JPS61165207A - Manufacture of unrefined steel plate excellent in sour-resistant property - Google Patents

Manufacture of unrefined steel plate excellent in sour-resistant property

Info

Publication number
JPS61165207A
JPS61165207A JP325485A JP325485A JPS61165207A JP S61165207 A JPS61165207 A JP S61165207A JP 325485 A JP325485 A JP 325485A JP 325485 A JP325485 A JP 325485A JP S61165207 A JPS61165207 A JP S61165207A
Authority
JP
Japan
Prior art keywords
steel
less
temperature
cooling
sour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP325485A
Other languages
Japanese (ja)
Other versions
JPH0250967B2 (en
Inventor
Akihiko Takahashi
明彦 高橋
Takeshi Terasawa
寺沢 健
Tetsuo Takeda
武田 哲雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP325485A priority Critical patent/JPS61165207A/en
Publication of JPS61165207A publication Critical patent/JPS61165207A/en
Publication of JPH0250967B2 publication Critical patent/JPH0250967B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a steel plate excellent in sour-resistant properties, strength and toughness by heating a steel of specific composition to a specific temperature and hot rolling, cooling and naturally cooling it under the specific conditions to form it into a fine bainite structure uniform in its thickness direction. CONSTITUTION:A steel is heated up to 1000-1200 deg.C, which consists of by weight %, as the basic components 0.02-0.15 C, 0.1-0.6 Si, 0.5-1.5 Mn, <=0.0015 P, <=0.01 S, 0.005-0.1 Al, 0.005-0.025 Ti, and one or more kinds of the following groups <=0.1 Nb, <=0.005B, <=1.0 Ni, <=1.0 Cu, <=1.25 Cr, <=0.005 Ca, and the balance Fe with inevitable impurities. The steel is rolled thereafter under the draft of >=60% at <=850 deg.C and at the finishing temperature of >=Ar3 transformation point. Next, the steel is cooled at a cooling speed of >=30 deg.C/sec. from the temperature of >=Ar3 transformation point to the temperature range of 350-550 deg.C and then cooled naturally. In this way, a steel plate excellent in sour-resistant properties having the fine bainite structure uniform in the plate- thickness direction is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、湿潤な硫化水素環境(以後サワー環境と言う
)とくに高濃度の硫化水素あるいはさらに二酸化炭素、
塩化物イオンを含むpH5以下のサワー環境下において
、優れた耐水素誘起割れ特性と強靭性を宥する(API
規格X80〜X?O相当程度の)高強度鋼板の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is applicable to a humid hydrogen sulfide environment (hereinafter referred to as a sour environment), particularly a high concentration of hydrogen sulfide or even carbon dioxide.
Provides excellent hydrogen-induced cracking resistance and toughness in a sour environment containing chloride ions with a pH of 5 or less (API
Standard X80~X? The present invention relates to a method for producing high-strength steel sheets (equivalent to O).

(従来技術) 近年、原油及び天然ガスを輸送するためのパイプライン
の敷設が盛んに行われているが、油井の深化にともない
それらの原油や天然ガスには硫化水素ガスが含まれる場
合が多くなり、ラインパイプの腐食による劣化が問題と
なっている。特に、硫化水素、二酸化炭素を含む湿潤な
サワー環境下においては、H2S 、 GO2は水と共
存し、鋼板表面での腐食反応により発生した原子状の水
素が鋼中に侵入して、鋼材中のMnSや酸化物などの非
金属介在物のまわりに集積して地鉄を脆化させ、いわゆ
る水素誘起割れが生じる。しかもこような介在物は、し
ばしば中心偏析帯中に存在するために、介在物を起点に
発生した水素誘起割れが、中心偏析帯に生じる硬度の高
い低温変態生成物に沿って伝播することが知られている
(Prior art) In recent years, pipelines have been frequently constructed to transport crude oil and natural gas, but as oil wells have become deeper, these crude oil and natural gas often contain hydrogen sulfide gas. As a result, deterioration due to line pipe corrosion has become a problem. In particular, in a humid sour environment containing hydrogen sulfide and carbon dioxide, H2S and GO2 coexist with water, and atomic hydrogen generated by a corrosion reaction on the surface of the steel sheet enters the steel, causing damage to the steel. It accumulates around nonmetallic inclusions such as MnS and oxides, embrittles the base steel, and causes so-called hydrogen-induced cracking. Moreover, since such inclusions often exist in the central segregation zone, hydrogen-induced cracks that originate from the inclusions may propagate along the hard low-temperature transformation products that occur in the central segregation zone. Are known.

