JP6869151B2 - Steel pipes for steel plates and line pipes and their manufacturing methods - Google Patents

Steel pipes for steel plates and line pipes and their manufacturing methods Download PDF

Info

Publication number
JP6869151B2
JP6869151B2 JP2017176045A JP2017176045A JP6869151B2 JP 6869151 B2 JP6869151 B2 JP 6869151B2 JP 2017176045 A JP2017176045 A JP 2017176045A JP 2017176045 A JP2017176045 A JP 2017176045A JP 6869151 B2 JP6869151 B2 JP 6869151B2
Authority
JP
Japan
Prior art keywords
mass
less
amount
steel
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017176045A
Other languages
Japanese (ja)
Other versions
JP2018083981A (en
Inventor
喜一郎 田代
喜一郎 田代
元樹 柿崎
元樹 柿崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to CN201780070108.XA priority Critical patent/CN109952387B/en
Priority to EP17871656.9A priority patent/EP3543366B1/en
Priority to KR1020197012487A priority patent/KR102226990B1/en
Priority to PCT/JP2017/039785 priority patent/WO2018092605A1/en
Publication of JP2018083981A publication Critical patent/JP2018083981A/en
Application granted granted Critical
Publication of JP6869151B2 publication Critical patent/JP6869151B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Description

本発明は、鋼板およびラインパイプ用鋼管並びにその製造方法に関する。 The present invention relates to steel pipes for steel plates and line pipes, and methods for manufacturing the same.

主に石油およびガス等の輸送用ラインパイプおよび貯蔵用タンクでは、硫化水素を含有する劣質資源の開発に伴い、耐水素誘起割れ性および耐応力腐食割れ性等のいわゆる耐サワー性が必要とされる。水素誘起割れ(Hydrogen Induced Cracking、以下、「HIC」ということがある)は、上記硫化水素等による腐食反応に伴って鋼材内部に侵入した水素が、MnSおよびNb(C、N)をはじめとする非金属介在物等の欠陥部に集積し、ガス化することにより生じる割れであることが知られている。HICが発生すると、構造物の靱性が低下する等の問題がある。特に、水素は鋼板表層部から侵入するため、板厚表層部は板厚中央部よりHICが生じ易く、板厚表層部の耐HIC特性向上が求められる。 Mainly in line pipes for transporting oil and gas and storage tanks, so-called sour resistance such as hydrogen-induced cracking resistance and stress corrosion cracking resistance is required with the development of inferior resources containing hydrogen sulfide. To. Hydrogen-induced cracking (Hydrogen Induced Cracking, hereinafter sometimes referred to as "HIC") is the hydrogen that has entered the inside of the steel material due to the corrosion reaction caused by hydrogen sulfide or the like, including MnS and Nb (C, N). It is known that cracks are generated by accumulating in defective parts such as non-metal inclusions and gasifying them. When HIC is generated, there is a problem that the toughness of the structure is lowered. In particular, since hydrogen invades from the surface layer portion of the steel sheet, HIC is more likely to occur in the surface layer portion of the plate thickness than in the center portion of the plate thickness, and improvement in the HIC resistance of the surface layer portion of the plate thickness is required.

そこで、従来から、表層部の耐HIC性を向上させるための技術が検討されている。例えば、特許文献1には、溶鋼中に吹込むArガス量を所定値以下とすることによって、HICの原因となるMnS、Ca−Al系およびCa系介在物クラスター、ならびにTi系およびNb系介在物の集積および偏析帯を生じさせる鋼材中のArガスの未圧着気泡を低減し、耐HIC性を向上させることが開示されている。 Therefore, conventionally, a technique for improving the HIC resistance of the surface layer portion has been studied. For example, Patent Document 1 describes MnS, Ca—Al and Ca inclusion clusters, and Ti and Nb inclusions that cause HIC by setting the amount of Ar gas blown into molten steel to a predetermined value or less. It is disclosed that unbonded bubbles of Ar gas in a steel material that causes accumulation of substances and segregation zones are reduced, and HIC resistance is improved.

特許文献2には、スラブ製造時にスラブ中のCa濃度を所定の範囲に制御し、かつ鋼材中のCa、SおよびOの含有量並びにArガス含有量を所定の範囲に制御することにより、耐HIC性を向上させることが開示されている。 Patent Document 2 states that the Ca concentration in the slab is controlled within a predetermined range during the production of the slab, and the Ca, S and O contents and the Ar gas content in the steel material are controlled within a predetermined range. It is disclosed that the HIC property is improved.

特開平07−136748号公報Japanese Unexamined Patent Publication No. 07-136748 特開2016−125140号公報Japanese Unexamined Patent Publication No. 2016-125140

しかし、特許文献1では、スラブ中の気泡数を減少させる検討は行われているが、最終製品の鋼材中の未圧着気泡については考慮されていない。そのため、鋼材中に残存する未圧着気泡により引き起こされる欠陥を制御することができず、未圧着気泡に起因するHICを抑制することができない。 However, in Patent Document 1, although studies have been made to reduce the number of bubbles in the slab, unbonded bubbles in the steel material of the final product are not considered. Therefore, it is not possible to control the defects caused by the uncrimped bubbles remaining in the steel material, and it is not possible to suppress the HIC caused by the uncrimped bubbles.

また、特許文献2の方法では、鋼材中のArガス気泡含有量を減少させる検討は行われているものの、気泡の大きさや鋼材の未圧着気泡については考慮されていない。そのため、粗大なAr気泡が少量でも存在した場合はHICを十分に抑制することができない。 Further, in the method of Patent Document 2, although a study is made to reduce the content of Ar gas bubbles in the steel material, the size of the bubbles and the unbonded bubbles of the steel material are not taken into consideration. Therefore, if even a small amount of coarse Ar bubbles are present, HIC cannot be sufficiently suppressed.

本発明は、上記のような事情に鑑みてなされたものであり、その主な目的は、耐水素誘起割れ性に優れた鋼板およびラインパイプ用鋼管を提供することにある。 The present invention has been made in view of the above circumstances, and a main object thereof is to provide a steel plate having excellent hydrogen-induced cracking resistance and a steel pipe for a line pipe.

本発明に係る鋼板は、C:0.02〜0.15質量%、Si:0.02〜0.50質量%、Mn:0.6〜2.0%、P:0質量%超、0.030質量%以下、S:0質量%超、0.003質量%以下、Al:0.010〜0.080質量%、Ca:0.0003〜0.0060質量%、N:0.001〜0.01質量%、およびO:0質量%超、0.0045質量%以下を含有し、かつ下記(1)式および下記(2)式を満足し、残部が鉄および不可避的不純物からなり、欠陥エコー高さが20%以上である部分の面積率が0.05%以下である。

3.0≦[Ca]/[S] (1)
([Ca]−1.25×[S])/[O]≦1.80 (2)
ここで、[Ca]、[S]および[O]はそれぞれ、Ca、SおよびOの含有量(質量%)である。
The steel plate according to the present invention has C: 0.02 to 0.15% by mass, Si: 0.02 to 0.50% by mass, Mn: 0.6 to 2.0%, P: more than 0% by mass, 0. .030% by mass or less, S: more than 0% by mass, 0.003% by mass or less, Al: 0.010 to 0.080% by mass, Ca: 0.0003 to 0.0060% by mass, N: 0.001 to It contains 0.01% by mass and O: more than 0% by mass, 0.0045% by mass or less, and satisfies the following formulas (1) and (2), and the balance is composed of iron and unavoidable impurities. The area ratio of the portion where the defect echo height is 20% or more is 0.05% or less.

3.0 ≤ [Ca] / [S] (1)
([Ca] -1.25 × [S]) / [O] ≦ 1.80 (2)
Here, [Ca], [S] and [O] are the contents (mass%) of Ca, S and O, respectively.

本発明に係る鋼板は、B:0質量%超、0.005質量%以下、V:0質量%超、0.1質量%以下、Cu:0質量%超、1.5質量%以下、Ni:0質量%超、1.5質量%以下、Cr:0質量%超、1.5質量%以下、Mo:0質量%超、1.5質量%以下、Nb:0質量%超、0.06質量%以下、Ti:0質量%超、0.03質量%以下、Mg:0質量%超、0.01質量%以下、REM:0質量%超、0.02質量%以下、およびZr:0質量%超、0.010質量%以下からなる群から選択される1種以上を含有してよい。 The steel plate according to the present invention has B: more than 0% by mass, 0.005% by mass or less, V: more than 0% by mass, 0.1% by mass or less, Cu: more than 0% by mass, 1.5% by mass or less, Ni. : More than 0% by mass, 1.5% by mass or less, Cr: More than 0% by mass, 1.5% by mass or less, Mo: More than 0% by mass, 1.5% by mass or less, Nb: More than 0% by mass, 0. 06% by mass or less, Ti: more than 0% by mass, 0.03% by mass or less, Mg: more than 0% by mass, 0.01% by mass or less, REM: more than 0% by mass, 0.02% by mass or less, and Zr: It may contain one or more selected from the group consisting of more than 0% by mass and 0.010% by mass or less.

本発明に係る鋼板は、ラインパイプ用であってよい。 The steel plate according to the present invention may be for a line pipe.

本発明に係るラインパイプ用鋼管は、本発明に係る鋼板で形成されている。 The steel pipe for a line pipe according to the present invention is formed of the steel plate according to the present invention.

本発明に係る鋼板は、圧力容器用であってよい。 The steel plate according to the present invention may be for a pressure vessel.

本発明に係る鋼板の製造方法は、本発明に係る鋼板の化学成分組成を有し、且つスラブ集積帯中の円相当径0.2mm以上の気泡密度が0.15個/cm以下であるスラブを用いる。 The method for producing a steel sheet according to the present invention has the chemical composition of the steel sheet according to the present invention, and the cell density in the slab accumulation zone having a circle-equivalent diameter of 0.2 mm or more is 0.15 cells / cm 2 or less. Use a slab.

本発明により、耐水素誘起割れ性に優れた鋼板およびラインパイプ用鋼管並びにその製造方法が提供される。 INDUSTRIAL APPLICABILITY The present invention provides a steel plate having excellent hydrogen-induced cracking resistance, a steel pipe for a line pipe, and a method for producing the same.

図1は、表層部のCLRとスラブ集積帯中の円相当径0.2mm以上の気泡の個数密度との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the CLR of the surface layer portion and the number density of bubbles having a circle-equivalent diameter of 0.2 mm or more in the slab accumulation zone. 図2は、表層部のCLRと欠陥エコー高さが20%以上である部分の面積率との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the CLR of the surface layer portion and the area ratio of the portion where the defect echo height is 20% or more.

本発明者らは、上記課題を解決するために、HIC試験により測定した表層部のCLR(Clack Length Ratio、試験片の幅に対する割れ長さの合計の割合[%]、割れ長さ率)と、超音波探傷試験により測定した鋼板の内部欠陥との相関について、鋭意検討を行った。その結果、Ca、SおよびOの含有量が所定の関係式を満足するように、鋼板の化学成分組成を所定の範囲内に制御し、かつ欠陥エコー高さが20%以上である部分の面積率が0.05%以下であるように内部欠陥を制御することにより、優れた耐HIC性が得られることを見出した。 In order to solve the above problems, the present inventors have determined the CLR (Clack Length Ratio, the ratio of the total crack length to the width of the test piece [%], the crack length ratio) of the surface layer measured by the HI C test. , The correlation with the internal defects of the steel sheet measured by the ultrasonic flaw detection test was investigated diligently. As a result, the area of the portion where the chemical composition of the steel sheet is controlled within a predetermined range and the defect echo height is 20% or more so that the contents of Ca, S and O satisfy a predetermined relational expression. It has been found that excellent HIC resistance can be obtained by controlling the internal defects so that the rate is 0.05% or less.

