr content may be more than 0%, 0.01% or more, or 0.05% or more.
On the other hand, when the Cr content exceeds 1.00%, the effect is saturated and the cost may be increased. Therefore, the Cr content is 1.00% or less. The Cr content is preferably 0.50% or less, more preferably 0.20% or less.
Crは、任意元素である。即ち、Cr含有量は、0%であってもよい。
Crは、鋼の強度向上に寄与し得る元素である。かかる効果を得る観点から、Cr含有量は、0%超であってもよく、0.01%以上であってもよく、0.05%以上であってもよい。
一方、Cr含有量が1.00%を越えると、効果が飽和し、コストの上昇を招くおそれがある。従って、Cr含有量は、1.00%以下である。Cr含有量は、好ましくは0.50%以下であり、より好ましくは0.20%以下である。 Cr: 0 to 1.00%
Cr is an arbitrary element. That is, the Cr content may be 0%.
Cr is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such an effect, the Cr content may be more than 0%, 0.01% or more, or 0.05% or more.
On the other hand, when the Cr content exceeds 1.00%, the effect is saturated and the cost may be increased. Therefore, the Cr content is 1.00% or less. The Cr content is preferably 0.50% or less, more preferably 0.20% or less.
Mo:0~0.50%
Moは、任意元素である。即ち、Mo含有量は、0%であってもよい。
Moは、鋼の強度向上に寄与し得る元素である。かかる効果を得る観点から、Mo含有量は、0%超であってもよく、0.01%以上であってもよく、0.05%以上であってもよい。
一方、Mo含有量が0.50%を越えると、効果が飽和し、コストの上昇を招くおそれがある。従って、Mo含有量は、0.50%以下である。Mo含有量は、好ましくは0.30%以下であり、より好ましくは0.20%以下である。 Mo: 0 to 0.50%
Mo is an arbitrary element. That is, the Mo content may be 0%.
Mo is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such effects, the Mo content may be more than 0%, 0.01% or more, and may be 0.05% or more.
On the other hand, if the Mo content exceeds 0.50%, the effect may be saturated and the cost may increase. Therefore, the Mo content is 0.50% or less. The Mo content is preferably 0.30% or less, more preferably 0.20% or less.
Moは、任意元素である。即ち、Mo含有量は、0%であってもよい。
Moは、鋼の強度向上に寄与し得る元素である。かかる効果を得る観点から、Mo含有量は、0%超であってもよく、0.01%以上であってもよく、0.05%以上であってもよい。
一方、Mo含有量が0.50%を越えると、効果が飽和し、コストの上昇を招くおそれがある。従って、Mo含有量は、0.50%以下である。Mo含有量は、好ましくは0.30%以下であり、より好ましくは0.20%以下である。 Mo: 0 to 0.50%
Mo is an arbitrary element. That is, the Mo content may be 0%.
Mo is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such effects, the Mo content may be more than 0%, 0.01% or more, and may be 0.05% or more.
On the other hand, if the Mo content exceeds 0.50%, the effect may be saturated and the cost may increase. Therefore, the Mo content is 0.50% or less. The Mo content is preferably 0.30% or less, more preferably 0.20% or less.
V:0~0.200%
Vは、任意元素である。即ち、V含有量は、0%であってもよい。
Vは、鋼の強度向上に寄与し得る元素である。かかる効果を得る観点から、V含有量は、0%超であってもよく、0.001%以上であってもよく、0.005%以上であってもよい。
一方、V含有量が0.200%を越えると、効果が飽和し、コストの上昇を招くおそれがある。従って、V含有量は、0.200%以下である。V含有量は、好ましくは0.100%以下であり、より好ましくは0.050%以下であり、更に好ましくは0.020%以下である。 V: 0 to 0.200%
V is an arbitrary element. That is, the V content may be 0%.
V is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such effects, the V content may be more than 0%, may be 0.001% or more, and may be 0.005% or more.
On the other hand, if the V content exceeds 0.200%, the effect may be saturated and the cost may increase. Therefore, the V content is 0.200% or less. The V content is preferably 0.100% or less, more preferably 0.050% or less, and further preferably 0.020% or less.
Vは、任意元素である。即ち、V含有量は、0%であってもよい。
Vは、鋼の強度向上に寄与し得る元素である。かかる効果を得る観点から、V含有量は、0%超であってもよく、0.001%以上であってもよく、0.005%以上であってもよい。
一方、V含有量が0.200%を越えると、効果が飽和し、コストの上昇を招くおそれがある。従って、V含有量は、0.200%以下である。V含有量は、好ましくは0.100%以下であり、より好ましくは0.050%以下であり、更に好ましくは0.020%以下である。 V: 0 to 0.200%
V is an arbitrary element. That is, the V content may be 0%.
V is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such effects, the V content may be more than 0%, may be 0.001% or more, and may be 0.005% or more.
On the other hand, if the V content exceeds 0.200%, the effect may be saturated and the cost may increase. Therefore, the V content is 0.200% or less. The V content is preferably 0.100% or less, more preferably 0.050% or less, and further preferably 0.020% or less.
W:0~0.100%
Wは、任意元素である。即ち、W含有量は、0%であってもよい。
Wは、鋼の強度向上に寄与し得る元素である。かかる効果を得る観点から、W含有量は、0%超であってもよく、0.001%以上であってもよく、0.005%以上であってもよい。
一方、W含有量が0.100%を越えると、効果が飽和し、コストの上昇を招くおそれがある。従って、W含有量は、0.100%以下である。W含有量は、好ましくは0.050%以下であり、より好ましくは0.020%以下である。 W: 0 to 0.100%
W is an arbitrary element. That is, the W content may be 0%.
W is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such effects, the W content may be more than 0%, may be 0.001% or more, and may be 0.005% or more.
On the other hand, when the W content exceeds 0.100%, the effect is saturated and the cost may be increased. Therefore, the W content is 0.100% or less. The W content is preferably 0.050% or less, more preferably 0.020% or less.
Wは、任意元素である。即ち、W含有量は、0%であってもよい。
Wは、鋼の強度向上に寄与し得る元素である。かかる効果を得る観点から、W含有量は、0%超であってもよく、0.001%以上であってもよく、0.005%以上であってもよい。
一方、W含有量が0.100%を越えると、効果が飽和し、コストの上昇を招くおそれがある。従って、W含有量は、0.100%以下である。W含有量は、好ましくは0.050%以下であり、より好ましくは0.020%以下である。 W: 0 to 0.100%
W is an arbitrary element. That is, the W content may be 0%.
W is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such effects, the W content may be more than 0%, may be 0.001% or more, and may be 0.005% or more.
On the other hand, when the W content exceeds 0.100%, the effect is saturated and the cost may be increased. Therefore, the W content is 0.100% or less. The W content is preferably 0.050% or less, more preferably 0.020% or less.
B:0~0.0050%
Bは、任意元素である。即ち、B含有量は、0%であってもよい。
Bは、鋼の強度向上に寄与し得る元素である。かかる効果を得る観点から、B含有量は、0%超であってもよく、0.0001%以上であってもよく、0.0005%以上であってもよい。
一方、B含有量が0.0050%を越えると、効果が飽和し、コストの上昇を招くおそれがある。従って、B含有量は、0.0050%以下である。B含有量は、好ましくは0.0040%以下であり、より好ましくは0.0020%以下である。 B: 0 to 0.0050%
B is an arbitrary element. That is, the B content may be 0%.
B is an element that can contribute to the strength improvement of steel. From the viewpoint of obtaining such effects, the B content may be more than 0%, may be 0.0001% or more, and may be 0.0005% or more.
On the other hand, if the B content exceeds 0.0050%, the effect may be saturated and the cost may increase. Therefore, the B content is 0.0050% or less. The B content is preferably 0.0040% or less, more preferably 0.0020% or less.
Bは、任意元素である。即ち、B含有量は、0%であってもよい。
Bは、鋼の強度向上に寄与し得る元素である。かかる効果を得る観点から、B含有量は、0%超であってもよく、0.0001%以上であってもよく、0.0005%以上であってもよい。
一方、B含有量が0.0050%を越えると、効果が飽和し、コストの上昇を招くおそれがある。従って、B含有量は、0.0050%以下である。B含有量は、好ましくは0.0040%以下であり、より好ましくは0.0020%以下である。 B: 0 to 0.0050%
B is an arbitrary element. That is, the B content may be 0%.
B is an element that can contribute to the strength improvement of steel. From the viewpoint of obtaining such effects, the B content may be more than 0%, may be 0.0001% or more, and may be 0.0005% or more.
On the other hand, if the B content exceeds 0.0050%, the effect may be saturated and the cost may increase. Therefore, the B content is 0.0050% or less. The B content is preferably 0.0040% or less, more preferably 0.0020% or less.
Mg:0~0.0200%
Mgは、任意元素である。即ち、Mg含有量は、0%であってもよい。
Mgは、鋼の強度向上に寄与し得る元素である。かかる効果を得る観点から、Mg含有量は、0%超であってもよく、0.0001%以上であってもよい。
一方、Mg含有量が0.0200%を越えると、効果が飽和し、コストの上昇を招くおそれがある。従って、Mg含有量は、0.0200%以下である。Mg含有量は、好ましくは0.0040%以下であり、より好ましくは0.0020%以下である。 Mg: 0-0.0200%
Mg is an optional element. That is, the Mg content may be 0%.
Mg is an element that can contribute to the strength improvement of steel. From the viewpoint of obtaining such an effect, the Mg content may be more than 0% or 0.0001% or more.
On the other hand, if the Mg content exceeds 0.0200%, the effect may be saturated and the cost may increase. Therefore, the Mg content is 0.0200% or less. The Mg content is preferably 0.0040% or less, more preferably 0.0020% or less.
Mgは、任意元素である。即ち、Mg含有量は、0%であってもよい。
Mgは、鋼の強度向上に寄与し得る元素である。かかる効果を得る観点から、Mg含有量は、0%超であってもよく、0.0001%以上であってもよい。
一方、Mg含有量が0.0200%を越えると、効果が飽和し、コストの上昇を招くおそれがある。従って、Mg含有量は、0.0200%以下である。Mg含有量は、好ましくは0.0040%以下であり、より好ましくは0.0020%以下である。 Mg: 0-0.0200%
Mg is an optional element. That is, the Mg content may be 0%.
Mg is an element that can contribute to the strength improvement of steel. From the viewpoint of obtaining such an effect, the Mg content may be more than 0% or 0.0001% or more.
On the other hand, if the Mg content exceeds 0.0200%, the effect may be saturated and the cost may increase. Therefore, the Mg content is 0.0200% or less. The Mg content is preferably 0.0040% or less, more preferably 0.0020% or less.
Zr:0~0.0200%
Zrは、任意元素である。即ち、Zr含有量は、0%であってもよい。
Zrは、鋼の強度向上に寄与し得る元素である。かかる効果を得る観点から、Zr含有量は、0%超であってもよく、0.0001%以上であってもよい。
一方、Zr含有量が0.0200%を越えると、効果が飽和し、コストの上昇を招くおそれがある。従って、Zr含有量は、0.0200%以下である。Zr含有量は、好ましくは0.0040%以下であり、より好ましくは0.0020%以下である。 Zr: 0 to 0.0200%
Zr is an arbitrary element. That is, the Zr content may be 0%.
Zr is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such an effect, the Zr content may be more than 0% or may be 0.0001% or more.
On the other hand, if the Zr content exceeds 0.0200%, the effect is saturated and the cost may increase. Therefore, the Zr content is 0.0200% or less. The Zr content is preferably 0.0040% or less, more preferably 0.0020% or less.
Zrは、任意元素である。即ち、Zr含有量は、0%であってもよい。
Zrは、鋼の強度向上に寄与し得る元素である。かかる効果を得る観点から、Zr含有量は、0%超であってもよく、0.0001%以上であってもよい。
一方、Zr含有量が0.0200%を越えると、効果が飽和し、コストの上昇を招くおそれがある。従って、Zr含有量は、0.0200%以下である。Zr含有量は、好ましくは0.0040%以下であり、より好ましくは0.0020%以下である。 Zr: 0 to 0.0200%
Zr is an arbitrary element. That is, the Zr content may be 0%.
Zr is an element that can contribute to improving the strength of steel. From the viewpoint of obtaining such an effect, the Zr content may be more than 0% or may be 0.0001% or more.
On the other hand, if the Zr content exceeds 0.0200%, the effect is saturated and the cost may increase. Therefore, the Zr content is 0.0200% or less. The Zr content is preferably 0.0040% or less, more preferably 0.0020% or less.
REM:0~0.0200%
REMは、任意元素である。従って、REM含有量は0%であってもよい。
ここで、「REM」は希土類元素、即ち、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuからなる群から選択される少なくとも1種の元素を指す。
REMは、鋼中の介在物を制御し、鋼の強度向上に寄与し得る元素である。かかる効果を得る観点から、REM含有量は、0%超であってもよく、0.0001%以上であってもよく、0.0010%以上であってもよい。
一方、REM含有量が0.0100%を超えると、粗大な介在物の個数が増え、耐サワー性が劣化する場合がある。従って、REM含有量は0.0200%以下である。REM含有量は、好ましくは0.0100%以下であり、より好ましくは0.0050%以下である。 REM: 0-0.0200%
REM is an arbitrary element. Therefore, the REM content may be 0%.
Here, "REM" is a rare earth element, that is, a group consisting of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Refers to at least one element selected.
REM is an element that controls inclusions in steel and can contribute to improving the strength of steel. From the viewpoint of obtaining such effects, the REM content may be more than 0%, may be 0.0001% or more, and may be 0.0010% or more.
On the other hand, if the REM content exceeds 0.0100%, the number of coarse inclusions may increase and the sour resistance may deteriorate. Therefore, the REM content is 0.0200% or less. The REM content is preferably 0.0100% or less, more preferably 0.0050% or less.
REMは、任意元素である。従って、REM含有量は0%であってもよい。
ここで、「REM」は希土類元素、即ち、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuからなる群から選択される少なくとも1種の元素を指す。
REMは、鋼中の介在物を制御し、鋼の強度向上に寄与し得る元素である。かかる効果を得る観点から、REM含有量は、0%超であってもよく、0.0001%以上であってもよく、0.0010%以上であってもよい。
一方、REM含有量が0.0100%を超えると、粗大な介在物の個数が増え、耐サワー性が劣化する場合がある。従って、REM含有量は0.0200%以下である。REM含有量は、好ましくは0.0100%以下であり、より好ましくは0.0050%以下である。 REM: 0-0.0200%
REM is an arbitrary element. Therefore, the REM content may be 0%.
Here, "REM" is a rare earth element, that is, a group consisting of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Refers to at least one element selected.
REM is an element that controls inclusions in steel and can contribute to improving the strength of steel. From the viewpoint of obtaining such effects, the REM content may be more than 0%, may be 0.0001% or more, and may be 0.0010% or more.
On the other hand, if the REM content exceeds 0.0100%, the number of coarse inclusions may increase and the sour resistance may deteriorate. Therefore, the REM content is 0.0200% or less. The REM content is preferably 0.0100% or less, more preferably 0.0050% or less.
母材部の化学組成は、上述した任意元素による効果を得る観点から、Cu:0%超1.000%以下、Ni:0%超1.000%以下、Cr:0%超1.00%以下、Mo:0%超0.5%以下、V:0%超0.200%以下、W:0%超0.100%以下、B:0%超0.0050%以下、Mg:0%超0.0200%以下、Zr:0%超0.0200%以下、及び、REM:0%超0.0200%以下からなる群から選択される少なくとも1種を含有してもよい。
各任意元素のより好ましい含有量については、それぞれ前述したとおりである。 The chemical composition of the base material portion is Cu: more than 0% and not more than 1.000%, Ni: more than 0% and not more than 1.000%, Cr: more than 0% and not more than 1.00% from the viewpoint of obtaining the effect of the above-mentioned arbitrary element. Below, Mo: more than 0% and 0.5% or less, V: more than 0% and 0.200% or less, W: more than 0% and 0.100% or less, B: more than 0% and 0.0050% or less, Mg: 0% It may contain at least one selected from the group consisting of super 0.0200% or less, Zr: 0% and 0.0200% or less, and REM: 0% and 0.0200% or less.
The more preferable content of each arbitrary element is as described above.
各任意元素のより好ましい含有量については、それぞれ前述したとおりである。 The chemical composition of the base material portion is Cu: more than 0% and not more than 1.000%, Ni: more than 0% and not more than 1.000%, Cr: more than 0% and not more than 1.00% from the viewpoint of obtaining the effect of the above-mentioned arbitrary element. Below, Mo: more than 0% and 0.5% or less, V: more than 0% and 0.200% or less, W: more than 0% and 0.100% or less, B: more than 0% and 0.0050% or less, Mg: 0% It may contain at least one selected from the group consisting of super 0.0200% or less, Zr: 0% and 0.0200% or less, and REM: 0% and 0.0200% or less.
The more preferable content of each arbitrary element is as described above.
残部:Fe及び不純物
母材部の化学組成において、上述した各元素を除いた残部は、Fe及び不純物である。
ここで、不純物とは、原材料に含まれる成分、または、製造の工程で混入する成分であって、意図的に鋼に含有させたものではない成分を指す。
不純物としては、上述した元素以外のあらゆる元素が挙げられる。不純物としての元素は、1種のみであっても2種以上であってもよい。
不純物として、例えば、Sb、Sn、Co、As、Pb、Bi、Hが挙げられる。
上述した元素のうち、Sb、Sn、Co、及びAsについては例えば含有量0.1%以下の混入が、Pb及びBiについては例えば含有量0.005%以下の混入が、Hについては例えば含有量0.0004%以下の混入が、それぞれあり得るが、その他の元素の含有量については、通常の範囲であれば、特に制御する必要はない。 Remaining part: Fe and impurities In the chemical composition of the base metal part, the balance excluding each element described above is Fe and impurities.
Here, the impurity refers to a component contained in the raw material or a component mixed in the manufacturing process and not intentionally contained in the steel.
The impurities include all elements other than the above-mentioned elements. The element as an impurity may be only one kind or two or more kinds.
Examples of the impurities include Sb, Sn, Co, As, Pb, Bi, and H.
Of the above-mentioned elements, for example, Sb, Sn, Co, and As are mixed with a content of 0.1% or less, Pb and Bi are mixed with a content of 0.005% or less, and H are contained with a content of, for example. There can be mixed amounts of 0.0004% or less, but the content of other elements does not need to be controlled within the normal range.
母材部の化学組成において、上述した各元素を除いた残部は、Fe及び不純物である。
ここで、不純物とは、原材料に含まれる成分、または、製造の工程で混入する成分であって、意図的に鋼に含有させたものではない成分を指す。
不純物としては、上述した元素以外のあらゆる元素が挙げられる。不純物としての元素は、1種のみであっても2種以上であってもよい。
不純物として、例えば、Sb、Sn、Co、As、Pb、Bi、Hが挙げられる。
上述した元素のうち、Sb、Sn、Co、及びAsについては例えば含有量0.1%以下の混入が、Pb及びBiについては例えば含有量0.005%以下の混入が、Hについては例えば含有量0.0004%以下の混入が、それぞれあり得るが、その他の元素の含有量については、通常の範囲であれば、特に制御する必要はない。 Remaining part: Fe and impurities In the chemical composition of the base metal part, the balance excluding each element described above is Fe and impurities.
