JP2010209461A - High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe - Google Patents

High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe Download PDF

Info

Publication number
JP2010209461A
JP2010209461A JP2009253157A JP2009253157A JP2010209461A JP 2010209461 A JP2010209461 A JP 2010209461A JP 2009253157 A JP2009253157 A JP 2009253157A JP 2009253157 A JP2009253157 A JP 2009253157A JP 2010209461 A JP2010209461 A JP 2010209461A
Authority
JP
Japan
Prior art keywords
less
segregation
steel
hydrogen
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009253157A
Other languages
Japanese (ja)
Other versions
JP5423324B2 (en
Inventor
Takuya Hara
卓也 原
Yoshio Terada
好男 寺田
Taro Muraki
太郎 村木
Takeshi Suzuki
豪 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009253157A priority Critical patent/JP5423324B2/en
Priority to BRPI1008559A priority patent/BRPI1008559A2/en
Priority to PCT/JP2010/052395 priority patent/WO2010093053A1/en
Priority to KR1020117018675A priority patent/KR101312901B1/en
Priority to CN2010800075864A priority patent/CN102317492A/en
Publication of JP2010209461A publication Critical patent/JP2010209461A/en
Application granted granted Critical
Publication of JP5423324B2 publication Critical patent/JP5423324B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel sheet and a steel pipe having excellent HIC resistance that are ideal for, for instance, a line pipe used to convey petroleum or natural gas. <P>SOLUTION: The steel sheet and the steel pipe are formed from steel having a steel composition that comprises, by mass, C: 0.02 to 0.08%, Si: 0.01 to 0.5%, Mn: 1.2 to 1.6%, Nb: 0.001 to 0.10%, N: 0.0010 to 0.0050%, Ca: 0.0001 to 0.0050%, P: 0.01% or less, S: 0.0020 or less, Ti: 0.030% or less, Al: 0.030% or less, and O: 0.0035% or less, and the balance Fe with inevitable impurities and that satisfies S/Ca&lt;0.5, and having a maximum Mn degree of segregation of 2.0% or less, a maximum Nb degree of segregation of 4.0 or less, and a maximum Ti degree of segregation of 4.0 or less. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、石油、天然ガス等の輸送用ラインパイプ等の用途に最適な耐水素誘起割れ性(耐HIC性という。)に優れたラインパイプ用鋼板及びラインパイプ用鋼管に関する。   The present invention relates to a steel plate for a line pipe and a steel pipe for a line pipe, which are excellent in hydrogen-induced cracking resistance (referred to as HIC resistance), which is optimal for applications such as oil and natural gas transportation line pipes.

水分を含有した硫化水素(H2S)が多く含まれる石油、天然ガス等の輸送用ラインパイプでは、水素誘起割れ(HICという。)の発生が懸念される。これは、水分を含有したH2S環境(サワー環境という。)において、鋼中に表面から水素が侵入しやすいためである。HICは、特に、鋼の中心偏析部に存在する、延伸化したMnS、集積したTiやNbの炭窒化物、又は酸化物集積帯における酸化物系介在物など、鋼中の欠陥の周りに集積した水素に起因している。 There is a concern that hydrogen-induced cracking (referred to as HIC) may occur in transportation pipes for petroleum, natural gas, and the like that contain a large amount of water-containing hydrogen sulfide (H 2 S). This is because in an H 2 S environment containing moisture (referred to as a sour environment), hydrogen easily enters the steel from the surface. HIC accumulates around defects in steel, especially stretched MnS, accumulated Ti and Nb carbonitrides, or oxide inclusions in oxide accumulation zones, present in the central segregation of steel. Caused by hydrogen.

即ち、サワー環境では、鋼中に侵入した水素が、欠陥の周囲に集積してガスとなり、その圧力が鋼の破壊靱性値(KIC)を超えた場合に、割れが発生する。更に、鋼の中心偏析部、介在物の周辺などが硬化していると割れは伝播しやすくなる。したがって、従来より、サワー環境で使用されるラインパイプでは、延伸化したMnSの生成、Ti、Nbの炭窒化物の集積や、酸化物の集積の抑制、あるいは中心偏析の硬化相の形成を抑制するなど、対策が講じられている。 That is, in the sour environment, hydrogen that has entered the steel accumulates around the defect to become a gas, and cracking occurs when the pressure exceeds the fracture toughness value (K IC ) of the steel. Furthermore, if the center segregation part of steel, the periphery of inclusions, and the like are hardened, cracks are likely to propagate. Therefore, conventionally, in line pipes used in sour environments, the production of stretched MnS, the accumulation of carbonitrides of Ti and Nb, the accumulation of oxides, or the formation of hardened phases due to center segregation are suppressed. Measures are taken such as.

例えば、Mnは鋼板の中心に偏析しやすい元素であり、Mnの偏析を抑制する方法が提案されている(例えば、特許文献1〜3)。特許文献1には、鋼中の平均Mn含有量に対する偏析部のMn含有量の比を抑制した鋼板が提案されている。また、特許文献2及び3には、Mn偏析スポットの大きさに加えて、偏析部のP濃度を限定し、更にCaを活用した高強度ラインパイプが提案されている。   For example, Mn is an element that easily segregates at the center of a steel sheet, and methods for suppressing the segregation of Mn have been proposed (for example, Patent Documents 1 to 3). Patent Document 1 proposes a steel sheet in which the ratio of the Mn content of the segregation part to the average Mn content in the steel is suppressed. Patent Documents 2 and 3 propose a high-strength line pipe that limits the P concentration of the segregation part in addition to the size of the Mn segregation spot and further utilizes Ca.

また、Mnの偏析に加えて、Nbの偏析にも着目した、耐HIC性に優れる熱延鋼板が提案されている(例えば、特許文献4)。更に、Ti、Nbの炭化物、窒化物などの介在物を抑制する方法が提案されている(例えば、特許文献5、6)。   In addition to Mn segregation, hot rolled steel sheets with excellent HIC resistance have been proposed that focus on Nb segregation (for example, Patent Document 4). Furthermore, methods for suppressing inclusions such as carbides and nitrides of Ti and Nb have been proposed (for example, Patent Documents 5 and 6).

特開平6−220577号公報Japanese Patent Laid-Open No. 6-220577 特開平6−256894号公報JP-A-6-256894 特開平6−271974号公報JP-A-6-271974 特開2002−363689号公報JP 2002-36389 A 特開2006−63351号公報JP 2006-63351 A 特開2008−7841号公報JP 2008-7841 A

従来より、Mnの偏析の抑制やCaを利用したMnSの形態制御に関する開発は盛んに行われていたが、(偏析部の最大Mn含有量)/(鋼中の平均Mn含有量)や、Mn偏析スポットの大きさを制御するだけでは、HICを完全に防止することができておらず、より厳密に制御する必要があることがわかった。   Conventionally, development related to suppression of segregation of Mn and morphology control of MnS using Ca has been actively carried out, but (maximum Mn content of segregation part) / (average Mn content in steel), Mn It has been found that HIC cannot be completely prevented only by controlling the size of the segregation spot, and it is necessary to control it more strictly.

更に、Mnの偏析を解消するとNbの偏析が問題になった。このNbの偏析についても、(偏析部の最大Nb含有量)/(鋼中の平均Nb含有量)の制御では不十分であり、より厳密に制御する必要があることがわかった。また、Nb−Ti−C−N系の介在物の長さや、(Ti,Nb)(C,N)系介在物の面密度及び長さを制御しても、HICの発生を防止することができなかった。   Further, when the segregation of Mn was eliminated, the segregation of Nb became a problem. As for the segregation of Nb, it was found that control of (maximum Nb content of segregation part) / (average Nb content in steel) is insufficient, and it is necessary to control it more strictly. Moreover, even if the length of Nb—Ti—C—N inclusions and the surface density and length of (Ti, Nb) (C, N) inclusions are controlled, generation of HIC can be prevented. could not.

本発明は、このような実情に鑑みてなされたものであり、石油、天然ガス等の輸送用ラインパイプ等に使用される鋼管に最適な、耐HIC性に優れたラインパイプ用鋼板及びラインパイプ鋼管の提供を課題とするものである。   The present invention has been made in view of such circumstances, and is suitable for steel pipes used for transportation line pipes of petroleum, natural gas, etc., and has excellent HIC resistance and steel pipe for line pipes and line pipes The issue is to provide steel pipes.

本発明者らは、引張り強度が500MPa以上の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板及び高強度ラインパイプ用鋼管を得るための鋼材が満足すべき条件について鋭意研究を行い、新しい超高強度ラインパイプ用鋼板及び高強度ラインパイプ用鋼管を発明するに至った。本発明の要旨は以下のとおりである。   The present inventors conducted intensive research on the conditions that should be satisfied by a steel material for obtaining a steel sheet for a high-strength line pipe and a steel pipe for a high-strength line pipe excellent in hydrogen-induced crack resistance with a tensile strength of 500 MPa or more. It came to invent the steel plate for ultra high strength line pipes, and the steel pipe for high strength line pipes. The gist of the present invention is as follows.