以下、本発明の鋼板およびその製造方法について詳しく説明する。 Hereinafter, the steel sheet of the present invention and a method for producing the same will be described in detail.

<1.鋼板>
(1−1.化学成分組成)
本発明に係る鋼板は、C:0.02〜0.15質量%、Si:0.02〜0.50質量%、Mn:0.6〜2.0%、P:0質量%超、0.030質量%以下、S:0質量%超、0.003質量%以下、Al:0.010〜0.080質量%、Ca:0.0003〜0.0060質量%、N:0.001〜0.010質量%、およびO:0質量%超、0.0045質量%以下を含有し、かつ下記(1)式および下記(2)式を満足し、残部が鉄および不可避的不純物からなる。

3.0≦[Ca]/[S] (1)
([Ca]−1.25×[S])/[O]≦1.80 (2)
ここで、[Ca]、[S]および[O]はそれぞれ、Ca、SおよびOの含有量(質量%)である。

上記のように化学成分組成を制御することにより、耐水素誘起割れ性に優れた鋼板を得ることができる。
<1. Steel plate >
(1-1. Chemical composition)
The steel plate according to the present invention has C: 0.02 to 0.15% by mass, Si: 0.02 to 0.50% by mass, Mn: 0.6 to 2.0%, P: more than 0% by mass, 0. .030% by mass or less, S: more than 0% by mass, 0.003% by mass or less, Al: 0.010 to 0.080% by mass, Ca: 0.0003 to 0.0060% by mass, N: 0.001 to It contains 0.010% by mass, O: more than 0% by mass, 0.0045% by mass or less, satisfies the following equations (1) and (2), and the balance is composed of iron and unavoidable impurities.

3.0 ≤ [Ca] / [S] (1)
([Ca] -1.25 × [S]) / [O] ≦ 1.80 (2)
Here, [Ca], [S] and [O] are the contents (mass%) of Ca, S and O, respectively.

By controlling the chemical composition as described above, a steel sheet having excellent hydrogen-induced cracking resistance can be obtained.

[C:0.02〜0.15質量%]
Cは、母材および溶接部の強度を確保するために必要不可欠な元素であり、0.02質量%以上含有させる必要がある。C量は、好ましくは0.03質量%以上であり、より好ましくは0.04質量%以上である。一方、C量が多すぎるとHAZ靭性と溶接性が劣化する。またC量が過剰であると、HICの起点や破壊進展経路となるNbCや島状マルテンサイトが生成しやすくなる。よってC量は0.15質量%以下とする必要がある。好ましくは0.12質量%以下、より好ましくは0.10質量%以下である。
[C: 0.02 to 0.15% by mass]
C is an element indispensable for ensuring the strength of the base metal and the welded portion, and must be contained in an amount of 0.02% by mass or more. The amount of C is preferably 0.03% by mass or more, and more preferably 0.04% by mass or more. On the other hand, if the amount of C is too large, HAZ toughness and weldability deteriorate. Further, when the amount of C is excessive, NbC and island-shaped martensite, which are the starting point of HIC and the fracture progress path, are likely to be generated. Therefore, the amount of C needs to be 0.15% by mass or less. It is preferably 0.12% by mass or less, more preferably 0.10% by mass or less.

[Si:0.02〜0.50質量%]
Siは、脱酸作用を有すると共に、母材および溶接部の強度向上に有効な元素である。これらの効果を得るため、Si量を0.02質量%以上とする。Si量は、好ましくは0.05質量%以上であり、より好ましくは0.15質量%以上である。しかし、Si量が多すぎると溶接性や靭性が劣化する。またSi量が過剰であると、島状マルテンサイトが生じてHICが発生・進展する。よってSi量は、0.50質量%以下に抑える必要がある。Si量は、好ましくは0.45質量%以下、より好ましくは0.35質量%以下である。
[Si: 0.02 to 0.50% by mass]
Si is an element that has a deoxidizing effect and is effective in improving the strength of the base metal and the welded portion. In order to obtain these effects, the amount of Si is set to 0.02% by mass or more. The amount of Si is preferably 0.05% by mass or more, and more preferably 0.15% by mass or more. However, if the amount of Si is too large, the weldability and toughness deteriorate. If the amount of Si is excessive, island-shaped martensite is generated and HIC is generated and progresses. Therefore, the amount of Si needs to be suppressed to 0.50% by mass or less. The amount of Si is preferably 0.45% by mass or less, more preferably 0.35% by mass or less.

[Mn:0.6〜2.0質量%]
Mnは、母材および溶接部の強度向上に有効な元素であり、本発明では0.6質量%以上含有させる。Mn量は、好ましくは0.8質量%以上であり、より好ましくは1.0質量%以上である。しかし、Mn量が多すぎると、MnSが生成されて耐水素誘起割れ性が劣化するだけでなくHAZ靭性や溶接性も劣化する。よってMn量の上限を2.0質量%とする。Mn量は、好ましくは1.8質量%以下であり、より好ましくは1.5質量%以下、さらに好ましくは1.2質量%以下である。
[Mn: 0.6 to 2.0% by mass]
Mn is an element effective for improving the strength of the base metal and the welded portion, and is contained in an amount of 0.6% by mass or more in the present invention. The amount of Mn is preferably 0.8% by mass or more, and more preferably 1.0% by mass or more. However, if the amount of Mn is too large, MnS is generated and not only the hydrogen-induced cracking resistance deteriorates, but also the HAZ toughness and weldability deteriorate. Therefore, the upper limit of the amount of Mn is set to 2.0% by mass. The amount of Mn is preferably 1.8% by mass or less, more preferably 1.5% by mass or less, still more preferably 1.2% by mass or less.

[P:0質量%超、0.030質量%以下]
Pは、鋼材中に不可避的に含まれる元素であり、P量が0.030質量%を超えると母材やHAZ部の靭性劣化が著しく、耐水素誘起割れ性も劣化する。よって本発明ではP量を0.030質量%以下に抑える。P量は、好ましくは0.020質量%以下、より好ましくは0.010質量%以下である。
[P: More than 0% by mass, 0.030% by mass or less]
P is an element inevitably contained in the steel material, and when the amount of P exceeds 0.030% by mass, the toughness of the base material and the HAZ portion is significantly deteriorated, and the hydrogen-induced cracking resistance is also deteriorated. Therefore, in the present invention, the amount of P is suppressed to 0.030% by mass or less. The amount of P is preferably 0.020% by mass or less, more preferably 0.010% by mass or less.

[S:0質量%超、0.003質量%以下]
Sは、多すぎるとMnSを多量に生成し耐水素誘起割れ性を著しく劣化させる元素であるため、本発明ではS量の上限を0.003質量%とする。S量は、好ましくは0.002質量%以下であり、より好ましくは0.0015質量%以下、更に好ましくは0.0010質量%以下である。この様に耐水素誘起割れ性向上の観点からは少ない方が望ましい。
[S: More than 0% by mass, 0.003% by mass or less]
If S is too much, MnS is generated in a large amount and the hydrogen-induced cracking resistance is significantly deteriorated. Therefore, in the present invention, the upper limit of the amount of S is set to 0.003% by mass. The amount of S is preferably 0.002% by mass or less, more preferably 0.0015% by mass or less, and further preferably 0.0010% by mass or less. As described above, it is desirable that the amount is small from the viewpoint of improving the hydrogen-induced cracking resistance.

[Al:0.010〜0.080質量%]
Alは強脱酸元素であり、Al量が少ないと、酸化物中のCa濃度が上昇、即ち、Ca系介在物が鋼板表層部に形成されやすくなり微細なHICが発生する。よって本発明では、Alを0.010質量%以上とする必要がある。Al量は、好ましくは0.020質量%以上、より好ましくは0.030質量%以上である。一方、Al含有量が多すぎると、Alの酸化物がクラスター状に生成し水素誘起割れの起点となる。よってAl量は0.080質量%以下とする必要がある。Al量は、好ましくは0.060質量%以下であり、より好ましくは0.050質量%以下である。
[Al: 0.010 to 0.080% by mass]
Al is a strongly deoxidizing element, and when the amount of Al is small, the Ca concentration in the oxide increases, that is, Ca-based inclusions are likely to be formed on the surface layer of the steel sheet, and fine HIC is generated. Therefore, in the present invention, Al needs to be 0.010% by mass or more. The amount of Al is preferably 0.020% by mass or more, more preferably 0.030% by mass or more. On the other hand, if the Al content is too high, an oxide of Al is formed in a cluster form and becomes a starting point of hydrogen-induced cracking. Therefore, the amount of Al needs to be 0.080% by mass or less. The amount of Al is preferably 0.060% by mass or less, and more preferably 0.050% by mass or less.

[Ca:0.0003〜0.0060質量%]
Caは、硫化物の形態を制御する作用があり、CaSを形成することによってMnSの形成を抑制する効果がある。この効果を得るには、Ca量を0.0003質量%以上とする必要がある。Ca量は、好ましくは0.0005質量%以上であり、より好ましくは0.0010質量%以上である。一方、Ca量が0.0060質量%を超えると、Ca系介在物を起点にHICが多く発生する。よって本発明では、Ca量の上限を0.0060質量%とする。Ca量は、好ましくは0.0045質量%以下であり、より好ましくは0.0035質量%以下、さらに好ましくは0.0025質量%以下である。
[Ca: 0.0003 to 0.0060% by mass]
Ca has an effect of controlling the morphology of sulfide, and has an effect of suppressing the formation of MnS by forming CaS. In order to obtain this effect, the amount of Ca needs to be 0.0003% by mass or more. The amount of Ca is preferably 0.0005% by mass or more, and more preferably 0.0010% by mass or more. On the other hand, when the amount of Ca exceeds 0.0060% by mass, a large amount of HIC is generated starting from Ca-based inclusions. Therefore, in the present invention, the upper limit of the amount of Ca is set to 0.0060% by mass. The amount of Ca is preferably 0.0045% by mass or less, more preferably 0.0035% by mass or less, and further preferably 0.0025% by mass or less.

[N:0.001〜0.01質量%]
Nは、鋼組織中にTiNとして析出し、HAZ部のオーステナイト粒の粗大化を抑制し、さらにフェライト変態を促進させて、HAZ部の靭性を向上させる元素である。この効果を得るにはNを0.001質量%以上含有させる必要がある。N量は、好ましくは0.003質量%以上であり、より好ましくは0.0040質量%以上である。しかしN量が多すぎると、固溶Nの存在によりHAZ靭性がかえって劣化するため、N量は、0.01質量%以下とする必要がある。好ましくは0.008質量%以下であり、より好ましくは0.0060質量%以下である。
[N: 0.001 to 0.01% by mass]
N is an element that precipitates as TiN in the steel structure, suppresses the coarsening of austenite grains in the HAZ portion, further promotes ferrite transformation, and improves the toughness of the HAZ portion. In order to obtain this effect, it is necessary to contain N in an amount of 0.001% by mass or more. The amount of N is preferably 0.003% by mass or more, and more preferably 0.0040% by mass or more. However, if the amount of N is too large, the HAZ toughness deteriorates due to the presence of the solid solution N, so the amount of N needs to be 0.01% by mass or less. It is preferably 0.008% by mass or less, and more preferably 0.0060% by mass or less.