Here, the impurity refers to a component contained in the raw material or a component mixed in the manufacturing process and not intentionally contained in the steel.
The impurities include all elements other than the above-mentioned elements. The element as an impurity may be only one kind or two or more kinds.
Examples of the impurities include Sb, Sn, Co, As, Pb, Bi, and H.
Of the above-mentioned elements, for example, Sb, Sn, Co, and As are mixed with a content of 0.1% or less, Pb and Bi are mixed with a content of 0.005% or less, and H are contained with a content of, for example. There can be mixed amounts of 0.0004% or less, but the content of other elements does not need to be controlled within the normal range.
Ceq:0.10~0.50
母材部の化学組成において、下記式(1)で表されるCeqは、0.10~0.50である。
Ceq = C+Mn/6+Cr/5+(Ni+Cu)/15+Nb+Mo+V … 式(1)
〔式(1)中、各元素記号は、各元素の質量%を表す。〕 Ceq: 0.10 to 0.50
In the chemical composition of the base material portion, Ceq represented by the following formula (1) is 0.10 to 0.50.
Ceq=C+Mn/6+Cr/5+(Ni+Cu)/15+Nb+Mo+V... Formula (1)
[In the formula (1), each element symbol represents mass% of each element. ]
母材部の化学組成において、下記式(1)で表されるCeqは、0.10~0.50である。
Ceq = C+Mn/6+Cr/5+(Ni+Cu)/15+Nb+Mo+V … 式(1)
〔式(1)中、各元素記号は、各元素の質量%を表す。〕 Ceq: 0.10 to 0.50
In the chemical composition of the base material portion, Ceq represented by the following formula (1) is 0.10 to 0.50.
Ceq=C+Mn/6+Cr/5+(Ni+Cu)/15+Nb+Mo+V... Formula (1)
[In the formula (1), each element symbol represents mass% of each element. ]
Ceqが0.10未満であると、鋼の強度が不足する場合がある。従って、Ceqは、0.10以上である。Ceqは、好ましくは0.12以上であり、より好ましくは0.14以上である。
Ceqが0.50超であると、耐サワー性が低下する場合がある。従って、Ceqは、0.50以下である。Ceqは、好ましくは0.45以下であり、より好ましくは0.42以下である。 When Ceq is less than 0.10, the strength of steel may be insufficient. Therefore, Ceq is 0.10. Ceq is preferably 0.12 or more, more preferably 0.14 or more.
If Ceq is more than 0.50, sour resistance may decrease. Therefore, Ceq is 0.50 or less. Ceq is preferably 0.45 or less, more preferably 0.42 or less.
Ceqが0.50超であると、耐サワー性が低下する場合がある。従って、Ceqは、0.50以下である。Ceqは、好ましくは0.45以下であり、より好ましくは0.42以下である。 When Ceq is less than 0.10, the strength of steel may be insufficient. Therefore, Ceq is 0.10. Ceq is preferably 0.12 or more, more preferably 0.14 or more.
If Ceq is more than 0.50, sour resistance may decrease. Therefore, Ceq is 0.50 or less. Ceq is preferably 0.45 or less, more preferably 0.42 or less.
EESP:0~10.00
母材部の化学組成において、下記式(2)で表されるEESPは、0~10.00である。
EESP = Ca×(1-124O)/1.25S … 式(2)
〔式(2)中、各元素記号は、各元素の質量%を表す。〕 EESP: 0 to 10.00
In the chemical composition of the base material portion, EESP represented by the following formula (2) is 0 to 10.00.
EESP=Ca×(1-124O)/1.25S... Formula (2)
[In the formula (2), each element symbol represents mass% of each element. ]
母材部の化学組成において、下記式(2)で表されるEESPは、0~10.00である。
EESP = Ca×(1-124O)/1.25S … 式(2)
〔式(2)中、各元素記号は、各元素の質量%を表す。〕 EESP: 0 to 10.00
In the chemical composition of the base material portion, EESP represented by the following formula (2) is 0 to 10.00.
EESP=Ca×(1-124O)/1.25S... Formula (2)
[In the formula (2), each element symbol represents mass% of each element. ]
EESPが10.00超であると、耐サワー性が低下する場合がある。従って、EESPは、10.00以下である。EESPは、好ましくは9.50以下であり、より好ましくは9.26以下である。
EESPは、0であってもよいし、0超であってもよいし、0.01以上であってもよいし、0.06以上であってもよい。 When the EESP is more than 10.00, the sour resistance may decrease. Therefore, EESP is 10.00 or less. EESP is preferably 9.50 or less, and more preferably 9.26 or less.
EESP may be 0, may be more than 0, may be 0.01 or more, and may be 0.06 or more.
EESPは、0であってもよいし、0超であってもよいし、0.01以上であってもよいし、0.06以上であってもよい。 When the EESP is more than 10.00, the sour resistance may decrease. Therefore, EESP is 10.00 or less. EESP is preferably 9.50 or less, and more preferably 9.26 or less.
EESP may be 0, may be more than 0, may be 0.01 or more, and may be 0.06 or more.
〔母材部の金属組織〕
本開示の電縫鋼管は、母材部の肉厚中央部の金属組織において、フェライトの面積率(以下、「フェライト分率」ともいう)が60~90%であり、残部が、焼戻しベイナイト及びパーライトからなる群から選択される少なくとも1種を含み、かつ、残部におけるマルテンサイト及び焼戻しマルテンサイトの合計面積率が残部全体に対して1%未満である。
更に、本開示の電縫鋼管は、母材部の肉厚中央部の金属組織において、平均フェライト粒径が10μm以下であり、平均フェライト粒径に対する最大フェライト粒径の比が3.0以下である。 [Metal structure of base metal]
In the electric resistance welded steel pipe of the present disclosure, the area ratio of ferrite (hereinafter, also referred to as “ferrite fraction”) is 60 to 90% in the metal structure of the central portion of the wall thickness of the base material, and the balance is tempered bainite and It contains at least one selected from the group consisting of pearlite, and the total area ratio of martensite and tempered martensite in the balance is less than 1% of the total balance.
Furthermore, in the electric resistance welded steel pipe of the present disclosure, the average ferrite grain size is 10 μm or less in the metal structure of the central portion of the wall thickness of the base metal portion, and the ratio of the maximum ferrite grain size to the average ferrite grain size is 3.0 or less. is there.
本開示の電縫鋼管は、母材部の肉厚中央部の金属組織において、フェライトの面積率(以下、「フェライト分率」ともいう)が60~90%であり、残部が、焼戻しベイナイト及びパーライトからなる群から選択される少なくとも1種を含み、かつ、残部におけるマルテンサイト及び焼戻しマルテンサイトの合計面積率が残部全体に対して1%未満である。
更に、本開示の電縫鋼管は、母材部の肉厚中央部の金属組織において、平均フェライト粒径が10μm以下であり、平均フェライト粒径に対する最大フェライト粒径の比が3.0以下である。 [Metal structure of base metal]
In the electric resistance welded steel pipe of the present disclosure, the area ratio of ferrite (hereinafter, also referred to as “ferrite fraction”) is 60 to 90% in the metal structure of the central portion of the wall thickness of the base material, and the balance is tempered bainite and It contains at least one selected from the group consisting of pearlite, and the total area ratio of martensite and tempered martensite in the balance is less than 1% of the total balance.
Furthermore, in the electric resistance welded steel pipe of the present disclosure, the average ferrite grain size is 10 μm or less in the metal structure of the central portion of the wall thickness of the base metal portion, and the ratio of the maximum ferrite grain size to the average ferrite grain size is 3.0 or less. is there.
母材部の肉厚中央部の金属組織における上述した特徴は、母材部の化学組成と、電縫鋼管の製造条件(素材である熱延鋼板の製造条件及び造管後の焼戻し条件を含む;例えば、後述の製法Aにおける各条件)と、の組み合わせによって実現され得る。
The above-mentioned features in the metal structure of the central part of the wall thickness of the base material include the chemical composition of the base material and the manufacturing conditions of the electrosewn steel pipe (the manufacturing conditions of the hot-rolled steel sheet as the material and the tempering conditions after the pipe making). For example, each of the following conditions in the production method A) can be realized.
本開示において、母材部の肉厚中央部の金属組織は、母材180°位置のL断面における肉厚中央部の金属組織を観察することによって確認する。
ここで、母材180°位置のL断面における肉厚中央部は、母材部の代表的な位置として選定した位置に過ぎない。従って、本開示の電縫鋼管では、母材部中、母材180°位置のL断面における肉厚中央部以外の位置の金属組織が、上記の特徴を有していても構わない。 In the present disclosure, the metal structure of the central portion of the base metal portion is confirmed by observing the metal structure of the central portion of the wall thickness in the L cross section at the position of 180 ° of the base metal.
Here, the central portion of the wall thickness in the L cross section at the 180 ° position of the base metal is only a position selected as a representative position of the base metal portion. Therefore, in the electric resistance welded steel pipe of the present disclosure, the metal structure at a position other than the central portion of the wall thickness in the L section at the base material 180° position in the base material portion may have the above characteristics.
ここで、母材180°位置のL断面における肉厚中央部は、母材部の代表的な位置として選定した位置に過ぎない。従って、本開示の電縫鋼管では、母材部中、母材180°位置のL断面における肉厚中央部以外の位置の金属組織が、上記の特徴を有していても構わない。 In the present disclosure, the metal structure of the central portion of the base metal portion is confirmed by observing the metal structure of the central portion of the wall thickness in the L cross section at the position of 180 ° of the base metal.
Here, the central portion of the wall thickness in the L cross section at the 180 ° position of the base metal is only a position selected as a representative position of the base metal portion. Therefore, in the electric resistance welded steel pipe of the present disclosure, the metal structure at a position other than the central portion of the wall thickness in the L section at the base material 180° position in the base material portion may have the above characteristics.
本開示において、「母材180°位置」とは、電縫溶接部から管周方向に180°ずれた位置を意味する。ここで、母材180°位置は、母材部の代表的な位置として選定した位置である。
本開示において、「L断面」とは、管軸方向及び肉厚方向に対して平行な断面を指す。 In the present disclosure, the "base metal 180 ° position" means a position displaced by 180 ° in the pipe circumferential direction from the electric sewing welded portion. Here, the base material 180° position is a position selected as a representative position of the base material portion.
In the present disclosure, the “L cross section” refers to a cross section parallel to the tube axis direction and the wall thickness direction.
本開示において、「L断面」とは、管軸方向及び肉厚方向に対して平行な断面を指す。 In the present disclosure, the "base metal 180 ° position" means a position displaced by 180 ° in the pipe circumferential direction from the electric sewing welded portion. Here, the base material 180° position is a position selected as a representative position of the base material portion.
In the present disclosure, the “L cross section” refers to a cross section parallel to the tube axis direction and the wall thickness direction.
<フェライトの面積率(フェライト分率)>
母材部の肉厚中央部の金属組織において、フェライトの面積率(フェライト分率)は、60~90%である。
フェライト分率が60%以上であること(即ち、母材部の肉厚中央部の金属組織がフェライト主体の組織であること)は、耐サワー性の向上に寄与する。フェライト分率は、好ましくは65%以上である。
フェライト分率が90%以下であることは、電縫鋼管の管軸方向の引張強度向上に寄与する。フェライト分率は、好ましくは85%以下である。 <Ferrite area ratio (Ferrite fraction)>
The area ratio of ferrite (ferrite fraction) in the metal structure of the central portion of the wall thickness of the base material is 60 to 90%.
The fact that the ferrite fraction is 60% or more (that is, the metal structure in the central portion of the base metal portion is mainly ferrite) contributes to the improvement of sour resistance. The ferrite fraction is preferably 65% or more.
The ferrite fraction of 90% or less contributes to the improvement of the tensile strength in the axial direction of the electric resistance welded steel pipe. The ferrite fraction is preferably 85% or less.
母材部の肉厚中央部の金属組織において、フェライトの面積率(フェライト分率)は、60~90%である。
フェライト分率が60%以上であること(即ち、母材部の肉厚中央部の金属組織がフェライト主体の組織であること)は、耐サワー性の向上に寄与する。フェライト分率は、好ましくは65%以上である。
フェライト分率が90%以下であることは、電縫鋼管の管軸方向の引張強度向上に寄与する。フェライト分率は、好ましくは85%以下である。 <Ferrite area ratio (Ferrite fraction)>
The area ratio of ferrite (ferrite fraction) in the metal structure of the central portion of the wall thickness of the base material is 60 to 90%.
The fact that the ferrite fraction is 60% or more (that is, the metal structure in the central portion of the base metal portion is mainly ferrite) contributes to the improvement of sour resistance. The ferrite fraction is preferably 65% or more.
The ferrite fraction of 90% or less contributes to the improvement of the tensile strength in the axial direction of the electric resistance welded steel pipe. The ferrite fraction is preferably 85% or less.
本開示において、フェライト分率の測定は、JIS G 0551:2013に準拠して行う。
詳細には、まず、電縫鋼管の母材180°位置のL断面における肉厚中央部を研磨し、次いでナイタール腐食液によってエッチングする。エッチングされた肉厚中央部の金属組織写真を、光学顕微鏡により、倍率1000倍にて撮影する。金属組織写真は、3視野分撮影する(1視野は100μm×100μmの範囲)。得られた3視野分の金属組織写真を画像処理し、フェライト分率(即ち、金属組織全体に占めるフェライトの面積率)を求める。画像処理は、例えば(株)ニレコ製の小型汎用画像解析装置LUZEX APを用いて行う。 In the present disclosure, the ferrite fraction is measured according to JIS G 0551:2013.
Specifically, first, the central portion of the wall thickness of the E-welded steel pipe in the L section at the 180° position of the base material is polished, and then etched with a nital corrosive solution. A photograph of the etched metal structure of the central portion of the wall thickness is taken with an optical microscope at a magnification of 1000 times. The metal structure photograph is taken for three visual fields (one visual field is in the range of 100 μm×100 μm). The obtained metal structure photographs of the three visual fields are image-processed to obtain the ferrite fraction (that is, the area ratio of ferrite in the entire metal structure). The image processing is performed using, for example, a small general-purpose image analyzer LUZEX AP manufactured by Nireco Corporation.
詳細には、まず、電縫鋼管の母材180°位置のL断面における肉厚中央部を研磨し、次いでナイタール腐食液によってエッチングする。エッチングされた肉厚中央部の金属組織写真を、光学顕微鏡により、倍率1000倍にて撮影する。金属組織写真は、3視野分撮影する(1視野は100μm×100μmの範囲)。得られた3視野分の金属組織写真を画像処理し、フェライト分率(即ち、金属組織全体に占めるフェライトの面積率)を求める。画像処理は、例えば(株)ニレコ製の小型汎用画像解析装置LUZEX APを用いて行う。 In the present disclosure, the ferrite fraction is measured according to JIS G 0551:2013.
Specifically, first, the central portion of the wall thickness of the E-welded steel pipe in the L section at the 180° position of the base material is polished, and then etched with a nital corrosive solution. A photograph of the etched metal structure of the central portion of the wall thickness is taken with an optical microscope at a magnification of 1000 times. The metal structure photograph is taken for three visual fields (one visual field is in the range of 100 μm×100 μm). The obtained metal structure photographs of the three visual fields are image-processed to obtain the ferrite fraction (that is, the area ratio of ferrite in the entire metal structure). The image processing is performed using, for example, a small general-purpose image analyzer LUZEX AP manufactured by Nireco Corporation.
<残部>
母材部の肉厚中央部の金属組織において、残部(即ち、フェライト以外の部分)は、焼戻しベイナイト及びパーライトからなる群から選択される少なくとも1種を含み、かつ、残部におけるマルテンサイト及び焼戻しマルテンサイトの合計面積率が残部全体に対して1%未満である。 <Remainder>
In the metal structure of the central portion of the thickness of the base metal part, the rest (that is, the portion other than ferrite) contains at least one selected from the group consisting of tempered bainite and pearlite, and the remaining martensite and tempered martensite. The total area ratio of the site is less than 1% of the rest.
母材部の肉厚中央部の金属組織において、残部(即ち、フェライト以外の部分)は、焼戻しベイナイト及びパーライトからなる群から選択される少なくとも1種を含み、かつ、残部におけるマルテンサイト及び焼戻しマルテンサイトの合計面積率が残部全体に対して1%未満である。 <Remainder>
In the metal structure of the central portion of the thickness of the base metal part, the rest (that is, the portion other than ferrite) contains at least one selected from the group consisting of tempered bainite and pearlite, and the remaining martensite and tempered martensite. The total area ratio of the site is less than 1% of the rest.
本開示において、残部の確認は、フェライト分率の測定に用いた3視野分の金属組織写真に基づいて行う。
In the present disclosure, the remaining part is confirmed based on the metallographic photographs of the three fields of view used for measuring the ferrite fraction.
本開示における「ベイナイト」の概念には、ベイニティックフェライトの形態がラス状である上部ベイナイト、及び、ベイニティックフェライトの形態が板状である下部ベイナイトの両方が包含される〔例えば、日本金属学会「まてりあ」 Vol.46(2007), No.5, pp.321-326参照〕。
本開示における「焼戻しベイナイト」は、その組織中に粒状のセメンタイトを含む点で、焼戻しベイナイトではないベイナイトと区別される。
本開示における「パーライト」の概念には、層状のセメンタイトを含む典型的なパーライトだけでなく、擬似パーライト、焼戻しパーライト、焼戻し擬似パーライト等も包含される。 The concept of "bainite" in the present disclosure includes both an upper bainite in which the morphology of bainitic ferrite is lath-shaped and a lower bainite in which the morphology of bainitic ferrite is platy [eg, Japan Metallurgical Society "Materia" Vol.46 (2007), No.5, pp.321-326].
“Tempered bainite” in the present disclosure is distinguished from bainite that is not tempered bainite in that it contains granular cementite in its structure.
The concept of "pearlite" in the present disclosure includes not only typical pearlite containing layered cementite, but also pseudo pearlite, tempered pearlite, tempered pseudo pearlite and the like.
本開示における「焼戻しベイナイト」は、その組織中に粒状のセメンタイトを含む点で、焼戻しベイナイトではないベイナイトと区別される。
本開示における「パーライト」の概念には、層状のセメンタイトを含む典型的なパーライトだけでなく、擬似パーライト、焼戻しパーライト、焼戻し擬似パーライト等も包含される。 The concept of "bainite" in the present disclosure includes both an upper bainite in which the morphology of bainitic ferrite is lath-shaped and a lower bainite in which the morphology of bainitic ferrite is platy [eg, Japan Metallurgical Society "Materia" Vol.46 (2007), No.5, pp.321-326].
“Tempered bainite” in the present disclosure is distinguished from bainite that is not tempered bainite in that it contains granular cementite in its structure.
The concept of "pearlite" in the present disclosure includes not only typical pearlite containing layered cementite, but also pseudo pearlite, tempered pearlite, tempered pseudo pearlite and the like.
