JP2721420B2 - Sour-resistant steel for electric resistance welded steel - Google Patents

Sour-resistant steel for electric resistance welded steel

Info

Publication number
JP2721420B2
JP2721420B2 JP24163490A JP24163490A JP2721420B2 JP 2721420 B2 JP2721420 B2 JP 2721420B2 JP 24163490 A JP24163490 A JP 24163490A JP 24163490 A JP24163490 A JP 24163490A JP 2721420 B2 JP2721420 B2 JP 2721420B2
Authority
JP
Japan
Prior art keywords
steel
hydrogen
stress corrosion
sour
sulfide stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24163490A
Other languages
Japanese (ja)
Other versions
JPH04120241A (en
Inventor
和臣 豊田
武弘 星野
博 竹澤
利昭 土師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24163490A priority Critical patent/JP2721420B2/en
Publication of JPH04120241A publication Critical patent/JPH04120241A/en
Application granted granted Critical
Publication of JP2721420B2 publication Critical patent/JP2721420B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐硫化物応力腐食割れ性に優れ、且つ耐水素
有機割れ性と低温靭性を共に具備した電縫鋼管用鋼に係
わり、硫化水素或いは更に二酸化炭素を高濃度に含む湿
潤環境(以下サワー環境と言う)で、且つ寒冷地等の低
温環境に於いて使用される石油・ガスパイプライン等に
適した耐サワー電縫鋼管用鋼を提供するものである。
Description: TECHNICAL FIELD The present invention relates to a steel for electric resistance welded steel pipe having excellent sulfide stress corrosion cracking resistance and having both hydrogen cracking resistance to organic cracking and low temperature toughness. Alternatively, a sour-resistant electric resistance welded steel pipe suitable for oil and gas pipelines used in a humid environment containing carbon dioxide at a high concentration (hereinafter referred to as a sour environment) and in a low-temperature environment such as a cold region is provided. Is what you do.

(従来の技術) 近年、高濃度の硫化水素等を含むサワー環境、更には
寒冷地等の低温環境に於ける石油・天然ガスの採掘・輸
送が増加している。
(Prior Art) In recent years, mining and transportation of petroleum and natural gas in a sour environment containing a high concentration of hydrogen sulfide and the like, and further in a low-temperature environment such as a cold region have been increasing.

これに使用されるパイプライン等に於いては、サワー
環境で水素誘起割れや硫化物応力腐食割れが、低温環境
で低温脆性破壊が発生することがあり、パイプラインの
大規模化、高圧輸送化が進むにつれて、より大きな被害
を招くこれらの割れの発生を抑止し得る破壊抵抗性に優
れた鋼材の開発が益々重要となっている。
In pipelines used for this purpose, hydrogen-induced cracking and sulfide stress corrosion cracking may occur in a sour environment, and low-temperature brittle fracture may occur in a low-temperature environment. With the progress of steel, the development of steel materials with excellent fracture resistance that can suppress the occurrence of these cracks that cause greater damage has become increasingly important.

これらの割れ原因と防止方法については、従来から数
多くの研究開発が進められている。
Many researches and developments have been made on the causes of these cracks and how to prevent them.

サワー環境下での割れに関しては、鋼の腐食によって
発生した水素が原子状態で鋼中に侵入・拡散し、介在物
と地鉄との界面で集積・分子化して生じる水素ガスの圧
力で割れを発生し、これが鋼中の最終凝固部である中心
偏析部(成分元素の濃化偏析部)に生じやすいバンド状
硬化組織等に沿って伝播する水素誘起割れ、或いは更に
負荷応力の存在下で生じる硫化物応力腐食割れが単独
に、又は複合して発生する事等が知られている。
Regarding cracking in a sour environment, hydrogen generated by corrosion of steel penetrates and diffuses into the steel in the atomic state and accumulates and molecularizes at the interface between inclusions and ground iron, causing the cracks due to the pressure of hydrogen gas generated. Hydrogen-induced cracking that occurs along the band-like hardened structure that tends to occur in the central segregation part (concentrated segregation part of component elements), which is the final solidification part in steel, or in the presence of load stress It is known that sulfide stress corrosion cracking occurs alone or in combination.