[O:0質量%超、0.0045質量%以下]
O(酸素)は、清浄度向上の観点から低いほうが望ましく、Oが多量に含まれる場合、靭性が劣化することに加え、酸化物を起点にHICが発生し、耐水素誘起割れ性が劣化する。この観点から、O量は0.0045質量%以下とする必要があり、好ましくは0.0035質量%以下、より好ましくは0.0030質量%以下である。
[O: More than 0% by mass, 0.0045% by mass or less]
It is desirable that O (oxygen) is low from the viewpoint of improving cleanliness, and when a large amount of O is contained, in addition to deterioration of toughness, HIC is generated starting from an oxide, and hydrogen-induced cracking resistance deteriorates. .. From this viewpoint, the amount of O needs to be 0.0045% by mass or less, preferably 0.0035% by mass or less, and more preferably 0.0030% by mass or less.

[[Ca]/[S]:3.0以上]
本発明に係る鋼板は、下記(1)式を満足する。

3.0≦[Ca]/[S] (1)
ここで、[Ca]および[S]はそれぞれ、CaおよびSの含有量(質量%)である。

以下に、上記(1)式の技術的意義を説明する。
[[Ca] / [S]: 3.0 or higher]
The steel sheet according to the present invention satisfies the following equation (1).

3.0 ≤ [Ca] / [S] (1)
Here, [Ca] and [S] are the contents (mass%) of Ca and S, respectively.

The technical significance of the above equation (1) will be described below.

Sは、硫化物系介在物としてMnSを形成し、MnSを起点にHICが発生する。そのため、Caを添加して鋼中の硫化物系介在物をCaSとして形態を制御することにより、MnSの形成を抑制し、耐HIC性が低下することを防止する。本発明者らは、この作用効果を十分に発揮させるには、[Ca]/[S]を3.0以上とする必要があることを見出した。[Ca]/[S]は、3.5以上であることが好ましく、4.0以上であることがより好ましい。尚、本発明で規定するCa量およびS量を考慮すると、[Ca]/[S]の上限は15程度となる。 S forms MnS as a sulfide-based inclusion, and HIC is generated starting from MnS. Therefore, by adding Ca to control the morphology of the sulfide-based inclusions in the steel as CaS, the formation of MnS is suppressed and the HIC resistance is prevented from being lowered. The present inventors have found that it is necessary to set [Ca] / [S] to 3.0 or more in order to fully exert this effect. [Ca] / [S] is preferably 3.5 or more, and more preferably 4.0 or more. Considering the amount of Ca and the amount of S specified in the present invention, the upper limit of [Ca] / [S] is about 15.

[([Ca]−1.25×[S])/[O]:1.80以下]
本発明に係る鋼板は、下記(2)式を満足する。

([Ca]−1.25×[S])/[O]≦1.80 (2)
ここで、[Ca]、[S]および[O]はそれぞれ、Ca、SおよびOの含有量(質量%)である。

以下に、上記(2)式の技術的意義を説明する。
[([Ca] -1.25 × [S]) / [O]: 1.80 or less]
The steel sheet according to the present invention satisfies the following equation (2).

([Ca] -1.25 × [S]) / [O] ≦ 1.80 (2)
Here, [Ca], [S] and [O] are the contents (mass%) of Ca, S and O, respectively.

The technical significance of the above equation (2) will be described below.

Ca系酸硫化物によるHICの発生を抑制するには、Ca系介在物の中でも特に凝集合体を形成しやすいCaOの形成を抑制することが有効である。そしてそのためには、鋼中全Ca量から硫化物(CaS)として存在するCa分を差し引いたCa量([Ca]−1.25×[S])が、O量に対して過剰とならないようにしなければならない。O量に対してCa量([Ca]−1.25×[S])が過剰であると、酸化物系介在物としてCaOが形成され易くなり、該CaOの凝集合体(粗大なCa系介在物)が鋼板表層部に大量に形成されやすくなる。これを抑制するため、本発明者らは、([Ca]−1.25×[S])/[O]と耐HIC性との関係について検討したところ、優れた耐HIC性を得るには([Ca]−1.25×[S])/[O]を1.80以下とする必要があることを見出した。([Ca]−1.25×[S])/[O]は、好ましくは1.40以下、より好ましくは1.30以下、更に好ましくは1.20以下、特に好ましくは1.00以下である。尚、CaOと同様に凝集合体を形成しやすいAlを抑制する観点から、([Ca]−1.25×[S])/[O]の下限値は0.1程度となる。 In order to suppress the generation of HIC due to Ca-based acid sulfide, it is effective to suppress the formation of CaO, which is particularly likely to form aggregates among Ca-based inclusions. For that purpose, the amount of Ca ([Ca] -1.25 × [S]) obtained by subtracting the amount of Ca existing as sulfide (CaS) from the total amount of Ca in the steel should not be excessive with respect to the amount of O. Must be. When the amount of Ca ([Ca] -1.25 × [S]) is excessive with respect to the amount of O, CaO is likely to be formed as oxide-based inclusions, and the agglutination and coalescence of the CaO (coarse Ca-based inclusions) Things) are likely to be formed in large quantities on the surface layer of the steel sheet. In order to suppress this, the present inventors examined the relationship between ([Ca] -1.25 × [S]) / [O] and HIC resistance, and found that in order to obtain excellent HIC resistance. It was found that ([Ca] -1.25 × [S]) / [O] needs to be 1.80 or less. ([Ca] -1.25 × [S]) / [O] is preferably 1.40 or less, more preferably 1.30 or less, still more preferably 1.20 or less, and particularly preferably 1.00 or less. is there. The lower limit of ([Ca] -1.25 × [S]) / [O] is about 0.1 from the viewpoint of suppressing Al 2 O 3 which easily forms aggregates and coalesces like CaO.

本発明に係る鋼板における基本成分は上述の通りであり、残部は鉄および不可避的不純物である。但し、原料、資材または製造設備等の状況によって持ち込まれるPおよびS以外の不可避的不純物が鋼中に含まれることは当然に許容される。
尚、上述のように、PおよびSは、不可避的に含まれる元素(不可避不純物)であるが、その組成範囲について上記のように別途規定している。このため、本明細書において、残部として含まれる「不可避不純物」は、別途その組成範囲が規定されている元素を除いた不可避的に含まれる元素を意味する。
また、本発明に係る鋼板は、上記元素に加えて更に、下記元素を選択的に含有してよく、含有される元素の種類に応じて鋼板の特性がさらに改善される。
The basic components of the steel sheet according to the present invention are as described above, and the balance is iron and unavoidable impurities. However, it is naturally permissible for steel to contain unavoidable impurities other than P and S brought in depending on the conditions of raw materials, materials, manufacturing equipment, and the like.
As described above, P and S are elements (unavoidable impurities) that are inevitably contained, but the composition range thereof is separately specified as described above. Therefore, in the present specification, the "unavoidable impurity" contained as the balance means an element unavoidably contained except for an element whose composition range is separately defined.
Further, the steel sheet according to the present invention may selectively contain the following elements in addition to the above elements, and the characteristics of the steel sheet are further improved depending on the type of the contained elements.

[B:0質量%超、0.005質量%以下]
Bは、焼入れ性を高め、母材および溶接部の強度を高めるとともに、溶接時に、加熱されたHAZ部が冷却する過程でNと結合してBNを析出し、オーステナイト粒内からのフェライト変態を促進するため、HAZ靭性を向上させる。この効果を得るには、B量を0.0002質量%以上含有させることが好ましい。B量は、より好ましくは0.0005質量%以上であり、更に好ましくは0.0010質量%以上である。しかし、B含有量が過多になると、母材とHAZ部の靭性が劣化したり、溶接性の劣化を招くため、B量は0.005質量%以下とすることが好ましい。B量は、より好ましくは0.004質量%以下、更に好ましくは0.0030質量%以下である。
[B: More than 0% by mass, 0.005% by mass or less]
B enhances hardenability, enhances the strength of the base metal and the welded zone, and at the time of welding, the heated HAZ portion combines with N in the process of cooling to precipitate BN, which causes ferrite transformation from inside the austenite grains. Improves HAZ toughness to promote. In order to obtain this effect, it is preferable that the amount of B is 0.0002% by mass or more. The amount of B is more preferably 0.0005% by mass or more, still more preferably 0.0010% by mass or more. However, if the B content is excessive, the toughness of the base metal and the HAZ portion deteriorates and the weldability deteriorates. Therefore, the B content is preferably 0.005% by mass or less. The amount of B is more preferably 0.004% by mass or less, still more preferably 0.0030% by mass or less.

[V:0質量%超、0.1質量%以下]
Vは、強度の向上に有効な元素であり、この効果を得るには0.003質量%以上含有させることが好ましい。より好ましくは0.010質量%以上である。一方、V含有量が0.1質量%を超えると溶接性と母材靭性が劣化する。よってV量は、0.1質量%以下とすることが好ましく、より好ましくは0.08質量%以下である。
[V: More than 0% by mass, 0.1% by mass or less]
V is an element effective for improving the strength, and it is preferable to contain it in an amount of 0.003% by mass or more in order to obtain this effect. More preferably, it is 0.010% by mass or more. On the other hand, if the V content exceeds 0.1% by mass, the weldability and the toughness of the base metal deteriorate. Therefore, the amount of V is preferably 0.1% by mass or less, more preferably 0.08% by mass or less.

[Cu:0質量%超、1.5質量%以下]
Cuは、焼入れ性を向上させて強度を高めるのに有効な元素である。この効果を得るにはCuを0.01質量%以上含有させることが好ましい。Cu量は、より好ましくは0.05質量%以上、更に好ましくは0.10質量%以上である。しかし、Cu含有量が1.5質量%を超えると靭性が劣化するため、1.5質量%以下とすることが好ましい。Cu量は、より好ましくは1.0質量%以下、更に好ましくは0.50質量%以下である。
[Cu: more than 0% by mass, less than 1.5% by mass]
Cu is an element effective for improving hardenability and increasing strength. In order to obtain this effect, it is preferable to contain Cu in an amount of 0.01% by mass or more. The amount of Cu is more preferably 0.05% by mass or more, still more preferably 0.10% by mass or more. However, if the Cu content exceeds 1.5% by mass, the toughness deteriorates, so it is preferably 1.5% by mass or less. The amount of Cu is more preferably 1.0% by mass or less, still more preferably 0.50% by mass or less.

[Ni:0質量%超、1.5質量%以下]
Niは、母材および溶接部の強度と靭性の向上に有効な元素である。この効果を得るためには、Ni量を0.01質量%以上とすることが好ましい。Ni量は、より好ましくは0.05質量%以上、更に好ましくは0.10質量%以上である。しかしNiが多量に含まれると、構造用鋼材として極めて高価となるため、経済的な観点からNi量は1.5質量%以下とすることが好ましい。Ni量は、より好ましくは1.0質量%以下、更に好ましくは0.50質量%以下である。
[Ni: more than 0% by mass, less than 1.5% by mass]
Ni is an element effective in improving the strength and toughness of the base metal and welded parts. In order to obtain this effect, the amount of Ni is preferably 0.01% by mass or more. The amount of Ni is more preferably 0.05% by mass or more, still more preferably 0.10% by mass or more. However, if a large amount of Ni is contained, it becomes extremely expensive as a structural steel material. Therefore, from an economical point of view, the amount of Ni is preferably 1.5% by mass or less. The amount of Ni is more preferably 1.0% by mass or less, still more preferably 0.50% by mass or less.