かような割れ発生を防止するために、■Cu、Or等の
ように鋼の表面に安定な皮膜を形成する元素を添加し、
腐食反応により生じた水素の侵入を防I卜する方法、■
Ca、REMの添加によるMnSの形状を制御する方法
、■スラブを分塊圧延後、均熱処理して中心偏析部のP
の拡散を促進する方法、■圧延後、再加熱を行い、焼入
れ、焼戻し、あるいは焼ならしにより鋼板組織の均一化
をはかる方法、ざらに■圧延加熱温度、圧延温度域、圧
下率、を厳密に制御した圧延を施した後、冷却開始温度
In order to prevent such cracks from occurring, elements that form a stable film on the steel surface, such as Cu and Or, are added.
Method for preventing hydrogen intrusion caused by corrosion reactions, ■
Method of controlling the shape of MnS by adding Ca and REM, ■ After blooming the slab, soaking it to remove P in the center segregation area.
A method of promoting the diffusion of steel sheets, ■ A method of reheating after rolling, and uniformizing the steel sheet structure by quenching, tempering, or normalizing. Cooling start temperature after controlled rolling.

冷却速度、冷却停止温度を制御した加速冷却を行うこと
により、低温変態生成物の制御をはかる方法が採られて
いる。(例えばI#開昭54−118325号公報) (発明が解決しようとする問題点) しかしながら腐食環境条件が、これまでのところで最も
厳しいとされる0、5g酢酸+5XNaC1+ H2S
c7)pH3,0(7)溶液(NACE溶液)中で、X
70程度以上の強度を有する鋼板の水素誘起割れを防止
することは困難で、前記■〜■の方法にはそれぞれ次の
ような問題があった。■Cu、Crによる鋼板表面上の
安定な腐食皮膜の形成は、pl化5程度の環境までであ
り、それ以下のpHではもはやCu、Crの腐食生成物
は溶解し、水素侵入を抑制することができない。■鋼板
の清浄度を保ちながらCa 、 REMを故加しても、
鋼板中心部のMnSを完全に球状化することは不可能で
ある。■、■のような熱処理工程により水素誘起割れ感
受性は低下するが、いずれも生産能率を低下させ、エネ
ルギー原単位を上昇させるので、不利な方法と言わざる
を得ない。■の方法の工程を採用した場合、X70相当
以上の強度を安定して得ることは、冷却速度の制限上困
難となる。またしいて冷却速度を20℃/S以上とする
と、特開昭54−118325号公報でも指摘している
ように、バンド状のマルテンサイト組織あるいはブロッ
ク状の粗いベイナイト組織が出現し、ミクロ組織を不均
一にすると同時に水素誘起割れの感受性を大きくする。
A method has been adopted in which low-temperature transformation products are controlled by performing accelerated cooling with controlled cooling rate and cooling stop temperature. (For example, I# Publication No. 54-118325) (Problem to be solved by the invention) However, the corrosive environment conditions are considered to be the most severe so far, 0.5 g acetic acid + 5X NaC1 + H2S
c7) In a pH 3,0 (7) solution (NACE solution),
It is difficult to prevent hydrogen-induced cracking in a steel plate having a strength of about 70 or more, and the methods (1) to (4) above each have the following problems. ■ Formation of a stable corrosion film by Cu and Cr on the steel plate surface is possible up to an environment with a PL of 5, and below that pH the corrosion products of Cu and Cr will no longer dissolve, suppressing hydrogen intrusion. I can't. ■Even if Ca and REM are added while maintaining the cleanliness of the steel plate,
It is impossible to completely spheroidize MnS in the center of a steel sheet. Heat treatment steps such as (1) and (2) reduce the hydrogen-induced cracking susceptibility, but both lower production efficiency and increase energy consumption, so they must be considered disadvantageous methods. When the process of method (2) is adopted, it is difficult to stably obtain a strength equivalent to or higher than X70 due to cooling rate limitations. Furthermore, if the cooling rate is set to 20°C/S or higher, as pointed out in JP-A-54-118325, a band-like martensitic structure or a block-like coarse bainite structure appears, and the microstructure changes. At the same time, it increases the susceptibility to hydrogen-induced cracking.