(1)質量%で、
C :0.02〜0.08%、
Si:0.01〜0.5%、
Mn:1.2〜1.6%、
Nb:0.001〜0.10%、
N :0.0010〜0.0050%、
Ca:0.0001〜0.0050%
を含み、
P :0.01%以下、
S :0.0020%以下、
Ti:0.030%以下、
Al:0.030%以下、
O :0.0035%以下
に制限し、S、Caの含有量が、
S/Ca<0.5
を満足し、残部がFe及び不可避的不純物元素からなり、
更に、
最大Mn偏析度:2.0以下、
Nb偏析度:4.0以下、
Ti偏析度:4.0以下
に制限したことを特徴とする耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板。
(2)質量%で、
Ni:0.01〜2.0%、
Cu:0.01〜1.0%、
Cr:0.01〜1.0%、
Mo:0.01〜0.60%、
W :0.01〜1.0%、
V :0.01〜0.10%、
Zr:0.0001〜0.050%、
Ta:0.0001〜0.050%、
B :0.0001〜0.0020%
の1種又は2種以上を、更に含有することを特徴とする上記(1)に記載の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板。
(3)質量%で
REM:0.0001〜0.01%、
Mg:0.0001〜0.01%、
Y :0.0001〜0.005%、
Hf:0.0001〜0.005%、
Re:0.0001〜0.005%
のうち1種又は2種以上を、更に含有することを特徴とする上記(1)又は上記(2)に記載の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板。
(4)中心偏析部の最高硬度が300Hv以下であることを特徴とする上記(1)〜(3)のいずれか1項に記載の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板。
(1) In mass%,
C: 0.02 to 0.08%,
Si: 0.01 to 0.5%,
Mn: 1.2-1.6%
Nb: 0.001 to 0.10%,
N: 0.0010 to 0.0050%,
Ca: 0.0001 to 0.0050%
Including
P: 0.01% or less,
S: 0.0020% or less,
Ti: 0.030% or less,
Al: 0.030% or less,
O: Limited to 0.0035% or less, S, Ca content,
S / Ca <0.5
And the balance consists of Fe and inevitable impurity elements,
Furthermore,
Maximum Mn segregation degree: 2.0 or less,
Nb segregation degree: 4.0 or less,
Ti segregation degree: Steel sheet for high-strength line pipe excellent in hydrogen-induced crack resistance, characterized by being limited to 4.0 or less.
(2) In mass%,
Ni: 0.01 to 2.0%,
Cu: 0.01 to 1.0%,
Cr: 0.01 to 1.0%,
Mo: 0.01-0.60%,
W: 0.01-1.0%
V: 0.01 to 0.10%,
Zr: 0.0001 to 0.050%,
Ta: 0.0001 to 0.050%,
B: 0.0001 to 0.0020%
The steel sheet for high-strength line pipes having excellent resistance to hydrogen-induced cracking as described in (1) above, further comprising one or more of the above.
(3) By mass% REM: 0.0001 to 0.01%,
Mg: 0.0001 to 0.01%
Y: 0.0001 to 0.005%,
Hf: 0.0001 to 0.005%,
Re: 0.0001 to 0.005%
The steel sheet for high-strength line pipes having excellent resistance to hydrogen-induced cracking as described in (1) or (2) above, further comprising one or more of them.
(4) The steel sheet for a high-strength line pipe excellent in hydrogen-induced crack resistance according to any one of the above (1) to (3), wherein the center segregation portion has a maximum hardness of 300 Hv or less.

(5)母材が、質量%で、
C :0.02〜0.08%、
Si:0.01〜0.5%、
Mn:1.2〜1.6%、
Nb:0.001〜0.10%、
N :0.0010〜0.0050%、
Ca:0.0001〜0.0050%
を含み、
P :0.010%以下、
S :0.0020%以下、
Ti:0.030%以下、
Al:0.030%以下、
O :0.0035%以下
に制限し、S、Caの含有量が、
S/Ca<0.5
を満足し、残部がFe及び不可避的不純物元素からなり、
更に、母材の
最大Mn偏析度:2.0以下、
Nb偏析度:4.0以下、
Ti偏析度:4.0以下
に制限したことを特徴とする耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管。
(6)母材が、質量%で、
Ni:0.01〜2.0%、
Cu:0.01〜1.0%、
Cr:0.01〜1.0%、
Mo:0.01〜0.60%、
W :0.01〜1.0%、
V :0.01〜0.10%、
Zr:0.0001〜0.050%、
Ta:0.0001〜0.050%、
B :0.0001〜0.0020%
の1種又は2種以上を、更に含有することを特徴とする上記(5)に記載の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管。
(7)母材が、質量%で、
REM:0.0001〜0.01%、
Mg:0.0001〜0.01%、
Y :0.0001〜0.005%、
Hf:0.0001〜0.005%、
Re:0.0001〜0.005%
のうち1種又は2種以上を、更に含有することを特徴とする上記(5)又は上記(6)に記載の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管。
(8)母材の中心偏析部の最高硬度が300Hv以下であることを特徴とする上記(5)〜(7)のいずれか1項に記載の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管。
(5) The base material is mass%,
C: 0.02 to 0.08%,
Si: 0.01 to 0.5%,
Mn: 1.2-1.6%
Nb: 0.001 to 0.10%,
N: 0.0010 to 0.0050%,
Ca: 0.0001 to 0.0050%
Including
P: 0.010% or less,
S: 0.0020% or less,
Ti: 0.030% or less,
Al: 0.030% or less,
O: Limited to 0.0035% or less, S, Ca content,
S / Ca <0.5
And the balance consists of Fe and inevitable impurity elements,
Furthermore, the maximum Mn segregation degree of the base material: 2.0 or less,
Nb segregation degree: 4.0 or less,
Ti segregation degree: Steel pipe for high-strength line pipe excellent in resistance to hydrogen-induced cracking, characterized by being limited to 4.0 or less.
(6) The base material is mass%,
Ni: 0.01 to 2.0%,
Cu: 0.01 to 1.0%,
Cr: 0.01 to 1.0%,
Mo: 0.01-0.60%,
W: 0.01-1.0%
V: 0.01 to 0.10%,
Zr: 0.0001 to 0.050%,
Ta: 0.0001 to 0.050%,
B: 0.0001 to 0.0020%
The steel pipe for high-strength linepipe excellent in hydrogen-induced crack resistance according to (5) above, further comprising one or more of the above.
(7) The base material is mass%,
REM: 0.0001 to 0.01%,
Mg: 0.0001 to 0.01%
Y: 0.0001 to 0.005%,
Hf: 0.0001 to 0.005%,
Re: 0.0001 to 0.005%
The steel pipe for high-strength line pipes having excellent resistance to hydrogen-induced cracking as described in (5) or (6) above, further comprising one or more of them.
(8) The high-strength line pipe excellent in hydrogen-induced crack resistance according to any one of the above (5) to (7), wherein the maximum hardness of the center segregation part of the base material is 300 Hv or less Steel pipe.

本発明によれば、Mn、Nb、Tiの偏析度が低下し、中心偏析部の最高硬さの上昇が抑制され、耐水素誘起割れ性に優れたラインパイプ用鋼板及びラインパイプ用鋼管の製造が可能であるなど、産業上の貢献が極めて顕著である。   According to the present invention, the segregation degree of Mn, Nb, and Ti is reduced, the increase in the maximum hardness of the center segregation part is suppressed, and the production of a steel plate for line pipe and a steel pipe for line pipe excellent in hydrogen-induced crack resistance. The industrial contribution is extremely remarkable.

SとCaの含有量の比S/CaとHIC試験におけるCARとの関係を示す図である。It is a figure which shows the relationship between ratio S / Ca of S and Ca content, and CAR in a HIC test.

本発明者らは、種々のラインパイプ用鋼板を用いて、NACE(National Association of Corrosion and Engineer)試験を行い、HICの発生の有無を評価した。NACE試験は、5%NaCl溶液+0.5%酢酸、pH2.7の溶液中に硫化水素ガスを飽和させて、96時間後に割れが生成するかどうかを調査する試験方法である。   The present inventors performed a NACE (National Association of Corrosion and Engineer) test using various steel plates for line pipes, and evaluated the presence or absence of HIC. The NACE test is a test method in which hydrogen sulfide gas is saturated in a solution of 5% NaCl solution + 0.5% acetic acid, pH 2.7 to investigate whether cracks are generated after 96 hours.

試験後、割れが発生した鋼板から試験片を採取し、HICの発生場所を詳細に観察した。その結果、大きく分けて、以下の3つのHICの発生箇所が観察された。即ち、1)延伸化したMnS、2)集積したTi、Nbの炭窒化物、3)集積した酸化物、である。更に、検討を重ねた結果、これらの3つの全てを抑制すると、ラインパイプ用鋼板及びラインパイプ用鋼管のHICの発生を顕著に防止できることを見出した。   After the test, a test piece was collected from the cracked steel plate, and the location where HIC was generated was observed in detail. As a result, the following three HIC occurrence locations were observed. That is, 1) stretched MnS, 2) accumulated Ti, Nb carbonitride, and 3) accumulated oxide. Furthermore, as a result of repeated studies, it has been found that if all three of these are suppressed, the occurrence of HIC in the steel pipe for line pipe and the steel pipe for line pipe can be remarkably prevented.

まず、延伸化した粗大なMnSを抑制するためには、次の条件を満たすことが必要である。S量を0.002%未満すること、SとCaの含有量の比S/Caを0.5未満にすること、更に、鋼板及び鋼管の最大Mn偏析度を2.0以下にすることである。図1に0.04%C−1.25%Mn鋼のHIC試験におけるCAR(割れ面積率)とS/Caの関係を示す。図1に示されるように、S/Caの比が0.5以上になると、HICが発生し始めるので、S/Caは0.5未満にする必要がある。   First, in order to suppress stretched coarse MnS, it is necessary to satisfy the following conditions. By making the S amount less than 0.002%, making the ratio S / Ca of S and Ca less than 0.5, and further making the maximum Mn segregation degree of the steel plate and the steel pipe less than 2.0. is there. FIG. 1 shows the relationship between CAR (crack area ratio) and S / Ca in the HIC test of 0.04% C-1.25% Mn steel. As shown in FIG. 1, when the S / Ca ratio is 0.5 or more, HIC starts to be generated, so S / Ca needs to be less than 0.5.

次に、Ti、Nbの炭窒化物、特にNb(C,N)やTiCの集積を抑制するには、次の条件を満たすことが必要である。N量を0.0050%以下にすること、C量を0.06%以下にすること、NbとTiの偏析度をそれぞれ4.0以下にすることである。   Next, to suppress the accumulation of Ti and Nb carbonitrides, particularly Nb (C, N) and TiC, the following conditions must be satisfied. The N content is 0.0050% or less, the C content is 0.06% or less, and the segregation degrees of Nb and Ti are 4.0 or less, respectively.