また、残部において、マルテンサイト及び焼戻しマルテンサイトの合計面積率が残部全体に対して1%未満であることは、母材部の金属組織が、マルテンサイト及び焼戻しマルテンサイトを実質的に含まないことを意味する。
母材部の金属組織が、ラス構造を有するマルテンサイト及び焼戻しマルテンサイトを実質的に含まないことにより、転位の局所的な集中が抑制され(即ち、転位が分散され)、その結果、耐サワー性が向上する。また、母材部の金属組織が、マルテンサイト及び焼戻しマルテンサイトを実質的に含まないことにより、電縫鋼管の管軸方向の引張強度が過度となることも抑制される。
残部におけるマルテンサイト及び焼戻しマルテンサイトの合計面積率は、0%であってもよい。 Further, in the balance, the total area ratio of martensite and tempered martensite is less than 1% with respect to the whole balance, that the metal structure of the base metal part does not substantially contain martensite and tempered martensite. Means
Since the metal structure of the base material is substantially free of martensite having a lath structure and tempered martensite, local concentration of dislocations is suppressed (that is, dislocations are dispersed), and as a result, sour resistance is increased. The property is improved. In addition, since the metal structure of the base material does not substantially contain martensite and tempered martensite, it is possible to prevent the tensile strength of the electric resistance welded steel pipe in the pipe axis direction from becoming excessive.
The total area ratio of martensite and tempered martensite in the balance may be 0%.
母材部の金属組織が、ラス構造を有するマルテンサイト及び焼戻しマルテンサイトを実質的に含まないことにより、転位の局所的な集中が抑制され(即ち、転位が分散され)、その結果、耐サワー性が向上する。また、母材部の金属組織が、マルテンサイト及び焼戻しマルテンサイトを実質的に含まないことにより、電縫鋼管の管軸方向の引張強度が過度となることも抑制される。
残部におけるマルテンサイト及び焼戻しマルテンサイトの合計面積率は、0%であってもよい。 Further, in the balance, the total area ratio of martensite and tempered martensite is less than 1% with respect to the whole balance, that the metal structure of the base metal part does not substantially contain martensite and tempered martensite. Means
Since the metal structure of the base material is substantially free of martensite having a lath structure and tempered martensite, local concentration of dislocations is suppressed (that is, dislocations are dispersed), and as a result, sour resistance is increased. The property is improved. In addition, since the metal structure of the base material does not substantially contain martensite and tempered martensite, it is possible to prevent the tensile strength of the electric resistance welded steel pipe in the pipe axis direction from becoming excessive.
The total area ratio of martensite and tempered martensite in the balance may be 0%.
<平均フェライト粒径>
母材部の肉厚中央部の金属組織において、平均フェライト粒径は、10μm以下である。
前述したとおり、平均フェライト粒径が10μm以下であることは、耐サワー性の向上に寄与する。
平均フェライト粒径の下限には特に制限はない。鋼の製造適性の観点から、平均フェライト粒径は、好ましくは3μm以上であり、より好ましくは5μm以上である。 <Average ferrite grain size>
In the metal structure of the central portion of the wall thickness of the base material, the average ferrite grain size is 10 μm or less.
As described above, the average ferrite grain size of 10 μm or less contributes to the improvement of sour resistance.
There is no particular lower limit to the average ferrite grain size. From the viewpoint of suitability for manufacturing steel, the average ferrite grain size is preferably 3 μm or more, more preferably 5 μm or more.
母材部の肉厚中央部の金属組織において、平均フェライト粒径は、10μm以下である。
前述したとおり、平均フェライト粒径が10μm以下であることは、耐サワー性の向上に寄与する。
平均フェライト粒径の下限には特に制限はない。鋼の製造適性の観点から、平均フェライト粒径は、好ましくは3μm以上であり、より好ましくは5μm以上である。 <Average ferrite grain size>
In the metal structure of the central portion of the wall thickness of the base material, the average ferrite grain size is 10 μm or less.
As described above, the average ferrite grain size of 10 μm or less contributes to the improvement of sour resistance.
There is no particular lower limit to the average ferrite grain size. From the viewpoint of suitability for manufacturing steel, the average ferrite grain size is preferably 3 μm or more, more preferably 5 μm or more.
本開示において、平均フェライト粒径の測定は、フェライト分率の測定に用いた3視野分の金属組織写真に基づいて行う。
これらの金属組織写真から、フェライト粒100個を任意に抽出し、個々のフェライト粒について、円相当径を粒径として求める。得られた100個の測定値(粒径)を算術平均し、得られた算術平均値を、平均フェライト粒径とする。 In the present disclosure, the average ferrite grain size is measured based on the metallographic photographs of the three fields of view used for the measurement of the ferrite fraction.
From these metallographic photographs, 100 ferrite grains are arbitrarily extracted, and the equivalent circle diameter of each ferrite grain is determined as the particle size. The obtained 100 measured values (particle size) are arithmetically averaged, and the obtained arithmetic mean value is taken as the average ferrite particle size.
これらの金属組織写真から、フェライト粒100個を任意に抽出し、個々のフェライト粒について、円相当径を粒径として求める。得られた100個の測定値(粒径)を算術平均し、得られた算術平均値を、平均フェライト粒径とする。 In the present disclosure, the average ferrite grain size is measured based on the metallographic photographs of the three fields of view used for the measurement of the ferrite fraction.
From these metallographic photographs, 100 ferrite grains are arbitrarily extracted, and the equivalent circle diameter of each ferrite grain is determined as the particle size. The obtained 100 measured values (particle size) are arithmetically averaged, and the obtained arithmetic mean value is taken as the average ferrite particle size.
<平均フェライト粒径に対する最大フェライト粒径の比>
母材部の肉厚中央部の金属組織において、平均フェライト粒径に対する最大フェライト粒径の比(以下、「最大フェライト粒径/平均フェライト粒径比」ともいう)は、3.0以下である。
前述したとおり、最大フェライト粒径/平均フェライト粒径比が3.0以下であることは、耐サワー性の向上に寄与する。
最大フェライト粒径/平均フェライト粒径比の下限は、理想的には1.0である。鋼の製造適性の観点から、最大フェライト粒径/平均フェライト粒径比の下限は、1.5であってもよく、1.8であってもよい。 <Ratio of maximum ferrite grain size to average ferrite grain size>
The ratio of the maximum ferrite grain size to the average ferrite grain size (hereinafter, also referred to as "maximum ferrite grain size / average ferrite grain size ratio") is 3.0 or less in the metal structure at the center of the wall thickness of the base metal portion. ..
As described above, the maximum ferrite grain size/average ferrite grain size ratio of 3.0 or less contributes to the improvement of sour resistance.
The lower limit of the maximum ferrite grain size/average ferrite grain size ratio is ideally 1.0. From the viewpoint of suitability for manufacturing steel, the lower limit of the maximum ferrite grain size/average ferrite grain size ratio may be 1.5 or 1.8.
母材部の肉厚中央部の金属組織において、平均フェライト粒径に対する最大フェライト粒径の比(以下、「最大フェライト粒径/平均フェライト粒径比」ともいう)は、3.0以下である。
前述したとおり、最大フェライト粒径/平均フェライト粒径比が3.0以下であることは、耐サワー性の向上に寄与する。
最大フェライト粒径/平均フェライト粒径比の下限は、理想的には1.0である。鋼の製造適性の観点から、最大フェライト粒径/平均フェライト粒径比の下限は、1.5であってもよく、1.8であってもよい。 <Ratio of maximum ferrite grain size to average ferrite grain size>
The ratio of the maximum ferrite grain size to the average ferrite grain size (hereinafter, also referred to as "maximum ferrite grain size / average ferrite grain size ratio") is 3.0 or less in the metal structure at the center of the wall thickness of the base metal portion. ..
As described above, the maximum ferrite grain size/average ferrite grain size ratio of 3.0 or less contributes to the improvement of sour resistance.
The lower limit of the maximum ferrite grain size/average ferrite grain size ratio is ideally 1.0. From the viewpoint of suitability for manufacturing steel, the lower limit of the maximum ferrite grain size/average ferrite grain size ratio may be 1.5 or 1.8.
本開示において、最大フェライト粒径/平均フェライト粒径比の測定は、フェライト分率の測定に用いた3視野分の金属組織写真に基づいて行う。
これらの金属組織写真から、円相当径が最大であるフェライト粒を選定する。選定したフェライト粒の円相当径を、最大フェライト粒径とする。
得られた最大フェライト粒径を、上述した平均フェライト粒径で除すことにより、最大フェライト粒径/平均フェライト粒径比を求める。 In the present disclosure, the measurement of the maximum ferrite grain size/average ferrite grain size ratio is performed based on the metallographic photographs of the three visual fields used for the measurement of the ferrite fraction.
From these metallographic photographs, ferrite grains with the largest equivalent circle diameter are selected. The circle equivalent diameter of the selected ferrite grains is the maximum ferrite grain size.
The maximum ferrite grain size/average ferrite grain size ratio is determined by dividing the obtained maximum ferrite grain size by the above-mentioned average ferrite grain size.
これらの金属組織写真から、円相当径が最大であるフェライト粒を選定する。選定したフェライト粒の円相当径を、最大フェライト粒径とする。
得られた最大フェライト粒径を、上述した平均フェライト粒径で除すことにより、最大フェライト粒径/平均フェライト粒径比を求める。 In the present disclosure, the measurement of the maximum ferrite grain size/average ferrite grain size ratio is performed based on the metallographic photographs of the three visual fields used for the measurement of the ferrite fraction.
From these metallographic photographs, ferrite grains with the largest equivalent circle diameter are selected. The circle equivalent diameter of the selected ferrite grains is the maximum ferrite grain size.
The maximum ferrite grain size/average ferrite grain size ratio is determined by dividing the obtained maximum ferrite grain size by the above-mentioned average ferrite grain size.
<転位密度>
本開示の電縫鋼管において、母材部の肉厚中央部の転位密度の具体的な上限には特に制限はない。母材部の肉厚中央部の転位密度の上限は、例えば2.0×1015m-2である。
ここで、母材部の肉厚中央部の転位密度は、リーリング敷設等によってひずみが付与される前の転位密度(即ち、初期の転位密度)である。初期の転位密度が低いほど、ひずみが付与された後の転位密度も低くなり、その結果、ひずみが付与された後における耐サワー性をより向上させることができる。
従って、母材部の肉厚中央部の転位密度が2.0×1015m-2以下である場合には、ひずみが付与された後における耐サワー性をより向上させることができる。 <Dislocation density>
In the electric resistance welded steel pipe of the present disclosure, there is no particular limitation on the specific upper limit of the dislocation density at the central portion of the wall thickness of the base material. The upper limit of the dislocation density in the central portion of the thickness of the base material is, for example, 2.0×10 15 m −2 .
Here, the dislocation density at the center of the wall thickness of the base metal portion is the dislocation density (that is, the initial dislocation density) before strain is applied by reeling laying or the like. The lower the initial dislocation density, the lower the dislocation density after strain is applied, and as a result, the sour resistance after strain is applied can be further improved.
Therefore, when the dislocation density in the central portion of the thickness of the base material is 2.0×10 15 m −2 or less, the sour resistance after the strain is applied can be further improved.
本開示の電縫鋼管において、母材部の肉厚中央部の転位密度の具体的な上限には特に制限はない。母材部の肉厚中央部の転位密度の上限は、例えば2.0×1015m-2である。
ここで、母材部の肉厚中央部の転位密度は、リーリング敷設等によってひずみが付与される前の転位密度(即ち、初期の転位密度)である。初期の転位密度が低いほど、ひずみが付与された後の転位密度も低くなり、その結果、ひずみが付与された後における耐サワー性をより向上させることができる。
従って、母材部の肉厚中央部の転位密度が2.0×1015m-2以下である場合には、ひずみが付与された後における耐サワー性をより向上させることができる。 <Dislocation density>
In the electric resistance welded steel pipe of the present disclosure, there is no particular limitation on the specific upper limit of the dislocation density at the central portion of the wall thickness of the base material. The upper limit of the dislocation density in the central portion of the thickness of the base material is, for example, 2.0×10 15 m −2 .
Here, the dislocation density at the center of the wall thickness of the base metal portion is the dislocation density (that is, the initial dislocation density) before strain is applied by reeling laying or the like. The lower the initial dislocation density, the lower the dislocation density after strain is applied, and as a result, the sour resistance after strain is applied can be further improved.
Therefore, when the dislocation density in the central portion of the thickness of the base material is 2.0×10 15 m −2 or less, the sour resistance after the strain is applied can be further improved.
ここで、母材部の肉厚中央部の転位密度は、以下のようにして求める。
母材180°位置のL断面における肉厚中央部について、X線回折により、(110)面、(211)面、及び(220)面の半価幅をそれぞれ測定し、測定値に基づき、Williamson-Hall法(詳細には、ACTA METALLURGICA Vol.1, JAN. 1953, pp.22-31に記載された方法)に従い、転位密度を算出する。
以上の測定及び算出を、上記肉厚中央部における3箇所で行い、得られた3つの算出値の算術平均値を、本開示における転位密度とする。 Here, the dislocation density in the central portion of the thickness of the base material is determined as follows.
The half-widths of the (110) plane, the (211) plane, and the (220) plane were measured by X-ray diffraction for the central portion of the wall thickness in the L cross section at the base material 180° position, and based on the measured values, Williamson The dislocation density is calculated according to the -Hall method (specifically, the method described in ACTA METALLURGICA Vol.1, JAN. 1953, pp.22-31).
The above measurement and calculation are performed at three points in the central portion of the wall thickness, and the arithmetic mean value of the obtained three calculated values is defined as the dislocation density in the present disclosure.
母材180°位置のL断面における肉厚中央部について、X線回折により、(110)面、(211)面、及び(220)面の半価幅をそれぞれ測定し、測定値に基づき、Williamson-Hall法(詳細には、ACTA METALLURGICA Vol.1, JAN. 1953, pp.22-31に記載された方法)に従い、転位密度を算出する。
以上の測定及び算出を、上記肉厚中央部における3箇所で行い、得られた3つの算出値の算術平均値を、本開示における転位密度とする。 Here, the dislocation density in the central portion of the thickness of the base material is determined as follows.
The half-widths of the (110) plane, the (211) plane, and the (220) plane were measured by X-ray diffraction for the central portion of the wall thickness in the L cross section at the base material 180° position, and based on the measured values, Williamson The dislocation density is calculated according to the -Hall method (specifically, the method described in ACTA METALLURGICA Vol.1, JAN. 1953, pp.22-31).
The above measurement and calculation are performed at three points in the central portion of the wall thickness, and the arithmetic mean value of the obtained three calculated values is defined as the dislocation density in the present disclosure.
X線回折の条件は以下のとおりである。X線回折に用いるX線回折装置としては、例えば、リガク社製「RINT2200」を用いる。
管球:Mo管球(ターゲットとしてMoを用いた管球)
ターゲット出力:50KV、40mA
スリット:発散1/2°、散乱1°、受光0.15mm
サンプリング幅:0.010°
測定範囲(2θ):34.2°~36.2°
最大カウント数:3000以上 The conditions of X-ray diffraction are as follows. As the X-ray diffraction device used for X-ray diffraction, for example, "RINT2200" manufactured by Rigaku Corporation is used.
Tube: Mo tube (tube using Mo as a target)
Target output: 50KV, 40mA
Slit: Divergence 1/2°, scattering 1°, received light 0.15mm
Sampling width: 0.010 °
Measuring range (2θ): 34.2° to 36.2°
Maximum count: 3000 or more
管球:Mo管球(ターゲットとしてMoを用いた管球)
ターゲット出力:50KV、40mA
スリット:発散1/2°、散乱1°、受光0.15mm
サンプリング幅:0.010°
測定範囲(2θ):34.2°~36.2°
最大カウント数:3000以上 The conditions of X-ray diffraction are as follows. As the X-ray diffraction device used for X-ray diffraction, for example, "RINT2200" manufactured by Rigaku Corporation is used.
Tube: Mo tube (tube using Mo as a target)
Target output: 50KV, 40mA
Slit: Divergence 1/2°, scattering 1°, received light 0.15mm
Sampling width: 0.010 °
Measuring range (2θ): 34.2° to 36.2°
Maximum count: 3000 or more
〔管軸方向の引張強度(TS)〕
本開示の電縫鋼管は、管軸方向の引張強度(TS)が400~700MPaである。
管軸方向のTSが400MPa以上であることにより、ラインパイプ用電縫鋼管としての強度が確保される。管軸方向のTSは、好ましくは450MPa以上であり、より好ましくは490MPa以上である。
管軸方向のTSが700MPa以下であることにより、ラインパイプ用電縫鋼管を敷設する際の曲げ変形性(即ち、曲げ易さ)がより向上し、また、ラインパイプ用電縫鋼管の座屈がより抑制される。管軸方向のTSは、好ましくは650MPa以下である。 [Tensile strength in the tube axis direction (TS)]
The electric resistance welded steel pipe of the present disclosure has a tensile strength (TS) in the pipe axis direction of 400 to 700 MPa.
When TS in the pipe axis direction is 400 MPa or more, the strength of the electric resistance welded steel pipe for a line pipe is secured. The TS in the tube axis direction is preferably 450 MPa or more, more preferably 490 MPa or more.
When TS in the pipe axis direction is 700 MPa or less, bending deformability (that is, bending ease) when laying the electric resistance welded steel pipe for line pipe is further improved, and the buckling of the electric resistance welded steel pipe for line pipe is further improved. Is more suppressed. TS in the tube axis direction is preferably 650 MPa or less.
本開示の電縫鋼管は、管軸方向の引張強度(TS)が400~700MPaである。
管軸方向のTSが400MPa以上であることにより、ラインパイプ用電縫鋼管としての強度が確保される。管軸方向のTSは、好ましくは450MPa以上であり、より好ましくは490MPa以上である。
管軸方向のTSが700MPa以下であることにより、ラインパイプ用電縫鋼管を敷設する際の曲げ変形性(即ち、曲げ易さ)がより向上し、また、ラインパイプ用電縫鋼管の座屈がより抑制される。管軸方向のTSは、好ましくは650MPa以下である。 [Tensile strength in the tube axis direction (TS)]
The electric resistance welded steel pipe of the present disclosure has a tensile strength (TS) in the pipe axis direction of 400 to 700 MPa.
When TS in the pipe axis direction is 400 MPa or more, the strength of the electric resistance welded steel pipe for a line pipe is secured. The TS in the tube axis direction is preferably 450 MPa or more, more preferably 490 MPa or more.
When TS in the pipe axis direction is 700 MPa or less, bending deformability (that is, bending ease) when laying the electric resistance welded steel pipe for line pipe is further improved, and the buckling of the electric resistance welded steel pipe for line pipe is further improved. Is more suppressed. TS in the tube axis direction is preferably 650 MPa or less.
〔管軸方向の降伏強度(YS)〕
本開示の電縫鋼管は、管軸方向の降伏強度(YS)が300~650MPaである。
管軸方向のYSが300MPa以上であることにより、ラインパイプ用電縫鋼管としての強度が確保される。管軸方向のYSは、好ましくは350MPa以上であり、より好ましくは360MPa以上である。
管軸方向のYSが650MPa以下であることにより、ラインパイプ用電縫鋼管を敷設する際の曲げ変形性(即ち、曲げ易さ)がより向上し、また、ラインパイプ用電縫鋼管の座屈がより抑制される。管軸方向のTSは、好ましくは620MPa以下である。 [Yield strength (YS) in the pipe axis direction]
The electric resistance welded steel pipe of the present disclosure has a yield strength (YS) in the pipe axis direction of 300 to 650 MPa.
When YS in the pipe axis direction is 300 MPa or more, the strength of the electric resistance welded steel pipe for a line pipe is secured. The YS in the tube axis direction is preferably 350 MPa or more, more preferably 360 MPa or more.