(問題点を解決するための手段9作用)本発明は、上記
の欠点を有利に解消するものであり、その要旨とすると
ころは、 重量%で C: 0.02〜0.15% Si : 0.1〜0.6% Mn : 0.5〜1.5% P : 0.015%以下 S : 0.010%以下 AI + 0.005〜0.1% Ti : 0.005〜0.025% を基本成分とじ1 さらに Nb : 0.10%以下、B : 0.005%以下
、Ni : 1.0%以下、Cu:1.OX以下、Cr
 : 1.25X以下、Ca : 0.005%以下の
一種または二種以上を含有し、残部が鉄及び不可癖不純
物より成る組成の鋼を、1000 ℃〜1200℃に加
熱し、その後の圧延に当って850’C以下の圧下率6
0z以上で仕上温度Ar3変態点以上で圧延を行ない、
次いで、このAr3変態点以上の温度から、冷却゛速度
3000/S以上で、350’C以上550’C!未満
の範囲まで冷却し、以後放冷することから成り、板厚方
向に均一微細なベイナイト組織を有するようにした耐サ
ワー特性の優れた鋼板の製造方法である。
(Means for Solving Problems 9) The present invention advantageously eliminates the above-mentioned drawbacks, and its gist is as follows: C: 0.02-0.15% Si: 0.02-0.15% by weight 0.1-0.6% Mn: 0.5-1.5% P: 0.015% or less S: 0.010% or less AI + 0.005-0.1% Ti: 0.005-0. In addition, Nb: 0.10% or less, B: 0.005% or less, Ni: 1.0% or less, Cu: 1.025%. OX or less, Cr
: 1.25X or less, Ca: 0.005% or less of one or more types, and the balance is iron and non-habitable impurities, is heated to 1000°C to 1200°C, and then rolled. Reduction rate of 850'C or less when hitting 6
Rolling is carried out at a finishing temperature of 0z or higher and a finishing temperature of Ar3 transformation point or higher,
Next, from the temperature above this Ar3 transformation point, at a cooling rate of 3000/S or more, 350'C or more and 550'C! This is a method for producing a steel sheet with excellent sour resistance properties and having a uniform fine bainite structure in the thickness direction.

この方法によれば冷却後の組織は、板厚方向に均一で微
細な上部ベイナイトあるいはアンキュラーフェライトと
なり、中心偏析部のミクロ組織が改善され、強度、靭性
に優れ、耐サワー特性に優れた鋼板が得られる。
According to this method, the structure after cooling becomes uniform and fine upper bainite or ancular ferrite in the sheet thickness direction, and the microstructure in the central segregation area is improved, resulting in a steel sheet with excellent strength, toughness, and sour resistance. is obtained.

次に本発明について詳細に説明する。Next, the present invention will be explained in detail.

まず、加熱、圧延、冷却条件について説明する。上記成
分範囲を有するスラブの加熱温度を1000℃〜120
0℃に限定した理由は、加熱時のオーステナイトを細粒
にし、冷却後の組織を微細にするためである。1200
℃以上では加熱時にオーステナイトが粗大化し、圧延後
の組織を十分微細にできない。また加熱温度が1000
℃より低いと、Nb等の合金添加元素が十分に固溶せず
、材質向上効果が期待できない。
First, heating, rolling, and cooling conditions will be explained. The heating temperature of the slab having the above component range is 1000°C to 120°C.
The reason for limiting the temperature to 0°C is to make the austenite fine during heating and to make the structure fine after cooling. 1200
If the temperature is higher than 0.degree. C., the austenite becomes coarse during heating, and the structure after rolling cannot be made sufficiently fine. Also, the heating temperature is 1000
If the temperature is lower than 0.degree. C., alloy additive elements such as Nb will not be sufficiently solid-dissolved, and no improvement in material quality can be expected.

また仕上圧延において、強度、靭性を同時に得るために
850℃以下の温度域で60%以上の圧下が必要である
。これは未再結晶域でのオーステナイトを十分に延伸し
、圧延冷却後に粗大なブロック状のベイナイトが出現す
るのを抑えて鋼板のミクロ組織を板厚方向に微細均一な
ベイナイト組織とするためである。ただし、圧延仕上温
度は、以下に述べる冷却条件からAr3変態点以上とす
る。ここでAr3は以下の回帰式により推定されるもの
とする。
Further, in finish rolling, a reduction of 60% or more is required in a temperature range of 850° C. or lower in order to obtain strength and toughness at the same time. This is to sufficiently stretch the austenite in the non-recrystallized region, suppress the appearance of coarse block-like bainite after rolling and cooling, and make the microstructure of the steel sheet a fine and uniform bainite structure in the thickness direction. . However, the rolling finish temperature is set to be equal to or higher than the Ar3 transformation point based on the cooling conditions described below. Here, it is assumed that Ar3 is estimated by the following regression equation.