ここで、最大Mn偏析度とは、鋼板及び鋼管における、中心偏析部を除いた平均のMn量に対する中心偏析部の最大のMn量の比である。
同様に、Nb偏析度とTi偏析度は、鋼板及び鋼管における、中心偏析部を除いた平均のNb量(Ti量)に対する中心偏析部の平均化したNb量(Ti量)の比である。
Here, the maximum Mn segregation degree is a ratio of the maximum Mn amount of the central segregation portion to the average Mn amount excluding the central segregation portion in the steel plate and the steel pipe.
Similarly, the Nb segregation degree and the Ti segregation degree are ratios of the average Nb amount (Ti amount) of the central segregation portion to the average Nb amount (Ti amount) excluding the central segregation portion in the steel plate and the steel pipe.

Mn偏析度は、EPMA(Electron Probe Micro Analyzer)、又は、EPMAによる測定結果を画像処理することができるCMA(Computer Aided Micro Analyzer)によって、鋼板及び鋼管のMn濃度分布を測定することにより求めることができる。   The degree of Mn segregation can be determined by measuring the Mn concentration distribution of steel plates and steel pipes using EPMA (Electron Probe Micro Analyzer) or CMA (Computer Aided Micro Analyzer) capable of image processing the measurement results by EPMA. it can.

その際、EPMA(又はCMA)のプローブ径によって最大Mn偏析度の数値が変化する。本発明者らは、プローブ径(ビーム径)を2μmとすることにより、適正にMnの偏析を評価できることを見出した。具体的には、次のようにして測定を行うことができる。   At that time, the numerical value of the maximum Mn segregation degree varies depending on the probe diameter of EPMA (or CMA). The present inventors have found that the segregation of Mn can be properly evaluated by setting the probe diameter (beam diameter) to 2 μm. Specifically, the measurement can be performed as follows.

EPMAにて50μmのビーム径にて20mm幅(HIC試験片幅)×20mm厚(HIC試験片厚)の測定領域におけるMnの濃度分布を測定する。次に、最もMn量が濃化していた場所(中心偏析部)において、さらに2μmのビーム径にて1mm(幅)×1mm(厚み)の領域のMn濃度を測定する。そして、このMn濃度分布から最大Mn偏析度を求める。その際、500点×500点のデータを集積する。この250000点の中の最大Mn濃度と中心偏析部を除いた平均Mn濃度の比を最大Mn偏析度と定義してその値を求めた。   The concentration distribution of Mn in a measurement region of 20 mm width (HIC specimen width) × 20 mm thickness (HIC specimen thickness) is measured with an EPMA at a beam diameter of 50 μm. Next, the Mn concentration in a region of 1 mm (width) × 1 mm (thickness) is further measured with a beam diameter of 2 μm at the place where the Mn amount is most concentrated (center segregation portion). Then, the maximum Mn segregation degree is obtained from this Mn concentration distribution. At that time, data of 500 points × 500 points are accumulated. The ratio of the maximum Mn concentration in the 250,000 points to the average Mn concentration excluding the central segregation portion was defined as the maximum Mn segregation degree, and the value was obtained.

また、Nb偏析度及びTi偏析度についても同様に、EPMA又はCMAによって、Nb濃度分布及びTi濃度分布を測定することにより求めることができる。その際、Nb偏析度及びTi偏析度についても同様に、ビーム径を2μmとすることにより、適正に偏析を評価できることがわかった。   Similarly, the Nb segregation degree and the Ti segregation degree can be obtained by measuring the Nb concentration distribution and the Ti concentration distribution by EPMA or CMA. At that time, it was also found that the segregation degree can be properly evaluated by setting the beam diameter to 2 μm in the same manner for the Nb segregation degree and the Ti segregation degree.

実際には、Nb、Ti偏析度に関しても、EPMAにて50μmのビーム径にて20mm幅(HIC試験片幅)×20mm厚(HIC試験片厚)の測定領域におけるNb、Tiの濃度分布を測定して、平均Nb(Ti)濃度を求めた後、最もNb,Ti量が濃化していた場所(中心偏析部)において、さらに2μmのビーム径にて1mm(幅)×1mm(厚み)の領域のNb、Ti濃度を測定する。その際、板幅方向に測定した500点の平均を取り、中心偏析部の平均のNb、Ti濃度を導出する。そして、中心偏析部の平均のNb、Ti濃度と平均Nb、Ti濃度の比をNb、Ti偏析度と定義してその値を求める。   Actually, regarding the segregation degree of Nb and Ti, the concentration distribution of Nb and Ti in a measurement area of 20 mm width (HIC test piece width) × 20 mm thickness (HIC test piece thickness) is measured by EPMA with a beam diameter of 50 μm. Then, after obtaining the average Nb (Ti) concentration, a region of 1 mm (width) × 1 mm (thickness) at a beam diameter of 2 μm at the place where the Nb and Ti amounts were most concentrated (central segregation portion). The Nb and Ti concentrations of are measured. At that time, the average of 500 points measured in the plate width direction is taken, and the average Nb and Ti concentrations of the center segregation part are derived. Then, the ratio of the average Nb and Ti concentration to the average Nb and Ti concentration in the central segregation part is defined as Nb and Ti segregation degree, and the value is obtained.

なお、MnS、TiN、Nb(C,N)などの介在物が存在するとMn偏析度、Ti偏析度、Nb偏析度が見かけ上大きくなるので、介在物が当たった場合はその値は除いて評価するものとする。   If inclusions such as MnS, TiN, and Nb (C, N) are present, the Mn segregation degree, Ti segregation degree, and Nb segregation degree increase apparently. It shall be.

最後に、酸化物の集積を抑制するには、O量を0.0035%以下にすること、Al量を0.030%以下にすることが必要である。O量が多いと、粗大な酸化物が集積しやすこと、Alを0.030%超添加すると、Alの酸化物のクラスターが集積しやすくなることが明らかとなった。   Finally, in order to suppress the accumulation of oxides, it is necessary to make the O content 0.0035% or less and the Al content 0.030% or less. It has been clarified that when the amount of O is large, coarse oxides are easily accumulated, and when Al is added in an amount of more than 0.030%, Al oxide clusters are easily accumulated.

更に、Mn、Nb、Tiの偏析が抑制された鋼板と鋼管の中心偏析部の最高硬さは、300Hv以下とすることが好ましい。中心偏析部最高硬さの上限を300Hv以下とすることによって、確実にHICの発生を防止することができる。Mn、Nbは焼入れ性を高める元素であり、Tiは析出強化に寄与するため、これらの元素の偏析を抑制することによって、中心偏析部の硬化を抑制することができる。   Furthermore, it is preferable that the maximum hardness of the central segregation part of the steel plate and the steel pipe in which segregation of Mn, Nb, and Ti is suppressed is 300 Hv or less. By setting the upper limit of the center segregation portion maximum hardness to 300 Hv or less, generation of HIC can be reliably prevented. Mn and Nb are elements that enhance the hardenability, and Ti contributes to precipitation strengthening. Therefore, by suppressing the segregation of these elements, the hardening of the central segregation part can be suppressed.

なお、中心偏析部は、EPMAやCMAによって測定したMnの濃度が最大になる部位であり、中心偏析部の最高硬さは、3%硝酸+97%ナイタール溶液で腐食した後、JIS Z 2244に準拠し、25gの荷重でビッカース硬さ試験を行って、測定すればよい。   The central segregation part is a part where the concentration of Mn measured by EPMA or CMA becomes maximum, and the maximum hardness of the central segregation part conforms to JIS Z 2244 after corroding with 3% nitric acid + 97% nital solution. Then, a Vickers hardness test may be performed with a load of 25 g.

以上のような検討結果に基づいてなされた本発明について、以下詳細に説明する。
まず、本発明の鋼板及び鋼管における母材成分の限定理由について述べる。
The present invention made based on the above examination results will be described in detail below.
First, the reasons for limiting the base material components in the steel plate and steel pipe of the present invention will be described.

C:Cは鋼の強度を向上させる元素であり、その有効な下限として0.02%以上の添加が必要である。一方、C量が0.08%を超えると、炭化物の生成が促進されて耐HIC性を損なうため、上限を0.08%以下とする。また、HIC性や溶接性や靱性の低下を抑制するには、C量の上限を0.06%以下とすることが好ましい。   C: C is an element that improves the strength of steel, and as its effective lower limit, addition of 0.02% or more is necessary. On the other hand, if the amount of C exceeds 0.08%, the formation of carbides is promoted and the HIC resistance is impaired, so the upper limit is made 0.08% or less. Moreover, in order to suppress deterioration of HIC property, weldability, and toughness, the upper limit of the C content is preferably set to 0.06% or less.

Si:Siは脱酸元素であり、0.01%以上の添加が必要である。一方、Si量が0.5%を超えると、溶接熱影響部(HAZ)の靱性を低下させるため、上限を0.5%以下とする。   Si: Si is a deoxidizing element and needs to be added in an amount of 0.01% or more. On the other hand, if the Si content exceeds 0.5%, the toughness of the weld heat affected zone (HAZ) is lowered, so the upper limit is made 0.5% or less.

Mn:Mnは、強度及び靱性を向上させる元素であり、1.2%以上の添加が必要である。一方、Mn量が、1.6%を超えると、HAZ靱性を低下させるため、上限を1.8%以下とする。また、HICを抑制するには、Mn量の上限を1.5%未満とすることが好ましい。   Mn: Mn is an element that improves strength and toughness, and needs to be added in an amount of 1.2% or more. On the other hand, if the amount of Mn exceeds 1.6%, the HAZ toughness is lowered, so the upper limit is made 1.8% or less. Moreover, in order to suppress HIC, it is preferable that the upper limit of the amount of Mn be less than 1.5%.