When YS in the pipe axis direction is 650 MPa or less, bending deformability (that is, easiness of bending) when laying an electric resistance welded steel pipe for a line pipe is further improved, and buckling of the electric resistance welded steel pipe for a line pipe is further improved. Is more suppressed. TS in the tube axis direction is preferably 620 MPa or less.
本開示の電縫鋼管は、管軸方向の降伏強度(YS)が300~650MPaである。
管軸方向のYSが300MPa以上であることにより、ラインパイプ用電縫鋼管としての強度が確保される。管軸方向のYSは、好ましくは350MPa以上であり、より好ましくは360MPa以上である。
管軸方向のYSが650MPa以下であることにより、ラインパイプ用電縫鋼管を敷設する際の曲げ変形性(即ち、曲げ易さ)がより向上し、また、ラインパイプ用電縫鋼管の座屈がより抑制される。管軸方向のTSは、好ましくは620MPa以下である。 [Yield strength (YS) in the pipe axis direction]
The electric resistance welded steel pipe of the present disclosure has a yield strength (YS) in the pipe axis direction of 300 to 650 MPa.
When YS in the pipe axis direction is 300 MPa or more, the strength of the electric resistance welded steel pipe for a line pipe is secured. The YS in the tube axis direction is preferably 350 MPa or more, more preferably 360 MPa or more.
When YS in the pipe axis direction is 650 MPa or less, bending deformability (that is, easiness of bending) when laying an electric resistance welded steel pipe for a line pipe is further improved, and buckling of the electric resistance welded steel pipe for a line pipe is further improved. Is more suppressed. TS in the tube axis direction is preferably 620 MPa or less.
〔管軸方向の降伏比(YR)〕
本開示の電縫鋼管は、管軸方向の降伏比(YR=(YS/TS)×100)が、95%以下である。
これにより、ラインパイプ用電縫鋼管を敷設する際の曲げ変形性(即ち、曲げ易さ)がより向上し、また、ラインパイプ用電縫鋼管の座屈がより抑制される。
管軸方向のYRは、好ましくは91%以下である。
管軸方向のYRの下限は、電縫鋼管の製造適性の観点から、好ましくは80%以上であり、より好ましくは85%以上であり、更に好ましくは88%以上である。 [Yield ratio in the axial direction (YR)]
The yield ratio (YR = (YS / TS) × 100) in the pipe axis direction of the electrosewn steel pipe of the present disclosure is 95% or less.
Thereby, bending deformability (that is, easiness of bending) when laying the electric resistance welded steel pipe for a line pipe is further improved, and buckling of the electric resistance welded steel pipe for a line pipe is further suppressed.
YR in the tube axis direction is preferably 91% or less.
The lower limit of YR in the pipe axis direction is preferably 80% or more, more preferably 85% or more, still more preferably 88% or more, from the viewpoint of suitability for manufacturing electric resistance welded steel pipe.
本開示の電縫鋼管は、管軸方向の降伏比(YR=(YS/TS)×100)が、95%以下である。
これにより、ラインパイプ用電縫鋼管を敷設する際の曲げ変形性(即ち、曲げ易さ)がより向上し、また、ラインパイプ用電縫鋼管の座屈がより抑制される。
管軸方向のYRは、好ましくは91%以下である。
管軸方向のYRの下限は、電縫鋼管の製造適性の観点から、好ましくは80%以上であり、より好ましくは85%以上であり、更に好ましくは88%以上である。 [Yield ratio in the axial direction (YR)]
The yield ratio (YR = (YS / TS) × 100) in the pipe axis direction of the electrosewn steel pipe of the present disclosure is 95% or less.
Thereby, bending deformability (that is, easiness of bending) when laying the electric resistance welded steel pipe for a line pipe is further improved, and buckling of the electric resistance welded steel pipe for a line pipe is further suppressed.
YR in the tube axis direction is preferably 91% or less.
The lower limit of YR in the pipe axis direction is preferably 80% or more, more preferably 85% or more, still more preferably 88% or more, from the viewpoint of suitability for manufacturing electric resistance welded steel pipe.
管軸方向のYRが95%以下であることは、造管後、焼戻しを行うことによって達成され得る。この理由は、造管後の焼戻しにより、転位密度が低下してYSが下がり、かつ、転位上にセメンタイトが析出することによって加工硬化が大きくなる(即ち、TSが上昇する)ためと考えられる。
A YR of 95% or less in the pipe axis direction can be achieved by tempering after pipe making. It is considered that the reason for this is that the dislocation density decreases and YS decreases due to tempering after tube formation, and work hardening increases (that is, TS increases) due to the precipitation of cementite on the dislocations.
〔TS、YS及びYRの測定方法〕
本開示において、管軸方向のTS、管軸方向のYS、及び管軸方向のYRは、それぞれ、以下のようにして測定された値を意味する。
電縫鋼管の母材180°位置から、引張試験用の試験片を、引張試験の試験方向(引張方向)が電縫鋼管の管軸方向となる向きに採取する。試験片の形状は、アメリカ石油協会規格API 5L(以下、単に「API 5L」とする)に準拠する平板形状とする。
採取した試験片を用い、室温にて、API 5Lに準拠し、試験方向を電縫鋼管の管軸方向とする引張試験(即ち、管軸方向引張試験)を行い、管軸方向引張試験の結果に基づき、電縫鋼管の管軸方向のTS、及び、電縫鋼管の管軸方向のYSをそれぞれ求める。
電縫鋼管の管軸方向のYR(%)は、上記で求められたTS及びYRに基づき、算出式「YR(%)=(YS/TS)×100」によって求める。 [Method of measuring TS, YS and YR]
In the present disclosure, TS in the tube axis direction, YS in the tube axis direction, and YR in the tube axis direction mean values measured as follows, respectively.
From the 180 ° position of the base metal of the electric resistance pipe, a test piece for a tensile test is collected in a direction in which the test direction (tensile direction) of the tensile test is the pipe axial direction of the electric resistance pipe. The shape of the test piece is a flat plate shape conforming to the American Petroleum Institute standard API 5L (hereinafter, simply referred to as “API 5L”).
Using the collected test piece, at room temperature, in accordance with API 5L, a tensile test (that is, a pipe axial direction tensile test) in which the test direction is the pipe axial direction of the electric resistance welded steel pipe is performed, and the result of the pipe axial direction tensile test Based on the above, TS in the pipe axial direction of the electric resistance pipe and YS in the pipe axial direction of the electric resistance pipe are obtained.
YR(%) in the axial direction of the electric resistance welded steel pipe is calculated by the calculation formula “YR(%)=(YS/TS)×100” based on TS and YR calculated above.
本開示において、管軸方向のTS、管軸方向のYS、及び管軸方向のYRは、それぞれ、以下のようにして測定された値を意味する。
電縫鋼管の母材180°位置から、引張試験用の試験片を、引張試験の試験方向(引張方向)が電縫鋼管の管軸方向となる向きに採取する。試験片の形状は、アメリカ石油協会規格API 5L(以下、単に「API 5L」とする)に準拠する平板形状とする。
採取した試験片を用い、室温にて、API 5Lに準拠し、試験方向を電縫鋼管の管軸方向とする引張試験(即ち、管軸方向引張試験)を行い、管軸方向引張試験の結果に基づき、電縫鋼管の管軸方向のTS、及び、電縫鋼管の管軸方向のYSをそれぞれ求める。
電縫鋼管の管軸方向のYR(%)は、上記で求められたTS及びYRに基づき、算出式「YR(%)=(YS/TS)×100」によって求める。 [Method of measuring TS, YS and YR]
In the present disclosure, TS in the tube axis direction, YS in the tube axis direction, and YR in the tube axis direction mean values measured as follows, respectively.
From the 180 ° position of the base metal of the electric resistance pipe, a test piece for a tensile test is collected in a direction in which the test direction (tensile direction) of the tensile test is the pipe axial direction of the electric resistance pipe. The shape of the test piece is a flat plate shape conforming to the American Petroleum Institute standard API 5L (hereinafter, simply referred to as “API 5L”).
Using the collected test piece, at room temperature, in accordance with API 5L, a tensile test (that is, a pipe axial direction tensile test) in which the test direction is the pipe axial direction of the electric resistance welded steel pipe is performed, and the result of the pipe axial direction tensile test Based on the above, TS in the pipe axial direction of the electric resistance pipe and YS in the pipe axial direction of the electric resistance pipe are obtained.
YR(%) in the axial direction of the electric resistance welded steel pipe is calculated by the calculation formula “YR(%)=(YS/TS)×100” based on TS and YR calculated above.
上述した範囲のTS、上述した範囲のYS、及び上述した範囲のYRは、母材部の化学組成と、素材である熱延鋼板の製造方法を含めた電縫鋼管の製造条件(素材である熱延鋼板の製造条件及び造管後の焼戻し条件を含む;例えば、後述の製法Aにおける各条件)と、の組み合わせによって実現され得る。
The TS in the above range, the YS in the above range, and the YR in the above range are the manufacturing conditions (materials) of the electric resistance pipe including the chemical composition of the base material and the manufacturing method of the hot-rolled steel sheet which is the raw material. Including the manufacturing conditions of the hot rolled steel sheet and the tempering conditions after pipe making;
〔電縫鋼管の肉厚及び外径〕
本開示の電縫鋼管の肉厚には特に制限はない。
肉厚は、例えば5~20mmであり、好ましくは10~20mmである。
本開示の電縫鋼管の外径にも特に制限はない。
外径は、好ましくは100~400mmであり、より好ましくは150~400mmであり、更に好ましくは200~400mmである。 [Wall thickness and outer diameter of ERW steel pipe]
There is no particular limitation on the wall thickness of the electric resistance welded steel pipe of the present disclosure.
The wall thickness is, for example, 5 to 20 mm, preferably 10 to 20 mm.
There is no particular limitation on the outer diameter of the electric resistance welded steel pipe of the present disclosure.
The outer diameter is preferably 100 to 400 mm, more preferably 150 to 400 mm, and further preferably 200 to 400 mm.
本開示の電縫鋼管の肉厚には特に制限はない。
肉厚は、例えば5~20mmであり、好ましくは10~20mmである。
本開示の電縫鋼管の外径にも特に制限はない。
外径は、好ましくは100~400mmであり、より好ましくは150~400mmであり、更に好ましくは200~400mmである。 [Wall thickness and outer diameter of ERW steel pipe]
There is no particular limitation on the wall thickness of the electric resistance welded steel pipe of the present disclosure.
The wall thickness is, for example, 5 to 20 mm, preferably 10 to 20 mm.
There is no particular limitation on the outer diameter of the electric resistance welded steel pipe of the present disclosure.
The outer diameter is preferably 100 to 400 mm, more preferably 150 to 400 mm, and further preferably 200 to 400 mm.
〔降伏伸び〕
本開示の電縫鋼管は、管軸方向引張試験を行った場合に降伏伸びが観測される。
本開示において、「管軸方向引張試験を行った場合に降伏伸びが観測される」とは、TS、YS及びYRを求めるための上述した管軸方向引張試験において、実質的な降伏伸び(具体的には1%以上の降伏伸び)が観測されることを意味する。
上述したとおり、造管後、焼戻しが施されて製造された電縫鋼管では、管軸方向引張試験を行った場合に降伏伸びが観測される。 [Yield elongation]
Yield elongation is observed in the electrosewn steel pipe of the present disclosure when a tensile test is performed in the axial direction of the pipe.
In the present disclosure, "the yield elongation is observed when a pipe axial tensile test is performed" means that a substantial yield elongation (specifically, in the pipe axial tensile test described above for determining TS, YS, and YR). This means that a yield elongation of 1% or more) is observed.
As described above, in the electrosewn steel pipe manufactured by tempering after the pipe is made, the yield elongation is observed when the pipe axial tensile test is performed.
本開示の電縫鋼管は、管軸方向引張試験を行った場合に降伏伸びが観測される。
本開示において、「管軸方向引張試験を行った場合に降伏伸びが観測される」とは、TS、YS及びYRを求めるための上述した管軸方向引張試験において、実質的な降伏伸び(具体的には1%以上の降伏伸び)が観測されることを意味する。
上述したとおり、造管後、焼戻しが施されて製造された電縫鋼管では、管軸方向引張試験を行った場合に降伏伸びが観測される。 [Yield elongation]
Yield elongation is observed in the electrosewn steel pipe of the present disclosure when a tensile test is performed in the axial direction of the pipe.
In the present disclosure, "the yield elongation is observed when a pipe axial tensile test is performed" means that a substantial yield elongation (specifically, in the pipe axial tensile test described above for determining TS, YS, and YR). This means that a yield elongation of 1% or more) is observed.
As described above, in the electrosewn steel pipe manufactured by tempering after the pipe is made, the yield elongation is observed when the pipe axial tensile test is performed.
〔電縫鋼管の製造方法の一例(製法A)〕
以下、本開示の電縫鋼管を製造するための製造方法の一例(以下、「製法A」とする)について説明する。
この製法Aは、後述する実施例の電縫鋼管の製造方法である。 [One Example of Manufacturing Method of ERW Steel Pipe (Manufacturing Method A)]
Hereinafter, an example of a manufacturing method for manufacturing the electric resistance welded steel pipe of the present disclosure (hereinafter, referred to as “manufacturing method A”) will be described.
This manufacturing method A is a manufacturing method of an electrosewn steel pipe according to an embodiment described later.
以下、本開示の電縫鋼管を製造するための製造方法の一例(以下、「製法A」とする)について説明する。
この製法Aは、後述する実施例の電縫鋼管の製造方法である。 [One Example of Manufacturing Method of ERW Steel Pipe (Manufacturing Method A)]
Hereinafter, an example of a manufacturing method for manufacturing the electric resistance welded steel pipe of the present disclosure (hereinafter, referred to as “manufacturing method A”) will be described.
This manufacturing method A is a manufacturing method of an electrosewn steel pipe according to an embodiment described later.
製法Aは、
本開示における化学組成を有するスラブを準備するスラブ準備工程と、
準備したスラブを、後述する条件で熱間圧延して熱延鋼板を得る熱延工程と、
熱延鋼板を、熱延鋼板の外表面の温度が450~650℃の巻取温度となるまで冷却する冷却工程と、
上記巻取温度となるまで冷却された熱延鋼板を、上記巻取温度にて巻取ることにより、熱延鋼板からなるホットコイルを得る巻取工程と、
ホットコイルから熱延鋼板を巻き出し、巻き出された熱延鋼板をロール成形することによりオープン管とし、得られたオープン管における突合せ部を電縫溶接して電縫溶接部を形成することにより、アズロール電縫鋼管を得る造管工程と、
アズロール電縫鋼管に対し、焼戻し温度500~700℃及び焼戻し時間1~120分の条件の焼戻しを施す造管後焼戻し工程と、
を含む。 Manufacturing method A is
A slab preparation step of preparing a slab having a chemical composition according to the present disclosure;
A hot-rolling process in which the prepared slab is hot-rolled under the conditions described below to obtain a hot-rolled steel sheet,
A cooling process in which the hot-rolled steel sheet is cooled until the temperature of the outer surface of the hot-rolled steel sheet reaches a winding temperature of 450 to 650 ° C.
A winding process of obtaining a hot coil made of a hot-rolled steel sheet by winding a hot-rolled steel sheet cooled to the above-mentioned winding temperature at the above-mentioned winding temperature.
By unrolling the hot-rolled steel sheet from the hot coil and rolling the unrolled hot-rolled steel sheet into an open pipe, the butt portion of the obtained open pipe is electric resistance welded to form an electric resistance welded portion. , A pipe-making process to obtain Azroll ERW steel pipe,
A post-pipe forming tempering process for tempering an Azroll electric resistance welded pipe under conditions of a tempering temperature of 500 to 700° C. and a tempering time of 1 to 120 minutes;
including.
本開示における化学組成を有するスラブを準備するスラブ準備工程と、
準備したスラブを、後述する条件で熱間圧延して熱延鋼板を得る熱延工程と、
熱延鋼板を、熱延鋼板の外表面の温度が450~650℃の巻取温度となるまで冷却する冷却工程と、
上記巻取温度となるまで冷却された熱延鋼板を、上記巻取温度にて巻取ることにより、熱延鋼板からなるホットコイルを得る巻取工程と、
ホットコイルから熱延鋼板を巻き出し、巻き出された熱延鋼板をロール成形することによりオープン管とし、得られたオープン管における突合せ部を電縫溶接して電縫溶接部を形成することにより、アズロール電縫鋼管を得る造管工程と、
アズロール電縫鋼管に対し、焼戻し温度500~700℃及び焼戻し時間1~120分の条件の焼戻しを施す造管後焼戻し工程と、
を含む。 Manufacturing method A is
A slab preparation step of preparing a slab having a chemical composition according to the present disclosure;
A hot-rolling process in which the prepared slab is hot-rolled under the conditions described below to obtain a hot-rolled steel sheet,
A cooling process in which the hot-rolled steel sheet is cooled until the temperature of the outer surface of the hot-rolled steel sheet reaches a winding temperature of 450 to 650 ° C.
A winding process of obtaining a hot coil made of a hot-rolled steel sheet by winding a hot-rolled steel sheet cooled to the above-mentioned winding temperature at the above-mentioned winding temperature.
By unrolling the hot-rolled steel sheet from the hot coil and rolling the unrolled hot-rolled steel sheet into an open pipe, the butt portion of the obtained open pipe is electric resistance welded to form an electric resistance welded portion. , A pipe-making process to obtain Azroll ERW steel pipe,
A post-pipe forming tempering process for tempering an Azroll electric resistance welded pipe under conditions of a tempering temperature of 500 to 700° C. and a tempering time of 1 to 120 minutes;
including.
ここで、アズロール電縫鋼管とは、造管後、シーム熱処理以外の熱処理が施されていない電縫鋼管を意味する。
Here, as-roll ERW steel pipe means ERW steel pipe that has not undergone heat treatment other than seam heat treatment after pipe making.
製法Aによれば、本開示の電縫鋼管を製造できる。
以下、製法Aにおける各工程について説明する。 According to the manufacturing method A, the electric resistance welded steel pipe of the present disclosure can be manufactured.
Hereinafter, each step in the manufacturing method A will be described.
以下、製法Aにおける各工程について説明する。 According to the manufacturing method A, the electric resistance welded steel pipe of the present disclosure can be manufactured.
Hereinafter, each step in the manufacturing method A will be described.
<スラブ準備工程>
製法Aにおけるスラブ準備工程は、本開示における化学組成を有するスラブを準備する工程である。
スラブを準備する工程は、スラブを製造する工程であってもよいし、予め製造されていたスラブを単に準備するだけの工程であってもよい。
スラブを製造する場合、例えば、本開示における化学組成を有する溶鋼を製造し、製造した溶鋼を用いて、スラブを製造する。この際、連続鋳造法によりスラブを製造してもよいし、溶鋼を用いてインゴットを製造し、インゴットを分塊圧延してスラブを製造してもよい。 <Slab preparation process>
The slab preparation step in production method A is a step of preparing a slab having the chemical composition according to the present disclosure.
The step of preparing the slab may be a step of manufacturing the slab, or may be a step of simply preparing a slab that has been manufactured in advance.
When manufacturing a slab, for example, molten steel having the chemical composition according to the present disclosure is manufactured, and the manufactured molten steel is used to manufacture the slab. At this time, a slab may be produced by a continuous casting method, or an ingot may be produced using molten steel, and the ingot may be lump-rolled to produce a slab.