Ar3 = −3980+ 24.l3Si −88,
IMn −36,INi −20,7Cu −24,8
Cr+ 29.EiMo+ 8138℃冷却開始温度は
、均一微細なベイナイト組織を得るためにAr3変態点
以上としなければならない。Ar3変態点以下では、ミ
クロ組織中に粗大なポリゴナルフエライトが混在し、良
好な靭性が得られないばかりか、初析フェライトの生成
によりC原子が濃化し、焼入れ性が向上した未変態オー
ステナイトからマルテンサイトが生成し、ミクロ組織が
板厚方向に不均一となるため耐サワー特性も劣化する。
Ar3 = -3980+ 24. l3Si-88,
IMn -36, INi -20,7Cu -24,8
Cr+ 29. The cooling start temperature of EiMo+ 8138°C must be equal to or higher than the Ar3 transformation point in order to obtain a uniform and fine bainite structure. Below the Ar3 transformation point, coarse polygonal ferrite is mixed in the microstructure, making it difficult to obtain good toughness, and C atoms are enriched due to the formation of pro-eutectoid ferrite, which changes the hardenability from untransformed austenite. Martensite is generated and the microstructure becomes non-uniform in the thickness direction, resulting in deterioration of sour resistance.

冷却速度及び冷却停止温度条件の限定は、高強度、高靭
性に加え、耐サワー特性を兼備するための必須条件であ
り、以下その理由について述べる。
Limiting the cooling rate and cooling stop temperature conditions is an essential condition for achieving both high strength and toughness as well as sour resistance properties, and the reason for this will be described below.

冷却は、圧延終了直後から350℃以上550℃未満ま
で30℃/S以上の冷却速度で実施する必要がある。こ
の理由は850℃以下で80%以上の圧下を施されたた
め焼入性が低下しているオーステナイトから板厚方向に
均一微細なベイナイトあるいはアシキュラーフェライト
組織を得るために30℃lS以上の冷却速度で急冷する
必要がある。冷却速度が30℃/S未満では、冷却後の
ミクロ組織がポリゴナルフエライトーパーライトあるい
はポリゴナルフエライトーベイナイトとなり、所要の強
度が得られない。また冷却停止温度については、マルテ
ンサイトの生成を抑え、均一微細なベイナイトを得るた
めに、上限を550℃未満とし、下限を350℃とした
Cooling must be carried out at a cooling rate of 30° C./S or higher from 350° C. to lower than 550° C. immediately after the end of rolling. The reason for this is that in order to obtain a uniform fine bainite or acicular ferrite structure in the thickness direction from austenite whose hardenability has deteriorated due to reduction of 80% or more at temperatures below 850°C, the cooling rate is set at 30°C or more. It needs to be rapidly cooled. If the cooling rate is less than 30° C./S, the microstructure after cooling becomes polygonal ferrite-pearlite or polygonal ferrite-bainite, and the required strength cannot be obtained. Regarding the cooling stop temperature, in order to suppress the formation of martensite and obtain uniform fine bainite, the upper limit was set to less than 550°C, and the lower limit was set to 350°C.

以下、本発明鋼の成分について述べる。The components of the steel of the present invention will be described below.

Cの下限0.02%は母材・及び溶接部の強度確保及び
Nbの析出効果を十分に発揮させるための最少量である
。しかしC含有量が多過ぎると、制御冷却した場合島状
マルテンサイトが生成し、延靭性に悪影響を及ぼすばか
りか溶接性及びHAZ靭性も劣化させるため、上限を0
.15%とした。
The lower limit of 0.02% of C is the minimum amount in order to ensure the strength of the base metal and welded part and to fully exhibit the effect of Nb precipitation. However, if the C content is too high, island-like martensite will be generated in controlled cooling, which will not only adversely affect ductility but also deteriorate weldability and HAZ toughness, so the upper limit should be set to 0.
.. It was set at 15%.

Siは脱酸上鋼に必然的に含まれる元素であるが、Si
もまた溶接性及びHAZ部靭性を劣化させるため上限を
0.6%とした。
Si is an element that is naturally included in deoxidized steel, but Si
Also, the upper limit was set at 0.6% because it also deteriorates weldability and HAZ toughness.

Mnは0.5z以下では充分な強度が得られない。また
1、5zを越えると粗大なブロック状ベイナイトあるい
は島状マルテンサイトが形成され易くなり、耐水素誘起
割れ特性のみならず靭性も害するようになるので0.5
〜1.5zとした。
If Mn is less than 0.5z, sufficient strength cannot be obtained. Furthermore, if it exceeds 1.5z, coarse block-like bainite or island-like martensite is likely to be formed, which impairs not only the hydrogen-induced cracking resistance but also the toughness.
~1.5z.