Nb:Nbは、炭化物、窒化物を形成し、強度の向上に寄与する元素である。効果を得るためには、0.0001%以上のNbを添加することが必要である。しかし、Nbを過剰に添加すると、Nb偏析度が増加し、Nbの炭窒化物の集積を招いて、耐HIC性が低下する。したがって、本発明においては、Nb量の上限を0.10%以下とする。また、HIC性を考慮した場合、Nb量の上限は0.05%以下にすることが好ましい。   Nb: Nb is an element that forms carbides and nitrides and contributes to improvement in strength. In order to obtain the effect, it is necessary to add 0.0001% or more of Nb. However, if Nb is added excessively, the degree of segregation of Nb increases, and the accumulation of Nb carbonitrides is invited, resulting in a decrease in HIC resistance. Therefore, in the present invention, the upper limit of the Nb amount is 0.10% or less. In consideration of the HIC property, the upper limit of the Nb amount is preferably 0.05% or less.

N:Nは、TiN、NbNなどの窒化物を形成する元素であり、窒化物を利用して加熱時のオーステナイト粒径を微細にするためには、N量の下限値を0.0010%以上とすることが必要である。しかし、Nの含有量が0.0050%を超えると、TiとNbの炭窒化物が集積しやすくなり、耐HIC性を損なう。したがって、N量の上限を0.0050%以下とする。なお、靭性などが要求される場合には、TiNの粗大化を抑制するため、N量の上限を0.0035%以下にすることが好ましい。   N: N is an element that forms nitrides such as TiN and NbN, and in order to make the austenite grain size at the time of heating using nitrides, the lower limit value of N amount is 0.0010% or more. Is necessary. However, if the N content exceeds 0.0050%, Ti and Nb carbonitrides are likely to accumulate, and the HIC resistance is impaired. Therefore, the upper limit of the N amount is set to 0.0050% or less. In addition, when toughness etc. are requested | required, in order to suppress the coarsening of TiN, it is preferable to make the upper limit of N amount 0.0035% or less.

P:Pは不純物であり、含有量が0.01%を超えると、耐HIC性を損ない、また、HAZの靱性が低下する。したがって、Pの含有量の上限を0.01%以下に制限する。   P: P is an impurity. If the content exceeds 0.01%, the HIC resistance is impaired, and the toughness of the HAZ is lowered. Therefore, the upper limit of the P content is limited to 0.01% or less.

S:Sは、熱間圧延時に圧延方向に延伸するMnSを生成して、耐HIC性を低下させる元素である。したがって、本発明では、S量を低減することが必要であり、上限を0.0020%以下に制限する。また、靱性を向上させるためには、S量を0.0010%以下とすることが好ましい。S量は、少ないほど好ましいが、0.0001%未満にすることは困難であり、製造コストの観点から、下限を0.0001%以上にすることが好ましい。   S: S is an element that reduces the HIC resistance by generating MnS that extends in the rolling direction during hot rolling. Therefore, in the present invention, it is necessary to reduce the amount of S, and the upper limit is limited to 0.0020% or less. In order to improve toughness, the S content is preferably 0.0010% or less. The smaller the amount of S, the better. However, it is difficult to make it less than 0.0001%, and the lower limit is preferably made 0.0001% or more from the viewpoint of manufacturing cost.

Ti:Tiは、通常、脱酸剤や窒化物形成元素として結晶粒の細粒化に利用される元素であるが、本発明では、炭窒化物の形成によって耐HIC性や靱性を低下させる元素である。したがって、Tiの含有量の上限は、0.030%以下に制限する。   Ti: Ti is an element that is usually used for grain refinement as a deoxidizer or nitride-forming element. In the present invention, an element that lowers HIC resistance and toughness by forming carbonitrides. It is. Therefore, the upper limit of the Ti content is limited to 0.030% or less.

Al:Alは脱酸元素であるが、本発明においては、添加量が0.030%を超えるとAl酸化物の集積クラスターが確認されるため、0.030%以下に制限する。靭性が要求される場合には、Al量の上限を0.017%以下にすることが好ましい。Al量の下限値は特に限定しないが、溶鋼中の酸素量を低減させるためには、Alを0.0005%以上添加することが好ましい。   Al: Al is a deoxidizing element. However, in the present invention, when the addition amount exceeds 0.030%, an accumulation cluster of Al oxide is confirmed, so it is limited to 0.030% or less. When toughness is required, the upper limit of Al content is preferably set to 0.017% or less. Although the lower limit of the amount of Al is not particularly limited, it is preferable to add Al in an amount of 0.0005% or more in order to reduce the amount of oxygen in the molten steel.

O:Oは不純物であり、酸化物の集積を抑制して、耐HIC性を向上させるために、上限を0.0035%以下に制限する。酸化物の生成を抑制して、母材及びHAZ靭性を向上させるためには、O量の上限値を0.0030%以下とすることが好ましい。O量の最適な上限は0.0020%以下である。   O: O is an impurity, and the upper limit is limited to 0.0035% or less in order to suppress oxide accumulation and improve HIC resistance. In order to suppress the formation of oxides and improve the base material and the HAZ toughness, the upper limit value of the O content is preferably set to 0.0030% or less. The optimum upper limit of the amount of O is 0.0020% or less.

Ca:Caは硫化物CaSを生成し、圧延方向に伸長するMnSの生成を抑制し、耐HIC性の改善に顕著に寄与する元素である。Caの添加量が0.0001%未満では、効果が得られないため、下限値を0.0001%以上とする。0.0005%以上が好ましい。一方、Caの添加量が0.0050%を超えると、酸化物が集積し、耐HIC性を損なうため、上限を0.0050%以下とする。   Ca: Ca is an element that generates sulfide CaS, suppresses the generation of MnS extending in the rolling direction, and contributes significantly to the improvement of HIC resistance. If the addition amount of Ca is less than 0.0001%, the effect cannot be obtained, so the lower limit is made 0.0001% or more. 0.0005% or more is preferable. On the other hand, if the amount of Ca exceeds 0.0050%, oxides accumulate and the HIC resistance is impaired, so the upper limit is made 0.0050% or less.

本発明では、Caを添加して、CaSを形成させることにより、Sを固定するため、SとCaの含有量におけるS/Caの比は重要な指標である。S/Caの比が0.5以上であると、MnSが生成し、圧延時に延伸化したMnSが形成される。その結果、耐HIC性が劣化する。したがって、S/Caの比を0.5未満とした。   In the present invention, since S is fixed by adding Ca to form CaS, the ratio of S / Ca in the content of S and Ca is an important index. MnS produces | generates that ratio of S / Ca is 0.5 or more, and MnS extended at the time of rolling is formed. As a result, the HIC resistance deteriorates. Accordingly, the S / Ca ratio is set to less than 0.5.

なお、本発明においては、強度及び靱性を改善する元素として、Ni、Cu、Cr、Mo、W、V、Zr、Ta、Bの中で、1種又は2種以上の元素を添加することができる。   In the present invention, one or more elements among Ni, Cu, Cr, Mo, W, V, Zr, Ta, and B may be added as elements for improving strength and toughness. it can.

Ni:Niは、靱性及び強度の改善に有効な元素であり、その効果を得るためには0.01%以上の添加が必要であるが、2.0%以上の添加ではHIC性及び溶接性が低下するために、その上限を2.0%とすることが好ましい。   Ni: Ni is an element effective for improving toughness and strength, and in order to obtain the effect, addition of 0.01% or more is necessary. However, addition of 2.0% or more requires HIC and weldability. Therefore, the upper limit is preferably made 2.0%.

Cu:Cuは、靱性を低下させずに強度の上昇に有効な元素であるが、0.01%未満では効果がなく、1.0%を超えると鋼片加熱時や溶接時に割れを生じやすくする。従って、その含有量を0.01〜1.0%以下とすることが好ましい。   Cu: Cu is an element effective for increasing the strength without reducing toughness, but if it is less than 0.01%, there is no effect, and if it exceeds 1.0%, cracking is likely to occur during heating of the steel slab or during welding. To do. Therefore, the content is preferably 0.01 to 1.0% or less.

Cr:Crは析出強化による鋼の強度を向上させるために、0.01%以上の添加が有効であるが、多量に添加すると、焼入れ性を上昇させ、ベイナイト組織を生じさせ、靱性を低下させる。従って、その上限を1.0%とすることが好ましい。   Cr: Cr is effective to improve the strength of steel by precipitation strengthening, but addition of 0.01% or more is effective, but if added in a large amount, the hardenability is increased, the bainite structure is generated, and the toughness is decreased. . Therefore, the upper limit is preferably 1.0%.

Mo:Moは、焼入れ性を向上させると同時に、炭窒化物を形成し強度を改善する元素であり、その効果を得るためには、0.01%以上の添加が好ましい。一方、Moを0.60%を超えて多量に添加すると、コストが上昇するため、上限を0.60%以下にすることが好ましい。また、鋼の強度が上昇すると、HIC性及び靱性が低下することがあるため、より好ましい上限を0.40%以下とする。   Mo: Mo is an element that improves hardenability and at the same time forms carbonitrides and improves strength. To obtain the effect, addition of 0.01% or more is preferable. On the other hand, when Mo is added in a large amount exceeding 0.60%, the cost increases, so the upper limit is preferably made 0.60% or less. Moreover, since the HIC property and toughness may decrease when the strength of steel increases, the more preferable upper limit is made 0.40% or less.

W:Wは、強度の向上に有効な元素であり、0.01%以上の添加が好ましい。一方、1.0%を超えるWを添加すると、靱性の低下を招くことがあるため、上限を1.0%以下とすることが好ましい。   W: W is an element effective for improving the strength, and is preferably added in an amount of 0.01% or more. On the other hand, if W exceeding 1.0% is added, the toughness may be lowered, so the upper limit is preferably made 1.0% or less.

V:Vは、炭化物、窒化物を形成し、強度の向上に寄与する元素であり、効果を得るためには、0.01%以上の添加が好ましい。一方、0.10%を超えるVを添加すると、靱性の低下を招くことがあるため、上限を0.10%以下とすることが好ましい。   V: V is an element that forms carbides and nitrides and contributes to improvement in strength. In order to obtain the effect, addition of 0.01% or more is preferable. On the other hand, if V exceeding 0.10% is added, the toughness may be lowered, so the upper limit is preferably made 0.10% or less.