製法Aにおけるスラブ準備工程は、本開示における化学組成を有するスラブを準備する工程である。
スラブを準備する工程は、スラブを製造する工程であってもよいし、予め製造されていたスラブを単に準備するだけの工程であってもよい。
スラブを製造する場合、例えば、本開示における化学組成を有する溶鋼を製造し、製造した溶鋼を用いて、スラブを製造する。この際、連続鋳造法によりスラブを製造してもよいし、溶鋼を用いてインゴットを製造し、インゴットを分塊圧延してスラブを製造してもよい。 <Slab preparation process>
The slab preparation step in production method A is a step of preparing a slab having the chemical composition according to the present disclosure.
The step of preparing the slab may be a step of manufacturing the slab, or may be a step of simply preparing a slab that has been manufactured in advance.
When manufacturing a slab, for example, molten steel having the chemical composition according to the present disclosure is manufactured, and the manufactured molten steel is used to manufacture the slab. At this time, a slab may be produced by a continuous casting method, or an ingot may be produced using molten steel, and the ingot may be lump-rolled to produce a slab.
<熱延工程>
製法Aにおける熱延工程は、上記で準備したスラブを加熱し、加熱されたスラブを熱間圧延して熱延鋼板を得る工程である。
スラブを加熱する際のスラブ加熱温度は、1100℃~1240℃である。
製法Aにおける熱延工程では、スラブ加熱温度が1100℃以上であることにより、未固溶の析出物の残存がより抑制される。
製法Aにおける熱延工程では、スラブ加熱温度が1240℃以下であることにより、γ粒(即ち、オーステナイト粒)の粗大化が抑制され、その結果、最終的に得られる電縫鋼管(即ち、造管後焼戻し工程を経て得られる電縫鋼管。以下同じ。)において、平均フェライト粒径が10μm以下であること、及び、最大フェライト粒径/平均フェライト粒径比が3.0以下であることが達成され易い。
スラブ加熱温度は、好ましくは1220℃以下である。 <Hot rolling process>
The hot-rolling step in the manufacturing method A is a step of heating the slab prepared above and hot-rolling the heated slab to obtain a hot-rolled steel sheet.
The slab heating temperature when heating the slab is 1100 ° C to 1240 ° C.
In the hot rolling step in the production method A, the slab heating temperature is 1100° C. or higher, so that the remaining undissolved precipitate is further suppressed.
In the hot rolling step in the production method A, the slab heating temperature is 1240° C. or lower, so that the coarsening of the γ grains (that is, austenite grains) is suppressed, and as a result, the finally obtained electric resistance welded steel pipe (ie, the formed steel pipe) In an electric resistance welded steel pipe obtained through a post-tube tempering step (the same applies hereinafter), the average ferrite grain size is 10 μm or less, and the maximum ferrite grain size/average ferrite grain size ratio is 3.0 or less. Easy to achieve.
The slab heating temperature is preferably 1220° C. or lower.
製法Aにおける熱延工程は、上記で準備したスラブを加熱し、加熱されたスラブを熱間圧延して熱延鋼板を得る工程である。
スラブを加熱する際のスラブ加熱温度は、1100℃~1240℃である。
製法Aにおける熱延工程では、スラブ加熱温度が1100℃以上であることにより、未固溶の析出物の残存がより抑制される。
製法Aにおける熱延工程では、スラブ加熱温度が1240℃以下であることにより、γ粒(即ち、オーステナイト粒)の粗大化が抑制され、その結果、最終的に得られる電縫鋼管(即ち、造管後焼戻し工程を経て得られる電縫鋼管。以下同じ。)において、平均フェライト粒径が10μm以下であること、及び、最大フェライト粒径/平均フェライト粒径比が3.0以下であることが達成され易い。
スラブ加熱温度は、好ましくは1220℃以下である。 <Hot rolling process>
The hot-rolling step in the manufacturing method A is a step of heating the slab prepared above and hot-rolling the heated slab to obtain a hot-rolled steel sheet.
The slab heating temperature when heating the slab is 1100 ° C to 1240 ° C.
In the hot rolling step in the production method A, the slab heating temperature is 1100° C. or higher, so that the remaining undissolved precipitate is further suppressed.
In the hot rolling step in the production method A, the slab heating temperature is 1240° C. or lower, so that the coarsening of the γ grains (that is, austenite grains) is suppressed, and as a result, the finally obtained electric resistance welded steel pipe (ie, the formed steel pipe) In an electric resistance welded steel pipe obtained through a post-tube tempering step (the same applies hereinafter), the average ferrite grain size is 10 μm or less, and the maximum ferrite grain size/average ferrite grain size ratio is 3.0 or less. Easy to achieve.
The slab heating temperature is preferably 1220° C. or lower.
製法Aにおける熱延工程では、スラブ加熱温度まで加熱されたスラブを、粗圧延終了温度が950℃以上であり、仕上圧延開始温度が850℃~950℃であり、仕上圧延終了温度が800℃~890℃であり、再結晶域圧下率に対する未再結晶域圧下率の比(以下、「未再結晶域圧下率/再結晶域圧下率比」ともいう)が0.8~1.6である条件で、熱間圧延して熱延鋼板を得る。
In the hot rolling step in the production method A, the slab heated to the slab heating temperature has a rough rolling finish temperature of 950° C. or higher, a finish rolling start temperature of 850° C. to 950° C., and a finish rolling finish temperature of 800° C. The temperature is 890 ° C., and the ratio of the unrecrystallized area rolling rate to the recrystallized area rolling rate (hereinafter, also referred to as “unrecrystallized area rolling rate / recrystallized area rolling rate ratio”) is 0.8 to 1.6. Hot rolling is performed under the conditions to obtain a hot rolled steel sheet.
製法Aにおける熱延工程では、粗圧延終了温度が950℃以上であることにより、再結晶が十分に行われ、γ粒の粒径を小さくすることができる。このため、最終的に得られる電縫鋼管において、平均フェライト粒径が10μm以下であること、及び、最大フェライト粒径/平均フェライト粒径比が3.0以下であることが達成され易い。
In the hot rolling step in the manufacturing method A, when the rough rolling end temperature is 950 ° C. or higher, recrystallization is sufficiently performed and the particle size of the γ grains can be reduced. Therefore, in the finally obtained electric resistance welded steel pipe, it is easy to achieve that the average ferrite grain size is 10 μm or less and the maximum ferrite grain size / average ferrite grain size ratio is 3.0 or less.
製法Aにおける熱延工程では、仕上圧延開始温度が850℃以上であることにより、圧延中のフェライト粒の生成及びひずみ誘起粒成長が抑制され、その結果、フェライト粒の粗大化が抑制される。このため、最終的に得られる電縫鋼管において、平均フェライト粒径が10μm以下であること、及び、最大フェライト粒径/平均フェライト粒径比が3.0以下であることが達成され易い。
製法Aにおける熱延工程では、仕上圧延開始温度が950℃以下であることにより、γ粒中のせん断帯が増えるので、フェライト粒の粗大化が抑制される。このため、最終的に得られる電縫鋼管において、平均フェライト粒径が10μm以下であること、及び、最大フェライト粒径/平均フェライト粒径比が3.0以下であることが達成され易い。 In the hot rolling step in the production method A, the finish rolling start temperature of 850° C. or higher suppresses the generation of ferrite grains and strain-induced grain growth during rolling, and as a result, the coarsening of ferrite grains is suppressed. Therefore, in the finally obtained electric resistance welded steel pipe, it is easy to achieve that the average ferrite grain size is 10 μm or less and the maximum ferrite grain size / average ferrite grain size ratio is 3.0 or less.
In the hot rolling step in the production method A, since the finish rolling start temperature is 950 ° C. or lower, the shear band in the γ grains increases, so that the coarsening of the ferrite grains is suppressed. Therefore, in the finally obtained electric resistance welded steel pipe, it is easy to achieve that the average ferrite grain size is 10 μm or less and the maximum ferrite grain size / average ferrite grain size ratio is 3.0 or less.
製法Aにおける熱延工程では、仕上圧延開始温度が950℃以下であることにより、γ粒中のせん断帯が増えるので、フェライト粒の粗大化が抑制される。このため、最終的に得られる電縫鋼管において、平均フェライト粒径が10μm以下であること、及び、最大フェライト粒径/平均フェライト粒径比が3.0以下であることが達成され易い。 In the hot rolling step in the production method A, the finish rolling start temperature of 850° C. or higher suppresses the generation of ferrite grains and strain-induced grain growth during rolling, and as a result, the coarsening of ferrite grains is suppressed. Therefore, in the finally obtained electric resistance welded steel pipe, it is easy to achieve that the average ferrite grain size is 10 μm or less and the maximum ferrite grain size / average ferrite grain size ratio is 3.0 or less.
In the hot rolling step in the production method A, since the finish rolling start temperature is 950 ° C. or lower, the shear band in the γ grains increases, so that the coarsening of the ferrite grains is suppressed. Therefore, in the finally obtained electric resistance welded steel pipe, it is easy to achieve that the average ferrite grain size is 10 μm or less and the maximum ferrite grain size / average ferrite grain size ratio is 3.0 or less.
製法Aにおける熱延工程では、仕上圧延終了温度が800℃以上であることにより、圧延中のフェライト粒の生成及びひずみ誘起粒成長が抑制され、その結果、フェライト粒の粗大化が抑制される。このため、最終的に得られる電縫鋼管において、平均フェライト粒径が10μm以下であること、及び、最大フェライト粒径/平均フェライト粒径比が3.0以下であることが達成され易い。
製法Aにおける熱延工程では、仕上圧延終了温度が890℃以下であることにより、γ粒中のせん断帯が増えるので、フェライト粒の粗大化が抑制される。このため、最終的に得られる電縫鋼管において、平均フェライト粒径が10μm以下であること、及び、最大フェライト粒径/平均フェライト粒径比が3.0以下であることが達成され易い。 In the hot rolling step in the production method A, the finish rolling end temperature is 800° C. or higher, so that the generation of ferrite grains and the strain-induced grain growth during rolling are suppressed, and as a result, the coarsening of ferrite grains is suppressed. Therefore, in the finally obtained electric resistance welded steel pipe, it is easy to achieve that the average ferrite grain size is 10 μm or less and the maximum ferrite grain size / average ferrite grain size ratio is 3.0 or less.
In the hot rolling step in the production method A, since the finish rolling end temperature is 890 ° C. or lower, the shear band in the γ grains increases, so that the coarsening of the ferrite grains is suppressed. Therefore, in the finally obtained electric resistance welded steel pipe, it is easy to achieve that the average ferrite grain size is 10 μm or less and the maximum ferrite grain size / average ferrite grain size ratio is 3.0 or less.
製法Aにおける熱延工程では、仕上圧延終了温度が890℃以下であることにより、γ粒中のせん断帯が増えるので、フェライト粒の粗大化が抑制される。このため、最終的に得られる電縫鋼管において、平均フェライト粒径が10μm以下であること、及び、最大フェライト粒径/平均フェライト粒径比が3.0以下であることが達成され易い。 In the hot rolling step in the production method A, the finish rolling end temperature is 800° C. or higher, so that the generation of ferrite grains and the strain-induced grain growth during rolling are suppressed, and as a result, the coarsening of ferrite grains is suppressed. Therefore, in the finally obtained electric resistance welded steel pipe, it is easy to achieve that the average ferrite grain size is 10 μm or less and the maximum ferrite grain size / average ferrite grain size ratio is 3.0 or less.
In the hot rolling step in the production method A, since the finish rolling end temperature is 890 ° C. or lower, the shear band in the γ grains increases, so that the coarsening of the ferrite grains is suppressed. Therefore, in the finally obtained electric resistance welded steel pipe, it is easy to achieve that the average ferrite grain size is 10 μm or less and the maximum ferrite grain size / average ferrite grain size ratio is 3.0 or less.
熱延工程における熱間圧延は、未再結晶域圧下率/再結晶域圧下率比が0.8~1.6である条件で行う。
本開示において、未再結晶域圧下率は、950℃以下の温度領域での圧下率を意味し、再結晶域圧下率は、950℃以上の温度領域での圧下率を意味する。
製法Aにおける熱延工程では、未再結晶域圧下率/再結晶域圧下率比が0.8以上であることにより、フェライトの核生成サイトが増える。その結果、最終的に得られる電縫鋼管において、フェライト分率が60%以上であること、平均フェライト粒径が10μm以下であること、及び、最大フェライト粒径/平均フェライト粒径比が3.0以下であることが達成され易い。
製法Aにおける熱延工程では、未再結晶域圧下率/再結晶域圧下率比が1.6以下であることにより、再結晶域においてγ粒が微細化されるので、フェライト粒が微細化され易い。その結果、最終的に得られる電縫鋼管において、平均フェライト粒径が10μm以下であること、及び、最大フェライト粒径/平均フェライト粒径比が3.0以下であることが達成され易い。 The hot rolling in the hot rolling step is performed under the condition that the ratio of reduction ratio of non-recrystallization region/reduction ratio of recrystallization region is 0.8 to 1.6.
In the present disclosure, the reduction ratio in the non-recrystallization region means the reduction ratio in the temperature region of 950°C or lower, and the reduction ratio in the recrystallization region means the reduction ratio in the temperature region of 950°C or higher.
In the hot spreading step in the production method A, the nucleation site of ferrite increases because the ratio of the unrecrystallized region reduction rate / the recrystallized region reduction ratio is 0.8 or more. As a result, in the finally obtained electric resistance welded steel pipe, the ferrite fraction is 60% or more, the average ferrite grain size is 10 μm or less, and the maximum ferrite grain size/average ferrite grain size ratio is 3. It is easy to achieve 0 or less.
In the hot rolling step in the production method A, since the unrecrystallized region reduction ratio/recrystallization region reduction ratio is 1.6 or less, the γ grains are refined in the recrystallization region, so that the ferrite grains are refined. easy. As a result, it is easy to achieve that the average ferrite grain size is 10 μm or less and the maximum ferrite grain size / average ferrite grain size ratio is 3.0 or less in the finally obtained electric resistance welded steel pipe.
本開示において、未再結晶域圧下率は、950℃以下の温度領域での圧下率を意味し、再結晶域圧下率は、950℃以上の温度領域での圧下率を意味する。
製法Aにおける熱延工程では、未再結晶域圧下率/再結晶域圧下率比が0.8以上であることにより、フェライトの核生成サイトが増える。その結果、最終的に得られる電縫鋼管において、フェライト分率が60%以上であること、平均フェライト粒径が10μm以下であること、及び、最大フェライト粒径/平均フェライト粒径比が3.0以下であることが達成され易い。
製法Aにおける熱延工程では、未再結晶域圧下率/再結晶域圧下率比が1.6以下であることにより、再結晶域においてγ粒が微細化されるので、フェライト粒が微細化され易い。その結果、最終的に得られる電縫鋼管において、平均フェライト粒径が10μm以下であること、及び、最大フェライト粒径/平均フェライト粒径比が3.0以下であることが達成され易い。 The hot rolling in the hot rolling step is performed under the condition that the ratio of reduction ratio of non-recrystallization region/reduction ratio of recrystallization region is 0.8 to 1.6.
In the present disclosure, the reduction ratio in the non-recrystallization region means the reduction ratio in the temperature region of 950°C or lower, and the reduction ratio in the recrystallization region means the reduction ratio in the temperature region of 950°C or higher.
In the hot spreading step in the production method A, the nucleation site of ferrite increases because the ratio of the unrecrystallized region reduction rate / the recrystallized region reduction ratio is 0.8 or more. As a result, in the finally obtained electric resistance welded steel pipe, the ferrite fraction is 60% or more, the average ferrite grain size is 10 μm or less, and the maximum ferrite grain size/average ferrite grain size ratio is 3. It is easy to achieve 0 or less.
In the hot rolling step in the production method A, since the unrecrystallized region reduction ratio/recrystallization region reduction ratio is 1.6 or less, the γ grains are refined in the recrystallization region, so that the ferrite grains are refined. easy. As a result, it is easy to achieve that the average ferrite grain size is 10 μm or less and the maximum ferrite grain size / average ferrite grain size ratio is 3.0 or less in the finally obtained electric resistance welded steel pipe.
<冷却工程、巻取工程>
製法Aにおける冷却工程は、熱延工程で得られた熱延鋼板を、熱延鋼板の外表面の温度が450~650℃の巻取温度となるまで冷却する工程である。
製法Aにおける巻取工程は、上記巻取温度となるまで冷却された熱延鋼板を、上記巻取温度にて巻取ることにより、熱延鋼板からなるホットコイルを得る工程である。
製法Aでは、巻取温度が450℃以上であることにより、ベイナイト又はマルテンサイトの生成が抑制される。その結果、最終的に得られる電縫鋼管において、フェライト分率が60%以上であることが達成され易い。
製法Aでは、巻取温度が650℃以下であることにより、フェライト粒の成長(即ち、粗大化)が抑制される。その結果、最終的に得られる電縫鋼管において、平均フェライト粒径が10μm以下であること、及び、最大フェライト粒径/平均フェライト粒径比が3.0以下であることが達成され易い。 <Cooling process, winding process>
The cooling step in production method A is a step of cooling the hot rolled steel sheet obtained in the hot rolling step until the temperature of the outer surface of the hot rolled steel sheet reaches a coiling temperature of 450 to 650°C.
The winding step in the production method A is a step of obtaining a hot coil made of a hot rolled steel sheet by winding the hot rolled steel sheet cooled to the above winding temperature at the above winding temperature.
In the production method A, since the winding temperature is 450° C. or higher, the formation of bainite or martensite is suppressed. As a result, in the finally obtained electric resistance welded steel pipe, it is easy to achieve that the ferrite fraction is 60% or more.
In the production method A, since the winding temperature is 650° C. or lower, the growth (that is, coarsening) of ferrite grains is suppressed. As a result, it is easy to achieve that the average ferrite grain size is 10 μm or less and the maximum ferrite grain size / average ferrite grain size ratio is 3.0 or less in the finally obtained electric resistance welded steel pipe.
製法Aにおける冷却工程は、熱延工程で得られた熱延鋼板を、熱延鋼板の外表面の温度が450~650℃の巻取温度となるまで冷却する工程である。
製法Aにおける巻取工程は、上記巻取温度となるまで冷却された熱延鋼板を、上記巻取温度にて巻取ることにより、熱延鋼板からなるホットコイルを得る工程である。
製法Aでは、巻取温度が450℃以上であることにより、ベイナイト又はマルテンサイトの生成が抑制される。その結果、最終的に得られる電縫鋼管において、フェライト分率が60%以上であることが達成され易い。
製法Aでは、巻取温度が650℃以下であることにより、フェライト粒の成長(即ち、粗大化)が抑制される。その結果、最終的に得られる電縫鋼管において、平均フェライト粒径が10μm以下であること、及び、最大フェライト粒径/平均フェライト粒径比が3.0以下であることが達成され易い。 <Cooling process, winding process>
The cooling step in production method A is a step of cooling the hot rolled steel sheet obtained in the hot rolling step until the temperature of the outer surface of the hot rolled steel sheet reaches a coiling temperature of 450 to 650°C.
The winding step in the production method A is a step of obtaining a hot coil made of a hot rolled steel sheet by winding the hot rolled steel sheet cooled to the above winding temperature at the above winding temperature.
