JPH08209241A - Production of steel plate for line pipe excellent in carbon dioxide corrosion resistance and low temperature toughness - Google Patents

Production of steel plate for line pipe excellent in carbon dioxide corrosion resistance and low temperature toughness

Info

Publication number
JPH08209241A
JPH08209241A JP1627795A JP1627795A JPH08209241A JP H08209241 A JPH08209241 A JP H08209241A JP 1627795 A JP1627795 A JP 1627795A JP 1627795 A JP1627795 A JP 1627795A JP H08209241 A JPH08209241 A JP H08209241A
Authority
JP
Japan
Prior art keywords
rolling
temperature
less
cooling
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1627795A
Other languages
Japanese (ja)
Inventor
Hajime Ishikawa
肇 石川
Yoshio Terada
好男 寺田
Akihiko Kojima
明彦 児島
Hiroshi Tamehiro
博 為広
Hiroyuki Ogawa
洋之 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1627795A priority Critical patent/JPH08209241A/en
Publication of JPH08209241A publication Critical patent/JPH08209241A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: To improve the CO2 corrosion resistance and low temp. toughness of a steel plate by casting a steel having a specified compsn., extracting the same, thereafter executing rolling and cooling so as to regulate its surface temp. to a specified one and moreover executing rolling and cooling under specified conditions. CONSTITUTION: A steel having a compsn. contg., by weight 0.01 to 0.09% C, <=0.5% Si, 0.7 to 1.5% Mn, <=0.03% P, <=0.005% S, 0.01 to 0.06% Nb, 0.4 to 1.2% Cr, 0.05 to 0.4% Cu, 0.005 to 0.03% Ti, <=0.05% Al and 0.001 to 0.005% N and satisfying the conditions shown by the inequality is cast. This slab not formed into a cold slab or the one formed into a cold slab is heated to 1100 to 1250 deg.C, is extracted and is thereafter rolled. This rolling is stopped at >=900 deg.C surface temp. and is water-cooled to <=700 deg.C at 5 to 40 deg.C/sec rate. It is air-cooled to the Ac3 point or below of surface temp. and <=950 deg.C intermediate temp. and is thereafter applied with rolling reduction at >=60% cumulative draft and <=0.2 rolling true strain per pass. It is finished at the Ar3 or above of plate thickness temp., and cooling is executed to 350 to 550 deg.C at 5 to 40 deg.C/sec rate. After that, it is air-cooled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、CO2 を含んだ石油、
天然ガスに用いる耐CO2 腐食性に優れたラインパイプ
用高張力鋼板(引張強さ:500MPa以上、板厚40
mm以下)の製造方法に関するものである。また、本発
明鋼は低温靱性および現地溶接性にも優れているので、
寒冷地やオフショアに使用可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to petroleum containing CO 2 .
High-strength steel sheet for line pipes with excellent CO 2 corrosion resistance used in natural gas (tensile strength: 500 MPa or more, sheet thickness 40
mm or less). Further, since the steel of the present invention is also excellent in low temperature toughness and field weldability,
It can be used in cold regions and offshore.

【0002】鉄鋼業においては厚板ミルに適用すること
が最も好ましいがホットコイルにも適用できる。また、
この方法で製造した鋼板は低温靱性、現地溶接性にも優
れているため寒冷地やオフショアにおける使用に最も適
する。
In the steel industry, it is most preferable to apply it to a thick plate mill, but it can also be applied to a hot coil. Also,
The steel sheet produced by this method is excellent in low temperature toughness and field weldability, and is most suitable for use in cold regions and offshore.

【0003】[0003]

【従来の技術】寒冷地やオフショアにおける石油、ガス
輸送用大径ラインパイプに対しては高強度とともに優れ
た低温靱性、現地溶接性が要求される。さらに、近年原
油の2次、3次回収におけるCO2 注入や深井戸化によ
るインヒビター効果の低下によって、CO2 ガスによる
ラインパイプの腐食が大きな問題となり、耐CO2 腐食
性が要求されるようになった。
2. Description of the Related Art High strength, excellent low temperature toughness and field weldability are required for large diameter line pipes for oil and gas transportation in cold regions and offshore. Further, in recent years, due to a decrease in the inhibitor effect due to CO 2 injection and deep well formation in the secondary and tertiary recovery of crude oil, corrosion of line pipes due to CO 2 gas has become a major problem, and CO 2 corrosion resistance is required. became.

【0004】Crの多量添加は溶接性を阻害するので、
現地溶接時に溶接割れ防止の観点から高温での予熱、後
熱処理が必須となり、施工能率を著しく低下させる。ま
た、多量のCr添加は母材、溶接熱影響部(HAZ)の
靱性を劣化させる。このため耐CO2 腐食性が優れ、か
つ良好な低温靱性、現地溶接性を有するラインパイプ用
鋼板の開発が強く望まれている。
Since a large amount of Cr impairs weldability,
Pre-heating at high temperature and post-heat treatment are indispensable from the viewpoint of welding crack prevention during on-site welding, which significantly reduces the work efficiency. Further, addition of a large amount of Cr deteriorates the toughness of the base material and the weld heat affected zone (HAZ). Therefore, development of a steel sheet for a line pipe having excellent CO 2 corrosion resistance, good low temperature toughness, and field weldability is strongly desired.

【0005】特開平3−211230号公報には、耐C
2 腐食性、低温靱性および現地溶接性に優れた低温用
耐CO2 腐食性ラインパイプ用鋼が開示されている。し
かし、CO2 を含有する環境で1.2%Cr以下ではC
rによる不働態域の形成はできないため、10%NaC
l+1atmCO2 (pH5、80℃)で0.5mm/
yの確保がやっとである。そこで組織上で耐CO2 腐食
性に優れたラインパイプ用鋼の開発が望まれている。
Japanese Unexamined Patent Publication No. 3-211230 discloses a C-resistant material.
A low temperature CO 2 corrosion resistant line pipe steel excellent in O 2 corrosion resistance, low temperature toughness and field weldability is disclosed. However, in an environment containing CO 2 , it is C if 1.2% Cr or less.
Since a passive state cannot be formed by r, 10% NaC
0.5 mm / at 1 + 1 atm CO 2 (pH 5, 80 ° C)
Only y can be secured. Therefore, it is desired to develop a steel for line pipes which is excellent in CO 2 corrosion resistance in terms of structure.

【0006】[0006]

【発明が解決しようとする課題】このような現状に鑑み
て、本発明は耐CO2 腐食性および低温靱性の優れたラ
インパイプ用鋼板の製造方法を提供することを目的とす
る。
In view of the present situation as described above, an object of the present invention is to provide a method for producing a steel sheet for a line pipe having excellent CO 2 corrosion resistance and low temperature toughness.