Zr、Ta:Zr及びTaは、Vと同様に炭化物、窒化物を形成し強度の向上に寄与する元素であり、効果を得るために、0.0001%以上を添加することが好ましい。一方、Zr及びTaを、0.050%を超えて過剰に添加すると、靱性の低下を招くことがあるため、その上限を0.050%以下とすることが好ましい。   Zr, Ta: Zr and Ta are elements that form carbides and nitrides as well as V and contribute to the improvement of strength, and in order to obtain the effect, 0.0001% or more is preferably added. On the other hand, if Zr and Ta are added excessively in excess of 0.050%, the toughness may be lowered, so the upper limit is preferably made 0.050% or less.

B:Bは、鋼の粒界に偏析して焼入れ性の向上に著しく寄与する元素である。この効果を得るには、0.0001%以上のBの添加が好ましい。また、BはBNを生成し、固溶Nを低下させて、溶接熱影響部の靱性の向上にも寄与する元素であるため、0.0005%以上の添加がより好ましい。一方。Bを過剰に添加すると、粒界への偏析が過剰になり、靱性の低下を招くことがあるため、上限を0.0020%とすることが好ましい。   B: B is an element that segregates at the grain boundaries of steel and contributes significantly to improving the hardenability. In order to obtain this effect, 0.0001% or more of B is preferably added. Further, B is an element that generates BN, lowers the solid solution N, and contributes to the improvement of the toughness of the weld heat affected zone. Therefore, addition of 0.0005% or more is more preferable. on the other hand. When B is added excessively, segregation to the grain boundary becomes excessive and the toughness may be lowered, so the upper limit is preferably made 0.0020%.

更に、酸化物や硫化物などの介在物を制御するために、REM、Mg、Zr、Ta、Y、Hf、Reの1種又は2種以上を含有させても良い。   Furthermore, in order to control inclusions such as oxides and sulfides, one or more of REM, Mg, Zr, Ta, Y, Hf, and Re may be included.

REM:REMは、脱酸剤及び脱硫剤として添加される元素であり、0.0001%以上の添加が好ましい。一方、0.010%を超えて添加すると、粗大な酸化物を生じて、HIC性や、母材及びHAZの靱性を低下させることがあり、好ましい上限は0.010%以下である。   REM: REM is an element added as a deoxidizer and a desulfurizer, and 0.0001% or more is preferably added. On the other hand, if added over 0.010%, a coarse oxide is formed, which may reduce the HIC property and the toughness of the base material and HAZ. The preferable upper limit is 0.010% or less.

Mg:Mgは、脱酸剤及び脱硫剤として添加される元素であり、特に、微細な酸化物を生じて、HAZ靭性の向上にも寄与する。この効果を得るには、0.0001%以上のMgを添加することが好ましい。一方、Mgを0.010%超添加すると、酸化物が凝集、粗大化し易くなり、HIC性の劣化や、母材及びHAZの靱性の低下をもたらすことがある。したがって、Mg量の上限を、0.010%以下とすることが好ましい。   Mg: Mg is an element added as a deoxidizing agent and a desulfurizing agent. In particular, a fine oxide is generated and contributes to improvement of HAZ toughness. In order to obtain this effect, 0.0001% or more of Mg is preferably added. On the other hand, if Mg is added in an amount exceeding 0.010%, the oxide tends to aggregate and coarsen, which may lead to deterioration in HIC properties and toughness of the base material and HAZ. Therefore, it is preferable that the upper limit of the amount of Mg is 0.010% or less.

Y、Hf、Re:Y、Hf、Reは、Caと同様、硫化物を生成し、圧延方向に伸長したMnSの生成を抑制し、耐HIC性の向上に寄与する元素である。このような効果を得るには、Y、Hf、Reを、0.0001%以上添加することが好ましい。一方、Y、Hf、Reの量が0.0050%を超えると、酸化物が増加し、凝集、粗大化すると耐HIC性を損なうため、上限を0.0050%以下とすることが好ましい。   Y, Hf, Re: Y, Hf, and Re are elements that, like Ca, generate sulfides, suppress the generation of MnS elongated in the rolling direction, and contribute to improvement in HIC resistance. In order to obtain such an effect, it is preferable to add 0.0001% or more of Y, Hf, and Re. On the other hand, if the amount of Y, Hf, Re exceeds 0.0050%, the oxides increase, and if aggregation or coarsening impairs the HIC resistance, the upper limit is preferably made 0.0050% or less.

更に、本発明では、鋼板及び鋼管の母材における最大Mn偏析度、Nb偏析度及びTi偏析度を、それぞれ、2.0以下、4.0以下及び4.0以下とする。   Furthermore, in the present invention, the maximum Mn segregation degree, the Nb segregation degree, and the Ti segregation degree in the base material of the steel plate and the steel pipe are 2.0 or less, 4.0 or less, and 4.0 or less, respectively.

最大Mn偏析度を2.0以下にすることにより粗大なMnSの生成が抑制され、圧延方向に延伸化したMnSを起点とするHICの発生を防止することができる。また、Nb偏析度を4.0以下にすると集積したNb(C,N)の生成が抑制され、Ti偏析度を4.0以下にすると集積したTiNの生成が抑制され、HIC性の劣化を防止することができる。   By setting the maximum Mn segregation degree to 2.0 or less, generation of coarse MnS is suppressed, and generation of HIC starting from MnS stretched in the rolling direction can be prevented. Further, when the Nb segregation degree is 4.0 or less, the formation of accumulated Nb (C, N) is suppressed, and when the Ti segregation degree is 4.0 or less, the formation of accumulated TiN is suppressed, and the HIC property is deteriorated. Can be prevented.

最大Mn偏析度は、鋼板及び鋼管の中心偏析部を除いた平均のMn量に対する中心偏析部の最大のMn量の比であり、ビーム径を2μmとするEPMA又はCMAによって鋼板及び鋼管のMn濃度分布を測定し、求めることができる。Nb偏析度及びTi偏析度についても同様であり、ビーム径を2μmとするEPMA又はCMAによって、それぞれ、Nb濃度分布及びTi濃度分布を測定し、鋼板及び鋼管の中心偏析部を除いた平均のNb量に対する中心偏析部の平均化したNb量の比(Nb偏析度)、鋼板及び鋼管の中心偏析部を除いた平均のTi量に対する中心偏析部の平均化したTi量の比(Ti偏析度)を求めるものとする。   The maximum Mn segregation degree is the ratio of the maximum Mn amount of the central segregation portion to the average Mn amount excluding the central segregation portion of the steel plate and steel pipe, and the Mn concentration of the steel plate and steel pipe by EPMA or CMA with a beam diameter of 2 μm. Distribution can be measured and determined. The same applies to the degree of Nb segregation and the degree of Ti segregation. The Nb concentration distribution and the Ti concentration distribution were measured by EPMA or CMA with a beam diameter of 2 μm, respectively, and the average Nb excluding the central segregation portion of the steel plate and the steel pipe was measured. The ratio of the average amount of Nb of the center segregation part to the amount (Nb segregation degree), the ratio of the average Ti amount of the center segregation part to the average Ti amount excluding the center segregation part of the steel plate and steel pipe (Ti segregation degree) Is to be sought.

最大Mn偏析度、Nb偏析度及びTi偏析度を抑制するための方法について以下に説明する。   A method for suppressing the maximum Mn segregation degree, Nb segregation degree, and Ti segregation degree will be described below.

Mn、Nb及びTiの偏析を抑制するには、連続鋳造における最終凝固時の軽圧下が最適である。最終凝固時の軽圧下は、鋳造の冷却の不均一に起因する、凝固部と未凝固部との混在を解消するために施すものであり、これにより、幅方向に均一に最終凝固させることができる。   In order to suppress segregation of Mn, Nb and Ti, light reduction at the time of final solidification in continuous casting is optimal. The light reduction at the time of final solidification is applied to eliminate the mixing of solidified and unsolidified parts due to non-uniform cooling of the casting. it can.

連続鋳造において、通常、鋼片は水冷されるが、幅方向の端部は冷却が速く、幅方向の中央部の冷却は強化される。そのため、鋼片の幅方向の端部及び中央部では凝固していても、幅方向の1/4部では、凝固が遅れて、鋼片の内部には未凝固部が残存する。そのため、鋼片の幅方向において、凝固部と未凝固部が均一にならずに、例えば、凝固部と未凝固部との界面の形状が幅方向にW型となってしまうことがある。このような幅方向に不均一な凝固を生じてしまうと、偏析が助長されて、耐HIC性を劣化させる。   In continuous casting, the steel slab is usually water-cooled, but the end in the width direction is cooled quickly, and the cooling in the center in the width direction is strengthened. Therefore, even if the steel piece is solidified at the end portion and the center portion in the width direction, solidification is delayed at a quarter portion in the width direction, and an unsolidified portion remains inside the steel piece. Therefore, in the width direction of the steel slab, the solidified part and the unsolidified part are not uniform, and for example, the shape of the interface between the solidified part and the unsolidified part may be W-shaped in the width direction. If such non-uniform solidification occurs in the width direction, segregation is promoted and the HIC resistance is deteriorated.

これに対して、連続鋳造において、最終凝固時の軽圧下を行うと、未凝固部が押し出されて、幅方向に均一に凝固させることができる。また、幅方向に不均一な凝固が生じた後で軽圧下を加えると、凝固部の変形抵抗が大きいことに起因して、未凝固部を効果的に押し出すことができなくなる。   On the other hand, in continuous casting, when light reduction is performed at the time of final solidification, an unsolidified portion is pushed out and can be solidified uniformly in the width direction. Further, if light pressure is applied after uneven solidification occurs in the width direction, the unsolidified portion cannot be effectively pushed out due to the large deformation resistance of the solidified portion.