[Cr:0質量%超、1.5質量%以下]
Crは、強度の向上に有効な元素であり、この効果を得るには0.01質量%以上含有させることが好ましい。Cr量は、より好ましくは0.05質量%以上、更に好ましくは0.10質量%以上である。一方、Cr量が1.5質量%を超えるとHAZ靭性が劣化する。よってCr量は1.5質量%以下とすることが好ましい。Cr量は、より好ましくは1.0質量%以下、更に好ましくは0.50質量%以下である。
[Cr: more than 0% by mass, 1.5% by mass or less]
Cr is an element effective for improving the strength, and it is preferable to contain Cr in an amount of 0.01% by mass or more in order to obtain this effect. The amount of Cr is more preferably 0.05% by mass or more, still more preferably 0.10% by mass or more. On the other hand, if the amount of Cr exceeds 1.5% by mass, the HAZ toughness deteriorates. Therefore, the amount of Cr is preferably 1.5% by mass or less. The amount of Cr is more preferably 1.0% by mass or less, still more preferably 0.50% by mass or less.

[Mo:0質量%超、1.5質量%以下]
Moは、母材の強度と靭性の向上に有効な元素である。この効果を得るには、Mo量を0.01質量%以上とすることが好ましい。Mo量は、より好ましくは0.05質量%以上、更に好ましくは0.10質量%以上である。しかし、Mo量が1.5質量%を超えるとHAZ靭性および溶接性が劣化する。よってMo量は1.5質量%以下とすることが好ましく、より好ましくは1.0質量%以下、更に好ましくは0.50質量%以下である。
[Mo: more than 0% by mass, less than 1.5% by mass]
Mo is an element effective for improving the strength and toughness of the base material. In order to obtain this effect, the amount of Mo is preferably 0.01% by mass or more. The amount of Mo is more preferably 0.05% by mass or more, still more preferably 0.10% by mass or more. However, if the amount of Mo exceeds 1.5% by mass, the HAZ toughness and weldability deteriorate. Therefore, the amount of Mo is preferably 1.5% by mass or less, more preferably 1.0% by mass or less, and further preferably 0.50% by mass or less.

[Nb:0質量%超、0.06質量%以下]
Nbは、溶接性を劣化させることなく強度と母材靭性を高めるのに有効な元素である。この効果を得るには、Nb量を0.002質量%以上とすることが好ましい。Nb量は、より好ましくは0.010質量%以上、更に好ましくは0.020質量%以上である。しかし、Nb量が0.06質量%を超えると母材とHAZの靭性が劣化する。よって、本発明ではNb量の上限を0.06質量%とすることが好ましい。Nb量は、より好ましくは0.050質量%以下、更に好ましくは0.040質量%以下、より更に好ましくは0.030質量%以下である。
[Nb: more than 0% by mass, 0.06% by mass or less]
Nb is an element effective for increasing strength and base metal toughness without deteriorating weldability. In order to obtain this effect, the amount of Nb is preferably 0.002% by mass or more. The amount of Nb is more preferably 0.010% by mass or more, still more preferably 0.020% by mass or more. However, if the amount of Nb exceeds 0.06% by mass, the toughness of the base metal and HAZ deteriorates. Therefore, in the present invention, the upper limit of the amount of Nb is preferably 0.06% by mass. The amount of Nb is more preferably 0.050% by mass or less, further preferably 0.040% by mass or less, and even more preferably 0.030% by mass or less.

[Ti:0質量%超、0.03質量%以下]
Tiは、鋼中にTiNとして析出することで、溶接時のHAZ部でのオーステナイト粒の粗大化を防止しかつフェライト変態を促進するため、HAZ部の靭性を向上させるのに有効な元素である。さらにTiは、脱硫作用を示すため耐HIC性の向上にも有効な元素である。これらの効果を得るには、Tiを0.003質量%以上含有させることが好ましい。Ti量は、より好ましくは0.005質量%以上、更に好ましくは0.010質量%以上である。一方、Ti含有量が過多になると、固溶TiやTiCが析出して母材とHAZ部の靭性が劣化するため、0.03質量%以下とすることが好ましい。Ti量は、より好ましくは0.02質量%以下である。
[Ti: more than 0% by mass, 0.03% by mass or less]
Ti is an element effective for improving the toughness of the HAZ portion because it is precipitated as TiN in the steel to prevent coarsening of austenite grains in the HAZ portion during welding and promote ferrite transformation. .. Further, Ti is an element effective for improving HIC resistance because it exhibits a desulfurization action. In order to obtain these effects, it is preferable to contain Ti in an amount of 0.003% by mass or more. The amount of Ti is more preferably 0.005% by mass or more, still more preferably 0.010% by mass or more. On the other hand, if the Ti content is excessive, solid solution Ti and TiC are precipitated and the toughness of the base material and the HAZ portion is deteriorated. Therefore, it is preferably 0.03% by mass or less. The amount of Ti is more preferably 0.02% by mass or less.

[Mg:0質量%超、0.01質量%以下]
Mgは、結晶粒の微細化を通じて靭性の向上に有効な元素であり、また脱硫作用を示すため耐HIC性の向上にも有効な元素である。これらの効果を得るには、Mgを0.0003質量%以上含有させることが好ましい。Mg量は、より好ましくは0.001質量%以上である。一方、Mgを過剰に含有させても効果が飽和するため、Mg量の上限は0.01質量%とすることが好ましい。Mg量は、より好ましくは0.005質量%以下である。
[Mg: more than 0% by mass, 0.01% by mass or less]
Mg is an element effective for improving toughness through the refinement of crystal grains, and is also an element effective for improving HIC resistance because it exhibits a desulfurization action. In order to obtain these effects, it is preferable to contain Mg in an amount of 0.0003% by mass or more. The amount of Mg is more preferably 0.001% by mass or more. On the other hand, since the effect is saturated even if Mg is excessively contained, the upper limit of the amount of Mg is preferably 0.01% by mass. The amount of Mg is more preferably 0.005% by mass or less.

[REM:0質量%超、0.02質量%以下]
REM(希土類元素)は、脱硫作用によりMnSの生成を抑制し耐水素誘起割れ性を高めるのに有効な元素である。このような効果を発揮させるには、REMを0.0002質量%以上含有させることが好ましい。REM量は、より好ましくは0.0005質量%以上、更に好ましくは0.0010質量%以上である。一方、REMを多量に含有させても効果が飽和する。よってREM量の上限は0.02質量%とすることが好ましい。鋳造時の浸漬ノズルの閉塞を抑えて生産性を高める観点からは、REM量を0.015質量%以下とすることがより好ましく、更に好ましくは0.010質量%以下、より更に好ましくは0.0050質量%以下である。尚、本発明において、上記REMとは、ランタノイド元素(LaからLuまでの15元素)とSc(スカンジウム)およびYを意味する。
[REM: more than 0% by mass, 0.02% by mass or less]
REM (rare earth element) is an element effective for suppressing the formation of MnS by desulfurization and enhancing hydrogen-induced cracking resistance. In order to exert such an effect, it is preferable to contain REM in an amount of 0.0002% by mass or more. The amount of REM is more preferably 0.0005% by mass or more, still more preferably 0.0010% by mass or more. On the other hand, even if a large amount of REM is contained, the effect is saturated. Therefore, the upper limit of the REM amount is preferably 0.02% by mass. From the viewpoint of suppressing blockage of the immersion nozzle during casting and increasing productivity, the REM amount is more preferably 0.015% by mass or less, still more preferably 0.010% by mass or less, still more preferably 0. It is 0050 mass% or less. In the present invention, the above-mentioned REM means a lanthanoid element (15 elements from La to Lu), Sc (scandium) and Y.

[Zr:0質量%超、0.010質量%以下]
Zrは、脱硫作用により耐HIC性を向上させるとともに、酸化物を形成し微細に分散することでHAZ靭性の向上に寄与する元素である。これらの効果を発揮させるには、Zr量を0.0003質量%以上とすることが好ましい。Zr量は、より好ましくは0.0005質量%以上、更に好ましくは0.0010質量%以上、より更に好ましくは0.0015質量%以上である。一方、Zrを過剰に添加すると粗大な介在物を形成して耐水素誘起割れ性および母材靭性を劣化させる。よってZr量は0.010質量%以下とすることが好ましい。Zr量は、より好ましくは0.0070質量%以下、更に好ましくは0.0050質量%以下、より更に好ましくは0.0030質量%以下である。
[Zr: more than 0% by mass, 0.010% by mass or less]
Zr is an element that improves HIC resistance by desulfurization action and contributes to improvement of HAZ toughness by forming oxides and finely dispersing them. In order to exert these effects, the amount of Zr is preferably 0.0003% by mass or more. The amount of Zr is more preferably 0.0005% by mass or more, further preferably 0.0010% by mass or more, still more preferably 0.0015% by mass or more. On the other hand, when Zr is added excessively, coarse inclusions are formed and the hydrogen-induced cracking resistance and the toughness of the base metal are deteriorated. Therefore, the amount of Zr is preferably 0.010% by mass or less. The amount of Zr is more preferably 0.0070% by mass or less, further preferably 0.0050% by mass or less, still more preferably 0.0030% by mass or less.

(1−2.内部欠陥)
本発明に係る鋼板は、欠陥エコー高さが20%以上である部分の面積率が0.05%以下であり、気泡が鋼板集積帯に残存している場合でも、鋼板集積帯からのHICを抑制できる。
以下、詳細に説明する。
(1-2. Internal defects)
In the steel sheet according to the present invention, the area ratio of the portion where the defect echo height is 20% or more is 0.05% or less, and even when bubbles remain in the steel sheet accumulation zone, the HIC from the steel sheet accumulation zone is obtained. Can be suppressed.
Hereinafter, a detailed description will be given.

スラブの鋳造工程において、例えば、注入ノズルの閉塞の抑制、RHにおける脱ガスのための還流、およびタンディッシュ内での溶鋼の撹拌等のために、Arガスを溶鋼中に吹き込む必要がある。 In the slab casting process, Ar gas needs to be blown into the molten steel, for example, to suppress blockage of the injection nozzle, reflux for degassing in the RH, and stirring of the molten steel in the tundish.

スラブ集積帯はスラブの表面部分であり、スラブ形成の段階で中心部に比べて冷却されやすく早期に凝固した部分である。そのため、スラブ集積帯は、スラブ鋳造時に吹き込まれたArガスに起因する気泡が浮上するものの湾曲部の凝固した部分に捕捉され、気泡が残存しやすい。 The slab accumulation zone is the surface portion of the slab, which is a portion that is more easily cooled and solidified earlier than the central portion at the stage of slab formation. Therefore, in the slab accumulation zone, air bubbles caused by Ar gas blown during slab casting float, but are trapped in the solidified portion of the curved portion, and the air bubbles tend to remain.

スラブ集積帯に残存した気泡を、圧延工程で完全に圧着することは難しいため、鋼板集積帯に気泡として残存しやすい。鋼板集積帯に残存した気泡には、水素が集積しやすいため、残存した気泡を起点としてHICが発生することがある。そのため、鋼板集積帯中の気泡を低減することにより、耐HIC性の向上を図ることができる。 Since it is difficult to completely crimp the bubbles remaining in the slab accumulation zone in the rolling process, they tend to remain as bubbles in the steel sheet accumulation zone. Since hydrogen is likely to accumulate in the bubbles remaining in the steel sheet accumulation zone, HIC may be generated starting from the remaining bubbles. Therefore, the HIC resistance can be improved by reducing the bubbles in the steel sheet accumulation zone.