In the production method A, since the winding temperature is 450° C. or higher, the formation of bainite or martensite is suppressed. As a result, in the finally obtained electric resistance welded steel pipe, it is easy to achieve that the ferrite fraction is 60% or more.
In the production method A, since the winding temperature is 650° C. or lower, the growth (that is, coarsening) of ferrite grains is suppressed. As a result, it is easy to achieve that the average ferrite grain size is 10 μm or less and the maximum ferrite grain size / average ferrite grain size ratio is 3.0 or less in the finally obtained electric resistance welded steel pipe.
<造管工程>
製法Aにおける造管工程は、ホットコイルから熱延鋼板を巻き出し、巻き出された熱延鋼板をロール成形することによりオープン管とし、得られたオープン管における突合せ部を電縫溶接して電縫溶接部を形成することにより、アズロール電縫鋼管を得る工程である。
造管工程における各操作は、公知の方法に従って行う。
また、造管工程は、必要に応じ、
電縫溶接部をシーム熱処理すること;
電縫溶接部の形成の後(前述のシーム熱処理を行う場合には、シーム熱処理の後)、アズロール電縫鋼管の形状をサイザーによって調整すること;
等を含んでいてもよい。 <Pipe making process>
In the pipe making step in the manufacturing method A, a hot-rolled steel sheet is unwound from a hot coil, and the unrolled hot-rolled steel sheet is roll-formed into an open pipe. It is a step of obtaining a s-roll electric resistance welded steel pipe by forming a sewn welded portion.
Each operation in the pipe making step is performed according to a known method.
In addition, the pipe making process, if necessary,
Seam heat treatment of ERW welds;
After the formation of the electrosewn weld (after the seam heat treatment if the seam heat treatment is performed as described above), the shape of the azurol electric resistance pipe is adjusted by a sizer;
Etc. may be included.
製法Aにおける造管工程は、ホットコイルから熱延鋼板を巻き出し、巻き出された熱延鋼板をロール成形することによりオープン管とし、得られたオープン管における突合せ部を電縫溶接して電縫溶接部を形成することにより、アズロール電縫鋼管を得る工程である。
造管工程における各操作は、公知の方法に従って行う。
また、造管工程は、必要に応じ、
電縫溶接部をシーム熱処理すること;
電縫溶接部の形成の後(前述のシーム熱処理を行う場合には、シーム熱処理の後)、アズロール電縫鋼管の形状をサイザーによって調整すること;
等を含んでいてもよい。 <Pipe making process>
In the pipe making step in the manufacturing method A, a hot-rolled steel sheet is unwound from a hot coil, and the unrolled hot-rolled steel sheet is roll-formed into an open pipe. It is a step of obtaining a s-roll electric resistance welded steel pipe by forming a sewn welded portion.
Each operation in the pipe making step is performed according to a known method.
In addition, the pipe making process, if necessary,
Seam heat treatment of ERW welds;
After the formation of the electrosewn weld (after the seam heat treatment if the seam heat treatment is performed as described above), the shape of the azurol electric resistance pipe is adjusted by a sizer;
Etc. may be included.
<造管後焼戻し工程>
製法Aにおける造管後焼戻し工程は、アズロール電縫鋼管に対し、焼戻し温度500~700℃及び焼戻し時間1~120分の条件の焼戻しを施す工程である。
製法Aが造管後焼戻し工程を有することにより、管軸方向引張試験を行った場合に降伏伸びが観測される電縫鋼管が得られる。
造管後焼戻し工程において、焼戻し温度が500℃以上であることにより、造管によるひずみが低減される。その結果、最終的に得られる電縫鋼管において、管軸方向のYRが95%以下であることが達成され易い。
造管後焼戻し工程において、焼戻し温度が700℃以下であることにより、ベイナイト又はマルテンサイトの生成が抑制される。その結果、最終的に得られる電縫鋼管において、フェライト分率が60%以上であること、管軸方向のTSが700MPa以下であることが達成され易い。
造管後焼戻し工程において、焼戻し時間が1分以上であることにより、造管によるひずみが低減される。その結果、最終的に得られる電縫鋼管において、管軸方向のYRが95%以下であることが達成され易い。
造管後焼戻し工程において、焼戻し時間が120分以下であることは、生産性(製造コスト)の観点からみて有利である。 <Tempering process after pipe making>
The post-pipe-making tempering step in the production method A is a step of subjecting the as-roll electric resistance welded steel tube to a tempering temperature of 500 to 700° C. and a tempering time of 1 to 120 minutes.
Since the manufacturing method A has a tempering step after pipe making, an electrosewn steel pipe in which yield elongation is observed when a tensile test in the pipe axial direction is performed can be obtained.
In the tempering process after pipe forming, the tempering temperature is 500° C. or higher, so that distortion due to pipe forming is reduced. As a result, in the finally obtained electric resistance welded steel pipe, it is easy to achieve that YR in the pipe axis direction is 95% or less.
In the post-pipe tempering step, the tempering temperature is 700 ° C. or lower, so that the formation of bainite or martensite is suppressed. As a result, it is easy to achieve that the ferrite fraction is 60% or more and the TS in the pipe axial direction is 700 MPa or less in the finally obtained electric resistance steel pipe.
In the tempering process after pipe forming, the tempering time is 1 minute or more, so that strain due to pipe forming is reduced. As a result, in the finally obtained electric resistance welded steel pipe, it is easy to achieve that YR in the pipe axis direction is 95% or less.
In the tempering process after pipe making, the tempering time of 120 minutes or less is advantageous from the viewpoint of productivity (manufacturing cost).
製法Aにおける造管後焼戻し工程は、アズロール電縫鋼管に対し、焼戻し温度500~700℃及び焼戻し時間1~120分の条件の焼戻しを施す工程である。
製法Aが造管後焼戻し工程を有することにより、管軸方向引張試験を行った場合に降伏伸びが観測される電縫鋼管が得られる。
造管後焼戻し工程において、焼戻し温度が500℃以上であることにより、造管によるひずみが低減される。その結果、最終的に得られる電縫鋼管において、管軸方向のYRが95%以下であることが達成され易い。
造管後焼戻し工程において、焼戻し温度が700℃以下であることにより、ベイナイト又はマルテンサイトの生成が抑制される。その結果、最終的に得られる電縫鋼管において、フェライト分率が60%以上であること、管軸方向のTSが700MPa以下であることが達成され易い。
造管後焼戻し工程において、焼戻し時間が1分以上であることにより、造管によるひずみが低減される。その結果、最終的に得られる電縫鋼管において、管軸方向のYRが95%以下であることが達成され易い。
造管後焼戻し工程において、焼戻し時間が120分以下であることは、生産性(製造コスト)の観点からみて有利である。 <Tempering process after pipe making>
The post-pipe-making tempering step in the production method A is a step of subjecting the as-roll electric resistance welded steel tube to a tempering temperature of 500 to 700° C. and a tempering time of 1 to 120 minutes.
Since the manufacturing method A has a tempering step after pipe making, an electrosewn steel pipe in which yield elongation is observed when a tensile test in the pipe axial direction is performed can be obtained.
In the tempering process after pipe forming, the tempering temperature is 500° C. or higher, so that distortion due to pipe forming is reduced. As a result, in the finally obtained electric resistance welded steel pipe, it is easy to achieve that YR in the pipe axis direction is 95% or less.
In the post-pipe tempering step, the tempering temperature is 700 ° C. or lower, so that the formation of bainite or martensite is suppressed. As a result, it is easy to achieve that the ferrite fraction is 60% or more and the TS in the pipe axial direction is 700 MPa or less in the finally obtained electric resistance steel pipe.
In the tempering process after pipe forming, the tempering time is 1 minute or more, so that strain due to pipe forming is reduced. As a result, in the finally obtained electric resistance welded steel pipe, it is easy to achieve that YR in the pipe axis direction is 95% or less.
In the tempering process after pipe making, the tempering time of 120 minutes or less is advantageous from the viewpoint of productivity (manufacturing cost).
以上の製法Aの各工程は、鋼の化学組成に影響を及ぼさない。
従って、製法Aによって製造される電縫鋼管の母材部の化学組成は、原料(溶鋼又はスラブ)の化学組成と同様とみなせる。 Each step of the above-mentioned production method A does not affect the chemical composition of steel.
Therefore, the chemical composition of the base material of the electric resistance welded steel pipe manufactured by the manufacturing method A can be regarded as the same as the chemical composition of the raw material (molten steel or slab).
従って、製法Aによって製造される電縫鋼管の母材部の化学組成は、原料(溶鋼又はスラブ)の化学組成と同様とみなせる。 Each step of the above-mentioned production method A does not affect the chemical composition of steel.
Therefore, the chemical composition of the base material of the electric resistance welded steel pipe manufactured by the manufacturing method A can be regarded as the same as the chemical composition of the raw material (molten steel or slab).
以下、本開示の実施例を示すが、本開示はこれらの実施例には限定されない。
以下、試験No.1~試験No.10は、本開示の範囲内である実施例であり、試験No.11~試験No.47は、本開示の範囲外である比較例である。 Hereinafter, examples of the present disclosure will be shown, but the present disclosure is not limited to these examples.
Hereinafter, the test No. 1-Test No. No. 10 is an example within the scope of the present disclosure, and the test No. 11-Test No. 47 is a comparative example that is outside the scope of the present disclosure.
以下、試験No.1~試験No.10は、本開示の範囲内である実施例であり、試験No.11~試験No.47は、本開示の範囲外である比較例である。 Hereinafter, examples of the present disclosure will be shown, but the present disclosure is not limited to these examples.
Hereinafter, the test No. 1-Test No. No. 10 is an example within the scope of the present disclosure, and the test No. 11-Test No. 47 is a comparative example that is outside the scope of the present disclosure.
<電縫鋼管の製造>
前述の製法Aに従い、試験No.1~10(実施例)の電縫鋼管をそれぞれ得た。
また、実施例の電縫鋼管における化学組成及び/又は製造条件を変更し、試験No.11~47(比較例)の電縫鋼管をそれぞれ得た。
以下、詳細を示す。 <Manufacture of ERW steel pipe>
According to the manufacturing method A described above, the test No. ERW steel pipes of 1 to 10 (Examples) were obtained.
Moreover, the chemical composition and/or manufacturing conditions of the electric resistance welded steel pipes of the examples were changed, and the test No. 11 to 47 (comparative examples) ERW steel pipes were obtained.
The details will be described below.
前述の製法Aに従い、試験No.1~10(実施例)の電縫鋼管をそれぞれ得た。
また、実施例の電縫鋼管における化学組成及び/又は製造条件を変更し、試験No.11~47(比較例)の電縫鋼管をそれぞれ得た。
以下、詳細を示す。 <Manufacture of ERW steel pipe>
According to the manufacturing method A described above, the test No. ERW steel pipes of 1 to 10 (Examples) were obtained.
Moreover, the chemical composition and/or manufacturing conditions of the electric resistance welded steel pipes of the examples were changed, and the test No. 11 to 47 (comparative examples) ERW steel pipes were obtained.
The details will be described below.
表1に示す化学組成(鋼A~鋼J、鋼AA、鋼AB、鋼AC、及び鋼AD)を有する溶鋼を炉で溶製した後、鋳造によって厚さ250mmのスラブを作製した(スラブ準備工程)。
A molten steel having the chemical compositions (steel A to steel J, steel AA, steel AB, steel AC, and steel AD) shown in Table 1 was melted in a furnace, and then a slab having a thickness of 250 mm was prepared by casting (slab preparation). Process).
表1中、各元素の欄に示す数値は、各元素の質量%である。
表1中、空欄は、該当する元素を含有しないことを意味する。
表1に示した元素を除いた残部は、Fe及び不純物である。
表1中、鋼H中のREMは、Laである。
表1中、Ceqは、前述の式(1)で表されるCeqであり、EESPは、前述の式(2)で表されるEESPである。
表1~表3中の下線は、本開示の範囲外であることを示す。 In Table 1, the numerical value shown in the column of each element is the mass% of each element.
In Table 1, the blank column means that the corresponding element is not contained.
The balance excluding the elements shown in Table 1 is Fe and impurities.
In Table 1, REM in Steel H is La.
In Table 1, Ceq is a Ceq represented by the above-mentioned formula (1), and EESP is an EESP represented by the above-mentioned formula (2).
Underlines in Tables 1 to 3 indicate outside the scope of the present disclosure.
表1中、空欄は、該当する元素を含有しないことを意味する。
表1に示した元素を除いた残部は、Fe及び不純物である。
表1中、鋼H中のREMは、Laである。
表1中、Ceqは、前述の式(1)で表されるCeqであり、EESPは、前述の式(2)で表されるEESPである。
表1~表3中の下線は、本開示の範囲外であることを示す。 In Table 1, the numerical value shown in the column of each element is the mass% of each element.
In Table 1, the blank column means that the corresponding element is not contained.
The balance excluding the elements shown in Table 1 is Fe and impurities.
In Table 1, REM in Steel H is La.
In Table 1, Ceq is a Ceq represented by the above-mentioned formula (1), and EESP is an EESP represented by the above-mentioned formula (2).
Underlines in Tables 1 to 3 indicate outside the scope of the present disclosure.
上記で得られたスラブを、表2に示すスラブ加熱温度にまで加熱し、加熱されたスラブに対し、表2に示す熱間圧延条件(詳細には、粗圧延終了温度、仕上圧延開始温度、及び仕上圧延終了温度)にて熱間圧延を施すことにより、熱延鋼板を得た(熱延工程)。
熱延工程で得られた熱延鋼板に対し、表2に示す巻取温度となるまで冷却を施し、この巻取温度にて巻き取ることにより、板厚15mmの熱延鋼板からなるホットコイルを得た(冷却工程及び巻取工程)。
以上の、熱延工程、冷却工程、及び巻取工程は、ホットストリップミルを用いて実施した。 The slab obtained above was heated to the slab heating temperature shown in Table 2, and the hot rolling conditions shown in Table 2 were applied to the heated slab (specifically, rough rolling end temperature, finish rolling start temperature, And hot rolling at the finish rolling end temperature) to obtain a hot rolled steel sheet (hot rolling step).
The hot rolled steel sheet obtained in the hot rolling step is cooled to the winding temperature shown in Table 2 and wound at this winding temperature to obtain a hot coil made of a hot rolled steel sheet having a thickness of 15 mm. Obtained (cooling step and winding step).
The hot rolling process, cooling process, and winding process described above were performed using a hot strip mill.
熱延工程で得られた熱延鋼板に対し、表2に示す巻取温度となるまで冷却を施し、この巻取温度にて巻き取ることにより、板厚15mmの熱延鋼板からなるホットコイルを得た(冷却工程及び巻取工程)。
以上の、熱延工程、冷却工程、及び巻取工程は、ホットストリップミルを用いて実施した。 The slab obtained above was heated to the slab heating temperature shown in Table 2, and the hot rolling conditions shown in Table 2 were applied to the heated slab (specifically, rough rolling end temperature, finish rolling start temperature, And hot rolling at the finish rolling end temperature) to obtain a hot rolled steel sheet (hot rolling step).
The hot rolled steel sheet obtained in the hot rolling step is cooled to the winding temperature shown in Table 2 and wound at this winding temperature to obtain a hot coil made of a hot rolled steel sheet having a thickness of 15 mm. Obtained (cooling step and winding step).
The hot rolling process, cooling process, and winding process described above were performed using a hot strip mill.
試験No.1~試験No.42、及び、試験No.44~試験No.47では、上記ホットコイルから熱延鋼板を巻き出し、巻き出された熱延鋼板をロール成形することによりオープン管とし、得られたオープン管の突合せ部を電縫溶接して電縫溶接部を形成し、次いで電縫溶接部に対しシーム熱処理を施し、次いでサイザーを用いて形状を調整することにより、外径が300mmであり肉厚が15mmであるアズロール電縫鋼管を得た(造管工程)。
Test No. 1-Test No. 42 and Test No. 44-Test No. In No. 47, a hot-rolled steel sheet is unwound from the hot coil, the unwound hot-rolled steel sheet is roll-formed to form an open pipe, and the butt portion of the obtained open pipe is electrosewn to form an electrosewn welded portion. After forming, seam heat treatment was applied to the electrosewn welded portion, and then the shape was adjusted using a sizer to obtain an azurol electrosewn steel pipe having an outer diameter of 300 mm and a wall thickness of 15 mm (pipe making process). ).
試験No.43では、上記ホットコイルから熱延鋼板を巻き出し、巻き出された熱延鋼板に対し、表2に示す条件(焼戻し温度及び焼戻し時間)の造管前焼戻しを施し、次いで、再び熱延鋼板を巻き取った。巻き取った熱延鋼板を再び巻き出し、巻き出された熱延鋼板を用い、試験No.1と同様にして、外径が300mmであり肉厚が15mmであるアズロール電縫鋼管を得た。
Test No. In No. 43, a hot-rolled steel sheet was unwound from the hot coil, and the unwound hot-rolled steel sheet was subjected to pre-pipe-making tempering under the conditions (tempering temperature and tempering time) shown in Table 2 and then again hot-rolled steel sheet. Wound up. The wound hot-rolled steel sheet was unwound again, and the unwound hot-rolled steel sheet was used to obtain Test No. In the same manner as in No. 1, an azurol electric resistance pipe having an outer diameter of 300 mm and a wall thickness of 15 mm was obtained.
試験No.1~試験No.41、及び、試験No.45~試験No.47では、アズロール電縫鋼管に対し、表2に示す条件(焼戻し温度及び焼戻し時間)の造管後焼戻しを施し、次いで空冷することにより、外径が300mmであり肉厚が15mmである電縫鋼管を得た(造管後焼戻し工程)。
試験No.42及び試験No.43では、アズロール電縫鋼管に対し、造管後焼戻しを施さなかった。
試験No.44では、アズロール電縫鋼管に対し、焼入れ温度を950℃とし、焼入れ時間を5分とし、冷却方法を水冷とする焼入れを施し、次いで、焼戻し温度を600℃とし、焼入れ時間を60分とする焼戻しを施し、次いで空冷することにより(以上の操作を、表2中では「950℃焼入れ焼戻し」とする)、外径が300mmであり肉厚が15mmである電縫鋼管を得た。 Test No. 1-Test No. 41 and the test No. 45-Test No. In No. 47, as-rolled electric-resistance welded steel pipes having an outer diameter of 300 mm and a wall thickness of 15 mm were subjected to post-pipe-making tempering under the conditions (tempering temperature and tempering time) shown in Table 2 and then air-cooled. A steel pipe was obtained (tempering process after pipe making).
Test No. 42 and test No. In No. 43, the Azroll electric resistance welded steel pipe was not tempered after pipe making.
Test No. In No. 44, the Azroll electric resistance welded steel pipe is subjected to quenching with a quenching temperature of 950° C., a quenching time of 5 minutes, a water cooling cooling method, a tempering temperature of 600° C., and a quenching time of 60 minutes. By performing tempering and then air cooling (the above operation is referred to as “950° C. tempering and tempering” in Table 2), an electric resistance welded steel pipe having an outer diameter of 300 mm and a wall thickness of 15 mm was obtained.