Pについては、中心偏析を低減するために上限を0.0
15′X以下とした。
For P, the upper limit is set to 0.0 to reduce center segregation.
It was set to 15'X or less.

Sは0.010%を超すと硫化物系介在物周辺から水素
誘起割れが著しく多発するので上限をo、otoxとす
る。
If the S content exceeds 0.010%, hydrogen-induced cracking occurs frequently around sulfide inclusions, so the upper limit is set to o, otox.

AIは鋼の脱酸剤として必要であるが、0.10%以上
添加すると鋼を汚染し、また靭性を劣化するので好まし
くない。
Although AI is necessary as a deoxidizing agent for steel, it is not preferable to add more than 0.10% because it contaminates the steel and deteriorates its toughness.

Ti添加量の下限0.005%は、微細なTiNを形成
し、圧延組織及びHAZの細粒化が期待される最少量で
あり、上限はTiCによる靭性劣化が起きない条件から
0.025%とした。
The lower limit of the amount of Ti added is 0.005%, which is the minimum amount that is expected to form fine TiN and refine the rolling structure and HAZ, and the upper limit is 0.025% under the condition that no toughness deterioration due to TiC occurs. And so.

Nbは圧延組織の細粒化、焼入性の向上と析出硬化のた
め含有させるもので、強度、靭性を共に向上させる重要
な元素であるが、制御冷却材では0.10%:を越えて
添加しても材質上効果なく、また溶接性及びHAZ靭性
に有害であるため上限を0.102に限定した。
Nb is included to refine the rolling structure, improve hardenability, and precipitation harden, and is an important element that improves both strength and toughness. Even if it is added, it has no effect on the quality of the material and is harmful to weldability and HAZ toughness, so the upper limit was limited to 0.102.

Bは圧延中にオーステナイト粒界に偏析し、焼入性を上
げベイナイト組織を生成しやすくするが、0.005%
超になると、靭性な劣化させる。
B segregates at austenite grain boundaries during rolling, increases hardenability and facilitates the formation of bainite structure, but at 0.005%
When it becomes super tough, it deteriorates.

Niは耐食性に効果的な元素である。しかし1%を超え
ると、靭性に好ましくない。
Ni is an effective element for corrosion resistance. However, if it exceeds 1%, it is unfavorable for toughness.

Cuは、前述のごとく、p)I”? 5.2程度のサワ
ー環境下で鋼板表面に安定な皮膜を形成し原子状水素の
侵入量を低下させる。しかし、1zを超えると圧延中に
割れが生じやすくなる。
As mentioned above, Cu forms a stable film on the steel sheet surface in a sour environment with a p)I"? of about 5.2 and reduces the amount of atomic hydrogen intrusion. However, if it exceeds 1z, cracks occur during rolling. becomes more likely to occur.

Orは、焼入性を向上させる元素であるが、1.25%
を超えると、靭性が劣化する。
Or is an element that improves hardenability, but at 1.25%
If it exceeds this, the toughness will deteriorate.

Gaは鋼における硫化物系介在物の形状を制御するのに
有効な元素であって、その効果は(1,0Q(IIX以
上で顕われるが、0.005%以上となると鋼が汚染さ
れるのでこれを上限とする。
Ga is an effective element for controlling the shape of sulfide-based inclusions in steel, and its effect becomes apparent at 1.0Q (IIX or higher), but if it exceeds 0.005%, the steel becomes contaminated. Therefore, this is the upper limit.

なお、本発明ではNb 、B 、Ni 、Cu 、Cr
 、Caは一種または二種・以上含有させる。
In addition, in the present invention, Nb, B, Ni, Cu, Cr
, Ca may be contained in one kind or in combination of two or more kinds.

(実施例) 次に本発明あ実施例について説明する。表1に化学成分
とスラブ加熱温度、仕上圧延条件、冷却条件等の製造条
件及びその結果得られた機械的性質と、HIG試験後U
STにより測定したクラック割れ面積率(CAR)を示
す。
(Example) Next, an example of the present invention will be described. Table 1 shows the chemical components, manufacturing conditions such as slab heating temperature, finish rolling conditions, and cooling conditions, and the resulting mechanical properties, as well as the U after HIG test.
The crack area ratio (CAR) measured by ST is shown.