ここで、「スラブ集積帯」とは、板厚がtであるスラブのうち、スラブの表面から約t/8〜t/4の領域を意味し、「鋼板集積帯」とは、板厚がtである上記スラブを熱間圧延して得られる板厚がt’である鋼板のうち、鋼板の表面から約t’/8〜t’/4の領域を意味する。 Here, the "slab accumulation zone" means a region of about t / 8 to t / 4 from the surface of the slab among the slabs having a plate thickness of t, and the "steel plate accumulation zone" has a plate thickness of about t / 8 to t / 4. Of the steel sheet having a plate thickness of t'obtained by hot rolling the slab of t, it means a region of about t'/8 to t'/4 from the surface of the steel plate.

スラブを熱間圧延する際、通常、スラブはほぼ均一に圧延される(つまり、スラブ集積帯および他の部分はほぼ同じ圧下率で圧延される)。そのため、スラブの表面から約t/8〜t/4の領域は、熱間圧延して得られる鋼板の表面から約t’/8〜t’/4の領域に相当する部分となる。すなわち、「スラブ集積帯」は、熱間圧延して得られる鋼板の「鋼板集積帯」に相当する部分である。 When hot rolling a slab, the slab is usually rolled almost uniformly (ie, the slab accumulation zone and other parts are rolled at about the same rolling ratio). Therefore, the region of about t / 8 to t / 4 from the surface of the slab is a portion corresponding to the region of about t'/8 to t'/4 from the surface of the steel sheet obtained by hot rolling. That is, the "slab accumulation zone" is a portion corresponding to the "steel plate accumulation zone" of the steel sheet obtained by hot rolling.

HIC試験により測定した表層部のCLRと、超音波探傷試験により測定した欠陥エコー高さが20%以上である部分の面積率との関係を調査した結果を図1に示す。 FIG. 1 shows the results of investigating the relationship between the CLR of the surface layer measured by the HIC test and the area ratio of the portion where the defect echo height measured by the ultrasonic flaw detection test is 20% or more.

ここで、欠陥エコー高さとは、鋼板(または、鋼板の一部を採取した試験片)の底面で反射された底面エコーの強度に対する試験片内部の欠陥で反射された欠陥エコーの強度の比率[%]を意味する。
欠陥エコー高さが20%以上である部分の面積率とは、探触子で走査した全面積に対する欠陥エコー高さが20%以上である部分の面積の比率[%]を意味する。
Here, the defect echo height is the ratio of the intensity of the defect echo reflected by the defect inside the test piece to the intensity of the bottom echo reflected by the bottom surface of the steel plate (or the test piece obtained by collecting a part of the steel plate) [ %] Means.
The area ratio of the portion having the defect echo height of 20% or more means the ratio [%] of the area of the portion having the defect echo height of 20% or more to the total area scanned by the probe.

この結果から、本発明者らは、表層部のCLRと当該面積率との間に相関関係を見出した。すなわち、気泡が鋼板集積帯に残存している場合でも、欠陥エコー高さが20%以上である部分の面積率が0.05%以下であれば、鋼板の表層部のCLRを10%以下にすることができ、鋼板集積帯からのHICを抑制できることを見出した。より耐HIC性に優れた鋼板を得る観点から、欠陥エコー高さは、30%以下であることが好ましく、25%以下であることがより好ましく、欠陥エコー高さが20%以上である部分の面積率は、0.04%以下であることが好ましく、0.03%以下であることがより好ましい。
なお、鋼板中の気泡を全て取り除くことは困難であるため、欠陥エコー高さ、および欠陥エコー高さが20%以上である部分の面積率は、通常は0%以上である。
From this result, the present inventors found a correlation between the CLR of the surface layer portion and the area ratio. That is, even when air bubbles remain in the steel sheet accumulation zone, if the area ratio of the portion where the defect echo height is 20% or more is 0.05% or less, the CLR of the surface layer portion of the steel sheet is reduced to 10% or less. It was found that HIC from the steel sheet accumulation zone can be suppressed. From the viewpoint of obtaining a steel sheet having more excellent HIC resistance, the defect echo height is preferably 30% or less, more preferably 25% or less, and the portion where the defect echo height is 20% or more. The area ratio is preferably 0.04% or less, and more preferably 0.03% or less.
Since it is difficult to remove all the air bubbles in the steel sheet, the defect echo height and the area ratio of the portion where the defect echo height is 20% or more are usually 0% or more.

本発明に係る鋼板およびそれを用いて形成されたラインパイプ用鋼管は、天然ガスおよび原油輸送用ラインパイプ、貯蔵用タンク並びに精製用圧力容器に好ましく用いられてよい。 The steel plate according to the present invention and a steel pipe for a line pipe formed by using the steel plate may be preferably used for a line pipe for transporting natural gas and crude oil, a storage tank, and a pressure vessel for refining.

<2.鋼板の製造方法>
本発明に係る鋼板の製造方法は、上述の化学成分組成を有し、且つスラブ集積帯中の円相当径0.2mm以上の気泡の個数密度が0.15個/cm以下であるスラブを用いる。当該スラブを用いることにより、耐HIC性に優れた鋼板を製造することができる。
以下、詳細に説明する。
<2. Steel sheet manufacturing method>
The method for producing a steel sheet according to the present invention comprises a slab having the above-mentioned chemical composition and having a density of bubbles having a diameter equivalent to a circle of 0.2 mm or more in the slab accumulation zone of 0.15 cells / cm 2 or less. Use. By using the slab, a steel plate having excellent HIC resistance can be manufactured.
Hereinafter, a detailed description will be given.

(2−1.スラブ集積帯中の円相当径0.2mm以上の気泡の個数密度が0.15個/cm以下であるスラブ)
上述のように、鋼板集積帯に残存した気泡には、水素が集積しやすいため、残存した気泡を起点としてHICが発生することがある。そのため、鋼板集積帯中の気泡を低減することにより、耐HIC性の向上を図ることができる。
「スラブ集積帯」は、熱間圧延して得られる鋼板の「鋼板集積帯」に相当する部分であることから、鋼板集積帯中の気泡を低減するための具体的な手段として、スラブ集積帯中の気泡を低減することにより、熱間圧延して得られる鋼板の鋼板集積帯における気泡を低減することが効果的であり、耐HIC性を向上させることができる。
(2-1. A slab in which the number density of bubbles having a circle-equivalent diameter of 0.2 mm or more in the slab accumulation zone is 0.15 cells / cm 2 or less)
As described above, hydrogen tends to accumulate in the bubbles remaining in the steel sheet accumulation zone, so that HIC may be generated from the remaining bubbles as a starting point. Therefore, the HIC resistance can be improved by reducing the bubbles in the steel sheet accumulation zone.
Since the "slab accumulation zone" corresponds to the "steel plate accumulation zone" of the steel sheet obtained by hot rolling, the slab accumulation zone is a specific means for reducing air bubbles in the steel sheet accumulation zone. By reducing the air bubbles in the steel sheet, it is effective to reduce the air bubbles in the steel sheet accumulation zone of the steel sheet obtained by hot rolling, and the HIC resistance can be improved.

HIC試験により測定した表層部のCLRとスラブ集積帯中の円相当径0.2mm以上の気泡の個数密度との関係を調査した結果を図2に示す。その結果、本発明者らは、スラブ集積帯中の円相当径0.2mm以上の気泡の個数密度が0.15個/cm以下であるスラブを用いて鋼板を製造することにより、圧延工程で完全に圧着されずに残存する気泡を減らすことができることを見出した。このようなスラブを用いて製造した鋼板は、欠陥エコー高さが20%以上である部分の面積率が0.05%以下であり、鋼板の表層部のCLRを10%以下にすることができ、鋼板集積帯からのHICを抑制できることを見出した。 FIG. 2 shows the results of investigating the relationship between the CLR of the surface layer measured by the HI C test and the number density of bubbles having a circle equivalent diameter of 0.2 mm or more in the slab accumulation zone. As a result, the present inventors produced a steel sheet using a slab having a number density of bubbles having a diameter equivalent to 0.2 mm or more and a circle equivalent diameter of 0.2 mm or more in the slab accumulation zone of 0.15 cells / cm 2 or less, thereby performing a rolling step. It was found that the remaining air bubbles can be reduced without being completely crimped. In the steel sheet manufactured by using such a slab, the area ratio of the portion where the defect echo height is 20% or more is 0.05% or less, and the CLR of the surface layer portion of the steel sheet can be 10% or less. , It was found that HIC from the steel sheet accumulation zone can be suppressed.

スラブ集積帯中の気泡の円相当径は、0.17mm以下であることが好ましく、0.15mm以下であることがより好ましく、スラブ集積帯中の円相当径0.2mm以上の気泡の個数密度は、0.10個/cm以下であることが好ましく、0.05個/cm以下であることがより好ましい。
なお、スラブ集積帯中の気泡を全て取り除くことは困難であるため、スラブ集積帯中の気泡の円相当径は、通常は0mm以上であり、スラブ集積帯中の円相当径0.2mm以上の気泡の個数密度は、通常は0個/cm以上である。
The equivalent circle diameter of the bubbles in the slab accumulation zone is preferably 0.17 mm or less, more preferably 0.15 mm or less, and the number density of bubbles having an equivalent circle diameter of 0.2 mm or more in the slab accumulation zone. Is preferably 0.10 pieces / cm 2 or less, and more preferably 0.05 pieces / cm 2 or less.
Since it is difficult to remove all the bubbles in the slab accumulation zone, the equivalent circle diameter of the bubbles in the slab accumulation zone is usually 0 mm or more, and the equivalent circle diameter in the slab accumulation zone is 0.2 mm or more. The number density of bubbles is usually 0 cells / cm 2 or more.

気泡の円相当径および気泡の個数密度の測定方法は特に限定されないが、例えば、以下の方法が挙げられる。
光学顕微鏡を用いて、スラブ集積帯から採取した試験片を観察し、接眼ミクロメーターを用いて気泡の円相当径を測定し、観察視野中における円相当径0.2mm以上の気泡の個数をカウントする。
次に、当該観察視野の面積および円相当径0.2mm以上の気泡の数から、気泡の密度を算出する。
The method for measuring the circle-equivalent diameter of the bubbles and the number density of the bubbles is not particularly limited, and examples thereof include the following methods.
Observe the test piece collected from the slab accumulation zone using an optical microscope, measure the circle-equivalent diameter of the bubbles using the eyepiece micrometer, and count the number of bubbles with a circle-equivalent diameter of 0.2 mm or more in the observation field of view. To do.
Next, the density of the bubbles is calculated from the area of the observation field of view and the number of bubbles having a circle-equivalent diameter of 0.2 mm or more.

(2−2.上記スラブを鋳造する工程)
スラブ集積帯中の円相当径0.2mm以上の気泡の個数密度が0.15個/cm以下であるスラブを鋳造するためには、製鋼工程において、タンディッシュから鋳型へ溶鋼を供給する際のノズル中へ吹込むArガスの量および気泡径を制御することが重要である。
(2-2. Step of casting the above slab)
In order to cast a slab having a circle-equivalent diameter of 0.2 mm or more and a bubble density of 0.15 cells / cm 2 or less in the slab accumulation zone, when the molten steel is supplied from the tundish to the mold in the steelmaking process. It is important to control the amount of Ar gas blown into the nozzle and the diameter of the bubbles.

