JPH0319285B2 - - Google Patents

Info

Publication number
JPH0319285B2
JPH0319285B2 JP57002845A JP284582A JPH0319285B2 JP H0319285 B2 JPH0319285 B2 JP H0319285B2 JP 57002845 A JP57002845 A JP 57002845A JP 284582 A JP284582 A JP 284582A JP H0319285 B2 JPH0319285 B2 JP H0319285B2
Authority
JP
Japan
Prior art keywords
steel
less
hic
test
ssc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57002845A
Other languages
Japanese (ja)
Other versions
JPS58120726A (en
Inventor
Tadaaki Taira
Yasuo Kobayashi
Kazuaki Matsumoto
Tomoaki Hyodo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP284582A priority Critical patent/JPS58120726A/en
Publication of JPS58120726A publication Critical patent/JPS58120726A/en
Publication of JPH0319285B2 publication Critical patent/JPH0319285B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐硫化物腐食割れ性に優れた鋼を、
特定の成分組成と熱間圧延後放冷することによつ
て製造する非調質鋼の製造方法に関する。 一般に、湿潤硫化水素腐食環境下で使用される
鋼材には、耐HIC(水素誘起割れ)および耐SSC
(硫化物応力腐食割れ)の性能、即ち優れた耐硫
化物腐食割れ性が優れていることが要求される。 ところが、非調質鋼(熱間圧延まま鋼材、熱間
圧延後加速冷却して製造する鋼材、焼準鋼材等)
においては、鋳造時の偏析に起因してその部分に
マルテンサイトあるいはベーナイトのような硬い
低温変態組織が生成する。その結果、HICの発生
を抑制するため超低硫とした上で、Ca処理を行
つた鋼においてすら、偏析部分にHIC、SSCが発
生する。耐SSCに関しては、前記の低温変態組織
を含まないフエライト・パーライト鋼であつて
も、パーライト相に微細割れが発生し易く、焼入
焼戻処理を施したQT材と比較してσth(割れ発生
限界応力)が低い。 また、一般的にガス輸送管においては、脆性破
壊の伝播阻止特性としてBDWTT試験で評価さ
れる低温靭性ならびに不安定延破壊の伝播阻止特
性としてシヤルピー試験で評価される切欠延性の
いずれもが優れていることが要求される。 既に説明したように、湿潤硫化水素腐食環境下
で使用されるラインパイプ、タンク等にはブリス
ター(水素フクレ)、HICあるいはSSCなどの原
因により破壊が発生することがあるので、このよ
うな用途に用いる鋼材には耐硫化物腐食割れ性の
優れたものが要求される。又、一般的にガス輸送
管では脆性破壊の伝播停止特性としてBDWTT
試験で評価される低温靭性ならびに不安定延性破
壊の伝播阻止特性としてシヤルピー試験の吸収エ
ネルギーで評価される切欠延性のいずれも優れて
いることが要求される。 これらのうち、ブリスター或いはHICは介在
物/地鉄界面に集積した水素の圧力と、鋼中水素
(腐食反応によつて鋼中に侵入した水素)による
地鉄の水素脆化の重畳によつて発生することが知
られており、この対策として例えば特開昭53−
14606号公報、特開昭55−134155号公報、特開昭
54−38214号公報などに開示されているような、
大型介在物(MnS,Al2O3)の減少やMnSの形
状制御が有効であること、又、 熱間圧延終了後空冷を行つて製造する鋼板にお
いては、P,Mn,Cr,Mo等の不純物元素ある
いは合金元素量が鋳造組織の偏析部に濃化し、こ
の部分が容易にベーナイトやマルテンサイト変態
を起し易く、このため硬い低温変態組織が形成さ
れること、 そしてこの低温変態組織のHIC感受性は極めて
高く、介在物の形状制御を行つてもHICの発生を
完全に防止するのは困難であり、この対策として
該鋼材に焼戻処理または、焼入れ、・焼戻処理を
施すこと、 は知られている。 さらに、組成上Mn,P量の低減が有効である
ことは特公昭54−38568号公報、特公昭56−31845
号公報などに提案されている。 一方、SSCは応力(残留応力、外部応力)と地
鉄の水素脆化の重量またはこれらに介在物の影響
がさらに重畳して発生することが知られている。
又、地鉄の水素脆化に対する感受性はマルテンサ
イトあるいはベーナイトのような硬い組織を含む
場合非常に高い(割れやすい)ことも知られてい
る。さらに、優れた耐HIC性を有するフエライ
ト・パーライト鋼においても第8図a,bに示す
ようにパーライト相に微細割れが発生するため焼
入・焼戻材(QT材)と比較するとσthが低いと
いう問題があつた。 その上、最近溶接の能率向上のために、狭開先
小入熱の条件で溶接することが多くなり、その結
果例えばパイプラインでは円周溶接部の最高硬度
が高くなつて耐SSC性の面で問題が発生してい
る。 上述のことから、介在物に対して種々の対策を
実施すると同時に焼入・焼戻熱処理を施した鋼材
が、耐HIC性、耐SSC性の特性に最も優れている
ことになるが、この焼入・焼戻材(QT材)は非
調質材に比較して生産性が劣り、製造コストが高
くなるばかりか、低温靭性(DWTT試験)に限
界があるという問題がある。 本発明は、かかる問題に鑑みてこれを改善する
ためになされたものであつて、炭素量を0.03%未
満に制限するとともに、熱間圧延条件を特定する
ことにより生産性の高い非調質鋼材を得る製造方
法を提供するものであつて、偏析硬度の低下およ
び組織の均質化を図ることによつて耐HIC性、耐
SSC性、低温靭性および切欠延性のすべてを同時
に向上させるものである。さらに、パイプライン
の現地溶接のような低入熱で実施される溶接部に
おいても、最高硬度を低く抑え、耐SSC性を向上
させるものである。 本発明は、重量基準にて、C0.03%未満、Si0.1
〜0.5%、Mn1.0%以上2.0%未満、Al0.005〜0.1
%、およびCu1.0%以下、Ni1.0%以下、Nb0.10
%以下、V0.15%以下、Mo0.5%以下の一種また
は二種以上を含み残部はFeと不可避不純物から
なる鋼を、Ac3点〜1200℃の温度範囲に加熱後
650℃〜900℃における累積圧下率を30%〜90%と
する熱間圧延を行い、圧延終了後放冷する耐硫化
物腐食割れ性の優れた非調質鋼の製造方法であ
る。 一方、特許請求の範囲第二項記載の発明では、
重量基準にてCa0.007%以下をさらに含む前記鋼
を利用して製造するものである。 本発明は、上記成分組成を有する鋼を、20トン
以上の大型鋼塊あるいは連続鋳造スラブから熱間
圧延−放冷によつて鋼材を製造するものであつ
て、その際炭素量を0.03%未満に制限することに
より母材および溶接部の耐HIC性および耐SSC性
の優れた鋼材を得んとするものである。C量を少
なく抑える理由は、不純物元素や合金元素が濃化
している偏析部の硬度を低下させることにより、
耐HIC性を向上させるとともに、組織を均質化し
て微細割れの発生を抑制し耐SSC性を向上させる
ことにある。本発明の製造方法によつて得られた
鋼の溶接部においては低入熱で高能率の溶接を行
つた場合でも最高硬度がすべてNACE MR−01
−75で推奨されているHRc22以下になり、耐SSC
性の面で問題のないものである。 次に、本発明において成分組成を上記の如く限
定した理由を説明する。 Cを0.03%未満に限定したのは、これ以上にな
ると偏析部の一部にHv300を超える硬い組織が生
成されHIC感受性が高まるためであり、また耐
SSC性の面でも0.03%以上になるとパーライト相
が現われ、SSC試験で微細割れが発生し易くなる
ので、これを上限とした。 Siは脱酸上必要な元素であり、しかも強度、靭
性に効果があるが、0.1%未満ではこれらの効果
が得られないのでこれを下限とし、0.5%を超え
ると靭性が急激に劣化するのでこれを上限とし
た。 Mnは強度、靭性を確保するために必要な元素
であり、1.0%未満ではこの効果が期待できない
のでこれを下限とし、2.0%以上になるとC量を
前述の0.03%未満に制限しても耐HIC性が劣化す
るのでこれを上限とした。 Alは脱酸上必要な元素であることから下限を
0.005%とする。しかし過度の添加は鋼の清浄性
を損うので上限を0.1%とした。 更に、必要に応じて添加するCuは耐食性元素
であり、強度の面でも有効であるが、1.0%を超
えると溶接性、靭性の劣化を生じるのでこれを上
限とした。 Niは強度、靭性に有効な元素であり、しかも
Cu含有鋼の熱間加工性を改善する元素である。
しかし1.0%を超えて添加すると耐SSC性が劣化
するのでこれを上限とした。 Nb,Vは鋼の靭性あるいは強度の面で有効な
元素であるが、Nbでは0.10%、Vでは0.15%を超
えて添加すると逆に靭性が劣化するので夫々これ
を上限とした。 Moは組織を改善し、強度を向上させるが、0.5
%を超えると靭性が劣化するので0.5%を上限と
した。 一方、特許請求の範囲第二項に記載した発明に
おいてCaを添加したものは、MnSの形状制御を
行う作用を有し、さらにHICの発生起点を減少さ
せるのにも有効となる。ただし、0.007%を超え
るとCaSのクラスターを形成し、HICが発生しや
すくなるのでこれを上限としている。 次に、本発明において熱間圧延条件を上記の如
く限定した理由を説明する。 圧延前行程での鋼片又は鋼塊の加熱温度はAc3
点〜1200℃の温度範囲とすることが必要である
が、この加熱温度がAc3点未満であること圧延前
の組織が著しく不均一になり、所定の圧延を行つ
ても変態後の組織が不均一となつて高靭性が得ら
れないのでこれを下限とした。また上限を1200℃
としたのは、これを超える温度で加熱するとオー
ステナイト粒が粗大化し、その後所定の圧延を施
してもやはり高靭性が得られないからである。 さらに、熱間圧延において、650〜900℃におけ
る累積圧下率を30〜90%とする圧延を行う必要が
ある。 上記の累積圧下率を得る上限温度900℃の限
定理由: オーステナイト未再結晶域で圧下を加え変態
組織を細粒化させるため900℃を上限温度とし
た。 上記の累積圧下率を得る下限温度、650℃の
理由: 650℃未満ではミル負荷増大などの圧延上の
困難が著しく増大し実生産的でないことであ
る。 累積圧下率の上限を90℃とする限定理由: 90%を超える累積圧下率で圧延すると、圧延