したがって、このようなW型の凝固を生じさせないようにするためには、鋳片の最終凝固位置における中心固相率の幅方向の分布に応じて圧下量を制御しながら軽圧下することが好ましい。これにより、幅方向でも中心偏析が抑制され、最大Mn偏析度、Nb偏析度、Ti偏析度を更に小さくすることができる。   Therefore, in order to prevent such W-type solidification from occurring, it is preferable to lightly reduce the amount of reduction while controlling the amount of reduction according to the distribution in the width direction of the central solid fraction at the final solidification position of the slab. . Thereby, center segregation is suppressed also in the width direction, and the maximum Mn segregation degree, Nb segregation degree, and Ti segregation degree can be further reduced.

上記の成分を含有する鋼は、製鋼工程で溶製後、連続鋳造により鋼片とし、鋼片を再加熱して厚板圧延を施し、鋼板とされる。この場合、鋼片の再加熱温度を1000℃以上とし、再結晶温度域での圧下比を2以上に、未再結晶域での圧下比を3以上にして厚板圧延を行えば、平均旧オーステナイト粒径を20μm以下にすることができる。更に、圧延終了後水冷を行うが、水冷開始温度を750℃未満の温度から行い、また、水冷停止温度を400〜500℃にすることが好ましい。   Steel containing the above components is made into a steel slab by continuous casting after melting in the steel making process, and the steel slab is reheated and subjected to thick plate rolling to obtain a steel plate. In this case, if the steel plate is rolled at a reheating temperature of 1000 ° C. or higher, a reduction ratio in the recrystallization temperature range of 2 or higher, and a reduction ratio in the non-recrystallization range of 3 or higher, The austenite particle size can be 20 μm or less. Furthermore, although water cooling is performed after completion | finish of rolling, it is preferable to perform water cooling start temperature from the temperature below 750 degreeC, and to make water cooling stop temperature into 400-500 degreeC.

なお、再結晶温度域は、圧延後に再結晶が生じる温度範囲であり、本発明の鋼の成分では概ね900℃超である。一方、未再結晶温度域は、圧延後に再結晶及びフェライト変態が生じない温度範囲であり、本発明の鋼の成分では概ね750〜900℃である。再結晶温度域での圧延を再結晶圧延又は粗圧延といい、未再結晶温度域での圧延を未再結晶圧延又は仕上げ圧延という。   The recrystallization temperature range is a temperature range where recrystallization occurs after rolling, and is generally over 900 ° C. for the steel components of the present invention. On the other hand, the non-recrystallization temperature range is a temperature range in which recrystallization and ferrite transformation do not occur after rolling, and is generally 750 to 900 ° C. for the steel components of the present invention. Rolling in the recrystallization temperature range is called recrystallization rolling or rough rolling, and rolling in the non-recrystallization temperature range is called non-recrystallization rolling or finish rolling.

未再結晶圧延後、750℃以上の温度から水冷を開始し、水冷停止温度を400℃以上とすることにより、以下に説明するように、中心偏析の最大硬度を300Hv以下にすることができる。まず、水冷開始温度を750℃未満にすると、冷却開始前にフェライトが多く生成し、フェライトからC(炭素)がオーステナイトへ排出される。その後、冷却すると、Cが濃縮したオーステナイト相は、多くのC量を含む硬質のマルテンサイトに変態する。   After non-recrystallization rolling, water cooling is started from a temperature of 750 ° C. or higher, and the water cooling stop temperature is set to 400 ° C. or higher, so that the maximum hardness of center segregation can be 300 Hv or less as described below. First, when the water cooling start temperature is less than 750 ° C., a large amount of ferrite is generated before the start of cooling, and C (carbon) is discharged from the ferrite to austenite. Thereafter, when cooled, the austenite phase enriched with C is transformed into hard martensite containing a large amount of C.

したがって、水冷開始温度を750℃以上にして、硬質のマルテンサイトの生成を抑制すれば、硬度を300Hv以下に抑制することができる。また、水冷停止温度を400℃以上にすると、同じように、変態後の硬質なマルテンサイトが一部分解し、硬度を300Hv以下に抑制することができる。また、水冷停止温度は、高すぎると強度が低下するため、500℃以下が好ましい。   Therefore, if the water cooling start temperature is set to 750 ° C. or higher to suppress the formation of hard martensite, the hardness can be suppressed to 300 Hv or less. Further, when the water cooling stop temperature is set to 400 ° C. or higher, similarly, the hard martensite after transformation is partially decomposed, and the hardness can be suppressed to 300 Hv or lower. Moreover, since intensity | strength will fall when water-cooling stop temperature is too high, 500 degrees C or less is preferable.

次に、本発明を実施例によって更に詳細に説明する。   Next, the present invention will be described in further detail with reference to examples.

表1に示す化学成分を有する鋼を溶製し、連続鋳造により、厚みが240mmである鋼片とした。連続鋳造では、最終凝固時の軽圧下を実施した。得られた鋼片を1100〜1250℃に加熱し、900℃超の再結晶温度域で熱間圧延を行い、引き続き、750〜900℃の未再結晶温度域での熱間圧延を行った。熱間圧延後は、750℃以上で水冷を開始し、400〜500℃の温度で水冷を停止し、表2に示す種々の板厚の鋼板を作製した。   Steel having chemical components shown in Table 1 was melted, and a steel piece having a thickness of 240 mm was obtained by continuous casting. In continuous casting, light reduction during final solidification was performed. The obtained steel slab was heated to 1100 to 1250 ° C., hot-rolled in a recrystallization temperature range exceeding 900 ° C., and subsequently hot-rolled in a non-recrystallization temperature range of 750 to 900 ° C. After hot rolling, water cooling was started at 750 ° C. or higher, and water cooling was stopped at a temperature of 400 to 500 ° C., and steel plates having various plate thicknesses shown in Table 2 were produced.

更に、鋼板を、Cプレス、Uプレス、Oプレスによって管状に成形し、端面を仮付け溶接し、内外面から本溶接を行った後、拡管後、鋼管とした。なお、本溶接は、サブマージドアーク溶接を採用し、表3に示す入熱量で行った。   Further, the steel plate was formed into a tubular shape by a C press, U press, and O press, end surfaces were tack welded, main welding was performed from the inner and outer surfaces, and then expanded to obtain a steel pipe. In addition, this welding employ | adopted submerged arc welding and performed it with the heat input shown in Table 3.

得られた鋼板及び鋼管から引張試験片、HIC試験片、マクロ試験片を採取し、それぞれの試験に供した。
HIC試験は、NACETM0284に準拠して行った。また、マクロ試験片を用いて、Mn、Nb、Tiの偏析度をEPMAによって測定した。EPMAによる偏析度の測定は、50μmのビーム系で全厚×20mm幅の測定面積で実施してMn、Nb、Tiの濃度分布を測定し、ついで、試験片厚み方向における各元素が濃化している場所(中心偏析部)において、2μmのビーム系で1mm×1mmの領域で各元素の濃度を測定した。
さらに、中心偏析のビッカース硬度をJIS Z 2244に準拠して測定した。ビッカース硬度の測定は、荷重を25gとし、EPMAによって測定した厚み方向のMn濃度の分布における、Mn濃度が最も高い部位で測定した。
Tensile test pieces, HIC test pieces, and macro test pieces were collected from the obtained steel plates and steel pipes and used for each test.
The HIC test was performed according to NACETM0284. Moreover, the segregation degree of Mn, Nb, and Ti was measured by EPMA using a macro test piece. The segregation degree by EPMA is measured with a 50 μm beam system in a total thickness × 20 mm width measurement area to measure the concentration distribution of Mn, Nb and Ti, and then each element in the specimen thickness direction is concentrated. The concentration of each element was measured in a 1 mm × 1 mm region with a 2 μm beam system at the location (center segregation part).
Furthermore, the Vickers hardness of center segregation was measured according to JIS Z 2244. Vickers hardness was measured at a site where the load was 25 g and the Mn concentration was highest in the distribution of Mn concentration in the thickness direction measured by EPMA.

表2には、表1の鋼1〜33によってそれぞれ得られた鋼板の板厚、最大Mn偏析度、Nb偏析度、Ti偏析度、中心偏析部の最高硬さ、引張り強度及びHIC試験によって求められた割れの面積率(CAR)を示す。また、表3には、表1の鋼1〜33からそれぞれ得られた鋼管の肉厚、本溶接の入熱量、HIC試験によって求められた割れの面積率を示す。なお、鋼管の最大Mn偏析度、Nb偏析度、Ti偏析度、中心偏析部の最高硬さは鋼板と同等であり、鋼管の引張り強度は鋼板よりも数%程度大きくなっている。   Table 2 shows the thicknesses of steel sheets obtained from the steels 1 to 33 shown in Table 1, the maximum Mn segregation degree, the Nb segregation degree, the Ti segregation degree, the maximum hardness of the central segregation part, the tensile strength, and the HIC test. The area ratio (CAR) of the cracks produced is shown. Table 3 shows the thicknesses of the steel pipes obtained from the steels 1 to 33 shown in Table 1, the heat input amount of main welding, and the crack area ratio determined by the HIC test. The maximum Mn segregation degree, the Nb segregation degree, the Ti segregation degree, and the maximum hardness of the central segregation portion of the steel pipe are the same as those of the steel sheet, and the tensile strength of the steel pipe is about several percent greater than that of the steel sheet.

鋼1〜23は本発明の例であり、これらの鋼から得られた鋼板は、最大Mn偏析度は1.6以下、Nb偏析度は4.0以下、Ti偏析度は4.0以下、中心偏析部の最高硬さは300Hv以下になっており、HIC試験による割れは発生していない。これらの鋼板を素材とする鋼管も同様である。   Steels 1 to 23 are examples of the present invention, and the steel sheets obtained from these steels have a maximum Mn segregation degree of 1.6 or less, an Nb segregation degree of 4.0 or less, and a Ti segregation degree of 4.0 or less. The maximum hardness of the center segregation part is 300 Hv or less, and no cracks are generated by the HIC test. The same applies to steel pipes made of these steel plates.

一方、鋼24〜33は本発明の範囲外である比較例を示す。すなわち、基本成分の内いずれかの元素が、本発明の範囲外であるため、HIC試験にてCARが3%を超えているものである。   On the other hand, steel 24-33 shows the comparative example which is outside the scope of the present invention. That is, since any element of the basic components is outside the scope of the present invention, the CAR is over 3% in the HIC test.