しかして従来、水素誘起割れ防止のために以下の様な
手段が用いられている。
Conventionally, the following means have been used to prevent hydrogen-induced cracking.

(1)Ni,Cu,Cr等を添加して、鋼の腐食を抑制或いは水
素侵入を抑制する方法(例えば特開昭50−97515号公
報)。
(1) A method in which corrosion of steel or intrusion of hydrogen is suppressed by adding Ni, Cu, Cr, etc. (for example, Japanese Patent Application Laid-Open No. 50-97515).

(2)Ca,REM等を添加し、割れの起点となるMnSを球状
に形態制御する方法(例えば特開昭53−14606号公報、
特開昭54−38214号公報)。
(2) A method for controlling the morphology of MnS, which is the starting point of cracking, by adding Ca, REM, etc. to the sphere (for example, JP-A-53-14606,
JP-A-54-38214).

(3)Mn,P等の含有量を低減し、或いは圧延用鋳片の均
熱拡散処理を施す事によって中心偏析部の偏析度を低減
する方法(例えば特開昭52−111815号公報、特開昭50−
97517号公報)。
(3) A method of reducing the content of Mn, P, etc., or reducing the degree of segregation at the center segregated portion by subjecting the cast slab to soaking diffusion (for example, Japanese Patent Application Laid-Open No. 52-111815, Kaisho 50-
No. 97517).

(4)圧延後、再加熱を行い、焼入れ、焼戻し又は焼な
らしを施し、主として偏析部のミクロ組織を改善するこ
とにより割れ感受性を低減する方法。
(4) A method of reducing cracking susceptibility by reheating after rolling, performing quenching, tempering or normalizing, and mainly improving the microstructure of the segregated portion.

等が試みられてきた。Etc. have been tried.

一方、硫化物応力腐食割れの防止手段としては前記
(1)〜(4)が耐水素誘起割れ性を改善するだけでな
く、耐硫化物応力腐食割れ性の改善にも有効で、特に
(1)の水素侵入抑制元素の添加、(4)の熱処理の採
用によって硫化物応力腐食割れの発生限界応力を向上す
る事が知られている。
On the other hand, as means for preventing sulfide stress corrosion cracking, the above (1) to (4) are effective not only for improving hydrogen-induced cracking resistance but also for improving sulfide stress corrosion cracking resistance. It is known that the addition of the element for suppressing hydrogen intrusion of (2) and the heat treatment of (4) improve the critical stress for the occurrence of sulfide stress corrosion cracking.

又、VとNを適切に調整して微細なVN析出物を生成さ
せて耐硫化物応力腐食割れ性を改善させる方法(特開昭
62−213346号公報)、更には、P,S,O,Nを低減すると共
に圧延・冷却の条件を適切に調整して同様の効果を得る
とする方法(特開昭62−112722号公報)等も提案されて
いる。
Also, a method of appropriately adjusting V and N to form fine VN precipitates to improve sulfide stress corrosion cracking resistance (Japanese Patent Application Laid-Open No.
62-213346) and a method of reducing P, S, O, N and appropriately adjusting the rolling and cooling conditions to obtain the same effect (Japanese Patent Application Laid-Open No. 62-112722). Etc. have also been proposed.

(発明が解決しようとする課題) しかし、従来試みられた方法に於いては耐硫化物応力
腐食割れ性に関して、次のような問題点を有している。
(Problems to be Solved by the Invention) However, the methods that have been conventionally tried have the following problems with respect to the resistance to sulfide stress corrosion cracking.

例えば、(1)の方法についてはpHが低い厳しいサワ
ー環境でCu,Ni添加による水素の侵入を抑制する効果が
損なわれる。
For example, the method (1) impairs the effect of suppressing the intrusion of hydrogen due to the addition of Cu and Ni in a severe sour environment with a low pH.

又、Ni添加を行う方法では鋼の表面から微小な局部腐
食が進行して硫化物応力腐食割れを助長しやすい現象も
生じる。
In addition, in the method of adding Ni, minute local corrosion progresses from the surface of the steel, and a phenomenon that sulfide stress corrosion cracking is easily promoted also occurs.