中に鋼板が冷却され、鋼板表面に伸展したサブ
組織が形成され、耐HIC性が劣化するからであ
る 累積圧下率の下限30%の限定理由: 30%未満では変態後の組織の微細化が図れず
高靭性が得られぬので下限を30%とした。 以下、本発明の実施例に基づいて説明する。 試験に用いたスラブの成分組成、熱間圧延条件
および各供試材によつて得られた特性値は、表1
と表2に示す通りであつた(なお、表2中900℃
以下の累積圧下率は本発明材、従来材共に30%以
上で圧延後放冷した。 HIC試験は、図1のイ,ウに示す試験片の採取
容量および寸法形状で試験片を作成し(尚、寸法
は次の通り)、 試験片厚さ:B=T−2mm(最大20mm) 〃 幅 :w=20mm 〃 長さ:L=100mm この試験片を96時間硫化水素飽和(5%食塩+
0.5%酢酸)水溶液に浸漬した後、各試験片の3
断面で割れの測定を行う方法を採用した。図1の
ハは次式 CLR(%)=Σ ai/A×100 CSR(%)=Σai.Σbi/AB×100 によつて求めるHIC試験のCLR(%),CSR(%)
の算出方法を示したものである。 図2は非偏析部のMn量に相当すると考えられ
るレードルMn量とHIC試験の結果を示したもの
で、Cを0.04%〜0.15%添加した従来鋼では、
Mn量が1.0%を超えるとHIC感受性が急に増加す
るのに対し、Cを0.03未満に制限した本発明鋼で
はMn量が1.0%以上の場合でも割れはほとんど発
生せず、破壊事故に至る可能性があると言われて
いるステツプ割れは全く発生しないことが示され
ている(前記CSR=0%)。 図3は鋼板の偏析部の微小部分において
EPMAでMnの最高濃度を測定し、レードルMn
量との比(偏析係数)を調査した結果である。C
を0.04%〜0.15%添加した従来鋼ではレードルの
Mn量に無関係に偏析係数は2.0〜2.5倍と大きい。
一方、Cを0.03%未満に制限した本発明鋼では偏
析係数は1.2〜1.5倍と小さいことが示され、従来
鋼と比較して本発明鋼の場合はMn量が多いにも
拘らず偏析がかなり弱いことがわかる。この傾向
はMn以外の元素についても同様であり、例えば
Pの偏析は8.0〜10倍(従来鋼)が5.0倍程度(本
発明鋼)に減少し、またMoの偏析は2.0〜2.5倍
(従来鋼)が1.3〜1.6倍(本発明鋼)に減少する
ことが確認された。 図4に偏析部Mn量と偏析部硬度の関係を示
す。既に硬度がHv(50g)=300以上になるとHIC
感受性が増加することは明らかにされている〔日
本鋼管技報・87(1980)61〕。従来鋼では偏析部
Mn量が増加すると偏析部の硬度がHv300以上に
上昇し、HICも増加するのに対し、本発明鋼では
偏析部Mn量が3.0%以下の範囲では硬度がHv300
以下となり、HICの発生を防止できることが示さ
れている。但し、C0.03%未満の鋼においても、
偏析部Mn量が3.0%を超えると偏析部の一部で
Hv300を超えるためHICの発生が増加する。 図3および図4を合せて考えると、C量が0.03
%未満の鋼において、Mn量(非偏析部)の上限
<Mn量(偏析部)の上限/偏析係数の最大値=
2.0即ち、非偏析部のMn量に相当するレードル量
を2.0%以下にするとHICの発生を防止できるこ
とがわかり、これらの結果は図2の結果を裏付け
るものである。 又、SSC試験は図5のイ,ロに示す試験片の採
取要領、寸法(mm)で試験片を作成し、この試験
片を図5のハに示す試験装置によつて試験測定す
るものである。ハの図のおける符号1は試験片、
2は試験液槽、3は試験片固定チヤツク、4は荷
重伝達アーム、5は荷重であり、前記試験液槽2
内にはNACE水溶液(5%NaCl+0.5%CH3
(COOH)+H2S飽和)が充たしてある。試験方法
は先づ試験片をクランプし、試験液槽にNACE
水溶液を入れ、所定の応力を負荷して試験片が破
断するか、または500時間経過するまで継続して
行なう方法である。 尚、表2〜4のSSC試験結果で 〇 500時間経過しても破断しなかつたもの。 ● 500時間以内に破断したもの。 である。 第6図は炭素量とSSC試験結果の関係を示した
ものであり、C量0.03%以下の場合はσth/σYS
=0.8以下では破断することはなく、σth/σYS=
0.55〜0.65の従来の鋼と比較してσth/σYSが0.20
程向上していることがわかる。これは、本発明鋼
の組織を示した図9のように均質化されSSC試験
で微小な割れの発生がなくなつたためである。 さらに高能率の溶接施工を必要とされるパイプ
ラインの現地溶接を想定して図7のイ,ロに示す
開先寸法〔但し、イは板厚tが9.5mm、12mm、16
mm、19mmの場合であり、ロはtが25mmの場合であ
る〕により次表の溶接条件によつて溶接を行つた
結果を表2に示す。尚、溶接に用いたワイヤは神
戸製鋼所製MG63B(1.2φ)シールドガス(Ar+
20%CO2)25/minであつた。
The present invention uses steel with excellent sulfide corrosion cracking resistance.
The present invention relates to a method for manufacturing non-tempered steel using a specific composition and cooling after hot rolling. In general, steel materials used in wet hydrogen sulfide corrosion environments are resistant to HIC (hydrogen-induced cracking) and SSC.
(Sulfide stress corrosion cracking) performance, that is, excellent sulfide corrosion cracking resistance is required. However, non-tempered steel (steel as hot rolled, steel produced by accelerated cooling after hot rolling, normalized steel, etc.)
In this case, a hard low-temperature transformed structure such as martensite or bainite is formed in that part due to segregation during casting. As a result, HIC and SSC occur in segregated areas even in steel that has been treated with ultra-low sulfur and Ca treatment to suppress the occurrence of HIC. Regarding SSC resistance, even in ferrite/pearlite steels that do not contain the above-mentioned low-temperature transformation structure, microcracks are likely to occur in the pearlite phase, and the σth (crack occurrence (critical stress) is low. In general, gas transport pipes have excellent low-temperature toughness, which is evaluated by the BDWTT test as a brittle fracture propagation prevention property, and notch ductility, which is evaluated by the Charpy test, which is an unstable elongated fracture propagation prevention property. required to be present. As already explained, line pipes, tanks, etc. used in wet hydrogen sulfide corrosive environments can be damaged due to blistering, HIC, SSC, etc. The steel used must have excellent resistance to sulfide corrosion cracking. Additionally, in gas transport pipes, BDWTT is generally used as a brittle fracture propagation stopping characteristic.
It is required to have excellent low-temperature toughness, which is evaluated by the test, and notch ductility, which is evaluated by the absorbed energy of the Charpy test, which is a property for inhibiting the propagation of unstable ductile fracture. Among these, blister or HIC is caused by the combination of hydrogen pressure accumulated at the inclusion/steel interface and hydrogen embrittlement of the steel substrate due to hydrogen in the steel (hydrogen that has penetrated into the steel through corrosion reactions). This is known to occur, and as a countermeasure for this, for example,
Publication No. 14606, Japanese Unexamined Patent Publication No. 134155, Japanese Unexamined Patent Publication No. 1987-134155
As disclosed in Publication No. 54-38214 etc.