【0007】[0007]

【課題を解決するための手段】本発明の要旨の要旨とす
るところは下記のとおりである。 (1)重量%で C :0.01〜0.09% Si:0.5%以
下 Mn:0.7〜1.5% P :0.03%
以下 S :0.005%以下 Nb:0.01〜
0.06% Cr:0.4〜1.2% Cu:0.05〜
0.4% Ti:0.005〜0.03% Al:0.05%
以下 N :0.001〜0.005% を含有し、かつ下記の式 0.35≦C+Mn/6+(Cr+V)/5+(Cu+
Ni)/15≦0.50 を満たし、残部鉄および不可避不純物からなる鋼を鋳造
後、冷片にすることなく、或は冷片を1100〜125
0℃の温度に加熱し抽出後、圧延を開始して表面温度が
900℃以上で圧延を一旦中断し、引続き5〜40℃/
sの冷却速度で表面温度が700℃以下になるまで水冷
した後、表面温度がAc3以下、板厚中心部温度が95
0℃以下になるまで放冷し、しかる後に累積圧下率が6
0%以上でかつ平均1パス当りの圧延真歪が0.2以下
となる圧下を加え、板厚平均温度がAr3以上で圧延を
終了し、直ちに5〜40℃/sの冷却速度で板厚平均温
度が350〜550℃となるまで冷却し、その後空冷す
ることを特徴とする耐CO2腐食性および低温靱性に優
れた鋼板の製造方法。
The gist of the present invention is as follows. (1) Weight% C: 0.01 to 0.09% Si: 0.5% or less Mn: 0.7 to 1.5% P: 0.03%
Hereinafter S: 0.005% or less Nb: 0.01 to
0.06% Cr: 0.4 to 1.2% Cu: 0.05 to
0.4% Ti: 0.005-0.03% Al: 0.05%
Below N: 0.001 to 0.005% is contained, and the following formula 0.35 ≦ C + Mn / 6 + (Cr + V) / 5 + (Cu +
Ni) /15≦0.50 and casting steel with the balance iron and unavoidable impurities, without forming cold pieces, or cooling the cold pieces from 1100 to 125
After extraction by heating to a temperature of 0 ° C., rolling is started and the surface temperature is 900 ° C. or higher, the rolling is temporarily stopped, and then 5 to 40 ° C. /
After water cooling at a cooling rate of s until the surface temperature becomes 700 ° C. or less, the surface temperature is Ac 3 or less and the plate thickness center temperature is 95
Allow to cool to 0 ° C or below, then the cumulative rolling reduction is 6
Rolling is terminated at 0% or more and the average rolling true strain per pass is 0.2 or less, the sheet thickness average temperature is Ar 3 or more, and the sheet is immediately rolled at a cooling rate of 5 to 40 ° C./s. A method for producing a steel sheet excellent in CO 2 corrosion resistance and low temperature toughness, which comprises cooling until a thickness average temperature reaches 350 to 550 ° C. and then air cooling.

【0008】(2)重量%で C :0.01〜0.09% Si:0.5%
以下 Mn:0.7〜1.5% P :0.03
%以下 S :0.005%以下 Nb:0.01
〜0.06% Cr:0.4〜1.2% Cu:0.05
〜0.4% Ti:0.005〜0.03% Al:0.05
%以下 N :0.001〜0.005% を含有し、さらに V :0.005〜0.060% Ni :0.05
〜1.0% Mo:0.05〜0.30% Ca :0.00
1〜0.005% Zr:0.005〜0.025% REM:0.00
05〜0.01% のうち1種以上を含有し、かつ下記の式 0.35≦C+Mn/6+(Cr+V)/5+(Cu+
Ni)/15≦0.50 を満たし、残部鉄および不可避不純物からなる鋼を鋳造
後、冷片にすることなく、或は冷片を1100〜125
0℃の温度に加熱し抽出後、圧延を開始して表面温度が
900℃以上で圧延を一旦中断し、引続き5〜40℃/
sの冷却速度で表面温度が700℃以下になるまで放冷
した後、表面温度がAc3以下、板厚中心部温度が95
0℃以下になるまで水冷し、しかる後に累積圧下率が6
0%以上でかつ平均1パス当りの圧延真歪が0.2以下
となる圧下を加え、板厚平均温度がAr3以上で圧延を
終了し、直ちに5〜40℃/sの冷却速度で板厚平均温
度が350〜550℃となるまで冷却し、その後空冷す
ることを特徴とする耐CO2腐食性、低温靱性および耐
サワー性に優れた鋼板の製造方法。
(2) C: 0.01 to 0.09% Si: 0.5% by weight
Below Mn: 0.7 to 1.5% P: 0.03
% Or less S: 0.005% or less Nb: 0.01
~ 0.06% Cr: 0.4-1.2% Cu: 0.05
~ 0.4% Ti: 0.005-0.03% Al: 0.05
% Or less N: 0.001 to 0.005% is contained, and further V: 0.005 to 0.060% Ni: 0.05
~ 1.0% Mo: 0.05-0.30% Ca: 0.00
1 to 0.005% Zr: 0.005 to 0.025% REM: 0.00
It contains one or more of the above-mentioned formula 0.35 ≦ C + Mn / 6 + (Cr + V) / 5 + (Cu +
Ni) /15≦0.50, and after casting the steel consisting of the balance iron and unavoidable impurities, without casting cold pieces, or cooling the cold pieces from 1100 to 125
After extraction by heating to a temperature of 0 ° C., rolling is started and the surface temperature is 900 ° C. or higher, the rolling is temporarily stopped, and then 5 to 40 ° C. /
After allowing to cool at a cooling rate of s until the surface temperature becomes 700 ° C. or less, the surface temperature is Ac 3 or less and the plate thickness center temperature is 95
Water-cool until the temperature falls below 0 ° C, after which the cumulative rolling reduction is 6
Rolling is terminated at 0% or more and the average rolling true strain per pass is 0.2 or less, the sheet thickness average temperature is Ar 3 or more, and the sheet is immediately cooled at a cooling rate of 5 to 40 ° C./s. A method for producing a steel sheet excellent in CO 2 corrosion resistance, low temperature toughness and sour resistance, characterized by cooling until a thickness average temperature reaches 350 to 550 ° C. and then air cooling.