素材は、現場溶製スラブあるいは実験室不溶解材である
。1100℃〜1200℃に加熱し、オーステナイト化
したのち、仕上げ圧延において850℃以下で種々の圧
下率が採れるように適当な粗圧延を行い、引続いて仕上
げ圧延を施し、しかる後すみやかに冷却ゾーンに搬送し
て加速冷却を行った。
The material is either an in-situ melted slab or a laboratory-melted material. After heating to 1100°C to 1200°C to austenitize, appropriate rough rolling is performed at a temperature of 850°C or less to obtain various reduction ratios in finish rolling, followed by finish rolling, and then immediately transferred to a cooling zone. The sample was transported to the factory for accelerated cooling.

HIG試験は、鋼板より表裏面1IllI11切削した
厚さで、幅20fiII11、長さ100IIIIll
の試験片を用い、25℃のHas飽和テ0.5XCH3
COQH+ 5%NaC1水溶液中ニ86時間浸漬した
For the HIG test, the front and back surfaces of the steel plate were cut to a thickness of 1IllI11, with a width of 20fiII11 and a length of 100IIIll.
Has saturation temperature 0.5XCH3 at 25℃ using a test piece of
It was immersed in a COQH+ 5% NaCl aqueous solution for 86 hours.

A−1,B−1,C−1,D−1,E−1は本発明鋼で
、A−2,A−3゜B−2,B−3,G−2,D−2,
E−2は比較鋼である。
A-1, B-1, C-1, D-1, E-1 are the steels of the present invention, A-2, A-3゜B-2, B-3, G-2, D-2,
E-2 is a comparison steel.

本発明によりA−1,B−1,C−1,El−1,E−
1に示すような、X?0クラスの強度およびvTrsが
−100℃以下の靭性を有しかつUSTによるCAR”
ROなる耐サワー特性に優れた鋼板が製造できる。
According to the present invention, A-1, B-1, C-1, El-1, E-
As shown in 1, X? 0 class strength and vTrs of -100°C or less toughness and CAR by UST
Steel sheets with excellent sour resistance properties, called RO, can be produced.

比較@A−2,D−2は、850”0以下の圧下率が不
充分であるため、比較鋼A−3は冷却速度が不適正であ
るため、比較鋼B−2は冷却停止温度が低すぎる1ま ため、また比較鋼B−3は、仕上温度がAr3変態点よ
りも低いため、それぞれ靭性、耐HIc特性が劣化する
。さらに、比較鋼C−2、E−2では、冷却速度が遅す
ぎるため、X?Oクラスの強度が得られない。
Comparison @ A-2 and D-2 have insufficient rolling reduction of 850"0 or less, comparative steel A-3 has an inappropriate cooling rate, and comparative steel B-2 has an insufficient cooling stop temperature. In comparison steel B-3, the finishing temperature is lower than the Ar3 transformation point, so the toughness and HIc resistance deteriorate, respectively.Furthermore, in comparison steels C-2 and E-2, the cooling rate is too low. Because it is too slow, it is not possible to obtain the strength of the X?O class.

(発明の効果)(Effect of the invention)

Claims (1)

【特許請求の範囲】 重量%で C:0.02〜0.15% Si:0.1〜0.6% Mn:0.5〜1.5% P:0.015%以下 S:0.010%以下 Al:0.005〜0.1% Ti:0.005〜0.025% を基本成分とし、さらに Nb:0.10%以下、B:0.005%以下、Ni:
1.0%以下、Cu:1.0%以下、Cr:1.25%
以下、Ca:0.005%以下の一種または二種以上を
含有し、残部が鉄及び不可癖不純物より成る組成の鋼を
、1000℃〜1200℃に加熱し、その後の圧延に当
って850℃以下の圧下率60%以上で仕上温度Ar_
3変態点以上で圧延を行ない、次いで、このAr_3変
態点以上の温度から、冷却速度30℃/S以上で、35
0℃以上550℃未満の範囲まで冷却し、以後放冷する
ことから成り、板厚方向に均一微細なベイナイト組織を
有するようにした耐サワー特性の優れた鋼板の製造方法
[Claims] In weight percent, C: 0.02 to 0.15% Si: 0.1 to 0.6% Mn: 0.5 to 1.5% P: 0.015% or less S: 0. 010% or less Al: 0.005-0.1% Ti: 0.005-0.025% as basic components, further Nb: 0.10% or less, B: 0.005% or less, Ni:
1.0% or less, Cu: 1.0% or less, Cr: 1.25%
Hereinafter, a steel containing one or more types of Ca: 0.005% or less, with the balance consisting of iron and non-deformable impurities, is heated to 1000°C to 1200°C, and then rolled to 850°C. Finishing temperature Ar_ with the following reduction rate of 60% or more
Rolling is carried out at a temperature of 3 transformation point or higher, and then from the temperature of this Ar_3 transformation point or higher, at a cooling rate of 30°C/S or higher, 35
A method for manufacturing a steel sheet with excellent sour resistance properties, which comprises cooling to a temperature in the range of 0° C. or more and less than 550° C., and then allowing it to cool, and having a uniform fine bainite structure in the thickness direction.
JP325485A 1985-01-14 1985-01-14 Manufacture of unrefined steel plate excellent in sour-resistant property Granted JPS61165207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP325485A JPS61165207A (en) 1985-01-14 1985-01-14 Manufacture of unrefined steel plate excellent in sour-resistant property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP325485A JPS61165207A (en) 1985-01-14 1985-01-14 Manufacture of unrefined steel plate excellent in sour-resistant property