It is effective to reduce large inclusions (MnS, Al 2 O 3 ) and control the shape of MnS, and in steel sheets manufactured by air cooling after hot rolling, P, Mn, Cr, Mo, etc. The amount of impurity elements or alloying elements is concentrated in the segregated part of the cast structure, and this part easily undergoes bainite or martensitic transformation, resulting in the formation of a hard low-temperature transformed structure, and the HIC of this low-temperature transformed structure. The susceptibility is extremely high, and it is difficult to completely prevent the occurrence of HIC even if the shape of inclusions is controlled.As a countermeasure, it is necessary to subject the steel to tempering, quenching, and tempering. Are known. Furthermore, it is reported in Japanese Patent Publication No. 54-38568 and Japanese Patent Publication No. 56-31845 that reducing the amount of Mn and P in the composition is effective.
It has been proposed in the Publication No. On the other hand, SSC is known to occur due to stress (residual stress, external stress), the weight of hydrogen embrittlement of the steel base, or the effects of inclusions superimposed on these.
It is also known that the susceptibility of the steel base to hydrogen embrittlement is extremely high (easily cracked) when it contains a hard structure such as martensite or bainite. Furthermore, even in ferrite/pearlite steel, which has excellent HIC resistance, microcracks occur in the pearlite phase as shown in Figure 8a and b, so the σth is lower compared to quenched and tempered materials (QT materials). There was a problem. Furthermore, in recent years, in order to improve welding efficiency, it has become common to weld with narrow grooves and small heat input conditions, and as a result, for example, in pipelines, the maximum hardness of the circumferential weld has become high, resulting in a decrease in SSC resistance. A problem is occurring. From the above, it can be concluded that steel materials that have been subjected to quenching and tempering heat treatment at the same time as taking various measures against inclusions have the best HIC resistance and SSC resistance. QT materials have lower productivity and higher manufacturing costs than non-tempered materials, and have limited low-temperature toughness (DWTT test). The present invention has been made in order to improve this problem, and it is possible to produce non-thermal steel with high productivity by limiting the carbon content to less than 0.03% and by specifying hot rolling conditions. The present invention provides a manufacturing method for obtaining HIC resistance and resistance by reducing segregation hardness and homogenizing the structure.
It improves SSC properties, low-temperature toughness, and notch ductility all at the same time. Furthermore, even in welds performed with low heat input, such as on-site welding of pipelines, the maximum hardness is kept low and SSC resistance is improved. The present invention has a carbon content of less than 0.03% and a Si of 0.1% on a weight basis.
~0.5%, Mn1.0% or more but less than 2.0%, Al0.005~0.1
%, and Cu1.0% or less, Ni1.0% or less, Nb0.10
% or less, V 0.15% or less, Mo 0.5% or less, and the balance consists of Fe and unavoidable impurities, after heating the steel to a temperature range of 3 Ac to 1200℃.
This method involves hot rolling at a cumulative reduction rate of 30% to 90% at 650°C to 900°C, and allowing it to cool after rolling, producing a non-tempered steel with excellent sulfide corrosion cracking resistance. On the other hand, in the invention described in claim 2,
It is manufactured using the above-mentioned steel further containing 0.007% or less of Ca on a weight basis. The present invention is to produce a steel material having the above-mentioned composition by hot rolling and cooling from a large steel ingot of 20 tons or more or a continuous casting slab, and in this process, the carbon content is less than 0.03%. The aim is to obtain a steel material with excellent HIC resistance and SSC resistance of the base metal and welded parts by limiting the The reason for keeping the amount of C low is that by reducing the hardness of the segregated areas where impurity elements and alloying elements are concentrated,
The objective is to improve HIC resistance, homogenize the structure, suppress the occurrence of microcracks, and improve SSC resistance. In the steel welds obtained by the manufacturing method of the present invention, the maximum hardness is all NACE MR-01 even when high efficiency welding is performed with low heat input.
HR c 22 or less, which is recommended for -75, and SSC resistance
There is no problem in terms of sexuality. Next, the reason why the component composition is limited as described above in the present invention will be explained. The reason for limiting C to less than 0.03% is that if it exceeds this, a hard structure exceeding Hv 300 will be formed in some of the segregated areas, increasing HIC susceptibility.