【0009】本発明はCO2 による腐食を抑制する高靱
性ラインパイプ用鋼を製造することを目的とした発明で
ある。本発明者らが耐CO2 腐食性におよぼす不均一腐
食の影響を主に化学成分、組織に関して詳しく検討した
結果以下のような事実が判明した。 CrとCuの複合添加により耐CO2 腐食性が向上す
るとともに、不均一な腐食を抑制する。しかし、過量の
Cr,Cu添加は低温靱性、現地溶接性を劣化させる。
The present invention is an object of the invention to produce a high toughness line pipe steel which suppresses corrosion due to CO 2 . The inventors of the present invention have made detailed investigations mainly on the chemical composition and structure of the effect of non-uniform corrosion on the CO 2 corrosion resistance, and have found the following facts. The combined addition of Cr and Cu improves CO 2 corrosion resistance and suppresses uneven corrosion. However, addition of excessive amounts of Cr and Cu deteriorates low temperature toughness and field weldability.

【0010】本発明により得られた鋼板は、その表面
が非常に微細なフェライトでかつCが微細分散された組
織を有しているから、従来の制御圧延+制御冷却により
得られた鋼板の表面組織(フェライトとベイナイト等の
バンド組織になりやすい)と比較して浸漬電位で+20
mV程度貴となり、耐CO2 腐食性は向上する。 つまり、CO2 腐食に関してはCr添加が有効である
が、過量のCr添加は低温靱性、現地溶接性の劣化を引
き起こす。これに対しCr量の上限値を規制した上で、
さらに表面組織を著しく微細なフェライトでかつCの微
細分散された組織にすることにより、有効カソードサイ
トが低減して耐CO2 性が向上する。また、Cr添加鋼
にCuを添加することにより腐食生成物が安定化し耐食
性がさらに向上する。
Since the steel sheet obtained by the present invention has a structure in which the surface is very fine ferrite and C is finely dispersed, the surface of the steel sheet obtained by conventional controlled rolling + controlled cooling +20 in immersion potential compared to the structure (prone to band structure such as ferrite and bainite)
It becomes noble about mV and CO 2 corrosion resistance is improved. That is, Cr addition is effective for CO 2 corrosion, but excessive Cr addition causes deterioration of low temperature toughness and field weldability. On the other hand, after limiting the upper limit of the Cr amount,
Further, by making the surface structure a structure in which ferrite is extremely fine and C is finely dispersed, effective cathode sites are reduced and CO 2 resistance is improved. Further, by adding Cu to the Cr-added steel, the corrosion product is stabilized and the corrosion resistance is further improved.

【0011】また、本発明においてAr3以上の高温圧
延を採用したことが、低温靱性の向上をはかる上で有効
である点について以下に述べる。一般に高温からの冷却
による降温過程で生じる変態温度域と、低温からの加熱
による昇温過程で生じる変態温度域との間には100〜
200℃程度の温度差があり、昇温過程で生じる変態温
度域の方が高い。
Further, it will be described below that adopting high temperature rolling of Ar 3 or more in the present invention is effective in improving low temperature toughness. Generally, 100 to 100 is provided between the transformation temperature range generated in the temperature lowering process by cooling from high temperature and the transformation temperature region generated in the temperature rising process by heating from low temperature.
There is a temperature difference of about 200 ° C., and the transformation temperature range that occurs during the temperature rising process is higher.

【0012】そのため、本発明の場合のように図1に示
すごとく厚鋼板を適切な温度域まで一度冷却した後に復
熱させる過程においては、板厚表層部は昇温中にフェラ
イトからオーステナイトへ変態し、板厚中心部はいまだ
にフェライト変態が開始せずにオーステナイト単相の状
態である。そのため、復熱がある程度進行して両者の温
度差が少なくなった時点でも、板厚表層部ではフェライ
ト主体の金属組織を有し、板厚中心部ではオーステナイ
ト主体の金属組織を有するため、両者の間には大きな変
形抵抗差が生じ、板厚表層部の変形抵抗が極めて大き
い。
Therefore, as in the case of the present invention, as shown in FIG. 1, in the process of once cooling the thick steel plate to an appropriate temperature range and then reheating it, the surface portion of the plate thickness transforms from ferrite to austenite during temperature rise. However, the central part of the plate thickness is still in the austenite single phase state without the ferrite transformation starting. Therefore, even when the temperature difference between the two is reduced due to the progress of recuperation to some extent, the surface layer of the plate thickness has a metal structure mainly composed of ferrite, and the center part of the plate thickness has a metal structure mainly composed of austenite. A large difference in deformation resistance occurs between them, and the deformation resistance of the surface layer portion of the plate thickness is extremely large.

【0013】これは、図2に示すように、フェライト主
体の金属組織とオーステナイト主体の金属組織とではそ
の応力−歪関係が異なり、圧延真歪で0.2以下の範囲
ではフェライト主体の金属組織の方が同じ歪を与えた場
合の変形抵抗が大きいためである。本発明では板厚方向
に故意に温度差をつけた状態で圧下を加え、板厚中心部
より板厚表層部を硬化させ、板厚方向の変形抵抗差を増
加させることにより板厚中心部を強圧下し、低温靱性の
向上をはかるものである。
As shown in FIG. 2, the stress-strain relationship is different between the metal structure mainly composed of ferrite and the metal structure mainly composed of austenite, and the metal structure mainly composed of ferrite in the range of 0.2 or less in true rolling strain. This is because the deformation resistance is larger when the same strain is applied. In the present invention, a reduction is applied intentionally with a temperature difference in the plate thickness direction, the plate thickness surface layer part is hardened from the plate thickness center part, and the plate thickness center part is increased by increasing the deformation resistance difference in the plate thickness direction. It is intended to improve the low temperature toughness by performing strong reduction.

【0014】[0014]

【作用】本発明において化学成分範囲を限定した理由を
説明する。 C:C量の下限を0.01%としたのは、母材および溶
接部の強度の確保ならびにNb,V等の添加時に、これ
らの効果を発揮させるための最小量であるからである。
しかし、Cが多すぎるとHAZ靱性に悪影響をおよぼす
だけでなく、母材靱性、溶接性を劣化させるので、上限
を0.09%とした。C量が多いとマルテンサイトが生
成し、低温靱性を著しく劣化する。また過量のC添加は
CO2 腐食の防止の観点からは炭化物などのカソードサ
イトを生成するので、C量は低い方が望ましい。
The reason for limiting the range of chemical components in the present invention will be explained. C: The lower limit of the amount of C is set to 0.01% because it is the minimum amount for ensuring the strength of the base material and the welded portion and for exerting these effects when Nb, V, etc. are added.
However, too much C not only adversely affects the HAZ toughness, but also deteriorates the base material toughness and weldability, so the upper limit was made 0.09%. When the amount of C is large, martensite is generated, and the low temperature toughness is significantly deteriorated. Further, since excessive addition of C produces cathode sites such as carbides from the viewpoint of preventing CO 2 corrosion, it is desirable that the C content be low.