(4)の方法についても焼入れ、焼戻し処理による工
業生産上の経済的損失が極めて大きい。
Also in the method (4), the quenching and tempering treatments cause an extremely large economic loss in industrial production.

又、特開昭61−213346号公報に示されるVとNを添加
して耐硫化物応力腐食割れ性を改善させる方法について
も、多量のVを添加する事により生産コストを高めるだ
けでなく、靭性を損なう事がある。
Also, a method of improving the sulfide stress corrosion cracking resistance by adding V and N disclosed in Japanese Patent Application Laid-Open No. 61-213346, not only increases the production cost by adding a large amount of V, but also increases the production cost. It may impair toughness.

更には、特開昭62−112722号公報によるP,S,O,N量の
制限と圧延・冷却条件を併用する方法によっても、特に
引張強さが63kgf/mm2を超える様な高強度鋼に於いて、A
lを含む酸化系介在物に起因する硫化物応力腐食割れを
生じる事があり、電縫鋼管に製造した後に行われる超音
波探傷検査で、この介在物が欠陥として検出されるとい
った別種の問題点も生じる危険性が大きい。
Furthermore, JP 62-112722 Patent P by JP, S, O, N quantity limitations and also by a method of combination of rolling and cooling conditions, in particular the tensile strength of 63kgf / mm 2 greater than such high-strength steel In A
Other problems such as sulfide stress corrosion cracking caused by oxidized inclusions including l, which are detected as defects in ultrasonic flaw inspection performed after manufacturing ERW steel pipes There is also a high risk of occurrence.

何れにしても、必要性が益々重要視される様になって
きた硫化物応力腐食割れ性に優れ、且つ耐水素誘起割れ
性と低温靭性を共に有する鋼材の製造に於いては、前記
の手段を適宜組み合わせて採用されるのが常であるが、
経済性に優れ、且つ硫化物応力腐食割れ等の発生を完全
に抑止し得る鋼材を完成するに到ってておらず、更に改
善を加える事の必要性が極めて大きい実情にある。
In any case, in the production of steel having excellent sulfide stress corrosion cracking properties, for which the necessity has become increasingly important, and having both hydrogen-induced cracking resistance and low-temperature toughness, the above-mentioned means are required. Is usually combined as appropriate,
A steel material that is excellent in economy and that can completely suppress the occurrence of sulfide stress corrosion cracking and the like has not yet been completed, and there is a great need for further improvement.

本発明はこのような状況に於いて確立されたものであ
り、前記の問題点を解消し、耐硫化物応力腐食割れ性に
優れ、且つ耐水素誘起割れ性と低温での高靭性を有する
電縫鋼管用鋼を得る事を課題とするものである。
The present invention has been established in such a situation, and solves the above-mentioned problems, has excellent sulfide stress corrosion cracking resistance, and has hydrogen-induced cracking resistance and high toughness at low temperatures. It is an object to obtain steel for a sewn steel pipe.

(課題を解決するための手段) 本発明は上記の課題を達成するため、 0.004〜0.024重量%のAlと、割れの起点となるMnSの
形態制御及び酸化物系介在物の消滅を図るための次式に
於いて、その値が1.5〜4.5を満足するCaを含み、実質的
にNiとCuを添加していない事を特徴とする耐サワー電縫
鋼管用鋼を手段とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a method for controlling the morphology of MnS, which is 0.004 to 0.024% by weight, and the elimination of oxide-based inclusions. In the following formula, a sour-resistant steel for electric resistance welded steel pipe characterized by containing Ca satisfying a value of 1.5 to 4.5 and substantially not adding Ni and Cu is used.

以下に構成要件を限定した理由について述べる。 The reasons for limiting the constituent requirements will be described below.

サワー環境で使用される鋼材には耐水素誘起割れ性と
耐硫化物応力腐食割れ性が共に必要とされることは前述
した通りである。
As described above, steel materials used in a sour environment are required to have both hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance.