In terms of SSC properties, if it exceeds 0.03%, a pearlite phase will appear and microcracks will easily occur in the SSC test, so this is the upper limit. Si is a necessary element for deoxidation and is effective in improving strength and toughness, but if it is less than 0.1%, these effects cannot be obtained, so this is the lower limit, and if it exceeds 0.5%, toughness will deteriorate rapidly. This was set as the upper limit. Mn is an element necessary to ensure strength and toughness, and if it is less than 1.0%, this effect cannot be expected, so this is set as the lower limit, and if it exceeds 2.0%, even if the C content is limited to less than 0.03% as mentioned above, it will not be resistant. This was set as the upper limit because the HIC property deteriorated. Since Al is a necessary element for deoxidation, the lower limit is set as
It shall be 0.005%. However, excessive addition impairs the cleanliness of the steel, so the upper limit was set at 0.1%. Further, Cu, which is added as necessary, is a corrosion-resistant element and is effective in terms of strength, but if it exceeds 1.0%, weldability and toughness deteriorate, so this was set as the upper limit. Ni is an effective element for strength and toughness, and
It is an element that improves the hot workability of Cu-containing steel.
However, if added in excess of 1.0%, SSC resistance deteriorates, so this was set as the upper limit. Nb and V are effective elements in terms of toughness and strength of steel, but if added in excess of 0.10% for Nb and 0.15% for V, the toughness deteriorates, so these were set as the upper limits for each. Mo improves organization and increases strength, but 0.5
If it exceeds 0.5%, the toughness deteriorates, so the upper limit was set at 0.5%. On the other hand, in the invention set forth in claim 2, the material to which Ca is added has the effect of controlling the shape of MnS, and is also effective in reducing the number of starting points for HIC. However, if it exceeds 0.007%, CaS clusters will form, making HIC more likely to occur, so this is the upper limit. Next, the reason why the hot rolling conditions are limited as described above in the present invention will be explained. The heating temperature of the steel billet or steel ingot in the pre-rolling process is Ac 3
However, if this heating temperature is less than Ac 3 , the structure before rolling will become extremely uneven, and even if the specified rolling is carried out, the structure after transformation will not be the same. This was set as the lower limit because it would be non-uniform and high toughness could not be obtained. Also, the upper limit is 1200℃
The reason for this is that heating at a temperature higher than this causes the austenite grains to become coarse, and high toughness cannot be obtained even if the steel is subsequently rolled to a certain degree. Furthermore, in hot rolling, it is necessary to perform rolling at a cumulative reduction rate of 30 to 90% at 650 to 900°C. Reason for limiting the upper limit temperature to 900°C to obtain the above cumulative reduction rate: The upper limit temperature was set to 900°C in order to apply reduction in the non-recrystallized austenite region to refine the transformed structure. The reason for the lower limit temperature of 650°C to obtain the above-mentioned cumulative reduction ratio: If the temperature is lower than 650°C, rolling difficulties such as increased mill load will significantly increase, making it unproductive. Reason for setting the upper limit of the cumulative reduction rate to 90℃: If rolled at a cumulative reduction rate of over 90%, the steel plate will be cooled during rolling, forming an extended substructure on the steel plate surface, which will deteriorate HIC resistance. Reason for setting the lower limit of the cumulative reduction rate to 30%: If it is less than 30%, the structure after transformation cannot be refined and high toughness cannot be obtained, so the lower limit was set to 30%. Hereinafter, the present invention will be explained based on examples. Table 1 shows the composition of the slab used in the test, the hot rolling conditions, and the characteristic values obtained for each test material.
and as shown in Table 2 (in Table 2, 900℃
The following cumulative rolling reduction ratios were 30% or more for both the inventive material and the conventional material, and the materials were allowed to cool after rolling. For the HIC test, a test piece was created with the sample volume and dimensions shown in Figure 1 A and C (the dimensions are as follows), and the test piece thickness: B = T - 2 mm (maximum 20 mm). 〃 Width: W = 20mm 〃 Length: L = 100mm This specimen was saturated with hydrogen sulfide (5% salt +