【0015】Si:Siは脱酸上、好ましくは0.05
%以上必要であるが、多く添加すると溶接性および溶接
部の靱性が劣化するので上限を0.5%とした。 Mn:Mnは強度、靱性を確保する上で不可欠な元素で
あり、その下限は0.7%である。HAZ靱性を改善す
るには、γ粒界に生成する粗大な初析フェライトを防止
する必要があるが、Mn添加は、これを抑制する効果が
ある。しかし、Mnが多すぎると焼入れ性が増加して、
溶接性、HAZ靱性を劣化させるだけでなく、スラブの
MnS等の中心偏析を助長して、耐HIC性を劣化させ
るので、Mn添加の上限を1.5%とする。
Si: Si is preferably 0.05 in terms of deoxidation.
% Or more, but if a large amount is added, the weldability and the toughness of the welded portion deteriorate, so the upper limit was made 0.5%. Mn: Mn is an element essential for securing strength and toughness, and its lower limit is 0.7%. In order to improve the HAZ toughness, it is necessary to prevent the coarse proeutectoid ferrite generated at the γ grain boundary, but the addition of Mn has the effect of suppressing this. However, if Mn is too much, the hardenability increases,
Not only the weldability and HAZ toughness are deteriorated, but also the center segregation of MnS of the slab is promoted and the HIC resistance is deteriorated, so the upper limit of Mn addition is made 1.5%.

【0016】P:本発明において不純物であるPを0.
03%以下とした。これは、母材、HAZの低温靱性を
より一層向上させ、スラブの中心偏析を軽減するためで
ある。P量の低減は、HAZにおける粒界破壊傾向を減
少させる傾向がある。好ましくはP量は0.01%以下
とする。
P: P that is an impurity in the present invention is 0.
It was set to 03% or less. This is to further improve the low temperature toughness of the base material and HAZ and reduce the center segregation of the slab. Reduction of the amount of P tends to reduce the tendency of intergranular fracture in the HAZ. Preferably, the P amount is 0.01% or less.

【0017】S:S量が0.005%を超えるとと、M
nSにより低温靱性が劣化する。従って、本発明ではS
量を0.005%以下とした。 Nb:高強度鋼においてはNbを添加することなく優れ
たHAZ靱性を得ることは困難である。Nbはγ粒界に
生成する初析フェライトを抑制し結晶粒を微細化し鋼を
高靱化する。この効果を得るためには最低0.02%の
Nb量が必要である。しかしながら、Nb量が多すぎる
と、逆に微細組織の生成が妨げられるので、その上限を
0.06%とした。
S: When the amount of S exceeds 0.005%, M
The low temperature toughness deteriorates due to nS. Therefore, in the present invention, S
The amount was 0.005% or less. Nb: In high strength steel, it is difficult to obtain excellent HAZ toughness without adding Nb. Nb suppresses the pro-eutectoid ferrite generated at the γ grain boundary, refines the crystal grains, and increases the toughness of the steel. To obtain this effect, a minimum Nb content of 0.02% is required. However, if the amount of Nb is too large, on the contrary, the formation of a fine structure is hindered, so the upper limit was made 0.06%.

【0018】Cr:CrはCO2 腐食防止の観点から重
要な元素である。下限値0.4%は耐CO 2 腐食性の効
果を得る最小値である。しかし、多すぎると現地溶接性
やHAZ靱性を劣化させる。そのため、上限を1.2%
とした。 Cu:CuはCr添加鋼の腐食生成物を安定化させるた
めには0.05%以上の添加が必要である。しかし、
0.4%を超えて添加すると熱間圧延時にCu−クラッ
クが発生し製造困難となる。このため、上限を0.4%
とした。
Cr: Cr is CO2Heavy from the viewpoint of corrosion prevention
It is an essential element. The lower limit of 0.4% is CO resistant 2Corrosive effect
It is the minimum value to obtain the result. However, if there is too much, local weldability
And deteriorates HAZ toughness. Therefore, the upper limit is 1.2%
And Cu: Cu stabilizes the corrosion product of Cr-added steel
In order to achieve this, addition of 0.05% or more is necessary. But,
If added in excess of 0.4%, Cu-clad during hot rolling.
This causes burrs and makes manufacturing difficult. Therefore, the upper limit is 0.4%
And

【0019】Ti:TiはTiNを形成して、HAZ組
織を微細化し、HAZ靱性を向上させる。下限の0.0
05%は、この効果を得るための最小量であり、また上
限の0.03%はTiC形成によるHAZ靱性劣化を防
止するためである。 Al:Alは、一般に脱酸上鋼に含まれる元素である
が、過量の添加は鋼の清浄度が損なわれるため、その上
限を0.05%とした。
Ti: Ti forms TiN to refine the HAZ structure and improve HAZ toughness. Lower limit of 0.0
05% is the minimum amount for obtaining this effect, and the upper limit of 0.03% is for preventing HAZ toughness deterioration due to TiC formation. Al: Al is an element generally contained in deoxidized upper steel, but the addition of an excessive amount impairs the cleanliness of the steel, so the upper limit was made 0.05%.

【0020】N:NはTiN等によるHAZ靱性を確保
するためには0.001%以上必要である。また、0.
005%を超えると耐HIC性が劣化するので、上限を
0.005%とした。 本発明の出発鋼には、所望によりさらに強度調整元素と
して、V,Ni,Mo,Ca,Zr,REMの少なくと
も1種を添加する。
N: N is required to be 0.001% or more in order to secure the HAZ toughness of TiN or the like. Also, 0.
If it exceeds 005%, the HIC resistance deteriorates, so the upper limit was made 0.005%. If desired, at least one of V, Ni, Mo, Ca, Zr, and REM is further added to the starting steel of the present invention as a strength adjusting element.

【0021】V:VはNbとほぼ同じ効果を持つ元素で
あるが、0.005%未満では効果がなく、上限は0.
060%まで許容できる。 Ni:Niは0.05%以上の添加により、溶接性、H
AZ靱性に悪影響をおよぼすことなく、母材の強度、靱
性を向上させる。一方、1.0%を超えると経済性の点
で好ましくないため、その上限を1.0%とした。
V: V is an element having almost the same effect as Nb, but if it is less than 0.005%, it has no effect, and the upper limit is 0.1.
Acceptable up to 060%. Ni: Addition of 0.05% or more of Ni results in weldability and H
The strength and toughness of the base material are improved without adversely affecting the AZ toughness. On the other hand, if it exceeds 1.0%, it is not preferable in terms of economy, so the upper limit was made 1.0%.