従って、本発明の主眼とする硫化物応力腐食割れの抑
制手段は水素誘起割れを防止し得る条件下で成立するも
のでなければならないとの考え方から、本発明者等は種
々の実験検討を重ね第1図に示す知見を得た。この知見
により、水素誘起割れを抑制する条件として、 から求められる値が1.5以上必要であり、この条件式値
が1.5以上を満たせばpH≒3の厳しいサワー環境(pH値
が小さいほど厳しい)に於いても水素誘起割れを防止で
き、又、前記条件式値が4.5を超えるとCaの過剰添加に
起因する酸化物系介在物の増加により耐硫化物応力腐食
割れ性が劣化し、水素侵入による表面膨れ(ブリスタ
ー)の発生が増え、且つ経済性が低下することを見出し
たものである。
Accordingly, the inventors of the present invention have repeated various experimental studies from the viewpoint that the means for suppressing sulfide stress corrosion cracking, which is the main feature of the present invention, must be established under conditions that can prevent hydrogen-induced cracking. The findings shown in FIG. 1 were obtained. Based on this finding, the conditions for suppressing hydrogen-induced cracking are If the value of the conditional expression satisfies 1.5 or more, hydrogen-induced cracking can be prevented even in a severe sour environment of pH ≒ 3 (smaller as the pH value is smaller). If the value of the conditional expression exceeds 4.5, the sulfide stress corrosion cracking resistance is degraded due to an increase in oxide-based inclusions due to excessive addition of Ca, and the occurrence of surface blisters (blisters) due to hydrogen intrusion increases, and economic efficiency is increased. Is found to decrease.

しかし、これ等の条件を満たすだけでは硫化物応力腐
食割れを安定して防ぐことはできず、更に丹念な調査・
解析を行った結果、Alを含んだ酸化物系介在物が割れ起
源となっていることが多く、Alを0.024%以下に低減
し、その生成を抑制することによって硫化物応力腐食割
れの発生に対する抵抗性が安定することを見出した。
However, meeting these conditions alone cannot stably prevent sulfide stress corrosion cracking.
As a result of the analysis, it was found that oxide inclusions containing Al often originated in cracks, and Al was reduced to 0.024% or less and its formation was suppressed to prevent sulfide stress corrosion cracking. It has been found that the resistance is stable.

又、Alについては脱酸効果を得るための必要量として
0.004%を下限とした。
For Al, the amount required to obtain the deoxidizing effect
The lower limit was 0.004%.

以上の如く、S,Oに見合ったCaとAlを必要最小限に添
加し、耐サワー性に悪影響があるNiと厳しいサワー環境
で何ら効果を発揮しないCuを実質的に添加しないことに
よって、介在物の生成を抑え、耐硫化物応力腐食割れ性
と耐水素誘起割れ性の優れた鋼を経済的に生産性良く得
られることから、前記の条件を限定したものである。
As described above, Ca and Al corresponding to S and O are added to the minimum necessary amount, and Ni which has a bad influence on sour resistance and Cu which does not exert any effect in a severe sour environment are not substantially added. The above-mentioned conditions are limited because the production of a product is suppressed, and a steel excellent in sulfide stress corrosion cracking resistance and hydrogen-induced cracking resistance can be economically obtained with high productivity.

本発明が対象とする耐サワー鋼は、上記したAlとCaを
除いて、例えば前記した特開昭62−112722号公報に記載
され、次記する様に、通常の耐サワー鋼に所要の材質を
発揮させるために、従来から当業分野での活用で確認さ
れている、作用と効果の関係を基に定めている添加元素
の種類と量を同様に使用して同等の作用と効果が得られ
る。従って、これ等を含む鋼を本発明は対象鋼とするも
のである。
The sour resistant steel targeted by the present invention, except for the above-mentioned Al and Ca, is described in, for example, the above-mentioned JP-A-62-112722, and as described below, required materials for ordinary sour resistant steel In order to achieve the same effect, the same effect and effect can be obtained by using the type and amount of additive element determined based on the relationship between the effect and effect, which has been confirmed in the field of industry. Can be Therefore, the present invention is intended to include steels including these.

これ等の各成分元素とその添加理由と量を以下に示
す。
The constituent elements, the reasons for their addition, and their amounts are shown below.