試験No.42及び試験No.43では、アズロール電縫鋼管に対し、造管後焼戻しを施さなかった。
試験No.44では、アズロール電縫鋼管に対し、焼入れ温度を950℃とし、焼入れ時間を5分とし、冷却方法を水冷とする焼入れを施し、次いで、焼戻し温度を600℃とし、焼入れ時間を60分とする焼戻しを施し、次いで空冷することにより(以上の操作を、表2中では「950℃焼入れ焼戻し」とする)、外径が300mmであり肉厚が15mmである電縫鋼管を得た。 Test No. 1-Test No. 41 and the test No. 45-Test No. In No. 47, as-rolled electric-resistance welded steel pipes having an outer diameter of 300 mm and a wall thickness of 15 mm were subjected to post-pipe-making tempering under the conditions (tempering temperature and tempering time) shown in Table 2 and then air-cooled. A steel pipe was obtained (tempering process after pipe making).
Test No. 42 and test No. In No. 43, the Azroll electric resistance welded steel pipe was not tempered after pipe making.
Test No. In No. 44, the Azroll electric resistance welded steel pipe is subjected to quenching with a quenching temperature of 950° C., a quenching time of 5 minutes, a water cooling cooling method, a tempering temperature of 600° C., and a quenching time of 60 minutes. By performing tempering and then air cooling (the above operation is referred to as “950° C. tempering and tempering” in Table 2), an electric resistance welded steel pipe having an outer diameter of 300 mm and a wall thickness of 15 mm was obtained.
<母材180°位置のL断面における肉厚中央部の観察及び各種測定>
上記で得られた電縫鋼管(試験No.42及び試験No.43ではアズロール電縫鋼管。以下同じ。)について、母材180°位置のL断面における肉厚中央部の観察を行い、以下の各種測定を行った。 <Observation and various measurements of the central part of the wall thickness in the L cross section at the base material 180° position>
Regarding the electric resistance welded steel pipes (Azroll electric resistance welded steel pipes in Test No. 42 and Test No. 43; the same applies hereinafter), the center portion of the wall thickness at the L cross section at the base material 180° position was observed. Various measurements were made.
上記で得られた電縫鋼管(試験No.42及び試験No.43ではアズロール電縫鋼管。以下同じ。)について、母材180°位置のL断面における肉厚中央部の観察を行い、以下の各種測定を行った。 <Observation and various measurements of the central part of the wall thickness in the L cross section at the base material 180° position>
Regarding the electric resistance welded steel pipes (Azroll electric resistance welded steel pipes in Test No. 42 and Test No. 43; the same applies hereinafter), the center portion of the wall thickness at the L cross section at the base material 180° position was observed. Various measurements were made.
(フェライト分率の測定及び残部の確認)
前述した方法により、フェライト分率の測定及び残部の確認を行った。
結果を表3に示す。 (Measurement of ferrite fraction and confirmation of the rest)
The ferrite fraction was measured and the balance was confirmed by the method described above.
The results are shown in Table 3.
前述した方法により、フェライト分率の測定及び残部の確認を行った。
結果を表3に示す。 (Measurement of ferrite fraction and confirmation of the rest)
The ferrite fraction was measured and the balance was confirmed by the method described above.
The results are shown in Table 3.
表3において、「TB,P」は、焼戻しベイナイト及びパーライトの少なくとも一方を含み、残部がマルテンサイト及び焼戻しマルテンサイトを実質的に含まない(即ち、残部におけるマルテンサイト及び焼戻しマルテンサイトの合計面積率が、残部全体に対して1%未満である)ことを意味し、「TB+TM」は、焼戻しベイナイト及び焼戻しマルテンサイトの両方を含むことを意味する。
In Table 3, "TB, P" includes at least one of tempered bainite and pearlite, and the balance is substantially free of martensite and tempered martensite (that is, the total area ratio of martensite and tempered martensite in the balance). However, it is less than 1% of the total balance), and "TB + TM" means that it contains both tempered baynite and tempered martensite.
(平均フェライト粒径、最大フェライト粒径/平均フェライト粒径比、及び、転位密度)
前述した方法により、平均フェライト粒径、最大フェライト粒径/平均フェライト粒径比、及び、転位密度を測定した。転位密度の測定におけるX線回折装置としては、リガク社製「RINT2200」を用いた。
結果を表3に示す。 (Average ferrite grain size, maximum ferrite grain size/average ferrite grain size ratio, and dislocation density)
The average ferrite grain size, the maximum ferrite grain size / average ferrite grain size ratio, and the dislocation density were measured by the methods described above. As the X-ray diffractometer for measuring the dislocation density, "RINT2200" manufactured by Rigaku Corporation was used.
The results are shown in Table 3.
前述した方法により、平均フェライト粒径、最大フェライト粒径/平均フェライト粒径比、及び、転位密度を測定した。転位密度の測定におけるX線回折装置としては、リガク社製「RINT2200」を用いた。
結果を表3に示す。 (Average ferrite grain size, maximum ferrite grain size/average ferrite grain size ratio, and dislocation density)
The average ferrite grain size, the maximum ferrite grain size / average ferrite grain size ratio, and the dislocation density were measured by the methods described above. As the X-ray diffractometer for measuring the dislocation density, "RINT2200" manufactured by Rigaku Corporation was used.
The results are shown in Table 3.
<管軸方向のTS、管軸方向のYS、及び管軸方向のYRの測定>
前述した方法により、管軸方向のTS、管軸方向のYS、及び管軸方向のYRの測定を行った。
結果を表3に示す。 <Measurement of TS in the tube axis direction, YS in the tube axis direction, and YR in the tube axis direction>
By the method described above, TS in the tube axis direction, YS in the tube axis direction, and YR in the tube axis direction were measured.
The results are shown in Table 3.
前述した方法により、管軸方向のTS、管軸方向のYS、及び管軸方向のYRの測定を行った。
結果を表3に示す。 <Measurement of TS in the tube axis direction, YS in the tube axis direction, and YR in the tube axis direction>
By the method described above, TS in the tube axis direction, YS in the tube axis direction, and YR in the tube axis direction were measured.
The results are shown in Table 3.
<降伏伸びの有無の確認>
前述した方法により、降伏伸びの有無を確認した。
結果を表3に示す。
表3中、「Y」は、降伏伸びが観測されたことを意味し、「N」は、降伏伸びが観測されなかったことを意味する。 <Confirmation of yield elongation>
The presence or absence of yield elongation was confirmed by the method described above.
The results are shown in Table 3.
In Table 3, "Y" means that the yield elongation was observed, and "N" means that the yield elongation was not observed.
前述した方法により、降伏伸びの有無を確認した。
結果を表3に示す。
表3中、「Y」は、降伏伸びが観測されたことを意味し、「N」は、降伏伸びが観測されなかったことを意味する。 <Confirmation of yield elongation>
The presence or absence of yield elongation was confirmed by the method described above.
The results are shown in Table 3.
In Table 3, "Y" means that the yield elongation was observed, and "N" means that the yield elongation was not observed.
<ひずみが付与された後の耐サワー性(耐HIC試験のCAR)>
前述した方法により、ひずみが付与された後の耐サワー性の評価を行った。
本評価における、耐HIC試験のCAR(%)を表3に示す。
CAR(%)の値が小さい程、ひずみが付与された後の耐サワー性に優れることを意味する。 <Sour resistance after strain is applied (HIC test CAR)>
The sour resistance after strain was applied was evaluated by the method described above.
The CAR (%) of the HIC resistance test in this evaluation is shown in Table 3.
The smaller the value of CAR (%), the better the sour resistance after strain is applied.
前述した方法により、ひずみが付与された後の耐サワー性の評価を行った。
本評価における、耐HIC試験のCAR(%)を表3に示す。
CAR(%)の値が小さい程、ひずみが付与された後の耐サワー性に優れることを意味する。 <Sour resistance after strain is applied (HIC test CAR)>
The sour resistance after strain was applied was evaluated by the method described above.
The CAR (%) of the HIC resistance test in this evaluation is shown in Table 3.
The smaller the value of CAR (%), the better the sour resistance after strain is applied.
母材部の肉厚中央部の金属組織において、フェライト分率が60~90%であり、残部が、焼戻しベイナイト及びパーライトからなる群から選択される少なくとも1種を含み、かつ、残部におけるマルテンサイト及び焼戻しマルテンサイトの合計面積率が残部全体に対して1%未満であり、母材部の肉厚中央部の金属組織において、平均フェライト粒径が10μm以下であり、最大フェライト粒径/平均フェライト粒径比が3.0以下であり、管軸方向のTSが400~700MPaであり、管軸方向のYSが300~650MPaであり、管軸方向のYRが95%以下であり、管軸方向引張試験を行った場合に降伏伸びが観測される実施例(試験No.1~試験No.10)の電縫鋼管は、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)に優れていた。
In the metal structure of the central part of the base metal, the ferrite content is 60 to 90%, the balance contains at least one selected from the group consisting of tempered bainite and pearlite, and martensite in the balance. And the total area ratio of tempered martensite is less than 1% with respect to the entire balance, the average ferrite particle size is 10 μm or less in the metal structure at the center of the wall thickness of the base metal part, and the maximum ferrite particle size / average ferrite. The particle size ratio is 3.0 or less, the TS in the tube axis direction is 400 to 700 MPa, the YS in the tube axis direction is 300 to 650 MPa, the YR in the tube axis direction is 95% or less, and the tube axis direction. The tempered steel pipes of Examples (Test No. 1 to Test No. 10) in which yield elongation is observed when a tensile test is performed have a sour resistance (CAR of the HIC test) after strain is applied. It was excellent.
これら実施例に対し、比較例(試験No.11~試験No.47)の結果は以下のとおりであった。
The results of the comparative examples (Test No. 11 to Test No. 47) were as follows with respect to these Examples.
C含有量が少なすぎる試験No.11では、TSが不足した。
C含有量が多すぎる試験No.12では、焼戻しベイナイト及び焼戻しマルテンサイトが生成され、TS及びYSが過大となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
Si含有量が少なすぎる試験No.13及びSi含有量が多すぎる試験No.14では、いずれも、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
Mn含有量が少なすぎる試験No.15では、TSが不足した。
Mn含有量が多すぎる試験No.16では、焼戻しベイナイト及び焼戻しマルテンサイトが生成され、TS及びYSが過大となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
P含有量が多すぎる試験No.17では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
S含有量が多すぎる試験No.18では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
Ti含有量が少なすぎる試験No.19では、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
Ti含有量が多すぎる試験No.20では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
Al含有量が少なすぎる試験No.21では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
Al含有量が多すぎる試験No.22では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
Nb含有量が少なすぎる試験No.23では、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
Nb含有量が多すぎる試験No.24では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。 Test No. with too low C content. At 11, TS was insufficient.
Test No. with too much C content. In No. 12, tempered bainite and tempered martensite were generated, TS and YS became excessive, and sour resistance (CAR in HIC resistance test) after strain was deteriorated.
Test No. with too low Si content. 13 and Test No. with too much Si content. In all 14, the sour resistance (CAR of the HIC resistance test) after the strain was applied deteriorated.
Test No. with too low Mn content At 15, TS was insufficient.
Test No. with too much Mn content. In No. 16, tempered bainite and tempered martensite were generated, TS and YS became excessive, and sour resistance (CAR in HIC resistance test) after strain was deteriorated.
Test No. with too much P content. In No. 17, the sour resistance (CAR of the HIC resistance test) after the strain was applied deteriorated.
Test No. with too much S content. At No. 18, the sour resistance (CAR of the HIC resistance test) after the strain was applied deteriorated.
Test No. with too low Ti content. In No. 19, the average ferrite grain size was more than 10 μm, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
Test No. with too much Ti content. In No. 20, sour resistance (CAR in HIC resistance test) after the strain was applied deteriorated.
Test No. with too little Al content. In No. 21, sour resistance (CAR in HIC resistance test) after the strain was applied deteriorated.
Test No. with too much Al content. In No. 22, sour resistance (CAR in HIC resistance test) after the strain was applied deteriorated.
Test No. with too low Nb content. In No. 23, the average ferrite grain size was more than 10 μm, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
Test No. with too much Nb content. In No. 24, the sour resistance (CAR in the HIC resistance test) after the strain was applied deteriorated.
C含有量が多すぎる試験No.12では、焼戻しベイナイト及び焼戻しマルテンサイトが生成され、TS及びYSが過大となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
Si含有量が少なすぎる試験No.13及びSi含有量が多すぎる試験No.14では、いずれも、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
Mn含有量が少なすぎる試験No.15では、TSが不足した。
Mn含有量が多すぎる試験No.16では、焼戻しベイナイト及び焼戻しマルテンサイトが生成され、TS及びYSが過大となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
P含有量が多すぎる試験No.17では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
S含有量が多すぎる試験No.18では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
Ti含有量が少なすぎる試験No.19では、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
Ti含有量が多すぎる試験No.20では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
Al含有量が少なすぎる試験No.21では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
Al含有量が多すぎる試験No.22では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
Nb含有量が少なすぎる試験No.23では、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
Nb含有量が多すぎる試験No.24では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。 Test No. with too low C content. At 11, TS was insufficient.
Test No. with too much C content. In No. 12, tempered bainite and tempered martensite were generated, TS and YS became excessive, and sour resistance (CAR in HIC resistance test) after strain was deteriorated.
Test No. with too low Si content. 13 and Test No. with too much Si content. In all 14, the sour resistance (CAR of the HIC resistance test) after the strain was applied deteriorated.
Test No. with too low Mn content At 15, TS was insufficient.
Test No. with too much Mn content. In No. 16, tempered bainite and tempered martensite were generated, TS and YS became excessive, and sour resistance (CAR in HIC resistance test) after strain was deteriorated.
Test No. with too much P content. In No. 17, the sour resistance (CAR of the HIC resistance test) after the strain was applied deteriorated.
Test No. with too much S content. At No. 18, the sour resistance (CAR of the HIC resistance test) after the strain was applied deteriorated.
Test No. with too low Ti content. In No. 19, the average ferrite grain size was more than 10 μm, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
Test No. with too much Ti content. In No. 20, sour resistance (CAR in HIC resistance test) after the strain was applied deteriorated.
Test No. with too little Al content. In No. 21, sour resistance (CAR in HIC resistance test) after the strain was applied deteriorated.
Test No. with too much Al content. In No. 22, sour resistance (CAR in HIC resistance test) after the strain was applied deteriorated.
Test No. with too low Nb content. In No. 23, the average ferrite grain size was more than 10 μm, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
Test No. with too much Nb content. In No. 24, the sour resistance (CAR in the HIC resistance test) after the strain was applied deteriorated.
N含有量が多すぎる試験No.25では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
Caが含有されていない試験No.26では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
Ca含有量が多すぎる試験No.27では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。 Test No. with too much N content At No. 25, the sour resistance (CAR of the HIC resistance test) after the strain was applied deteriorated.
Test No. containing no Ca At No. 26, the sour resistance (CAR of the HIC resistance test) after the strain was applied deteriorated.
Test No. with too much Ca content. In No. 27, the sour resistance (CAR of the HIC resistance test) after the strain was applied deteriorated.
Caが含有されていない試験No.26では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
Ca含有量が多すぎる試験No.27では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。 Test No. with too much N content At No. 25, the sour resistance (CAR of the HIC resistance test) after the strain was applied deteriorated.
Test No. containing no Ca At No. 26, the sour resistance (CAR of the HIC resistance test) after the strain was applied deteriorated.
Test No. with too much Ca content. In No. 27, the sour resistance (CAR of the HIC resistance test) after the strain was applied deteriorated.
各元素は規定の範囲内であるが、Ceqが大きすぎる試験No.40では、フェライト分率が低くなりすぎ、残部に焼戻しベイナイト及び焼戻しマルテンサイトが存在し、TS及びYSが過大となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
各元素は規定の範囲内であるが、ESSPが大きすぎる試験No.41では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。 Each element is within the specified range, but Ceq is too large. In No. 40, the ferrite fraction became too low, and tempered bainite and tempered martensite were present in the balance, TS and YS became excessive, and sour resistance (CAR in HIC resistance test) after strain was imparted deteriorated. ..
Each element is within the specified range, but ESSP is too large. In No. 41, the sour resistance (CAR of the HIC resistance test) after the strain was applied deteriorated.
各元素は規定の範囲内であるが、ESSPが大きすぎる試験No.41では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。 Each element is within the specified range, but Ceq is too large. In No. 40, the ferrite fraction became too low, and tempered bainite and tempered martensite were present in the balance, TS and YS became excessive, and sour resistance (CAR in HIC resistance test) after strain was imparted deteriorated. ..
Each element is within the specified range, but ESSP is too large. In No. 41, the sour resistance (CAR of the HIC resistance test) after the strain was applied deteriorated.
本開示の化学組成を満足するが、スラブ加熱温度が高すぎた試験No.28では、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
本開示の化学組成を満足するが、粗圧延終了温度が低すぎた試験No.29では、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
本開示の化学組成を満足するが、仕上圧延開始温度が高すぎた試験No.30では、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
本開示の化学組成を満足するが、仕上圧延終了温度が低すぎた試験No.31では、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
本開示の化学組成を満足するが、仕上圧延終了温度が高すぎた試験No.32では、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
本開示の化学組成を満足するが、巻取温度が低すぎた試験No.33では、フェライト分率が60%未満となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
本開示の化学組成を満足するが、巻取温度が高すぎた試験No.34では、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。 Test No. which satisfies the chemical composition of the present disclosure but the slab heating temperature is too high. In No. 28, the average ferrite grain size was more than 10 μm, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
Although the chemical composition of the present disclosure was satisfied, the rough rolling finish temperature was too low. In No. 29, the average ferrite grain size was more than 10 μm, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
Test No. which satisfies the chemical composition of the present disclosure, but the finish rolling start temperature is too high. In No. 30, the average ferrite grain size was more than 10 μm, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in HIC resistance test) after strain was deteriorated.
Test No. which satisfies the chemical composition of the present disclosure, but the finish rolling end temperature is too low. In No. 31, the average ferrite grain size was more than 10 μm, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
Test No. which satisfies the chemical composition of the present disclosure, but the finish rolling end temperature is too high. In No. 32, the average ferrite grain size was more than 10 μm, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
Although the chemical composition of the present disclosure was satisfied, the winding temperature was too low. In No. 33, the ferrite fraction was less than 60%, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
Although the chemical composition of the present disclosure is satisfied, the winding temperature was too high. In No. 34, the average ferrite grain size was more than 10 μm, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
本開示の化学組成を満足するが、粗圧延終了温度が低すぎた試験No.29では、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
本開示の化学組成を満足するが、仕上圧延開始温度が高すぎた試験No.30では、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
本開示の化学組成を満足するが、仕上圧延終了温度が低すぎた試験No.31では、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
本開示の化学組成を満足するが、仕上圧延終了温度が高すぎた試験No.32では、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
本開示の化学組成を満足するが、巻取温度が低すぎた試験No.33では、フェライト分率が60%未満となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
本開示の化学組成を満足するが、巻取温度が高すぎた試験No.34では、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。 Test No. which satisfies the chemical composition of the present disclosure but the slab heating temperature is too high. In No. 28, the average ferrite grain size was more than 10 μm, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
Although the chemical composition of the present disclosure was satisfied, the rough rolling finish temperature was too low. In No. 29, the average ferrite grain size was more than 10 μm, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
Test No. which satisfies the chemical composition of the present disclosure, but the finish rolling start temperature is too high. In No. 30, the average ferrite grain size was more than 10 μm, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in HIC resistance test) after strain was deteriorated.