3 of each specimen after immersion in an aqueous solution (0.5% acetic acid).
A method of measuring cracks in cross sections was adopted. C in Figure 1 is the CLR (%) and CSR (%) of the HIC test calculated by the following formula: CLR (%) = Σ ai / A × 100 CSR (%) = Σai.Σ bi / AB × 100
This shows how to calculate. Figure 2 shows the amount of ladle Mn, which is considered to correspond to the amount of Mn in the non-segregating part, and the results of the HIC test.
HIC susceptibility increases suddenly when the Mn content exceeds 1.0%, whereas in the steel of the present invention where the C content is limited to less than 0.03, cracking hardly occurs even when the Mn content is 1.0% or more, leading to fracture accidents. It has been shown that step cracking, which is said to be a possibility, does not occur at all (CSR=0%). Figure 3 shows the minute part of the segregated part of the steel plate.
Measure the highest concentration of Mn with EPMA and ladle Mn
This is the result of investigating the ratio to the amount (segregation coefficient). C
Conventional steel containing 0.04% to 0.15% of ladle
The segregation coefficient is as large as 2.0 to 2.5 times, regardless of the Mn content.
On the other hand, the segregation coefficient of the inventive steel with C limited to less than 0.03% was shown to be as small as 1.2 to 1.5 times, and compared to the conventional steel, the inventive steel showed less segregation despite the higher Mn content. It turns out to be quite weak. This trend is the same for elements other than Mn; for example, the segregation of P has decreased from 8.0 to 10 times (conventional steel) to about 5.0 times (inventive steel), and the segregation of Mo has decreased by 2.0 to 2.5 times (conventional steel). It was confirmed that the steel) was reduced by 1.3 to 1.6 times (the steel of the present invention). Figure 4 shows the relationship between the amount of Mn in the segregated area and the hardness of the segregated area. If the hardness is already H v (50g) = 300 or higher, HIC
It has been shown that susceptibility increases [Japan Steel Pipe Technical Report 87 (1980) 61]. In conventional steel, segregation
As the amount of Mn increases, the hardness of the segregated part increases to Hv 300 or more, and the HIC also increases, whereas in the steel of the present invention, the hardness increases to Hv 300 when the amount of Mn in the segregated part is 3.0% or less.
The following shows that it is possible to prevent the occurrence of HIC. However, even in steel with less than 0.03% C,
When the amount of Mn in the segregated area exceeds 3.0%, some parts of the segregated area
The incidence of HIC increases as Hv exceeds 300. Considering Figures 3 and 4 together, the amount of C is 0.03
%, upper limit of Mn content (non-segregating part) < upper limit of Mn content (segregating part) / maximum value of segregation coefficient =
2.0, that is, it was found that the occurrence of HIC can be prevented by reducing the amount of ladle corresponding to the amount of Mn in the non-segregating portion to 2.0% or less, and these results support the results shown in FIG. In addition, in the SSC test, a test piece is prepared according to the test piece collection procedure and dimensions (mm) shown in Figure 5 A and B, and this test piece is tested and measured using the test equipment shown in Figure 5 C. be. The code 1 in the figure C is the test piece.
2 is a test liquid tank, 3 is a test piece fixing chuck, 4 is a load transmission arm, 5 is a load, and the test liquid tank 2
Inside is NACE aqueous solution (5% NaCl + 0.5% CH 3
(COOH) + H 2 S saturation). The test method is to first clamp the test piece and place it in the test liquid tank.
In this method, an aqueous solution is added, a predetermined stress is applied, and the test is continued until the test piece breaks or 500 hours have passed. In addition, according to the SSC test results in Tables 2 to 4: 〇 Those that did not break even after 500 hours. ● Items that break within 500 hours. It is. Figure 6 shows the relationship between carbon content and SSC test results, and when the carbon content is 0.03% or less, σth/σYS
If it is less than 0.8, it will not break, and σth/σYS=
σth/σYS is 0.20 compared to conventional steel of 0.55-0.65
It can be seen that there has been some improvement. This is because the structure of the steel of the present invention is homogenized as shown in FIG. 9, and no minute cracks occur in the SSC test. Furthermore, assuming on-site welding of pipelines, which requires highly efficient welding, the groove dimensions shown in A and B in Figure 7 are used.
Table 2 shows the results of welding under the welding conditions shown in the table below. The wire used for welding is Kobe Steel's MG63B (1.2φ) shielding gas (Ar +
20% CO 2 ) 25/min.