Figure 2010209461
Figure 2010209461

Figure 2010209461
Figure 2010209461

Figure 2010209461
Figure 2010209461

Claims (8)

質量%で、
C :0.02〜0.08%、
Si:0.01〜0.5%、
Mn:1.2〜1.6%、
Nb:0.001〜0.10%、
N :0.0010〜0.0050%、
Ca:0.0001〜0.0050%
を含み、
P :0.01%以下、
S :0.0020%以下、
Ti:0.030%以下、
Al:0.030%以下、
O :0.0035%以下
に制限し、S、Caの含有量が、
S/Ca<0.5
を満足し、残部がFe及び不可避的不純物元素からなり、
更に、
最大Mn偏析度:2.0以下、
Nb偏析度:4.0以下、
Ti偏析度:4.0以下
に制限したことを特徴とする耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板。
% By mass
C: 0.02 to 0.08%,
Si: 0.01 to 0.5%,
Mn: 1.2-1.6%
Nb: 0.001 to 0.10%,
N: 0.0010 to 0.0050%,
Ca: 0.0001 to 0.0050%
Including
P: 0.01% or less,
S: 0.0020% or less,
Ti: 0.030% or less,
Al: 0.030% or less,
O: Limited to 0.0035% or less, S, Ca content,
S / Ca <0.5
And the balance consists of Fe and inevitable impurity elements,
Furthermore,
Maximum Mn segregation degree: 2.0 or less,
Nb segregation degree: 4.0 or less,
Ti segregation degree: Steel sheet for high-strength line pipe excellent in hydrogen-induced crack resistance, characterized by being limited to 4.0 or less.
質量%で、
Ni:0.01〜2.0%、
Cu:0.01〜1.0%、
Cr:0.01〜1.0%、
Mo:0.01〜0.60%、
W :0.01〜1.0%、
V :0.01〜0.10%、
Zr:0.0001〜0.050%、
Ta:0.0001〜0.050%、
B :0.0001〜0.0020%
の1種又は2種以上を、更に含有することを特徴とする請求項1に記載の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板。
% By mass
Ni: 0.01 to 2.0%,
Cu: 0.01 to 1.0%,
Cr: 0.01 to 1.0%,
Mo: 0.01-0.60%,
W: 0.01-1.0%
V: 0.01 to 0.10%,
Zr: 0.0001 to 0.050%,
Ta: 0.0001 to 0.050%,
B: 0.0001 to 0.0020%
The steel sheet for high-strength line pipe excellent in resistance to hydrogen-induced cracking according to claim 1, further comprising one or more of the following.
質量%で
REM:0.0001〜0.01%、
Mg:0.0001〜0.01%、
Y :0.0001〜0.005%、
Hf:0.0001〜0.005%、
Re:0.0001〜0.005%
のうち1種又は2種以上を、更に含有することを特徴とする請求項1又は請求項2に記載の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板。
REM: 0.0001 to 0.01% by mass%,
Mg: 0.0001 to 0.01%
Y: 0.0001 to 0.005%,
Hf: 0.0001 to 0.005%,
Re: 0.0001 to 0.005%
The steel sheet for high-strength line pipe excellent in hydrogen-induced crack resistance according to claim 1 or 2, further comprising one or more of them.
中心偏析部の最高硬度が300Hv以下であることを特徴とする請求項1〜3のいずれか1項に記載の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板。   The steel sheet for a high-strength line pipe excellent in resistance to hydrogen-induced cracking according to any one of claims 1 to 3, wherein the central segregation part has a maximum hardness of 300 Hv or less. 母材が、質量%で、
C :0.02〜0.08%、
Si:0.01〜0.5%、
Mn:1.2〜1.6%、
Nb:0.001〜0.10%、
N :0.0010〜0.0050%、
Ca:0.0001〜0.0050%
を含み、
P :0.010%以下、
S :0.002%以下、
Ti:0.030%以下、
Al:0.030%以下、
O :0.0035%以下
に制限し、S、Caの含有量が、
S/Ca<0.5
を満足し、残部がFe及び不可避的不純物元素からなり、
更に、母材の
最大Mn偏析度:2.0以下、
Nb偏析度:4.0以下、
Ti偏析度:4.0以下
に制限したことを特徴とする耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管。
The base material is mass%.
C: 0.02 to 0.08%,
Si: 0.01 to 0.5%,
Mn: 1.2-1.6%
Nb: 0.001 to 0.10%,
N: 0.0010 to 0.0050%,
Ca: 0.0001 to 0.0050%
Including
P: 0.010% or less,
S: 0.002% or less,
Ti: 0.030% or less,
Al: 0.030% or less,
O: Limited to 0.0035% or less, S, Ca content,
S / Ca <0.5
And the balance consists of Fe and inevitable impurity elements,
Furthermore, the maximum Mn segregation degree of the base material: 2.0 or less,
Nb segregation degree: 4.0 or less,
Ti segregation degree: Steel pipe for high-strength line pipe excellent in resistance to hydrogen-induced cracking, characterized by being limited to 4.0 or less.
母材が、質量%で、
Ni:0.01〜2.0%、
Cu:0.01〜1.0%、
Cr:0.01〜1.0%、
Mo:0.01〜0.60%、
W :0.01〜1.0%、
V :0.01〜0.10%、
Zr:0.0001〜0.050%、
Ta:0.0001〜0.050%、
B :0.0001〜0.0020%
の1種又は2種以上を、更に含有することを特徴とする請求項5に記載の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管。
The base material is mass%.
Ni: 0.01 to 2.0%,
Cu: 0.01 to 1.0%,
Cr: 0.01 to 1.0%,
Mo: 0.01-0.60%,
W: 0.01-1.0%
V: 0.01 to 0.10%,
Zr: 0.0001 to 0.050%,
Ta: 0.0001 to 0.050%,
B: 0.0001 to 0.0020%
The steel pipe for high-strength line pipe excellent in resistance to hydrogen-induced cracking according to claim 5, further comprising one or more of the following.
母材が、質量%で、
REM:0.0001〜0.01%、
Mg:0.0001〜0.01%、
Y :0.0001〜0.005%、
Hf:0.0001〜0.005%、
Re:0.0001〜0.005%
のうち1種又は2種以上を、更に含有することを特徴とする請求項5又は請求項6に記載の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管。
The base material is mass%.
REM: 0.0001 to 0.01%,
Mg: 0.0001 to 0.01%
Y: 0.0001 to 0.005%,
Hf: 0.0001 to 0.005%,
Re: 0.0001 to 0.005%
The steel pipe for high-strength line pipe excellent in hydrogen-induced crack resistance according to claim 5 or 6, further comprising one or more of them.
母材の中心偏析部の最高硬度が300Hv以下であることを特徴とする請求項5〜7のいずれか1項に記載の耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管。   The steel pipe for a high-strength line pipe excellent in resistance to hydrogen-induced cracking according to any one of claims 5 to 7, wherein the maximum hardness of the central segregation part of the base material is 300 Hv or less.
JP2009253157A 2009-02-12 2009-11-04 Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking Active JP5423324B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009253157A JP5423324B2 (en) 2009-02-12 2009-11-04 Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking
BRPI1008559A BRPI1008559A2 (en) 2009-02-12 2010-02-10 high strength steel plate and high strength steel pipe for inline pipe excellent in hydrogen induced crack resistance
PCT/JP2010/052395 WO2010093053A1 (en) 2009-02-12 2010-02-10 High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
KR1020117018675A KR101312901B1 (en) 2009-02-12 2010-02-10 High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
CN2010800075864A CN102317492A (en) 2009-02-12 2010-02-10 High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009030280 2009-02-12
JP2009030280 2009-02-12
JP2009253157A JP5423324B2 (en) 2009-02-12 2009-11-04 Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking

Publications (2)

Publication Number Publication Date
JP2010209461A true JP2010209461A (en) 2010-09-24
JP5423324B2 JP5423324B2 (en) 2014-02-19

Family

ID=42561891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009253157A Active JP5423324B2 (en) 2009-02-12 2009-11-04 Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking

Country Status (5)