Publications (2)

Publication Number Publication Date
JPS61165207A true JPS61165207A (en) 1986-07-25
JPH0250967B2 JPH0250967B2 (en) 1990-11-06

Family

ID=11552327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP325485A Granted JPS61165207A (en) 1985-01-14 1985-01-14 Manufacture of unrefined steel plate excellent in sour-resistant property

Country Status (1)

Country Link
JP (1) JPS61165207A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205230A (en) * 1986-03-04 1987-09-09 Kobe Steel Ltd Manufacture of steel plate for low temperature service superior in characteristic for stopping brittle cracking propagation
JPH0211722A (en) * 1988-06-30 1990-01-16 Kobe Steel Ltd Manufacture of steel plate having excellent hydrogen-induced cracking resistance
WO2009061006A1 (en) 2007-11-07 2009-05-14 Jfe Steel Corporation Steel plate for line pipes and steel pipes
US7935197B2 (en) 2002-02-07 2011-05-03 Jfe Steel Corporation High strength steel plate
US7959745B2 (en) * 2001-07-13 2011-06-14 Jfe Steel Corporation High-strength steel pipe of API X65 grade or higher
JP2012077325A (en) * 2010-09-30 2012-04-19 Jfe Steel Corp High strength steel sheet for line pipe and method for producing the same, and high strength steel pipe using high strength steel sheet for line pipe
KR20140019483A (en) 2009-02-18 2014-02-14 신닛테츠스미킨 카부시키카이샤 Method of manufacturing sheet steel for sour-resistant line pipe
WO2015012317A1 (en) 2013-07-25 2015-01-29 新日鐵住金株式会社 Steel plate for line pipe, and line pipe
CN106086646A (en) * 2012-07-09 2016-11-09 杰富意钢铁株式会社 Thick section and high strength acid resistance line pipe and manufacture method thereof
EP3159418A1 (en) 2015-10-21 2017-04-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel plate and bonded assembly
KR20200051745A (en) 2017-09-28 2020-05-13 제이에프이 스틸 가부시키가이샤 High strength steel pipe for internal sour line pipe and manufacturing method thereof, and high strength steel pipe using high strength steel plate for internal sour line pipe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067621A (en) * 1983-09-22 1985-04-18 Kawasaki Steel Corp Preparation of non-refining high tensile steel
JPS60258410A (en) * 1984-06-06 1985-12-20 Nippon Steel Corp Manufacture of thick high tensile strength steel sheet superior in weldability and low temperature toughness
JPS61113718A (en) * 1984-11-09 1986-05-31 Kawasaki Steel Corp Manufacture of nontemper high tensile steel plate having high yield strength and superior weldability and low temperature toughness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067621A (en) * 1983-09-22 1985-04-18 Kawasaki Steel Corp Preparation of non-refining high tensile steel
JPS60258410A (en) * 1984-06-06 1985-12-20 Nippon Steel Corp Manufacture of thick high tensile strength steel sheet superior in weldability and low temperature toughness
JPS61113718A (en) * 1984-11-09 1986-05-31 Kawasaki Steel Corp Manufacture of nontemper high tensile steel plate having high yield strength and superior weldability and low temperature toughness