Arガスを用いる場合には、内管径70mm以上、115mm以下で平均気孔径30μm以上、60μm以下のポーラス煉瓦から、Arガスを1.4kgf/cm以上、1.8kgf/cm以下の背圧で3L(リットル)/t(トン)以上、10L/t以下で吹きこむことが必要である。
内管径は、75mm以上であることが好ましく、80mm以上であることがより好ましく、110mm以下であることが好ましく、105mm以下であることがより好ましい。
平均気孔径は、35μm以上であることが好ましく、40μmm以上であることがより好ましく、55μm以下であることが好ましく、50μm以下であることがより好ましい。
背圧は、1.45kgf/cm以上であることが好ましく、1.5kgf/cm以上であることがより好ましく、1.75kgf/cm以下であることが好ましく、1.7kgf/cm以下であることがより好ましい。
吹き込み量は、5L/t以上であることが好ましく、7L/t以上であることがより好ましく、12L/t以下であることが好ましく、10L/t以下であることがより好ましい。
この範囲でArガスを吹きこむことで、ノズル閉塞が起こりにくく、径が大きいArガスが溶鋼中にふきこまれるため、Arガスの気泡が鋳型内で浮上しやすくなる。その結果、集積帯からArガスの気泡が抜けやすくなるため、集積帯に捕捉されるArガスの気泡を低減することができる。
When Ar gas is used, the back pressure of Ar gas is 1.4 kgf / cm 2 or more and 1.8 kgf / cm 2 or less from porous bricks with an inner pipe diameter of 70 mm or more and 115 mm or less and an average pore diameter of 30 μm or more and 60 μm or less. It is necessary to blow at a pressure of 3 L (liter) / t (ton) or more and 10 L / t or less.
The inner pipe diameter is preferably 75 mm or more, more preferably 80 mm or more, preferably 110 mm or less, and more preferably 105 mm or less.
The average pore diameter is preferably 35 μm or more, more preferably 40 μm or more, preferably 55 μm or less, and more preferably 50 μm or less.
Back pressure is preferably at 1.45kgf / cm 2 or more, preferably more preferably 1.5 kgf / cm 2 or more and 1.75kgf / cm 2 or less, 1.7 kgf / cm 2 More preferably:
The blowing amount is preferably 5 L / t or more, more preferably 7 L / t or more, preferably 12 L / t or less, and more preferably 10 L / t or less.
By blowing Ar gas in this range, nozzle clogging is unlikely to occur, and Ar gas having a large diameter is blown into the molten steel, so that Ar gas bubbles easily float in the mold. As a result, Ar gas bubbles are easily released from the accumulation zone, so that the Ar gas bubbles trapped in the accumulation zone can be reduced.

なお、鋳型に溶鋼を注入する注入ノズルから溶鋼と共に吹き込むArガスの量を低減する手段も考えられるが、鋳型の湯面近傍でArガスによる溶鋼の撹拌がされにくくなるため、湯面の凝固が生じる懸念があるため推奨されない。 Although it is conceivable to reduce the amount of Ar gas blown together with the molten steel from the injection nozzle that injects the molten steel into the mold, it becomes difficult for the molten steel to be agitated by the Ar gas near the molten metal surface of the mold, so that the molten metal surface solidifies. Not recommended due to concerns that may arise.

上記以外の条件については特に限定されず、上述の化学成分組成を有する鋼を、通常の製鋼法に従って溶製し、連続鋳造工程によりスラブを鋳造してよい。 Conditions other than the above are not particularly limited, and steel having the above-mentioned chemical composition may be melted according to a normal steelmaking method, and a slab may be cast by a continuous casting step.

上記スラブを用いて本発明に係る鋼板を製造する方法は、鋼板の欠陥エコー高さが20%以上である部分の面積率が0.05%以下である限りは特に限定されず、常法に従って、熱間圧延し、その後冷却を行い、鋼板を製造することができる。
以下、「温度」は、材料の温度を示す。
The method for producing a steel sheet according to the present invention using the above slab is not particularly limited as long as the area ratio of the portion where the defect echo height of the steel sheet is 20% or more is 0.05% or less, and according to a conventional method. , Hot-rolled and then cooled to produce a steel sheet.
Hereinafter, "temperature" indicates the temperature of the material.

上記鋼板欠陥面積率を達成するためには、例えば、表面温度が900℃以上の温度域において、1パス当り20%以下の圧下率で5パス以上圧延し、累積圧下率が50%以上となるように熱間圧延を行うことが推奨される。
上記条件で熱間圧延することにより、板厚内部より板厚表層部が優先的に変形するため、集積帯に捕捉された気泡をより効率的に圧着することができる。
In order to achieve the steel sheet defect area ratio, for example, in a temperature range where the surface temperature is 900 ° C. or higher, rolling is performed for 5 passes or more at a reduction rate of 20% or less per pass, and the cumulative reduction rate is 50% or more. It is recommended to perform hot rolling as described above.
By hot rolling under the above conditions, the surface layer portion of the plate thickness is preferentially deformed from the inside of the plate thickness, so that the bubbles trapped in the accumulation zone can be pressure-bonded more efficiently.

また、熱間圧延後の冷却条件としては、例えば、Ar3変態点以上の冷却開始温度から、10℃/s以上の平均冷却速度で冷却を行うことが推奨される。
上記条件で冷却することにより、鋼板中央部付近で発生するHICを効果的に抑制することができる。
As the cooling conditions after hot rolling, for example, it is recommended to perform cooling at an average cooling rate of 10 ° C./s or more from a cooling start temperature of Ar3 transformation point or higher.
By cooling under the above conditions, HIC generated near the central portion of the steel sheet can be effectively suppressed.

また、本発明に係る鋼板を用い、一般的に行われている方法でラインパイプ用鋼管を製造することができる。本発明の鋼板を用いて得られるラインパイプ用鋼管もまた耐HIC性および靭性に優れている。また、本発明に係る鋼板は、一般的に行われている方法で圧力容器に用いられてよい。 Further, using the steel plate according to the present invention, a steel pipe for a line pipe can be manufactured by a commonly used method. The steel pipe for line pipes obtained by using the steel plate of the present invention is also excellent in HIC resistance and toughness. Further, the steel plate according to the present invention may be used for a pressure vessel by a commonly used method.

以上のように本発明に係る鋼板の製造方法を説明したが、本発明に係る鋼板の所望の特性を理解した当業者が試行錯誤を行い、本発明に係る所望の特性を有する鋼板を製造する方法であって、上記の製造方法以外の方法を見出す可能性がある。 Although the method for producing a steel sheet according to the present invention has been described above, a person skilled in the art who understands the desired characteristics of the steel sheet according to the present invention will carry out trial and error to produce a steel sheet having the desired characteristics according to the present invention. There is a possibility of finding a method other than the above-mentioned manufacturing method.

また、以上のように、気泡がスラブ集積帯に残存しやすく、鋼板集積帯に残存した気泡を起点としてHICが発生しやすいため、特にスラブ集積帯および鋼板集積帯に着目して本発明に係る鋼板およびその製造方法について説明を行った。しかし、集積帯以外の部分の気泡は、通常、集積帯よりも少ないため、集積帯中の気泡を上述のように制御して集積帯の耐HIC性を向上させることにより、集積帯以外の部分の耐HIC性も優れたものとなる。すなわち、本発明の効果は集積帯のみに限定されず、鋼板全体に亘るものであることに留意されたい。 Further, as described above, bubbles are likely to remain in the slab accumulation zone, and HIC is likely to be generated starting from the bubbles remaining in the steel plate accumulation zone. Therefore, the present invention relates to the slab accumulation zone and the steel plate accumulation zone in particular. The steel sheet and its manufacturing method were explained. However, since the number of bubbles in the portion other than the accumulation zone is usually smaller than that in the accumulation zone, by controlling the bubbles in the accumulation zone as described above to improve the HIC resistance of the accumulation zone, the portion other than the accumulation zone HIC resistance is also excellent. That is, it should be noted that the effect of the present invention is not limited to the accumulation zone but extends to the entire steel sheet.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前記または後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples as well as the present invention, and appropriate modifications are made to the extent that it can be adapted to the above or the purpose described below. Of course, it is possible to carry out, and all of them are included in the technical scope of the present invention.

表1に示す鋼種A〜Kの化学成分組成の鋼を溶製し、表2の鋳造条件でスラブ(鋳片)を得た。 Steels having a chemical composition of steel grades A to K shown in Table 1 were melted to obtain slabs (slabs) under the casting conditions shown in Table 2.

表2の鋳造条件について、「○」は、内管径90mmで平均気孔径45μmのポーラス煉瓦から、Arガスを1.4〜1.8kgf/cmの背圧で5〜9L/tでタンディッシュに吹き込み、連続鋳造により厚みが280mmであるスラブを得る方法である。 Regarding the casting conditions in Table 2, "○" indicates that Ar gas is tanned from porous brick with an inner tube diameter of 90 mm and an average pore diameter of 45 μm at a back pressure of 1.4 to 1.8 kgf / cm 2 at 5-9 L / t. This is a method of obtaining a slab having a thickness of 280 mm by blowing it into a dish and continuously casting it.

表2の鋳造条件について、「×」は、内管径120〜150mmで平均気孔径45μmのポーラス煉瓦から、Arガスを1.4〜1.8kgf/cmの背圧で5〜9L/tでタンディッシュに吹き込み、連続鋳造により厚みが280mmであるスラブを得る方法である。 Regarding the casting conditions in Table 2, "x" indicates 5-9 L / t of Ar gas from a porous brick with an inner tube diameter of 120 to 150 mm and an average pore diameter of 45 μm at a back pressure of 1.4 to 1.8 kgf / cm 2. This is a method of obtaining a slab having a thickness of 280 mm by blowing it into a tundish and continuously casting it.

得られたスラブを1050〜1250℃に再加熱した後、表2に示す2パターンのプロセスにより、試験No.1〜12の鋼板を製造した。
表2のプロセスについて、「TMCP」は、(1)900℃以上の温度域において、1パス当り20%以下の圧下率で5パス以上圧下することにより、累積圧下率が50%以上となるように熱間圧延を行い、(2)850℃以上、900℃未満の温度域において、累積圧下率が20%以上となり、かつ圧延終了温度が850〜900℃となるように熱間圧延を行い、(3)750〜850℃の冷却開始温度から、10〜50℃/sの平均冷却速度で冷却し、350〜600℃の温度域で停止し、室温まで空冷する方法である。
「QT」は、(1)900℃以上の温度域において、1パス当り20%以下の圧下率で5パス以上圧下することにより、累積圧下率が50%以上となり、かつ圧延終了温度が850℃以上となるように熱間圧延を行い、(2)室温まで空冷した後、(3)850〜950℃の温度に再加熱して焼入れした後、(4)600〜700℃で焼き戻し処理を行う方法である。
After reheating the obtained slab to 1050 to 1250 ° C., the test No. 1 was carried out by the two patterns of processes shown in Table 2. Steel sheets 1 to 12 were manufactured.
Regarding the processes in Table 2, "TMCP" has a cumulative reduction rate of 50% or more by (1) rolling 5 or more passes at a reduction rate of 20% or less per pass in a temperature range of 900 ° C. or higher. (2) Hot rolling is performed so that the cumulative reduction rate is 20% or more and the rolling end temperature is 850 to 900 ° C. in the temperature range of 850 ° C. or higher and lower than 900 ° C. (3) This is a method of cooling from a cooling start temperature of 750 to 850 ° C. at an average cooling rate of 10 to 50 ° C./s, stopping in a temperature range of 350 to 600 ° C., and air-cooling to room temperature.
"QT" has (1) a cumulative reduction rate of 50% or more and a rolling end temperature of 850 ° C. by reducing 5 passes or more at a reduction rate of 20% or less per pass in a temperature range of 900 ° C. or higher. After hot rolling to the above, (2) air cooling to room temperature, (3) reheating to a temperature of 850 to 950 ° C and quenching, and (4) tempering at 600 to 700 ° C. How to do it.