Country Link
JP (1) JP5423324B2 (en)
KR (1) KR101312901B1 (en)
CN (1) CN102317492A (en)
BR (1) BRPI1008559A2 (en)
WO (1) WO2010093053A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027900A1 (en) * 2009-09-02 2011-03-10 新日本製鐵株式会社 High-strength steel plate and high-strength steel pipe with superior low-temperature toughness for use in line pipes
WO2011030768A1 (en) * 2009-09-09 2011-03-17 新日本製鐵株式会社 Steel sheet for high-strength line pipe having excellent low-temperature toughness, and steel pipe for high-strength line pipe
JPWO2010104165A1 (en) * 2009-03-12 2012-09-13 住友金属工業株式会社 HIC thick steel plate and UOE steel pipe
JP2013124398A (en) * 2011-12-15 2013-06-24 Jfe Steel Corp Steel sheet for high strength sour resistant line pipe, and material therefor
JP2013145221A (en) * 2011-12-13 2013-07-25 Jfe Steel Corp Steel material having low risk of hic crack and central segregation part evaluation method thereof
JP2013190319A (en) * 2012-03-14 2013-09-26 Jfe Steel Corp Evaluation method of hic resistance of steel material and manufacturing method for high strength thick steel plate for line pipe using the same
WO2013147197A1 (en) 2012-03-30 2013-10-03 新日鐵住金株式会社 High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same
WO2013190750A1 (en) 2012-06-18 2013-12-27 Jfeスチール株式会社 Thick, high-strength, sour-resistant line pipe and method for producing same
WO2014010150A1 (en) 2012-07-09 2014-01-16 Jfeスチール株式会社 Thick-walled high-strength sour-resistant line pipe and method for producing same
WO2014157215A1 (en) 2013-03-29 2014-10-02 株式会社神戸製鋼所 Steel plate with excellent hydrogen-induced cracking resistance and toughness of the weld heat affected zone, and steel tube for use as line pipe
WO2014157165A1 (en) 2013-03-29 2014-10-02 株式会社神戸製鋼所 Steel plate with excellent hydrogen-induced cracking resistance and toughness, and line pipe steel tube
WO2015002046A1 (en) 2013-07-01 2015-01-08 株式会社神戸製鋼所 Steel plate having excellent hydrogen-induced-cracking resistance and toughness, and steel tube for line pipe
CN104357756A (en) * 2014-10-20 2015-02-18 宝鸡石油钢管有限责任公司 Longitudinally-welded petroleum casing pipe capable of resisting stress corrosion of hydrogen sulfide and manufacturing method thereof
WO2016051727A1 (en) * 2014-09-30 2016-04-07 Jfeスチール株式会社 Welded steel pipe, steel plate, and manufacturing method therefor
JP2016125137A (en) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance
JP2016125138A (en) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance
JP6028863B2 (en) * 2013-07-04 2016-11-24 新日鐵住金株式会社 Seamless steel pipe for line pipe used in sour environment
JP2019104955A (en) * 2017-12-11 2019-06-27 日本製鉄株式会社 Carbon steel slab and manufacturing method of the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2810167C (en) 2010-09-03 2017-01-17 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet having improved resistance to fracture and to hic
CN103215513B (en) * 2013-04-25 2016-03-30 宝山钢铁股份有限公司 A kind of anticorrosive gathering-line pipe and manufacture method thereof
JP6869151B2 (en) * 2016-11-16 2021-05-12 株式会社神戸製鋼所 Steel pipes for steel plates and line pipes and their manufacturing methods
KR102020434B1 (en) * 2017-12-01 2019-09-10 주식회사 포스코 Steel material having exellent hydrogen induced crack resistance and low temperature impact toughness and method of manufacturing the same
CN113584391A (en) * 2021-08-03 2021-11-02 武汉科技大学 1700 MPa-grade hydrogen-induced delayed cracking resistant hot forming steel and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220577A (en) * 1993-01-26 1994-08-09 Kawasaki Steel Corp High tensile strength steel excellent in hic resistance and its production
JPH06256894A (en) * 1993-03-08 1994-09-13 Nippon Steel Corp High strength line pipe excellent in hydrogen induced cracking resistance
JP2006063351A (en) * 2004-08-24 2006-03-09 Sumitomo Metal Ind Ltd High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe
JP2007136496A (en) * 2005-11-17 2007-06-07 Sumitomo Metal Ind Ltd Continuous casting method and continuously cast slab

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1894434B (en) * 2003-12-19 2010-06-02 新日本制铁株式会社 Steel plates for ultra-high-strength linepipes and ultra-high-strength linepipes having excellent low-temperature toughness and manufacturing methods thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220577A (en) * 1993-01-26 1994-08-09 Kawasaki Steel Corp High tensile strength steel excellent in hic resistance and its production
JPH06256894A (en) * 1993-03-08 1994-09-13 Nippon Steel Corp High strength line pipe excellent in hydrogen induced cracking resistance
JP2006063351A (en) * 2004-08-24 2006-03-09 Sumitomo Metal Ind Ltd High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe
JP2007136496A (en) * 2005-11-17 2007-06-07 Sumitomo Metal Ind Ltd Continuous casting method and continuously cast slab

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010104165A1 (en) * 2009-03-12 2012-09-13 住友金属工業株式会社 HIC thick steel plate and UOE steel pipe
WO2011027900A1 (en) * 2009-09-02 2011-03-10 新日本製鐵株式会社 High-strength steel plate and high-strength steel pipe with superior low-temperature toughness for use in line pipes
WO2011030768A1 (en) * 2009-09-09 2011-03-17 新日本製鐵株式会社 Steel sheet for high-strength line pipe having excellent low-temperature toughness, and steel pipe for high-strength line pipe
JP2013145221A (en) * 2011-12-13 2013-07-25 Jfe Steel Corp Steel material having low risk of hic crack and central segregation part evaluation method thereof
JP2013124398A (en) * 2011-12-15 2013-06-24 Jfe Steel Corp Steel sheet for high strength sour resistant line pipe, and material therefor
JP2013190319A (en) * 2012-03-14 2013-09-26 Jfe Steel Corp Evaluation method of hic resistance of steel material and manufacturing method for high strength thick steel plate for line pipe using the same
WO2013147197A1 (en) 2012-03-30 2013-10-03 新日鐵住金株式会社 High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same
KR20150003322A (en) 2012-06-18 2015-01-08 제이에프이 스틸 가부시키가이샤 Thick, high-strength, sour-resistant line pipe and method for producing same
WO2013190750A1 (en) 2012-06-18 2013-12-27 Jfeスチール株式会社 Thick, high-strength, sour-resistant line pipe and method for producing same
WO2014010150A1 (en) 2012-07-09 2014-01-16 Jfeスチール株式会社 Thick-walled high-strength sour-resistant line pipe and method for producing same
KR20150119958A (en) 2013-03-29 2015-10-26 가부시키가이샤 고베 세이코쇼 Steel plate with excellent hydrogen-induced cracking resistance and toughness of weld heat affected zone, and steel pipe for line pipe
WO2014157215A1 (en) 2013-03-29 2014-10-02 株式会社神戸製鋼所 Steel plate with excellent hydrogen-induced cracking resistance and toughness of the weld heat affected zone, and steel tube for use as line pipe
WO2014157165A1 (en) 2013-03-29 2014-10-02 株式会社神戸製鋼所 Steel plate with excellent hydrogen-induced cracking resistance and toughness, and line pipe steel tube
KR20150121193A (en) 2013-03-29 2015-10-28 가부시키가이샤 고베 세이코쇼 Steel plate with excellent hydrogen-induced cracking resistance and toughness, and steel pipe for line pipe
KR20160013103A (en) 2013-07-01 2016-02-03 가부시키가이샤 고베 세이코쇼 Steel plate with excellent hydrogen-induced cracking resistance and toughness, and steel pipe for line pipe
WO2015002046A1 (en) 2013-07-01 2015-01-08 株式会社神戸製鋼所 Steel plate having excellent hydrogen-induced-cracking resistance and toughness, and steel tube for line pipe
EP3428301A1 (en) 2013-07-01 2019-01-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel plate with excellent hydrogen-induced cracking resistance and toughness, and steel pipe for line pipe
JP6028863B2 (en) * 2013-07-04 2016-11-24 新日鐵住金株式会社 Seamless steel pipe for line pipe used in sour environment
WO2016051727A1 (en) * 2014-09-30 2016-04-07 Jfeスチール株式会社 Welded steel pipe, steel plate, and manufacturing method therefor
JPWO2016051727A1 (en) * 2014-09-30 2017-04-27 Jfeスチール株式会社 Welded steel pipe, thick steel plate and method for producing them
CN104357756A (en) * 2014-10-20 2015-02-18 宝鸡石油钢管有限责任公司 Longitudinally-welded petroleum casing pipe capable of resisting stress corrosion of hydrogen sulfide and manufacturing method thereof
JP2016125137A (en) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance
JP2016125138A (en) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance
KR20190137955A (en) 2014-12-26 2019-12-11 가부시키가이샤 고베 세이코쇼 Steel plate having excellent hydrogen-induced cracking resistance and steel pipe for line pipe
JP2019104955A (en) * 2017-12-11 2019-06-27 日本製鉄株式会社 Carbon steel slab and manufacturing method of the same
JP7027858B2 (en) 2017-12-11 2022-03-02 日本製鉄株式会社 Manufacturing method of carbon steel slabs and carbon steel slabs

Also Published As

Publication number Publication date
KR101312901B1 (en) 2013-09-30
JP5423324B2 (en) 2014-02-19
WO2010093053A1 (en) 2010-08-19
CN102317492A (en) 2012-01-11
BRPI1008559A2 (en) 2016-03-15
KR20110104110A (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP5423324B2 (en) Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking
JP5423323B2 (en) Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking
JP5392441B1 (en) Steel tube for high-strength line pipe excellent in resistance to hydrogen-induced cracking, steel plate for high-strength line pipe used therefor, and production method thereof
RU2637202C2 (en) Sheet steel for a thick-strengthen high-strengthening pipe threading with excellent resistance to acid environment, resistance to smoke and low-temperature viscosity and also a main pipe
JP5131714B2 (en) Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent low-temperature toughness
JP2008056962A (en) Steel sheet for high strength line pipe which is excellent in resistance to crack induced by hydrogen and has small reduction in yield stress due to bauschinger effect, and manufacturing method therefor
JP5765497B1 (en) ERW steel pipe with excellent weld quality and manufacturing method thereof
JP5131715B2 (en) Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent low-temperature toughness
JP5884201B2 (en) Hot-rolled steel sheet for high-strength line pipe with a tensile strength of 540 MPa or more
JP4700740B2 (en) Manufacturing method of steel plate for sour line pipe
JP2010189722A (en) Method of manufacturing sheet steel for thick-walled sour-resistant line pipe of excellent toughness
WO2013105536A1 (en) Wear-resistant welded steel pipe and method for producing same
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
JP5181697B2 (en) High strength steel plate with excellent PWHT resistance and method for producing the same
JP4719313B2 (en) Steel plate and line pipe steel pipe with excellent sour resistance
JP2009275261A (en) Welded steel-pipe superior in crushing resistance and manufacturing method therefor
JP2007138210A (en) Steel sheet for high strength line pipe in with reduced lowering of yield stress caused by bauschinger effect and its production method
KR20170046588A (en) Steel plate and bonded assembly
JP6521196B1 (en) High strength steel plate for sour line pipe, manufacturing method thereof and high strength steel pipe using high strength steel plate for sour line pipe
WO2023248638A1 (en) High-strength steel sheet for sour-resistant line pipe and method for manufacturing same, and high-strength steel pipe using high-strength steel sheet for sour-resistant line pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R151 Written notification of patent or utility model registration

Ref document number: 5423324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350