【表】 表2から明らかなように、従来鋼ではHv235〜
350と高く、NACEMR−01−75が推奨する硬度
の上限HRC22(Hv248)を大巾に超えるものがあ
る。これに対して本発明鋼では、いずれの鋼種に
おいてもHv195〜235の範囲でHv248と比較して
かなり低く、円周溶接部の耐SSC性に関して何ら
問題がないことが明らかになつた。なお、耐SSC
性に関する硬度の上限(Hv248)と耐HIC性に関
する硬度の上限(Hv300)の差は、応力状態の違
いによるものである。即ち、前者は実際の使用状
態に対応して高い応力負荷をする場合を想定して
限界硬度を求めているのに対して、後者は外力が
負荷されない状態での割れ発生の限界硬度である
ことによる。 次に、一般的な材料特性として低温靭性につい
て説明する。 表3は、表1に示した鋼種Jのスラブを用いて
異なる条件で熱間圧延した場合の諸特性を示した
(尚J−2は表2と同一のもの)ものである。こ
の表から明らかなように耐HIC特性、耐SSC特性
の面では3者(J−2,J−5,J−6)間に差
は認められないが、900℃以下の累積圧下率が30
%に満たないJ−6は充分な低温靭性が得られて
いない。表4は、表1に示した鋼Kのスラブを熱
間圧延して得た鋼板K−1(表2参照)と熱間圧
延後QT熱処理を施した鋼板K−3の諸特性を示
したものである。この表から明らかなように鋼材
K−3も表3に示したJ−6同様充分な低温靭性
が得られない。これらと比較すると表2に示す鋼
種J〜Lの低温靭性が非常に優れていることがわ
かる。 さらに、切欠延性について説明する。 表2に示す従来鋼は、いずれもフエライト・パ
ーライト組織であり、延性破壊の際脆いパーライ
ト部分が破壊の起点となるため、C量が0.03%以
下でパーライトが存在しない本発明鋼と比較する
vEpが極めて低い。 以上の本発明の実施例から明らかなように、本
発明の方法により製造した鋼は、耐HIC特性、耐
SSC特性、低温靭性および切欠延性のすべてにお
いて優れた特性を有している。
[Table] As is clear from Table 2, conventional steel has H v 235 ~
350, which far exceeds the upper limit of hardness HRC22 ( Hv 248) recommended by NACEMR-01-75. On the other hand, in the steel of the present invention, Hv is considerably lower in the range of 195 to 235 than Hv 248 for all steel types, and it is clear that there is no problem with the SSC resistance of the circumferential weld. Ta. In addition, SSC resistance
The difference between the upper limit of hardness for properties (H v 248) and the upper limit of hardness for HIC resistance (H v 300) is due to the difference in stress state. In other words, the former calculates the critical hardness assuming a high stress load corresponding to actual usage conditions, whereas the latter determines the critical hardness at which cracking occurs when no external force is applied. by. Next, low temperature toughness will be explained as a general material property. Table 3 shows various properties when the slabs of steel type J shown in Table 1 were hot rolled under different conditions (J-2 is the same as in Table 2). As is clear from this table, there is no difference between the three (J-2, J-5, J-6) in terms of HIC resistance and SSC resistance, but the cumulative reduction rate below 900℃ is 30
%, J-6 does not have sufficient low temperature toughness. Table 4 shows various properties of steel plate K-1 obtained by hot rolling the steel K slab shown in Table 1 (see Table 2) and steel plate K-3 which was subjected to QT heat treatment after hot rolling. It is something. As is clear from this table, steel material K-3 as well as J-6 shown in Table 3 cannot obtain sufficient low-temperature toughness. When compared with these, it can be seen that the low-temperature toughness of steel types J to L shown in Table 2 is very excellent. Furthermore, notch ductility will be explained. All of the conventional steels shown in Table 2 have a ferrite-pearlite structure, and the brittle pearlite part becomes the starting point of ductile fracture. E p is extremely low. As is clear from the above examples of the present invention, the steel produced by the method of the present invention has excellent HIC resistance and
It has excellent SSC properties, low-temperature toughness, and notch ductility.