【0022】Mo:Moは0.05%以上の添加によ
り、母材の強度、靱性を向上させる元素であるが、多す
ぎると母材、HAZ靱性、溶接性の劣化を招き好ましく
ない。その上限は0.30%である。 Ca:Caは硫化物(MnS)の形態を制御し、低温靱
性を向上させる。Ca量が0.001%未満では実用上
効果がなく、また0.005%を超えて添加するとCa
O,CaSが多量に生成して大型介在物となり鋼の清浄
度を害するばかりでなく靱性、現地溶接性に悪影響をお
よぼす。
Mo: Mo is an element that improves the strength and toughness of the base material when added in an amount of 0.05% or more. However, if it is too large, it deteriorates the base material, HAZ toughness and weldability, which is not preferable. The upper limit is 0.30%. Ca: Ca controls the morphology of sulfide (MnS) and improves low temperature toughness. If the amount of Ca is less than 0.001%, there is no practical effect, and if it exceeds 0.005%, Ca
A large amount of O and CaS are formed to form large inclusions, which not only impairs the cleanliness of steel but also adversely affects toughness and field weldability.

【0023】Zr:ZrはほぼTiと同様の効果を持つ
元素である。その上下限は、それぞれ、0.005%、
0.025%である。 REM:REMはほぼTiと同様の効果を持つ元素であ
る。その下限は0.0005%、上限は0.01%であ
る。
Zr: Zr is an element having almost the same effect as Ti. The upper and lower limits are 0.005%,
It is 0.025%. REM: REM is an element that has almost the same effect as Ti. The lower limit is 0.0005% and the upper limit is 0.01%.

【0024】なお、個々の化学成分を上記のとおり限定
するだけでは不十分であり、下記の式 0.35≦C+Mn/6+(Cr+V)/5+(Ni+
Cu)/15≦0.50 を満たさなければならない。これは低温靱性や現地溶接
性がCrを含めた化学成分の全量で決まるからである。
下限の0.35%は必要な母材、溶接部の強度を得るた
めの最小量であり、0.50%は優れた低温靱性、溶接
性を得るための上限である。
It is not sufficient to limit the individual chemical components as described above, and the following formula 0.35≤C + Mn / 6 + (Cr + V) / 5 + (Ni +
Cu) /15≦0.50 must be satisfied. This is because the low temperature toughness and field weldability are determined by the total amount of chemical components including Cr.
The lower limit of 0.35% is the minimum amount for obtaining the necessary strength of the base material and the welded portion, and 0.50% is the upper limit for obtaining excellent low temperature toughness and weldability.

【0025】次に製造条件について説明する。本発明に
おいて鋳造後のスラブ加熱温度は1000〜1250℃
の範囲である。これは母材の強度、低温靱性を確保する
ために必要である。加熱温度が1000℃未満になると
Nb,V,Ti等の固溶が不十分となり、良好な強度、
靱性が得られない。しかし再加熱温度が1250℃を超
えると、オーステナイト粒が粗大化するため低温靱性が
劣化する。なお、鋳造後、鋳片を冷片にすることなく直
接圧延してもよい。
Next, manufacturing conditions will be described. In the present invention, the slab heating temperature after casting is 1000 to 1250 ° C.
Range. This is necessary to secure the strength and low temperature toughness of the base material. When the heating temperature is less than 1000 ° C, solid solution of Nb, V, Ti, etc. becomes insufficient, resulting in good strength,
Toughness cannot be obtained. However, if the reheating temperature exceeds 1250 ° C., the austenite grains become coarse and the low temperature toughness deteriorates. After casting, the slab may be directly rolled without forming a cold piece.

【0026】また、加熱後、圧延を行い表面温度が90
0℃以上で圧延を一旦中断し、5〜40℃/sの冷却速
度で表面温度が700℃以下になるまで冷却する必要が
ある。粗圧延を必要とするのはオーステナイト再結晶域
での圧延によって、組織の微細化の均一化をはかるため
である。スラブの表面温度が900℃未満から冷却する
と、鋼板中心部の温度も低下するために圧延終了時に板
厚平均温度をAr3以上に確保することが困難となる。
After heating, rolling is carried out to bring the surface temperature to 90
It is necessary to suspend the rolling once at 0 ° C or higher and cool it at a cooling rate of 5 to 40 ° C / s until the surface temperature becomes 700 ° C or lower. The rough rolling is required in order to make uniform the refinement of the structure by rolling in the austenite recrystallization region. If the surface temperature of the slab is cooled from less than 900 ° C., the temperature of the central portion of the steel sheet will also decrease, making it difficult to secure the average sheet thickness at Ar 3 or higher at the end of rolling.

【0027】冷却による到達温度域を表面温度で700
℃以下とした理由は、700℃を超える温度では板厚中
心部の温度が復熱過程で未再結晶温度域まで下がらない
ためである。冷却速度は、小さ過ぎると板厚表層部での
αへの変態量が少なくなり、板厚中心部での強圧下がで
きなくなるため5℃/s以上とした。冷却速度が大き過
ぎると板厚平均温度が低下して、圧延終了時に板厚平均
温度をAr3以上に確保できないため上限を40℃/s
とした。
The temperature range reached by cooling is 700 at the surface temperature.
The reason why the temperature is not higher than 700 ° C. is that the temperature at the center of the plate thickness does not drop to the non-recrystallized temperature range in the recuperating process at a temperature higher than 700 ° C. If the cooling rate is too low, the amount of transformation into α in the surface layer portion of the sheet thickness becomes small, and strong reduction cannot be performed at the center portion of the sheet thickness, so it was set to 5 ° C / s or more. If the cooling rate is too high, the sheet thickness average temperature decreases, and the sheet thickness average temperature cannot be kept above Ar 3 at the end of rolling, so the upper limit is 40 ° C / s.
And

【0028】また、冷却後、表面温度がAc3以下、板
厚中心部温度が950℃以下の温度域になるまで放置
し、その後累積圧下率で60%以上でかつ平均1パス当
りの圧延真歪が0.2以下となるように圧下を加える必
要がある。冷却後の圧延開始時の表面温度をAc3以下
とした理由はAc3を超えてしまうと板厚表層部のαが
γへ逆変態してしまい、本発明においてαとγとの変形
抵抗差による靱性改善が困難となるからである。
After cooling, the steel sheet was allowed to stand until the surface temperature was Ac 3 or less and the sheet thickness center temperature was 950 ° C. or less, and then the rolling reduction was 60% or more in cumulative reduction and the average rolling pass per pass. It is necessary to apply reduction so that the strain becomes 0.2 or less. The reason why the surface temperature at the start of rolling after cooling is set to Ac 3 or less is that when Ac 3 is exceeded, α in the surface layer portion of the plate thickness reversely transforms to γ, and in the present invention, the difference in deformation resistance between α and γ. This makes it difficult to improve the toughness.