Cは、母材及び溶接部の強度確保と内質,溶接性,HAZ
靭性の劣化防止のため0.15%以下としている。
C is to secure the strength of the base metal and welded parts and the internal quality, weldability, HAZ
0.15% or less to prevent toughness deterioration.

Siは、脱酸のために添加し、溶接性,HAZ靭性の劣化防
止のため0.6%以下としている。
Si is added for deoxidation, and is set to 0.6% or less to prevent deterioration of weldability and HAZ toughness.

Mnは、強度と靭性を確保し、HIC伝播停止能力と母材
及びHAZの靭性を維持するため0.6%以上1.5%以下とし
ている。
Mn is set to 0.6% or more and 1.5% or less to secure strength and toughness, and to maintain HIC propagation stopping ability and toughness of base metal and HAZ.

Pは、中心偏析改善のため0.007%以下としている。 P is set to 0.007% or less to improve center segregation.

Tiは、圧延組織及びHAZ組織の微細化のために添加
し、靭性劣化を防ぐため、0.003〜0.03%としている。
Ti is added to refine the rolled structure and the HAZ structure, and is 0.003 to 0.03% in order to prevent toughness deterioration.

Nは、粗大な窒化物系介在物による耐HIC特性の劣化
防止のため、0.0035%以下としている。
N is set to 0.0035% or less in order to prevent deterioration of HIC resistance due to coarse nitride-based inclusions.

Cr,Mo,Nb,V,Bはそれぞれ、耐HIC性,強度靭性、組織
の細粒化,ベイナイト組織の生成助長等の目的から1種
又は2種以上を添加するが、その添加量は、各々1.0,0.
5,0.1,1.0,0.005%以下としている。
Cr, Mo, Nb, V, and B are each added in one or more types for the purpose of HIC resistance, strength toughness, grain refinement of the structure, promotion of formation of the bainite structure, etc. 1.0,0 each.
5,0.1,1.0,0.005% or less.

(作用) 本発明の方法によれば、硫化物応力腐食割れの起点と
なる酸化物系介在物(Al2O3クラスター等の生成を抑制
出来るので、Ni,Cu等の高価な水素侵入抑制元素を添加
しないで割れを防止することができ、更に電縫鋼管とし
た後の超音波探傷検査に於ける介在物起因の欠陥をも防
止する事ができ、経済性の面でも優れた効果が発揮でき
る。
(Action) According to the method of the present invention, the formation of oxide-based inclusions (Al 2 O 3 clusters and the like, which are the starting points of sulfide stress corrosion cracking, can be suppressed. Cracks can be prevented without adding steel, and it is also possible to prevent defects due to inclusions in ultrasonic flaw inspection after forming ERW steel pipes, and it has excellent economical effects it can.

(実施例) 次に本発明の実施例について説明する。(Example) Next, an example of the present invention will be described.

API Spec.5L X52〜X80相当の耐サワーラインパイプ用
鋼管材を主対象として、転炉−連鋳工程で製造した第1
表の化学成分から成る組成の耐サワー鋼の鋳片を用い
て、加熱−連続熱間圧延−冷却プロセスを経て板厚7〜
14mmの鋼板を製造した。
API Spec.5L X52 to X80 equivalent steel pipe for sour line pipes
Using a slab of a sour resistant steel having a composition consisting of the chemical components shown in the table, a plate thickness of 7 to 7 was obtained through a heating-continuous hot rolling-cooling process.
14mm steel plates were manufactured.

鋼番1〜9は本発明鋼、10〜18は比較鋼である。 Steel numbers 1 to 9 are inventive steels, and 10 to 18 are comparative steels.

尚、第2表に加熱−圧延−冷却プロセスの条件、鋼板
の機械的性質、耐水素誘起割れ性及び耐硫化物応力腐食
割れ性を示す。
Table 2 shows the conditions of the heating-rolling-cooling process, the mechanical properties of the steel sheet, the resistance to hydrogen-induced cracking and the resistance to sulfide stress corrosion cracking.