【表】【table】

【表】 【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図1イ,ロ,ハはHIC試験片の採取容量および
寸法、形状を示す説明図、図2はレードルMn量
とHICの関係を示すグラフ図、図3はMnの偏析
傾向を示すグラフ図、図4は偏析部のMn量とミ
クロ硬度の関係を示すグラフ図、図5イ、ロ、ハ
はSSC試験片および試験装置を示す説明図、図6
はC量とSSC試験結果の関係を示すグラフ図、図
7イ,ロは要接時の開先の寸法、形状を示す説明
図、図8はフエライト・パーライト鋼のSSCを示
す組織検微鏡写真であつて、aは(×50)、bは
aに口で囲つた部分(×200)、である。図9は本
発明の方法による鋼の組織検微鏡写真(×200)
である。
Figure 1 A, B, and C are explanatory diagrams showing the collection capacity, dimensions, and shape of HIC test pieces, Figure 2 is a graph diagram showing the relationship between ladle Mn content and HIC, and Figure 3 is a graph diagram showing the segregation tendency of Mn. Figure 4 is a graph showing the relationship between the amount of Mn in the segregated area and microhardness, Figure 5 A, B, and C are explanatory diagrams showing the SSC test piece and testing equipment, and Figure 6
Figure 7 is a graph showing the relationship between C content and SSC test results, Figures 7A and 7B are explanatory diagrams showing the dimensions and shape of the groove when contact is required, and Figure 8 is a microstructure microscope showing SSC of ferrite/pearlite steel. In the photograph, a is (x50) and b is the part surrounded by the mouth (x200). Figure 9 is a microscopic photograph (x200) of the structure of steel obtained by the method of the present invention.
It is.

Claims (1)

【特許請求の範囲】 1 重量基準にて、C0.03%未満、Si0.1〜0.5%、
Mn1.0%以上2.0%未満、Al0.005〜0.1%、および
Cu1.0%以下、Ni1.0%以下、Nb0.10%以下、
V0.15%以下、Mo0.5%以下の一種または二種以
上を含み残部はFeと不可避不純物からなる鋼を、
Ac3点〜1200℃の温度範囲に加熱後650℃〜900℃
における累積圧下率を30%〜90%とする熱間圧延
を行い、圧延終了後放冷することを特徴とする耐
硫化物腐食割れ性の優れた非調質鋼の製造方法。 2 重量基準にて、C0.03%未満、Si0.1〜0.5%、
Mn1.0%以上2.0%未満、Al0.005〜0.1%、
Ca0.007%以下、およびCu1.0%以下、Ni1.0%以
下、Nb0.10%以下、V0.15%以下、Mo0.5%以下
の一種または二種以上を含み残部はFeと不可避
不純物からなる鋼を、Ac3点〜1200℃の温度範囲
に加熱後650℃〜900℃における累積圧下率を30%
〜90%とする熱間圧延を行い、圧延終了後放冷す
ることを特徴とする耐硫化物腐食割れ性の優れた
非調質鋼の製造方法。
[Claims] 1. Less than 0.03% C, 0.1 to 0.5% Si, on a weight basis
Mn 1.0% or more and less than 2.0%, Al 0.005-0.1%, and
Cu1.0% or less, Ni1.0% or less, Nb0.10% or less,
Steel containing one or more of V0.15% or less and Mo0.5% or less, with the balance consisting of Fe and unavoidable impurities.
Ac 3 points ~ 650℃ ~ 900℃ after heating in the temperature range of 1200℃
1. A method for producing non-tempered steel with excellent sulfide corrosion cracking resistance, which comprises performing hot rolling at a cumulative reduction rate of 30% to 90%, and cooling after completion of rolling. 2 Based on weight, C less than 0.03%, Si 0.1-0.5%,
Mn1.0% or more and less than 2.0%, Al0.005~0.1%,
Contains one or more of Ca0.007% or less, Cu1.0% or less, Ni1.0% or less, Nb0.10% or less, V0.15% or less, Mo0.5% or less, the remainder being Fe and unavoidable impurities. After heating the steel to a temperature range of Ac 3 points to 1200℃, the cumulative reduction rate at 650℃ to 900℃ is 30%.
A method for producing non-tempered steel with excellent sulfide corrosion cracking resistance, which comprises performing hot rolling to a temperature of ~90% and cooling after completion of rolling.
JP284582A 1982-01-13 1982-01-13 Manufacture of nontemper steel superior in sulfide corrosion crack resistance Granted JPS58120726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP284582A JPS58120726A (en) 1982-01-13 1982-01-13 Manufacture of nontemper steel superior in sulfide corrosion crack resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP284582A JPS58120726A (en) 1982-01-13 1982-01-13 Manufacture of nontemper steel superior in sulfide corrosion crack resistance