【0029】冷却終了後の板厚中心部の温度が950℃
以下の温度域に低下するまで放置するのは、板厚中心部
の温度をオーステナイト未再結晶温度域に低下させた
後、圧下を加えるためである。冷却後の圧延の累積圧下
率は、60%未満では板厚表層部(α)と板厚中心部
(γ)の変形抵抗差による強圧下の効果は小さく、板厚
中心部へ導入される加工歪量が少ないので、60%以上
とした。
The temperature at the center of the plate thickness after cooling is 950 ° C.
The reason for allowing the temperature to fall to the following temperature range is to reduce the temperature of the central part of the plate thickness to the austenite non-recrystallization temperature range and then apply reduction. If the cumulative rolling reduction after cooling is less than 60%, the effect of strong reduction due to the difference in deformation resistance between the sheet thickness surface layer portion (α) and the sheet thickness center portion (γ) is small, and processing introduced into the sheet thickness center portion Since the amount of strain is small, it was set to 60% or more.

【0030】平均1パス当りの圧延真歪は、0.2を超
えると板厚中心部と板厚表層部の変形抵抗差が逆転して
しまうため(図2に示す)、0.2以下に限定した。さ
らに、冷却後の圧延は板厚平均温度がAc3以上で終了
し、その後直ちに5〜40℃/sの冷却速度で板厚平均
が350〜550℃となるまで加速冷却し、その後空冷
する。
When the average rolling true strain per one pass exceeds 0.2, the difference in deformation resistance between the central portion of the sheet thickness and the surface layer portion of the sheet thickness reverses (as shown in FIG. 2), so it is set to 0.2 or less. Limited Further, the rolling after cooling is completed when the sheet thickness average temperature is Ac 3 or more, and immediately thereafter, accelerated cooling is performed at a cooling rate of 5 to 40 ° C./s until the sheet thickness average becomes 350 to 550 ° C., and then air cooling is performed.

【0031】冷却後の圧延が、板厚平均温度がAc3
満で終了すると、MnS系介在物が残存した場合延伸
化しやすい、Mn等の偏析により周囲よりもAc3
低下している中心偏析部へγ−α変態にともなうCの濃
化が起こり中心偏析部にマルテンサイト等の硬化組織が
形成されるため低温靱性が低下する。圧延終了後の加速
冷却+放冷は良好な強度、靱性を確保するために実施す
る。加速度冷却において、5℃/s未満の冷却速度また
は550℃を超える冷却開始温度にすると、γ−α変態
にともなうCの濃化が起こり、中心偏析部にマルテンサ
イト等の硬化組織が形成されるため低温靱性が低下す
る。
When the rolling after cooling is completed when the sheet thickness average temperature is less than Ac 3 , if the MnS inclusions remain, it tends to be stretched. The center segregation in which Ac 3 is lower than the surroundings due to segregation of Mn and the like. Since C is concentrated in the portion due to the γ-α transformation and a hardened structure such as martensite is formed in the central segregation portion, the low temperature toughness is reduced. Accelerated cooling + cooling after completion of rolling are performed to ensure good strength and toughness. In accelerated cooling, if the cooling rate is less than 5 ° C./s or the cooling start temperature is more than 550 ° C., the concentration of C occurs due to the γ-α transformation, and a hardened structure such as martensite is formed in the central segregation portion. Therefore, the low temperature toughness decreases.

【0032】40℃/sを超える冷却速度または350
℃未満の冷却開始温度では焼入れ性が高いマルテンサイ
ト等の硬化組織が形成され、低温靱性の確保が困難にな
る。加速冷却後の空冷は焼戻しの効果があり、高強度
化、高靱化がはかれる。
Cooling rate over 40 ° C./s or 350
At a cooling start temperature of less than ° C, a hardened structure such as martensite having high hardenability is formed, and it becomes difficult to secure low temperature toughness. Air cooling after accelerated cooling has the effect of tempering, and can achieve high strength and high toughness.

【0033】[0033]

【実施例】表1に示す化学成分の供試鋼のCCスラブを
表2、表3(表2のつつぎ)に示すような製造条件で再
加熱、熱間圧延そして加速冷却を行った。得られた鋼板
の機械的性質、耐CO2 腐食性を表4に示す。なお、試
験片の採取状況の概略図を図3に示す。引張試験は全厚
引張とし、シャルピー試験片は板厚中心部より、腐食試
験片は表層の微細なフェライト組織よりそれぞれ採取し
た。
EXAMPLE The CC slab of the test steel having the chemical composition shown in Table 1 was reheated, hot rolled and accelerated cooled under the production conditions shown in Tables 2 and 3 (Table 2). Table 4 shows the mechanical properties and CO 2 corrosion resistance of the obtained steel sheet. Note that FIG. 3 shows a schematic view of the situation of collecting the test pieces. The tensile test was a full-thickness tensile test, and the Charpy test piece was sampled from the center of the plate thickness, and the corrosion test piece was sampled from the fine ferrite structure of the surface layer.

【0034】鋼11〜24は適切な製造条件ではないの
で、低温靱性および耐CO2 腐食性が劣化している。鋼
25〜30は化学成分が適切でなく、所望の機械的性質
が得られない。鋼25はMn量が本発明範囲を超えてい
るため溶接部の焼入れ性が増加して靱性が低下した。鋼
26はTiが、鋼27はNbが本発明範囲よりそれぞれ
不足しているために靱性が低下した例である。鋼28は
本発明範囲よりC量が多いため靱性が低下するととも
に、セメンタイト等のカソードサイトが増加し耐CO2
腐食性を劣化させた例である。鋼29は本発明範囲より
Cr量が低く、CO2 腐食環境下でカソード反応を抑制
できず耐CO2 腐食性が劣化した。鋼30は本発明範囲
よりCr量が多く溶接部の靱性が低下した。
Since the steels 11 to 24 are not under appropriate manufacturing conditions, the low temperature toughness and the CO 2 corrosion resistance are deteriorated. Steels 25 to 30 have an unsuitable chemical composition and cannot obtain desired mechanical properties. In Steel 25, since the Mn content exceeds the range of the present invention, the hardenability of the welded portion increased and the toughness decreased. Steel 26 is an example in which Ti and steel 27 are inferior in toughness due to lack of Nb in the range of the present invention, respectively. Steel 28 has a higher amount of C than the range of the present invention, so that the toughness is reduced and the number of cathode sites such as cementite is increased, resulting in CO 2 resistance.
This is an example of deterioration in corrosiveness. Steel 29 has a low Cr content than the present invention range, resistance CO 2 corrosion resistance is deteriorated can not be suppressed cathode reaction under CO 2 corrosive environments. Steel 30 had a larger amount of Cr than the range of the present invention, and the toughness of the welded portion decreased.