Test No. which satisfies the chemical composition of the present disclosure, but the finish rolling end temperature is too low. In No. 31, the average ferrite grain size was more than 10 μm, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
Test No. which satisfies the chemical composition of the present disclosure, but the finish rolling end temperature is too high. In No. 32, the average ferrite grain size was more than 10 μm, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
Although the chemical composition of the present disclosure was satisfied, the winding temperature was too low. In No. 33, the ferrite fraction was less than 60%, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
Although the chemical composition of the present disclosure is satisfied, the winding temperature was too high. In No. 34, the average ferrite grain size was more than 10 μm, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
本開示の化学組成を満足するが、未再結晶域圧下率/再結晶域圧下率比が小さすぎた試験No.35では、平均フェライト粒径が10μm以下は満足するものの、フェライト分率が60%未満となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
本開示の化学組成を満足するが、未再結晶域圧下率/再結晶域圧下率比が小さすぎた試験No.45では、フェライト分率が60%未満となり、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
本開示の化学組成を満足するが、未再結晶域圧下率/再結晶域圧下率比が大きすぎた試験No.36及び試験No.46では、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。 Test No. which satisfies the chemical composition of the present disclosure, but the unrecrystallized region reduction ratio / recrystallized region reduction ratio was too small. In No. 35, although the average ferrite grain size of 10 μm or less was satisfied, the ferrite fraction was less than 60%, the maximum ferrite grain size/average ferrite grain size ratio was over 3.0, and the sour resistance after strain was applied. The property (CAR of HIC resistance test) deteriorated.
Test No. which satisfies the chemical composition of the present disclosure, but the unrecrystallized region reduction ratio / recrystallized region reduction ratio was too small. In No. 45, the ferrite fraction was less than 60%, the average ferrite grain size was more than 10 μm, and the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, sour resistance (strain resistance after strain was given). CAR of HIC test) deteriorated.
Test No. which satisfies the chemical composition of the present disclosure, but the ratio of unrecrystallized area reduction rate / recrystallized area reduction rate is too large. 36 and test No. In No. 46, the average ferrite grain size was more than 10 μm, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
本開示の化学組成を満足するが、未再結晶域圧下率/再結晶域圧下率比が小さすぎた試験No.45では、フェライト分率が60%未満となり、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
本開示の化学組成を満足するが、未再結晶域圧下率/再結晶域圧下率比が大きすぎた試験No.36及び試験No.46では、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。 Test No. which satisfies the chemical composition of the present disclosure, but the unrecrystallized region reduction ratio / recrystallized region reduction ratio was too small. In No. 35, although the average ferrite grain size of 10 μm or less was satisfied, the ferrite fraction was less than 60%, the maximum ferrite grain size/average ferrite grain size ratio was over 3.0, and the sour resistance after strain was applied. The property (CAR of HIC resistance test) deteriorated.
Test No. which satisfies the chemical composition of the present disclosure, but the unrecrystallized region reduction ratio / recrystallized region reduction ratio was too small. In No. 45, the ferrite fraction was less than 60%, the average ferrite grain size was more than 10 μm, and the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, sour resistance (strain resistance after strain was given). CAR of HIC test) deteriorated.
Test No. which satisfies the chemical composition of the present disclosure, but the ratio of unrecrystallized area reduction rate / recrystallized area reduction rate is too large. 36 and test No. In No. 46, the average ferrite grain size was more than 10 μm, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
本開示の化学組成を満足するが、造管後焼戻しにおける焼戻し温度が低すぎた試験No.37では、YRが過大となり、更に、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
本開示の化学組成を満足するが、造管後焼戻しにおける焼戻し温度が高すぎた試験No.38では、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
本開示の化学組成を満足するが、造管後焼戻しにおける焼戻し時間が短すぎた試験No.39では、YRが過大となり、更に、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。 Test No. which satisfies the chemical composition of the present disclosure, but the tempering temperature in tempering after tube making was too low. In No. 37, YR became excessive, and further, sour resistance (CAR in HIC resistance test) after the strain was applied deteriorated.
Test No. which satisfies the chemical composition of the present disclosure, but the tempering temperature in tempering after tube making was too high. In No. 38, the average ferrite grain size was more than 10 μm, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
Test No. which satisfies the chemical composition of the present disclosure, but the tempering time in tempering after tube making was too short. In No. 39, YR was excessively large, and the sour resistance (CAR in HIC resistance test) after the strain was applied was deteriorated.
本開示の化学組成を満足するが、造管後焼戻しにおける焼戻し温度が高すぎた試験No.38では、平均フェライト粒径が10μm超となり、最大フェライト粒径/平均フェライト粒径比が3.0超となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
本開示の化学組成を満足するが、造管後焼戻しにおける焼戻し時間が短すぎた試験No.39では、YRが過大となり、更に、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。 Test No. which satisfies the chemical composition of the present disclosure, but the tempering temperature in tempering after tube making was too low. In No. 37, YR became excessive, and further, sour resistance (CAR in HIC resistance test) after the strain was applied deteriorated.
Test No. which satisfies the chemical composition of the present disclosure, but the tempering temperature in tempering after tube making was too high. In No. 38, the average ferrite grain size was more than 10 μm, the maximum ferrite grain size/average ferrite grain size ratio was more than 3.0, and the sour resistance (CAR in the HIC resistance test) after strain was deteriorated.
Test No. which satisfies the chemical composition of the present disclosure, but the tempering time in tempering after tube making was too short. In No. 39, YR was excessively large, and the sour resistance (CAR in HIC resistance test) after the strain was applied was deteriorated.
本開示の化学組成を満足するが、造管後焼戻しを行わなかった試験No.42では、降伏伸びが観測されず、YRが過大となり、更に、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
本開示の化学組成を満足するが、造管前焼戻し(即ち、熱延鋼板に対する焼戻し)を実施し、かつ、造管後焼戻しを実施しなかった試験No.43では、降伏伸びが観測されず、YRが過大となり、更に、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。 Test No. which satisfied the chemical composition of the present disclosure but was not tempered after tube formation. In No. 42, the yield elongation was not observed, YR became excessive, and further, the sour resistance (CAR in the HIC resistance test) after the strain was applied deteriorated.
Test No. that satisfies the chemical composition of the present disclosure, but was subjected to tempering before pipe forming (that is, tempering for hot-rolled steel sheet) and no tempering after pipe forming. In No. 43, the yield elongation was not observed, YR was excessive, and the sour resistance (CAR in the HIC resistance test) after the strain was applied was deteriorated.
本開示の化学組成を満足するが、造管前焼戻し(即ち、熱延鋼板に対する焼戻し)を実施し、かつ、造管後焼戻しを実施しなかった試験No.43では、降伏伸びが観測されず、YRが過大となり、更に、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。 Test No. which satisfied the chemical composition of the present disclosure but was not tempered after tube formation. In No. 42, the yield elongation was not observed, YR became excessive, and further, the sour resistance (CAR in the HIC resistance test) after the strain was applied deteriorated.
Test No. that satisfies the chemical composition of the present disclosure, but was subjected to tempering before pipe forming (that is, tempering for hot-rolled steel sheet) and no tempering after pipe forming. In No. 43, the yield elongation was not observed, YR was excessive, and the sour resistance (CAR in the HIC resistance test) after the strain was applied was deteriorated.
本開示の化学組成を満足するが、造管後に950℃の焼入れを実施し、次いで焼戻しを実施した試験No.44では、フェライト分率が60%未満となり、焼戻しベイナイト及び焼戻しマルテンサイトが生成され、TS及びYSが過大となり、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。
O含有量が多すぎる試験No.47では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。 Test No., which satisfies the chemical composition of the present disclosure, is subjected to quenching at 950 ° C. after tube formation and then tempering. In No. 44, the ferrite fraction was less than 60%, tempered bainite and tempered martensite were generated, TS and YS were excessive, and sour resistance (CAR in HIC resistance test) after strain was deteriorated.
Test No. with too much O content. At 47, the sour resistance (CAR of the HIC resistance test) after the strain was applied deteriorated.
O含有量が多すぎる試験No.47では、ひずみが付与された後の耐サワー性(耐HIC試験のCAR)が劣化した。 Test No., which satisfies the chemical composition of the present disclosure, is subjected to quenching at 950 ° C. after tube formation and then tempering. In No. 44, the ferrite fraction was less than 60%, tempered bainite and tempered martensite were generated, TS and YS were excessive, and sour resistance (CAR in HIC resistance test) after strain was deteriorated.
Test No. with too much O content. At 47, the sour resistance (CAR of the HIC resistance test) after the strain was applied deteriorated.
Claims (4)
- 母材部及び電縫溶接部を含み、
前記母材部の化学組成が、質量%で、
C:0.03~0.10%、
Si:0.03~0.60%、
Mn:0.30~1.60%、
P:0~0.030%、
S:0~0.0015%、
Ti:0.010~0.200%、
Al:0.005~0.500%、
Nb:0.010~0.050%、
N:0~0.006%、
O:0~0.004%、
Ca:0.0001~0.0200%、
Cu:0~1.000%、
Ni:0~1.000%、
Cr:0~1.00%、
Mo:0~0.50%、
V:0~0.200%、
W:0~0.100%、
B:0~0.0050%、
Mg:0~0.0200%、
Zr:0~0.0200%、
REM:0~0.0200%、並びに、
残部:Fe及び不純物からなり、
下記式(1)で表されるCeqが0.10~0.50であり、
下記式(2)で表されるESSPが0~10.00であり、
前記母材部の肉厚中央部の金属組織において、フェライトの面積率が60~90%であり、残部が、焼戻しベイナイト及びパーライトからなる群から選択される少なくとも1種を含み、かつ、残部におけるマルテンサイト及び焼戻しマルテンサイトの合計面積率が残部全体に対して1%未満であり、
前記母材部の肉厚中央部の金属組織において、平均フェライト粒径が10μm以下であり、平均フェライト粒径に対する最大フェライト粒径の比が3.0以下であり、
管軸方向の引張強度が400~700MPaであり、
管軸方向の降伏強度が300~650MPaであり、
管軸方向の降伏比が95%以下であり、
管軸方向引張試験を行った場合に降伏伸びが観測されるラインパイプ用電縫鋼管。
Ceq = C+Mn/6+Cr/5+(Ni+Cu)/15+Nb+Mo+V … 式(1)
EESP = Ca×(1-124O)/1.25S … 式(2)
〔式(1)及び式(2)中、各元素記号は、各元素の質量%を表す。〕 Including base material and ERW welded part,
The chemical composition of the base material part is mass%,
C: 0.03 to 0.10%,
Si: 0.03 to 0.60%,
Mn: 0.30 to 1.60%,
P: 0 to 0.030%,
S: 0 to 0.0015%,
Ti: 0.010 to 0.200%,
Al: 0.005 to 0.500%,
Nb: 0.010 to 0.050%,
N: 0 to 0.006%,
O: 0 to 0.004%,
Ca: 0.0001-0.0200%,
Cu: 0 to 1.000%,
Ni: 0 to 1.000%,
Cr: 0 to 1.00%,
Mo: 0 to 0.50%,
V: 0 to 0.200%,
W: 0 to 0.100%,
B: 0 to 0.0050%,
Mg: 0-0.0200%,
Zr: 0-0.0200%,
REM: 0 to 0.0200%, and
Remaining: Consists of Fe and impurities
Ceq represented by the following formula (1) is 0.10 to 0.50,
The ESSP represented by the following formula (2) is 0 to 10.00,
In the metal structure of the central part of the wall thickness of the base material, the area ratio of ferrite is 60 to 90%, the balance contains at least one selected from the group consisting of tempered bainite and pearlite, and the balance The total area ratio of martensite and tempered martensite is less than 1% with respect to the entire balance,
In the metal structure at the center of the wall thickness of the base metal portion, the average ferrite grain size is 10 μm or less, and the ratio of the maximum ferrite grain size to the average ferrite grain size is 3.0 or less.
The tensile strength in the tube axis direction is 400 to 700 MPa,
The yield strength in the tube axis direction is 300 to 650 MPa,
The yield ratio in the tube axis direction is 95% or less,
ERW steel pipe for line pipe whose yield elongation is observed when a tensile test is conducted in the pipe axial direction.
Ceq=C+Mn/6+Cr/5+(Ni+Cu)/15+Nb+Mo+V... Formula (1)
EESP=Ca×(1-124O)/1.25S... Formula (2)
[In Formula (1) and Formula (2), each element symbol represents the mass% of each element. ] - 前記母材部の化学組成が、質量%で、
Cu:0%超1.000%以下、
Ni:0%超1.000%以下、
Cr:0%超1.00%以下、
Mo:0%超0.5%以下、
V:0%超0.200%以下、
W:0%超0.100%以下、
B:0%超0.0050%以下、
Mg:0%超0.0200%以下、
Zr:0%超0.0200%以下、及び、
REM:0%超0.0200%以下からなる群から選択される1種以上を含有する請求項1に記載のラインパイプ用電縫鋼管。 The chemical composition of the base material part is mass%,
Cu: more than 0% and 1.000% or less,
Ni: more than 0% and 1.000% or less,
Cr: more than 0% and 1.00% or less,
Mo: More than 0% and less than 0.5%,
V: more than 0% and 0.200% or less,
W: more than 0% and 0.100% or less,
B: more than 0% and 0.0050% or less,
Mg: more than 0% and 0.0200% or less,
Zr: more than 0% and 0.0200% or less, and
REM: The electric pipe for line pipe according to claim 1, which contains at least one selected from the group consisting of more than 0% and 0.0200% or less. - 前記母材部の肉厚中央部の転位密度が、2.0×1015m-2以下である請求項1又は請求項2に記載のラインパイプ用電縫鋼管。 The electric resistance welded steel pipe for a line pipe according to claim 1 or 2, wherein a dislocation density at a central portion of the wall thickness of the base material portion is 2.0×10 15 m -2 or less.
- 肉厚が5~20mmであり、外径が100~400mmである請求項1~請求項3のいずれか1項に記載のラインパイプ用電縫鋼管。 The electrosewn steel pipe for a line pipe according to any one of claims 1 to 3, wherein the wall thickness is 5 to 20 mm and the outer diameter is 100 to 400 mm.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019531484A JP6575734B1 (en) | 2019-03-04 | 2019-03-04 | ERW steel pipe for line pipe |
PCT/JP2019/008380 WO2020178943A1 (en) | 2019-03-04 | 2019-03-04 | Electric resistance welded steel pipe for line pipes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/008380 WO2020178943A1 (en) | 2019-03-04 | 2019-03-04 | Electric resistance welded steel pipe for line pipes |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020178943A1 true WO2020178943A1 (en) | 2020-09-10 |
Family
ID=67982844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/008380 WO2020178943A1 (en) | 2019-03-04 | 2019-03-04 | Electric resistance welded steel pipe for line pipes |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6575734B1 (en) |
WO (1) | WO2020178943A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022239591A1 (en) * | 2021-05-14 | 2022-11-17 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet and manufacturing method therefor, and high-strength electric resistance welded steel pipe and manufacturing method therefor |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4066954A4 (en) * | 2020-02-10 | 2023-07-05 | Nippon Steel Corporation | Line pipe-use electric resistance welded steel pipe |
JP7088417B2 (en) * | 2020-04-02 | 2022-06-21 | Jfeスチール株式会社 | Electric pipe and its manufacturing method |
JP7081727B1 (en) * | 2020-10-05 | 2022-06-07 | Jfeスチール株式会社 | Electric pipe and its manufacturing method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005290546A (en) * | 2004-03-09 | 2005-10-20 | Jfe Steel Kk | Hot rolled steel sheet for low yr type electric resistance welded steel tube having excellent aging resistance and method for manufacturing the same |
JP2011017048A (en) * | 2009-07-08 | 2011-01-27 | Nippon Steel Corp | Method for manufacturing electroseamed steel pipe having sour-gas resistance for line pipe |
WO2015092916A1 (en) * | 2013-12-20 | 2015-06-25 | 新日鐵住金株式会社 | Electric resistance welded steel pipe |
JP2018127646A (en) * | 2017-02-06 | 2018-08-16 | Jfeスチール株式会社 | High strength hot rolled steel sheet and method for producing the same |
-
2019
- 2019-03-04 WO PCT/JP2019/008380 patent/WO2020178943A1/en active Application Filing
- 2019-03-04 JP JP2019531484A patent/JP6575734B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005290546A (en) * | 2004-03-09 | 2005-10-20 | Jfe Steel Kk | Hot rolled steel sheet for low yr type electric resistance welded steel tube having excellent aging resistance and method for manufacturing the same |
JP2011017048A (en) * | 2009-07-08 | 2011-01-27 | Nippon Steel Corp | Method for manufacturing electroseamed steel pipe having sour-gas resistance for line pipe |
WO2015092916A1 (en) * | 2013-12-20 | 2015-06-25 | 新日鐵住金株式会社 | Electric resistance welded steel pipe |
JP2018127646A (en) * | 2017-02-06 | 2018-08-16 | Jfeスチール株式会社 | High strength hot rolled steel sheet and method for producing the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022239591A1 (en) * | 2021-05-14 | 2022-11-17 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet and manufacturing method therefor, and high-strength electric resistance welded steel pipe and manufacturing method therefor |
JP7211566B1 (en) * | 2021-05-14 | 2023-01-24 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet and manufacturing method thereof, and high-strength electric resistance welded steel pipe and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6575734B1 (en) | 2019-09-18 |
JPWO2020178943A1 (en) | 2021-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6288390B1 (en) | AZROLL ERW Steel Pipe for Line Pipe | |
EP2949772B1 (en) | Hot-rolled steel sheet and method for manufacturing same | |
JP6213703B1 (en) | ERW steel pipe for line pipe | |
RU2518830C1 (en) | Hot-rolled steel sheet and method of its production | |
KR101333854B1 (en) | Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same | |
JP6260757B1 (en) | AZROLL ERW Steel Pipe and Hot Rolled Steel Sheet for Line Pipe | |
JP6587041B1 (en) | ERW steel pipe for line pipe | |
WO2013027779A1 (en) | Thick-walled electric-resistance-welded steel pipe and process for producing same | |
JP6575734B1 (en) | ERW steel pipe for line pipe | |
JP5741483B2 (en) | High-strength hot-rolled steel sheet for line pipes with excellent on-site weldability and manufacturing method thereof | |
JP5630026B2 (en) | Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same | |
WO2015012317A1 (en) | Steel plate for line pipe, and line pipe | |
KR20170113626A (en) | High strength electric resistance welded steel pipe and manufacturing method therefor | |
JP2010196164A (en) | Thick, high-tension, hot-rolled steel sheet excellent in low-temperature toughness, and manufacturing method therefor | |
CN109072379B (en) | Electric resistance welded steel pipe for main line pipe | |
JP2010037567A (en) | Thick, high-tension hot-rolled steel sheet excellent in low-temperature toughness, and producing method therefor | |
JP6213702B1 (en) | ERW steel pipe for line pipe | |
JP2010196157A (en) | Thick, high tensile-strength hot-rolled steel sheet having excellent low temperature toughness and manufacturing method therefor | |
JP6693610B1 (en) | ERW steel pipe for line pipe | |
JP7448804B2 (en) | ERW steel pipes for line pipes and hot rolled steel plates for line pipes | |
KR101139540B1 (en) | High-strength hot-rolled steel plate excellent in low-temperature toughness for spiral pipe and process for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019531484 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19918199 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19918199 Country of ref document: EP Kind code of ref document: A1 |