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205230A (en) * 1986-03-04 1987-09-09 Kobe Steel Ltd Manufacture of steel plate for low temperature service superior in characteristic for stopping brittle cracking propagation
JPH0211722A (en) * 1988-06-30 1990-01-16 Kobe Steel Ltd Manufacture of steel plate having excellent hydrogen-induced cracking resistance
JPH0730392B2 (en) * 1988-06-30 1995-04-05 株式会社神戸製鋼所 Method for producing steel sheet having excellent resistance to hydrogen-induced cracking
US7959745B2 (en) * 2001-07-13 2011-06-14 Jfe Steel Corporation High-strength steel pipe of API X65 grade or higher
US7935197B2 (en) 2002-02-07 2011-05-03 Jfe Steel Corporation High strength steel plate
EP2420586A1 (en) 2002-02-07 2012-02-22 JFE Steel Corporation High strength steel plate and method for manufacturing the same
US8147626B2 (en) 2002-02-07 2012-04-03 Jfe Steel Corporation Method for manufacturing high strength steel plate
US8801874B2 (en) 2007-11-07 2014-08-12 Jfe Steel Corporation Steel plate and steel pipe for line pipes
WO2009061006A1 (en) 2007-11-07 2009-05-14 Jfe Steel Corporation Steel plate for line pipes and steel pipes
KR20140019483A (en) 2009-02-18 2014-02-14 신닛테츠스미킨 카부시키카이샤 Method of manufacturing sheet steel for sour-resistant line pipe
JP2012077325A (en) * 2010-09-30 2012-04-19 Jfe Steel Corp High strength steel sheet for line pipe and method for producing the same, and high strength steel pipe using high strength steel sheet for line pipe
CN106086646A (en) * 2012-07-09 2016-11-09 杰富意钢铁株式会社 Thick section and high strength acid resistance line pipe and manufacture method thereof
WO2015012317A1 (en) 2013-07-25 2015-01-29 新日鐵住金株式会社 Steel plate for line pipe, and line pipe
KR20150138301A (en) 2013-07-25 2015-12-09 신닛테츠스미킨 카부시키카이샤 Steel plate for line pipe, and line pipe
EP3159418A1 (en) 2015-10-21 2017-04-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel plate and bonded assembly
KR20200051745A (en) 2017-09-28 2020-05-13 제이에프이 스틸 가부시키가이샤 High strength steel pipe for internal sour line pipe and manufacturing method thereof, and high strength steel pipe using high strength steel plate for internal sour line pipe

Also Published As

Publication number Publication date
JPH0250967B2 (en) 1990-11-06

Similar Documents

Publication Publication Date Title
JP6479527B2 (en) Bolt wire with excellent pickling property and delayed fracture resistance after quenching and tempering, and bolt
JP5928405B2 (en) Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same
JPS6086209A (en) Manufacture of steel having high resistance against crack by sulfide
JP7221476B2 (en) Steel material excellent in resistance to hydrogen-induced cracking and its manufacturing method
CN112752858B (en) High-strength steel sheet for acid-resistant line pipe, method for producing same, and high-strength steel pipe using high-strength steel sheet for acid-resistant line pipe
JPS61165207A (en) Manufacture of unrefined steel plate excellent in sour-resistant property
JPS631369B2 (en)
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
CN111183238A (en) High-strength steel sheet for acid-resistant line pipe, method for producing same, and high-strength steel pipe using high-strength steel sheet for acid-resistant line pipe
JP3214353B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JPS6216250B2 (en)
JPH05156409A (en) High-strength martensite stainless steel having excellent sea water resistance and production thereof
JPH09324216A (en) Manufacture of high strength steel or line pipe, excellent in hic resistance
JPH09324217A (en) Manufacture of high strength steel for line pipe, excellent in hic resistance
JP2721420B2 (en) Sour-resistant steel for electric resistance welded steel
JP3836919B2 (en) Manufacturing method of ultra-thick high-strength bend pipe with excellent low temperature toughness
JP2003342638A (en) Process for manufacturing high-strength bent tube
JPS6028885B2 (en) UOE steel pipe heat treatment method that yields high toughness weld metal
JPH08295929A (en) Production of sour resistant steel sheet for line pipe excellent in co2 corrosion resistance and low temperature toughness
JPS6324014A (en) Production of high-strength hot coil material having excellent hydrogen sulfide resistance and toughness
JPS637328A (en) Production of steel having excellent sulfide corrosion cracking resistance
KR0146799B1 (en) Method for manufacturing stabilizer
JP2004332083A (en) Method for producing high-strength bent pipe excellent in low-temperature toughness
JPH08209241A (en) Production of steel plate for line pipe excellent in carbon dioxide corrosion resistance and low temperature toughness
JPS62182220A (en) Production of high-strength steel plate having excellent hydrogen sulfide resistance and toughness