【0035】なお、表1において、Pcは下記式の値を
示す。 Pc=C+Mn/6+(Cr+V)/5+(Cu+N
i)/15
In Table 1, Pc represents the value of the following formula. Pc = C + Mn / 6 + (Cr + V) / 5 + (Cu + N
i) / 15

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【発明の効果】以上、説明したような本発明により得ら
れた鋼板は、CO2 を含有した環境における耐CO2
食性に優れ、しかも特に母材のみならず溶接部の靱性に
おいても優れているので、ラインパイプ用鋼管材として
の用途への適用性を有効に高めることができ、本発明の
産業に及ぼす効果は極めて大である。
Effect of the Invention] above, obtained steel sheet by the present invention as described, excellent resistance to CO 2 corrosion in an environment containing CO 2, moreover particularly excellent in toughness of the weld not only preform Therefore, the applicability as a steel pipe material for line pipe can be effectively enhanced, and the effect of the present invention on the industry is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の圧延、水冷パターンを示す線図であ
る。
FIG. 1 is a diagram showing a rolling and water cooling pattern of the present invention.

【図2】フェライトおよびオーステナイト主体組織での
圧延真歪と変形抵抗との関係を示す図である。
FIG. 2 is a diagram showing a relationship between rolling true strain and deformation resistance in a ferrite and austenite-based structure.

【図3】試験片の採取位置概略図である。FIG. 3 is a schematic view of a sampling position of a test piece.

【符号の説明】[Explanation of symbols]

1 板厚 2 表層部 3 中心部 1 Plate thickness 2 Surface layer 3 Central part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 為広 博 東京都千代田区大手町二丁目6番3号 新 日本製鐵株式会社内 (72)発明者 小川 洋之 東京都千代田区大手町二丁目6番3号 新 日本製鐵株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroshi Tamehiro 2-3-6 Otemachi, Chiyoda-ku, Tokyo Within Nippon Steel Corporation (72) Inventor Hiroyuki Ogawa 2-6, Otemachi, Chiyoda-ku, Tokyo No. 3 within Nippon Steel Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で C :0.01〜0.09% Si:0.5%以
下 Mn:0.7〜1.5% P :0.03%
以下 S :0.005%以下 Nb:0.01〜
0.06% Cr:0.4〜1.2% Cu:0.05〜
0.4% Ti:0.005〜0.03% Al:0.05%
以下 N :0.001〜0.005% を含有し、かつ下記の式 0.35≦C+Mn/6+(Cr+V)/5+(Cu+
Ni)/15≦0.50 を満たし、残部鉄および不可避不純物からなる鋼を鋳造
後、冷片にすることなく、或は冷片を1100〜125
0℃の温度に加熱し抽出後、圧延を開始して表面温度が
900℃以上で圧延を一旦中断し、引続き5〜40℃/
sの冷却速度で表面温度が700℃以下になるまで水冷
した後、表面温度がAc3以下、板厚中心部温度が95
0℃以下になるまで放冷し、しかる後に累積圧下率が6
0%以上でかつ平均1パス当りの圧延真歪が0.2以下
となる圧下を加え、板厚平均温度がAr3以上で圧延を
終了し、直ちに5〜40℃/sの冷却速度で板厚平均温
度が350〜550℃となるまで冷却し、その後空冷す
ることを特徴とする耐CO2腐食性および低温靱性に優
れた鋼板の製造方法。
1. C: 0.01 to 0.09% Si: 0.5% or less by weight% Mn: 0.7 to 1.5% P: 0.03%
Hereinafter S: 0.005% or less Nb: 0.01 to
0.06% Cr: 0.4 to 1.2% Cu: 0.05 to
0.4% Ti: 0.005-0.03% Al: 0.05%
Below N: 0.001 to 0.005% is contained, and the following formula 0.35 ≦ C + Mn / 6 + (Cr + V) / 5 + (Cu +
Ni) /15≦0.50 and casting steel with the balance iron and unavoidable impurities, without forming cold pieces, or cooling the cold pieces from 1100 to 125
After extraction by heating to a temperature of 0 ° C., rolling is started and the surface temperature is 900 ° C. or higher, the rolling is temporarily stopped, and then 5 to 40 ° C. /
After water cooling at a cooling rate of s until the surface temperature becomes 700 ° C. or less, the surface temperature is Ac 3 or less and the plate thickness center temperature is 95
Allow to cool to 0 ° C or below, then the cumulative rolling reduction is 6
Rolling is terminated at 0% or more and the average rolling true strain per pass is 0.2 or less, the sheet thickness average temperature is Ar 3 or more, and the sheet is immediately rolled at a cooling rate of 5 to 40 ° C./s. A method for producing a steel sheet excellent in CO 2 corrosion resistance and low temperature toughness, which comprises cooling until a thickness average temperature reaches 350 to 550 ° C. and then air cooling.
【請求項2】 重量%で C :0.01〜0.09% Si:0.5%
以下 Mn:0.7〜1.5% P :0.03
%以下 S :0.005%以下 Nb:0.01
〜0.06% Cr:0.4〜1.2% Cu:0.05
〜0.4% Ti:0.005〜0.03% Al:0.05
%以下 N :0.001〜0.005% を含有し、さらに V :0.005〜0.060% Ni :0.05
〜1.0% Mo:0.05〜0.30% Ca:0.001
〜0.005% Zr:0.005〜0.025% REM:0.00
05〜0.01% のうち1種以上を含有し、かつ下記の式 0.35≦C+Mn/6+(Cr+V)/5+(Cu+
Ni)/15≦0.50 を満たし、残部鉄および不可避不純物からなる鋼を鋳造
後、冷片にすることなく、或は冷片を1100〜125
0℃の温度に加熱し抽出後、圧延を開始して表面温度が
900℃以上で圧延を一旦中断し、引続き5〜40℃/
sの冷却速度で表面温度が700℃以下になるまで放冷
した後、表面温度がAc3以下、板厚中心部温度が95
0℃以下になるまで水冷し、しかる後に累積圧下率が6
0%以上でかつ平均1パス当りの圧延真歪が0.2以下
となる圧下を加え、板厚平均温度がAr3以上で圧延を
終了し、直ちに5〜40℃/sの冷却速度で板厚平均温
度が350〜550℃となるまで冷却し、その後空冷す
ることを特徴とする耐CO2腐食性、低温靱性および耐
サワー性に優れた鋼板の製造方法。
2. C: 0.01 to 0.09% Si: 0.5% by weight
Below Mn: 0.7 to 1.5% P: 0.03
% Or less S: 0.005% or less Nb: 0.01
~ 0.06% Cr: 0.4-1.2% Cu: 0.05
~ 0.4% Ti: 0.005-0.03% Al: 0.05
% Or less N: 0.001 to 0.005% is contained, and further V: 0.005 to 0.060% Ni: 0.05
~ 1.0% Mo: 0.05-0.30% Ca: 0.001
-0.005% Zr: 0.005-0.025% REM: 0.00
It contains one or more of the above-mentioned formula 0.35 ≦ C + Mn / 6 + (Cr + V) / 5 + (Cu +
Ni) /15≦0.50 and casting steel with the balance iron and unavoidable impurities, without forming cold pieces, or cooling the cold pieces from 1100 to 125
After extraction by heating to a temperature of 0 ° C., rolling is started and the surface temperature is 900 ° C. or higher, the rolling is temporarily stopped, and then 5 to 40 ° C. /
After allowing to cool at a cooling rate of s until the surface temperature becomes 700 ° C. or less, the surface temperature is Ac 3 or less and the plate thickness center temperature is 95
Water-cool until the temperature falls below 0 ° C, after which the cumulative rolling reduction is 6
Rolling is terminated at 0% or more and the average rolling true strain per pass is 0.2 or less, the sheet thickness average temperature is Ar 3 or more, and the sheet is immediately cooled at a cooling rate of 5 to 40 ° C./s. A method for producing a steel sheet excellent in CO 2 corrosion resistance, low temperature toughness and sour resistance, characterized by cooling until a thickness average temperature reaches 350 to 550 ° C. and then air cooling.
JP1627795A 1995-02-02 1995-02-02 Production of steel plate for line pipe excellent in carbon dioxide corrosion resistance and low temperature toughness Withdrawn JPH08209241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1627795A JPH08209241A (en) 1995-02-02 1995-02-02 Production of steel plate for line pipe excellent in carbon dioxide corrosion resistance and low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1627795A JPH08209241A (en) 1995-02-02 1995-02-02 Production of steel plate for line pipe excellent in carbon dioxide corrosion resistance and low temperature toughness