Publications (2)

Publication Number Publication Date
JPS58120726A JPS58120726A (en) 1983-07-18
JPH0319285B2 true JPH0319285B2 (en) 1991-03-14

Family

ID=11540735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP284582A Granted JPS58120726A (en) 1982-01-13 1982-01-13 Manufacture of nontemper steel superior in sulfide corrosion crack resistance

Country Status (1)

Country Link
JP (1) JPS58120726A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199813A (en) * 1982-05-17 1983-11-21 Sumitomo Metal Ind Ltd Production of high tensile steel plate having high resistance to hydrogen induced cracking
JPS6070122A (en) * 1983-09-26 1985-04-20 Sumitomo Metal Ind Ltd Manufacture of steel having superior resistance to hydrogen induced cracking
JPS61124555A (en) * 1984-11-20 1986-06-12 Nippon Steel Corp Steel superior in sour resistance
JP2578599B2 (en) * 1987-04-08 1997-02-05 新日本製鐵株式会社 Manufacturing method of low yield ratio steel with excellent sulfide stress corrosion cracking resistance
CN110923570B (en) * 2019-11-20 2022-01-18 江阴兴澄特种钢铁有限公司 Stress-oriented hydrogen-induced cracking resistant steel plate for pressure vessel and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102223A (en) * 1978-01-30 1979-08-11 Sumitomo Metal Ind Ltd Manufacture of ultra low carbon, fine grain, high tensile steel with superior hydrogen induced cracking resistance
JPS54118325A (en) * 1978-03-08 1979-09-13 Nippon Kokan Kk <Nkk> Production of hydrogen crack resistant nonrefined steel plate
JPS57120615A (en) * 1981-01-16 1982-07-27 Nippon Kokan Kk <Nkk> Production of high toughness steel material of superior sulfide corrosion resistance
JPS5877530A (en) * 1981-10-31 1983-05-10 Nippon Steel Corp Manufacture of steel plate with superior resistance to hydrogen embrittlement and stress corrosion cracking due to sulfide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102223A (en) * 1978-01-30 1979-08-11 Sumitomo Metal Ind Ltd Manufacture of ultra low carbon, fine grain, high tensile steel with superior hydrogen induced cracking resistance
JPS54118325A (en) * 1978-03-08 1979-09-13 Nippon Kokan Kk <Nkk> Production of hydrogen crack resistant nonrefined steel plate
JPS57120615A (en) * 1981-01-16 1982-07-27 Nippon Kokan Kk <Nkk> Production of high toughness steel material of superior sulfide corrosion resistance
JPS5877530A (en) * 1981-10-31 1983-05-10 Nippon Steel Corp Manufacture of steel plate with superior resistance to hydrogen embrittlement and stress corrosion cracking due to sulfide

Also Published As

Publication number Publication date
JPS58120726A (en) 1983-07-18

Similar Documents

Publication Publication Date Title
KR100628360B1 (en) Hot-rolled steel strip for high strength electric resistance welding pipe
AU726316B2 (en) High-tensile-strength steel and method of manufacturing the same
JP5223511B2 (en) Steel sheet for high strength sour line pipe, method for producing the same and steel pipe
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP4951997B2 (en) A method for producing a high-tensile steel sheet having a tensile strength of 550 MPa or more.
JP4848966B2 (en) Thick-wall high-tensile steel plate and manufacturing method thereof
JP6048436B2 (en) Tempered high tensile steel plate and method for producing the same
JP2014218707A (en) Heat treated steel sheet excellent in hydrogen-induced cracking resistance and method of producing the same
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP3941211B2 (en) Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance
JPS631369B2 (en)
JP2005187934A (en) Steel having excellent fatigue characteristics, and its production method
EP0738784B1 (en) High chromium martensitic steel pipe having excellent pitting resistance and method of manufacturing
JPH0319285B2 (en)
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
JPH03211230A (en) Production of low alloy steel for line pipe with high corrosion resistance
JP3894148B2 (en) Low yield ratio low temperature steel and method for producing the same
JP2002339037A (en) High tensile strength steel having excellent low temperature joint toughness and ssc resistance, and production method therefor
CN115210396A (en) Steel pipe and steel plate
JP3336877B2 (en) Method for manufacturing thick high strength steel sheet with excellent brittle fracture arrestability and weldability
JP3528759B2 (en) Cu-aged steel and method for producing the same
JP7541654B1 (en) Clad steel plate and its manufacturing method
JP7472826B2 (en) Electric resistance welded steel pipe and its manufacturing method
JPH0813087A (en) Steel for welded steel pipe excellent in ssc resistance in seam zone
JPH08269566A (en) Production of high strength and high toughness uoe steel pipe excellent in sr characteristic