上述の各スラブおよび各鋼板について、以下の要領に従って、スラブ集積帯中の円相当径0.2mm以上の気泡の個数密度、および欠陥エコー高さが20%以上である部分の面積率の測定、並びにHIC試験を行った。 For each of the above-mentioned slabs and each steel plate, the number density of bubbles having a circle equivalent diameter of 0.2 mm or more in the slab accumulation zone and the area ratio of the portion where the defect echo height is 20% or more are measured according to the following procedure. And the HIC test was performed.

[1.スラブ集積帯中の円相当径0.2mm以上の気泡の個数密度]
厚さ280mmのスラブの表面からスラブの厚さ方向に45〜60mmの位置において、スラブの幅方向(鋳造方向に垂直な方向)に向かってスラブの幅の1/4の位置および1/2の位置の2箇所(スラブ集積帯)から、L断面(スラブの鋳造方向に垂直な面)を含む板厚15mm×幅70mm×長さ15mmの試験片を採取した。エメリー研磨紙(#320〜#1500)を用いてL断面を研磨後、バフ研磨により鏡面仕上げを行った。次に、光学顕微鏡(倍率:5倍)を用いてL断面を観察し、接眼ミクロメーター(倍率:5倍)を用いて気泡の円相当径を測定し、観察視野中における円相当径0.2mm以上の気泡の個数をカウントした。当該観察視野の面積および円相当径0.2mm以上の気泡の数から、気泡の密度を算出した。上記2箇所から得られた密度のうちの最大値を、スラブ集積帯中の円相当径0.2mm以上の気泡の個数密度とした。
[1. Number density of bubbles with a circular equivalent diameter of 0.2 mm or more in the slab accumulation zone]
At a position 45 to 60 mm in the thickness direction of the slab from the surface of the slab having a thickness of 280 mm, a position of 1/4 and 1/2 of the width of the slab in the width direction of the slab (direction perpendicular to the casting direction). A test piece having a plate thickness of 15 mm, a width of 70 mm, and a length of 15 mm including an L cross section (a surface perpendicular to the casting direction of the slab) was collected from two positions (slab accumulation zone). After polishing the L cross section with emery abrasive paper (# 320 to # 1500), a mirror finish was performed by buffing. Next, the L cross section is observed using an optical microscope (magnification: 5 times), the circle equivalent diameter of the bubbles is measured using an eyepiece micrometer (magnification: 5 times), and the circle equivalent diameter in the observation field of view is 0. The number of bubbles of 2 mm or more was counted. The density of bubbles was calculated from the area of the observation field of view and the number of bubbles having a circle-equivalent diameter of 0.2 mm or more. The maximum value of the densities obtained from the above two locations was defined as the number density of bubbles having a circle-equivalent diameter of 0.2 mm or more in the slab accumulation zone.

[2.欠陥エコー高さが20%以上である部分の面積率]
鋼板の幅方向(圧延方向に垂直な方向)に向かって鋼板の幅の1/4の位置および1/2の位置の2か所(鋼板集積帯)から、鋼板の板厚に応じて、以下のようにそれぞれ試験片を採取した。
(板厚が30mm以下の鋼板)
上記2つの位置において、当該鋼板の板厚×幅20mm×長さ(圧延方向)100mmの試験片を3つ採取し、合計で6つの試験片を準備した。
(板厚30mmを超える鋼板)
上記2つの位置において、(i)鋼板の表面から当該表面に垂直な方向、(ii)板厚の1/2の位置、および(iii)鋼板の裏面から当該裏面に垂直な方向から、厚さ30mm×幅20mm×長さ100の試験片を採取し、合計で6つの試験片を準備した。
[2. Area ratio of the part where the defect echo height is 20% or more]
From two locations (steel plate accumulation zone) at 1/4 and 1/2 of the width of the steel sheet in the width direction of the steel sheet (direction perpendicular to the rolling direction), depending on the thickness of the steel sheet, the following Each test piece was collected as shown in.
(Steel plate with a thickness of 30 mm or less)
At the above two positions, three test pieces having a thickness of the steel plate, a width of 20 mm, and a length (rolling direction) of 100 mm were collected, and a total of six test pieces were prepared.
(Steel plate with a thickness of more than 30 mm)
At the above two positions, the thickness is (i) from the surface of the steel plate to the surface perpendicular to the surface, (ii) the position of 1/2 of the plate thickness, and (iii) from the back surface of the steel plate to the direction perpendicular to the back surface. A test piece of 30 mm × width 20 mm × length 100 was collected, and a total of 6 test pieces were prepared.

各試験片について、株式会社ジーネス製超音波探傷装置「GSONIC SCAN 8AX1500SR」、および水浸型探触子(周波数10MHz、径0.5インチ、焦点深さ4.5インチ)を用いて、0.4mm×0.4mmピッチで超音波探傷試験を行い、各試験片の欠陥エコー高さが20%以上である部分の面積率を測定し、その平均値を鋼板の欠陥エコー高さが20%以上である部分の面積率とした。 For each test piece, using an ultrasonic flaw detector "GSONIC SCAN 8AX1500SR" manufactured by Genes Co., Ltd. and a water-immersed probe (frequency 10 MHz, diameter 0.5 inch, focal depth 4.5 inch), 0. An ultrasonic flaw detection test is performed at a pitch of 4 mm x 0.4 mm, the area ratio of the part where the defect echo height of each test piece is 20% or more is measured, and the average value is 20% or more of the defect echo height of the steel sheet. The area ratio of the part that is.

[3.HIC試験]
HIC試験は、上記超音波探傷試験で使用した試験片を用いて、NACE standard TM0284−2003に規定された方法に従って行った。詳細には、1atmの硫化水素を飽和させた25℃(5.0%NaCl+0.5%酢酸)水溶液中に96時間浸漬した後、鋼板の板厚に応じて、以下のように各試験片の断面評価(NACE standard TM0284−2003 FiGURE2〜8に従った)を行い、CLRを測定した。ここで、断面とは試験片の厚さ方向と幅方向とで規定される面である。
[3. HIC test]
The HIC test was performed according to the method specified in NACE standard TM0284-2003 using the test piece used in the ultrasonic flaw detection test. Specifically, after immersing in a 25 ° C. (5.0% NaCl + 0.5% acetic acid) aqueous solution saturated with 1 atm of hydrogen sulfide for 96 hours, each test piece is prepared as follows according to the thickness of the steel sheet. Cross-sectional evaluation (according to NACE standard TM0284-2003 FiGURE 2-8) was performed and CLR was measured. Here, the cross section is a surface defined by the thickness direction and the width direction of the test piece.

(板厚が30mm以下の鋼板)
断面を板厚方向に均等に3分割して、表面側、中央部および裏面側の3つの断面を規定した。表面側の断面でCLRを測定し、その平均値を「表層部のCLR」とした。また、中央部の断面でCLRを測定し、その平均値を「中央部のCLR」とした。
(板厚30mmを超える鋼板)
鋼板の表面から当該表面に垂直な方向から採取した試験片のCLRを測定し、その平均値を「表層部のCLR」とした。また、板厚の1/2の位置より採取した試験片のCLRを測定し、その平均値を「中央部のCLR」とした。
(Steel plate with a thickness of 30 mm or less)
The cross section was evenly divided into three in the plate thickness direction, and three cross sections of the front surface side, the central portion and the back surface side were defined. The CLR was measured on the cross section on the surface side, and the average value was taken as "CLR of the surface layer portion". Further, the CLR was measured on the cross section of the central portion, and the average value thereof was defined as "CLR in the central portion".
(Steel plate with a thickness of more than 30 mm)
The CLR of the test piece collected from the surface of the steel sheet from the direction perpendicular to the surface was measured, and the average value was taken as "CLR of the surface layer portion". In addition, the CLR of the test piece collected from the position of 1/2 of the plate thickness was measured, and the average value was defined as "CLR in the central portion".

表層部のCLRおよび中央部のCLRがそれぞれ10%以下の鋼板を、実用可能な水準であり、耐HIC性に優れていると判定した。 A steel sheet having a CLR in the surface layer portion and a CLR in the central portion of 10% or less was judged to be at a practical level and excellent in HIC resistance.

スラブ集積帯中の円相当径0.2mm以上の気泡の個数密度、欠陥エコー高さが20%以上である部分の面積率、表層部のCLRおよび中央部のCLRの測定結果を表2に示す。表層部のCLRおよび中央部のCLRについては、10%以下であるものを「○」で示す。 Table 2 shows the measurement results of the number density of bubbles having a circular equivalent diameter of 0.2 mm or more in the slab accumulation zone, the area ratio of the portion where the defect echo height is 20% or more, the CLR of the surface layer portion, and the CLR of the central portion. .. Regarding the CLR of the surface layer portion and the CLR of the central portion, those having 10% or less are indicated by “◯”.

なお、表1および2中、下線が付されたものは本発明の規定から外れていることを意味する。 In Tables 1 and 2, those underlined mean that they are out of the provisions of the present invention.

Figure 0006869151
Figure 0006869151

Figure 0006869151
Figure 0006869151

表2の結果より、次のように考察できる。試験No.1〜5および12はいずれも、本発明で規定する要件の全てを満足する例であり、耐HIC性に優れている。 From the results in Table 2, it can be considered as follows. Test No. 1 to 5 and 12 are examples that satisfy all the requirements specified in the present invention, and are excellent in HIC resistance.

一方、試験No.6〜11は、本発明で規定する要件のいずれかを満たしていない例である。 On the other hand, Test No. 6 to 11 are examples which do not satisfy any of the requirements specified in the present invention.

試験No.6および7はそれぞれ、鋳造条件が適正でなく、スラブ集積帯中の円相当径0.2mm以上の気泡の個数密度が高いスラブを用いて製造した鋼板の例であり、欠陥エコー高さが20%以上である部分の面積率が大きく、表層部のCLRが悪化し、所望の耐HIC性が達成されなかった。 Test No. 6 and 7 are examples of steel sheets manufactured using slabs in which the casting conditions are not appropriate and the number of bubbles having a circular equivalent diameter of 0.2 mm or more in the slab accumulation zone is high, and the defect echo height is 20. The area ratio of the portion of% or more was large, the CLR of the surface layer portion deteriorated, and the desired HIC resistance was not achieved.

試験No.8および9はそれぞれ、[Ca]/[S]が小さい鋼種GおよびHを用いて製造した鋼板の例であり、MnSが多く発生して中央部のCLRが悪化し、所望の耐HIC性が達成されなかった。なお、試験No.8については、中央部のCLRが悪化したため、気泡の個数密度を評価していない。 Test No. 8 and 9 are examples of steel sheets manufactured using steel sheets G and H having small [Ca] / [S], respectively, and a large amount of MnS is generated, the CLR in the central portion is deteriorated, and the desired HIC resistance is obtained. Not achieved. In addition, the test No. Regarding No. 8, the number density of bubbles was not evaluated because the CLR in the central portion deteriorated.