水素誘起割れ試験は鋼板の表裏面を各1mm切削した厚
さで、幅20mm、長さ100mmの試験片を用い、 又硫化物応力腐食割れ試験は、NACE Standard TM0177
−90に規定されたMethod AによるProofringタイプ定荷
重引張試験法で、降伏応力の50〜100%相当たわみを試
験片に負荷して行った。
The hydrogen-induced cracking test uses a test piece 20 mm wide and 100 mm long with a thickness of 1 mm for each of the front and back surfaces of the steel sheet.The sulfide stress corrosion cracking test was performed according to NACE Standard TM0177.
In a Proofring type constant load tensile test method according to Method A specified in -90, a deflection corresponding to 50 to 100% of the yield stress was applied to the test piece.

浸漬液は25℃でH2Sを飽和させた0.5%CH3COOH−5%N
aCl水溶液(pH≒3)を使用し、該液への浸漬は、水素
誘起割れ試験は4日間、硫化物応力腐食割れ試験は30日
間、途中破断はその日迄とした。
The immersion liquid is 0.5% CH 3 COOH-5% N saturated with H 2 S at 25 ° C.
An aCl aqueous solution (pH ≒ 3) was used, and immersion in the solution was performed for 4 days in the hydrogen-induced cracking test, 30 days in the sulfide stress corrosion cracking test, and the breakage up to that day.

硫化物応力腐食割れが発生しなくなる最小の負荷応力
と降伏応力の比(割れ発生限界応力比)を以て耐硫化物
応力腐食割れ性を示す指標とした。
The ratio between the minimum applied stress at which sulfide stress corrosion cracking does not occur and the yield stress (the critical stress ratio at which cracking occurs) was used as an index indicating sulfide stress corrosion cracking resistance.

尚、耐水素誘起割れ性は超音波探傷で検出された割れ
面積率を評価の指標とした。
The hydrogen-induced cracking resistance was determined by using a crack area ratio detected by ultrasonic flaw detection as an index for evaluation.

鋼番1〜9は引張強さ≒50〜75kgf/mm2の本発明例で
あり、耐硫化物応力腐食割れ性は一般に要求されるレベ
ルである割れ発生限界応力比0.80を全て超える優れたも
のであり、水素誘起割れの発生も皆無で、且つ優れた低
温靭性を得ている。
Steel Nos. 1 to 9 are examples of the present invention having a tensile strength of 〜50 to 75 kgf / mm 2 , and have excellent sulfide stress corrosion cracking resistance exceeding all cracking limit stress ratios of 0.80, which is a generally required level. In addition, there is no occurrence of hydrogen-induced cracking, and excellent low-temperature toughness is obtained.

比較鋼中、鋼番10〜12はAlが0.031〜0.055%と高いた
め、その他の条件が適正条件範囲にあるにもかかわらず
耐硫化物応力腐食割れ性が劣化している。
Among the comparative steels, steel Nos. 10 to 12 have a high Al content of 0.031 to 0.055%, so that the sulfide stress corrosion cracking resistance is deteriorated even though the other conditions are within appropriate ranges.

鋼番13〜15はS,O,Caに係る規制条件式の値が低過ぎる
ため水素誘起割れが発生している。
In steel Nos. 13 to 15, hydrogen-induced cracking has occurred because the values of the regulatory conditional expressions for S, O, and Ca are too low.

鋼番16〜18は同上条件式の値が高過ぎるため一部にブ
リスターが発生している。
In steel Nos. 16 to 18, blisters are partially generated because the value of the above conditional expression is too high.

(発明の効果) 以上説明した本発明は、実質的にNiとCuを添加する事
なく、AlとCaを限定量の範囲で使用する事により、より
経済性に優れた方法で、介在物を減少させた耐硫化物応
力腐食性に優れ、同時に耐水素誘起割れ性及び靭性を良
好に具備した鋼材を完成させたものであり、これを厳し
いサワー環境で使用される石油・ガス輸送用等の電縫鋼
管製造に供すことができ、発明の効果は極めて大きい。
(Effect of the Invention) The present invention described above uses Al and Ca in a limited amount range without substantially adding Ni and Cu, thereby eliminating inclusions in a more economical manner. A steel material with excellent reduced sulfide stress corrosion resistance and excellent hydrogen-induced cracking resistance and toughness at the same time, which is used for oil and gas transportation used in harsh sour environments. It can be used for ERW steel pipe production, and the effect of the invention is extremely large.