Publications (1)

Publication Number Publication Date
JPH08209241A true JPH08209241A (en) 1996-08-13

Family

ID=11912062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1627795A Withdrawn JPH08209241A (en) 1995-02-02 1995-02-02 Production of steel plate for line pipe excellent in carbon dioxide corrosion resistance and low temperature toughness

Country Status (1)

Country Link
JP (1) JPH08209241A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302128C (en) * 2003-12-15 2007-02-28 中国科学院金属研究所 Process for making high-performance ultra-fine needle form ferrite type gas delivery pipe steel
CN103695788A (en) * 2013-12-24 2014-04-02 天津钢铁集团有限公司 Wire rod production technology for ocean hose capable of resisting high pressure and high-concentration acid corrosion
WO2015151469A1 (en) * 2014-03-31 2015-10-08 Jfeスチール株式会社 Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
EP2380997A4 (en) * 2009-01-15 2016-12-28 Nippon Steel & Sumitomo Metal Corp Steel for weld construction having excellent high-temperature strength and low-temperature toughness and process for producing the steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302128C (en) * 2003-12-15 2007-02-28 中国科学院金属研究所 Process for making high-performance ultra-fine needle form ferrite type gas delivery pipe steel
EP2380997A4 (en) * 2009-01-15 2016-12-28 Nippon Steel & Sumitomo Metal Corp Steel for weld construction having excellent high-temperature strength and low-temperature toughness and process for producing the steel
CN103695788A (en) * 2013-12-24 2014-04-02 天津钢铁集团有限公司 Wire rod production technology for ocean hose capable of resisting high pressure and high-concentration acid corrosion
WO2015151469A1 (en) * 2014-03-31 2015-10-08 Jfeスチール株式会社 Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
CN106133175A (en) * 2014-03-31 2016-11-16 杰富意钢铁株式会社 Resistance to distortion aging property and the high deformability line-pipes steel of the characteristic good of resistance to HIC and manufacture method thereof and welded still pipe
US10344362B2 (en) 2014-03-31 2019-07-09 Jfe Steel Corporation Steel material for highly deformable line pipes having superior strain aging resistance and superior HIC resistance, method for manufacturing same, and welded steel pipe

Similar Documents

Publication Publication Date Title
WO2013011791A1 (en) Low-yield-ratio high-strength hot-rolled steel plate with excellent low-temperature toughness and process for producing same
JP5991175B2 (en) High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP2001152248A (en) Method for producing high tensile strength steel plate and steel pipe excellent in low temperature toughness
JPH07173536A (en) Production of steel sheet for high strength line pipe excellent in sour resistance
JP6519024B2 (en) Method of manufacturing low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
JP4264177B2 (en) Method for producing a steel material having a coarse ferrite layer on the surface layer
JPH06293915A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and sour resistance
JPH0931536A (en) Production of ultrahigh strength steel plate excellent in low temperature toughness
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JP3009569B2 (en) Method for producing CO2 corrosion resistant sour resistant steel sheet with excellent low temperature toughness
JPH08209241A (en) Production of steel plate for line pipe excellent in carbon dioxide corrosion resistance and low temperature toughness
JPH08295929A (en) Production of sour resistant steel sheet for line pipe excellent in co2 corrosion resistance and low temperature toughness
JPH07278659A (en) Manufacture of steel plate for line pipe excellent in co2 corrosion resistance, sour resistance and low temperature toughness
JP3214353B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JP3218447B2 (en) Method of producing sour resistant thin high strength steel sheet with excellent low temperature toughness
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
JP3009558B2 (en) Manufacturing method of thin high-strength steel sheet with excellent sour resistance
JPH08311549A (en) Production of ultrahigh strength steel pipe
JPH08311548A (en) Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone
JPH07242944A (en) Production of sour resistant high strength steel plate having excellent low temperature toughness
JP2004339550A (en) LOW YIELD RATIO 570 MPa CLASS HIGH-TENSILE STRENGTH STEEL HAVING EXCELLENT WELD ZONE TOUGHNESS AND THREAD CUTTABILITY, AND ITS PRODUCTION METHOD
JPH09324217A (en) Manufacture of high strength steel for line pipe, excellent in hic resistance
JPH05148539A (en) Production of steel for uoe steel pipe which is less embrittled by heating in (gamma+alpha) two-phase region
JPH05148544A (en) Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction
JPH09263831A (en) Production of extra thick high strength bent pipe excellent in toughness at low temperature

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402