試験No.10および11はそれぞれ、([Ca]−1.25×[S])/[O]が大きい鋼種IおよびJを用いて製造した鋼板の例であり、鋼板集積帯に粗大Ca介在物が生成して表層部のCLRが悪化し、所望の耐HIC性が達成されなかった。 Test No. 10 and 11 are examples of steel sheets manufactured using steel sheets I and J having a large ([Ca] -1.25 × [S]) / [O], respectively, and coarse Ca inclusions are generated in the steel sheet accumulation zone. As a result, the CLR of the surface layer portion deteriorated, and the desired HIC resistance was not achieved.

Claims (6)

C :0.02〜0.15質量%、
Si:0.02〜0.50質量%、
Mn:0.6〜2.0質量%、
P :0質量%超、0.030質量%以下、
S :0質量%超、0.003質量%以下、
Al:0.010〜0.080質量%、
Ca:0.0003〜0.0060質量%、
N :0.001〜0.01質量%、および
O :0質量%超、0.0045質量%以下
を含有し、かつ下記(1)式および下記(2)式を満足し、
残部が鉄および不可避的不純物からなり、
欠陥エコー高さが20%以上である部分の面積率が0.05%以下である鋼板。

3.0≦[Ca]/[S] (1)
([Ca]−1.25×[S])/[O]≦1.80 (2)
ここで、[Ca]、[S]および[O]はそれぞれ、Ca、SおよびOの含有量(質量%)である。
C: 0.02 to 0.15% by mass,
Si: 0.02 to 0.50% by mass,
Mn: 0.6 to 2.0% by mass,
P: More than 0% by mass, 0.030% by mass or less,
S: More than 0% by mass, 0.003% by mass or less,
Al: 0.010 to 0.080% by mass,
Ca: 0.0003 to 0.0060% by mass,
N: 0.001 to 0.01% by mass, O: more than 0% by mass, 0.0045% by mass or less, and satisfy the following equations (1) and (2).
The rest consists of iron and unavoidable impurities,
A steel sheet having an area ratio of 0.05% or less in a portion having a defect echo height of 20% or more.

3.0 ≤ [Ca] / [S] (1)
([Ca] -1.25 × [S]) / [O] ≦ 1.80 (2)
Here, [Ca], [S] and [O] are the contents (mass%) of Ca, S and O, respectively.
B :0質量%超、0.005質量%以下、
V :0質量%超、0.1質量%以下、
Cu :0質量%超、1.5質量%以下、
Ni :0質量%超、1.5質量%以下、
Cr :0質量%超、1.5質量%以下、
Mo :0質量%超、1.5質量%以下、
Nb :0質量%超、0.06質量%以下、
Ti :0質量%超、0.03質量%以下、
Mg :0質量%超、0.01質量%以下、
REM:0質量%超、0.02質量%以下、および
Zr :0質量%超、0.010質量%以下
からなる群から選択される1種以上をさらに含有する請求項1に記載の鋼板。
B: More than 0% by mass, 0.005% by mass or less,
V: More than 0% by mass, 0.1% by mass or less,
Cu: Over 0% by mass, 1.5% by mass or less,
Ni: Over 0% by mass, 1.5% by mass or less,
Cr: Over 0% by mass, 1.5% by mass or less,
Mo: Over 0% by mass, 1.5% by mass or less,
Nb: More than 0% by mass, 0.06% by mass or less,
Ti: More than 0% by mass, 0.03% by mass or less,
Mg: More than 0% by mass, 0.01% by mass or less,
The steel sheet according to claim 1, further containing one or more selected from the group consisting of REM: more than 0% by mass and 0.02% by mass or less, and Zr: more than 0% by mass and 0.010% by mass or less.
ラインパイプ用である請求項1または2に記載の鋼板。 The steel plate according to claim 1 or 2, which is for a line pipe. 請求項1〜3のいずれか1項に記載の鋼板で形成されたラインパイプ用鋼管。 A steel pipe for a line pipe formed of the steel plate according to any one of claims 1 to 3. 圧力容器用である請求項1〜3のいずれか1項に記載の鋼板。 The steel sheet according to any one of claims 1 to 3, which is used for a pressure vessel. 請求項1または2に記載の鋼板の製造方法であって、請求項1または2に記載の化学成分組成を有し、且つスラブ集積帯中の円相当径0.2mm以上の気泡密度が0.15個/cm以下であるスラブを用いる鋼板の製造方法。 The method for producing a steel sheet according to claim 1 or 2, which has the chemical composition according to claim 1 or 2, and has a bubble density of 0.2 mm or more in equivalent circle diameter in the slab accumulation zone. A method for manufacturing a steel plate using a slab of 15 pieces / cm 2 or less.
JP2017176045A 2016-11-16 2017-09-13 Steel pipes for steel plates and line pipes and their manufacturing methods Active JP6869151B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780070108.XA CN109952387B (en) 2016-11-16 2017-11-02 Steel sheet, steel pipe for line pipe, and method for producing same
EP17871656.9A EP3543366B1 (en) 2016-11-16 2017-11-02 Steel sheet, steel pipe for line pipe, and production method therefor
KR1020197012487A KR102226990B1 (en) 2016-11-16 2017-11-02 Steel pipe for steel plate and line pipe, and manufacturing method thereof
PCT/JP2017/039785 WO2018092605A1 (en) 2016-11-16 2017-11-02 Steel sheet, steel pipe for line pipe, and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016223416 2016-11-16
JP2016223416 2016-11-16

Publications (2)

Publication Number Publication Date
JP2018083981A JP2018083981A (en) 2018-05-31
JP6869151B2 true JP6869151B2 (en) 2021-05-12

Family

ID=62236616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017176045A Active JP6869151B2 (en) 2016-11-16 2017-09-13 Steel pipes for steel plates and line pipes and their manufacturing methods

Country Status (4)

Country Link
EP (1) EP3543366B1 (en)
JP (1) JP6869151B2 (en)
KR (1) KR102226990B1 (en)
CN (1) CN109952387B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592462B (en) * 2019-09-19 2021-04-06 舞阳钢铁有限责任公司 Steel plate for low-temperature equipment and production method thereof
CN117187679A (en) * 2022-05-30 2023-12-08 宝山钢铁股份有限公司 High-strength petroleum casing pipe and manufacturing method thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2721420B2 (en) * 1990-09-11 1998-03-04 新日本製鐵株式会社 Sour-resistant steel for electric resistance welded steel
JPH04329826A (en) * 1991-04-30 1992-11-18 Nippon Steel Corp Production of extra thick steel plate for pressure vessel excellent in hydrogen induced cracking resistance
JP2914138B2 (en) 1993-11-17 1999-06-28 住友金属工業株式会社 Manufacturing method of steel for high corrosion resistance ERW steel pipe
JP3890748B2 (en) * 1998-06-19 2007-03-07 Jfeスチール株式会社 High strength steel plate with excellent stretch flangeability and delayed fracture resistance
JP2006063351A (en) * 2004-08-24 2006-03-09 Sumitomo Metal Ind Ltd High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe
JP4940886B2 (en) * 2006-10-19 2012-05-30 Jfeスチール株式会社 High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
JP5423324B2 (en) * 2009-02-12 2014-02-19 新日鐵住金株式会社 Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking
JP5423323B2 (en) * 2009-02-12 2014-02-19 新日鐵住金株式会社 Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking
JP5824401B2 (en) * 2012-03-30 2015-11-25 株式会社神戸製鋼所 Steel sheet with excellent resistance to hydrogen-induced cracking and method for producing the same
WO2013147197A1 (en) * 2012-03-30 2013-10-03 新日鐵住金株式会社 High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same
CN102644018B (en) * 2012-05-08 2013-09-25 首钢总公司 Smelting process used for plate blanks of medium and heavy plates of hydrogen induced cracking resistant pipeline steel
WO2014155440A1 (en) * 2013-03-26 2014-10-02 Jfeスチール株式会社 High strength thick steel plate for high heat input welding with excellent brittle crack arrestability and manufacturing method therefor
JP6165088B2 (en) * 2013-03-29 2017-07-19 株式会社神戸製鋼所 Steel sheets and line pipe steel pipes with excellent resistance to hydrogen-induced cracking and toughness of weld heat affected zone
JP6316548B2 (en) * 2013-07-01 2018-04-25 株式会社神戸製鋼所 Steel plates and line pipe steel pipes with excellent hydrogen-induced crack resistance and toughness
KR101709887B1 (en) * 2013-07-25 2017-02-23 신닛테츠스미킨 카부시키카이샤 Steel plate for line pipe, and line pipe
JP2016125139A (en) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance
JP6584912B2 (en) * 2014-12-26 2019-10-02 株式会社神戸製鋼所 Steel plate and line pipe steel pipe with excellent hydrogen-induced crack resistance
JP2016125140A (en) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance and toughness
JP2016125137A (en) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance

Also Published As

Publication number Publication date
EP3543366A1 (en) 2019-09-25
JP2018083981A (en) 2018-05-31
CN109952387A (en) 2019-06-28
EP3543366A4 (en) 2020-05-27
EP3543366B1 (en) 2022-10-05
CN109952387B (en) 2021-06-18
KR102226990B1 (en) 2021-03-11
KR20190065337A (en) 2019-06-11

Similar Documents

Publication Publication Date Title
KR102092492B1 (en) High-strength steel sheet, high-strength galvanized steel sheet and methods for manufacturing the same
KR101615842B1 (en) High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same
JP4978741B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue resistance and method for producing the same
KR101709034B1 (en) Steel plate with excellent hydrogen-induced cracking resistance and toughness, and steel pipe for line pipe
CN110088344B (en) Steel for pressure vessel having excellent hydrogen-induced cracking resistance and method for producing same
JP6316548B2 (en) Steel plates and line pipe steel pipes with excellent hydrogen-induced crack resistance and toughness
WO2020262638A1 (en) Steel material and method for producing same
JP2006063351A (en) High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe
JP2017160510A (en) Nickel steel sheet for low temperature and manufacturing method therefor
KR20170093961A (en) Steel plate having excellent toughness and resistance to hydrogen-induced cracking, and steel pipe for line pipe
JP6028863B2 (en) Seamless steel pipe for line pipe used in sour environment
JP2017193759A (en) Thick steel sheet and manufacturing method therefor
JP6645373B2 (en) Steel plate and its manufacturing method
JP5234951B2 (en) Steel material excellent in toughness of weld heat-affected zone and base metal low-temperature toughness, and method for producing the same
JP6869151B2 (en) Steel pipes for steel plates and line pipes and their manufacturing methods
JP2022510933A (en) Steel materials with excellent hydrogen-induced crack resistance and their manufacturing methods
EP3239334A1 (en) Steel plate having excellent resistance to hydrogen-induced cracking, and steel pipe for line pipe
JP2020012169A (en) Thick steel sheet for linepipe and manufacturing method therefor
JP4586648B2 (en) Steel plate excellent in workability and method for producing the same
WO2018092605A1 (en) Steel sheet, steel pipe for line pipe, and production method therefor
JP5342911B2 (en) High strength cold-rolled steel sheet with excellent bending workability
JP7277862B1 (en) Steel plate and its manufacturing method
KR20210080697A (en) Fitting part having excellent resistance to hydrogen induced cracking and manufacturing method for the same
CN111996448A (en) L485MS pipeline steel with excellent SSCC (stress induced cracking) resistance under high loading stress and manufacturing method thereof
JP2008274335A (en) High strength steel sheet having excellent stretch-flange formability and fatigue property, and method for refining molten steel thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210413

R151 Written notification of patent or utility model registration

Ref document number: 6869151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151