【図面の簡単な説明】 第1図はMnSの形態制御の度合いを示す条件式 の値と耐硫化物応力腐食割れ性(割れ発生限界応力比:
大きいほど良好)の関係を、Al量で層別して示したもの
である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conditional expression showing a degree of form control of MnS. Value and sulfide stress corrosion cracking resistance (Crack initiation critical stress ratio:
The larger the better, the better the relationship).

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】0.004〜0.024重量%のAlと次式で1.5〜4.5
を満足するCaを含み、実質的にNiとCuを添加していない
事を特徴とする耐サワー電縫鋼管用鋼。
(1) 0.004 to 0.024% by weight of Al and 1.5 to 4.5
A steel for a sour-resistant electric resistance welded steel pipe, characterized by containing Ca satisfying the above, and substantially not adding Ni and Cu.
JP24163490A 1990-09-11 1990-09-11 Sour-resistant steel for electric resistance welded steel Expired - Lifetime JP2721420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24163490A JP2721420B2 (en) 1990-09-11 1990-09-11 Sour-resistant steel for electric resistance welded steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24163490A JP2721420B2 (en) 1990-09-11 1990-09-11 Sour-resistant steel for electric resistance welded steel

Publications (2)

Publication Number Publication Date
JPH04120241A JPH04120241A (en) 1992-04-21
JP2721420B2 true JP2721420B2 (en) 1998-03-04

Family

ID=17077237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24163490A Expired - Lifetime JP2721420B2 (en) 1990-09-11 1990-09-11 Sour-resistant steel for electric resistance welded steel

Country Status (1)

Country Link
JP (1) JP2721420B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271976A (en) * 1993-03-16 1994-09-27 Sumitomo Metal Ind Ltd Steel and steel tube excellent in sulfide crack resistance
JP4341396B2 (en) * 2003-03-27 2009-10-07 Jfeスチール株式会社 High strength hot rolled steel strip for ERW pipes with excellent low temperature toughness and weldability
JP6869151B2 (en) * 2016-11-16 2021-05-12 株式会社神戸製鋼所 Steel pipes for steel plates and line pipes and their manufacturing methods
WO2018092605A1 (en) * 2016-11-16 2018-05-24 株式会社神戸製鋼所 Steel sheet, steel pipe for line pipe, and production method therefor

Also Published As

Publication number Publication date
JPH04120241A (en) 1992-04-21

Similar Documents

Publication Publication Date Title
JP6119934B1 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP6119935B1 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP5098256B2 (en) Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same
JP6119932B1 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP5278188B2 (en) Thick steel plate with excellent resistance to hydrogen-induced cracking and brittle crack propagation
JP6119933B1 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
WO2010093057A1 (en) High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
JP2004176172A (en) High strength seamless steel pipe with excellent hic (hydrogen-induced cracking) resistance, and its manufacturing method
JP6528895B2 (en) High strength flat steel wire with excellent resistance to hydrogen induced cracking
JP2014218707A (en) Heat treated steel sheet excellent in hydrogen-induced cracking resistance and method of producing the same
JP2006063351A (en) High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe
JP6493285B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP2655911B2 (en) Linepipe steel with excellent hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance
JP2021518488A (en) A steel composition conforming to the X-65 grade API 5L PSL-2 specification with enhanced hydrogen-induced cracking (HIC) resistance and a method for producing the steel.
JP3879723B2 (en) High-strength seamless steel pipe excellent in hydrogen-induced crack resistance and method for producing the same
JP6493286B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP6493284B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JPS61165207A (en) Manufacture of unrefined steel plate excellent in sour-resistant property
JPS631369B2 (en)
JP2721420B2 (en) Sour-resistant steel for electric resistance welded steel
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JP3526723B2 (en) Ultra high strength steel pipe with excellent low temperature crack resistance
JPH06256894A (en) High strength line pipe excellent in hydrogen induced cracking resistance
KR100345704B1 (en) A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC
JPH0319285B2 (en)