JPH0211722A - Manufacture of steel plate having excellent hydrogen-induced cracking resistance - Google Patents

Manufacture of steel plate having excellent hydrogen-induced cracking resistance

Info

Publication number
JPH0211722A
JPH0211722A JP16343588A JP16343588A JPH0211722A JP H0211722 A JPH0211722 A JP H0211722A JP 16343588 A JP16343588 A JP 16343588A JP 16343588 A JP16343588 A JP 16343588A JP H0211722 A JPH0211722 A JP H0211722A
Authority
JP
Japan
Prior art keywords
steel
induced cracking
hydrogen
rolling
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16343588A
Other languages
Japanese (ja)
Other versions
JPH0730392B2 (en
Inventor
Kensaburo Takizawa
瀧澤 謙三郎
Haruo Kaji
梶 晴男
Masato Shimizu
真人 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63163435A priority Critical patent/JPH0730392B2/en
Publication of JPH0211722A publication Critical patent/JPH0211722A/en
Publication of JPH0730392B2 publication Critical patent/JPH0730392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture the title steel plate in the environment of humid hydrogen sulfide by subjecting a steel slab having specific compsn. to hot finish rolling under specific conditions, thereafter subjecting the steel to accelerated cooling at specific cooling speed according to its carbon equivalent and thereafter allowing it to cool. CONSTITUTION:A steel contg., by weight, 0.03 to 0.20% C, 0.02 to 0.60% Si, 0.50 to 2.50% Mn, <0.020% P, <0.003% S, 0.005 to 0.060% Al, <0.005% Ti, 0.0005 to 0.005% Ca and <0.0050% N is subjected to hot rolling at <=900 deg.C at >=60% or >=30% draft rate to finish its final rolling at the temp. of (Ar3 point -30 deg.C) or above. The steel is rapidly cooled at the cooling rate CR ( deg.C/sec) expressed by the Formula II at the time of >=0.785% carbon equivalent CeqS expressed by the Formula I of the steel and at the cooling rate CR expressed by the Formula III at the time of <=0.785% carbon equivalent. After that, the steel is allowed to cool or is tempered at Ac1 to 500 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐水素誘起割れ性の優れた鋼板の製造方法に係
り、更に詳しくは、湿潤硫化水素環境下で稼働する石油
やガスのパイプライン、精製装置などに適した耐水素誘
起割れ性の優れた非調質鋼板又は調質鋼板の製造方法に
関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for manufacturing a steel sheet with excellent hydrogen-induced cracking resistance, and more particularly, to an oil or gas pipeline operating in a humid hydrogen sulfide environment. The present invention relates to a method for producing a non-tempered steel plate or a tempered steel plate with excellent resistance to hydrogen-induced cracking, which is suitable for refining equipment and the like.

(従来の技術) 近年、湿潤硫化水素雰囲気で使用される機器、例えば、
硫化水素を含む原油や天然ガスを輸送するラインパイプ
や石油精製装置等において、所謂、水素誘起割れ(HI
C)に起因する事故が少なくなく、耐水素誘起割れ性に
優れた鋼板が切望されている。
(Prior Art) In recent years, equipment used in a humid hydrogen sulfide atmosphere, for example,
So-called hydrogen-induced cracking (HI) occurs in line pipes and oil refinery equipment that transport crude oil and natural gas containing hydrogen sulfide.
There are many accidents caused by C), and a steel plate with excellent hydrogen-induced cracking resistance is desperately needed.

この水素誘起割れは、鋼の腐蝕により発生した水素が原
子状態で鋼中に侵入、拡散し、介在物と地鉄との界面で
集積、分子化することにより生じる水素ガスの圧力によ
って発生し、これが鋼中の偏析部に生じるバンド状の硬
化組織等に沿って伝播すると云われている。
This hydrogen-induced cracking occurs due to the pressure of hydrogen gas generated when hydrogen generated by corrosion of the steel penetrates and diffuses into the steel in an atomic state, accumulates and becomes molecules at the interface between the inclusions and the base steel. This is said to propagate along band-like hardened structures that occur in segregated areas in the steel.

したがって、耐水素誘起割れ対策としては、現状のとこ
ろ、 (1)鋼中への水素の侵入、拡散の抑制。
Therefore, the current measures to prevent hydrogen-induced cracking are: (1) Suppression of hydrogen intrusion and diffusion into steel.

(2)介在物、特に、先端の切欠効果の大きいA系介在
物の低減と形態制御。
(2) Reduction and shape control of inclusions, especially A-based inclusions that have a large notch effect at the tip.

(3)偏析の低減、硬化組織の生成抑制。(3) Reducing segregation and suppressing the formation of hardened structures.

等の方法が採られている。The following methods have been adopted.

(発明が解決しようとする課題) しかし、前記(1)の対応策については、例えば、特開
昭50−097515号公報に記載されているように、
Cuの添加により防蝕被膜を形成させる方法があるが、
pH,3のような厳しい環境下においてはその効果がな
く、水素誘起割れの発生を抑えることができない。
(Problem to be Solved by the Invention) However, as for the countermeasure for the above (1), for example, as described in Japanese Patent Application Laid-Open No. 50-097515,
There is a method of forming a corrosion-resistant film by adding Cu, but
It has no effect in a harsh environment such as pH 3, and cannot suppress the occurrence of hydrogen-induced cracking.

また、前記(2)の対応策については、特開昭51−1
14318号公報に示されている硫化物の形状、数を規
制する方法や、特開昭55−128536号公報、特開
昭54−031020号公報等に示されているようにC
a、REMによりA系介在物を形態制御する方法がある
が、鋼板の強度水準が高くなり、環境が厳しくなると、
水素誘起割れの発生を完全に防止することは困難である
In addition, regarding the countermeasure for (2) above, please refer to JP-A-51-1
The method of controlling the shape and number of sulfides as shown in Japanese Patent Publication No. 14318, and the method of regulating the shape and number of sulfides as shown in Japanese Patent Application Laid-open No. 55-128536, Japanese Patent Application Laid-open No. 54-031020, etc.
a. There is a method of controlling the morphology of A-based inclusions using REM, but as the strength level of steel plates increases and the environment becomes harsher,
It is difficult to completely prevent hydrogen-induced cracking.

更に、前記(3)の対応策については、特開昭58−1
99813号公報に記載されているようにP含有量を0
.002%以下と極端に下げる方法があるが、コストの
点で問題があり、また、特開昭57−073162号公
報に記載されているように硬化組織部の硬さをHv≦3
50とする方法があるが、pHの低い厳しい環境下で高
強度の鋼の水素誘起割れの発生を皆無とすることは困難
である。
Furthermore, regarding the countermeasure for the above (3), see Japanese Patent Application Laid-Open No. 58-1
As described in Publication No. 99813, the P content is reduced to 0.
.. There is a method to extremely lower the hardness to 0.002% or less, but there is a problem in terms of cost, and as described in Japanese Patent Application Laid-Open No. 57-073162, the hardness of the hardened tissue part is reduced to Hv≦3.
50, but it is difficult to completely eliminate hydrogen-induced cracking in high-strength steel under harsh environments with low pH.

勿論、これらの方法を組合せて用いることが多いが、p
H,3のような厳しい環境下において水素誘起割れの発
生を完全に抑えることは困難であり、また、可能な場合
には工業製品の生産性、製造コストの点で充分なものと
は云えないのが実状である。
Of course, these methods are often used in combination, but p
It is difficult to completely suppress the occurrence of hydrogen-induced cracking in harsh environments such as H.3, and even if possible, it may not be sufficient in terms of productivity and manufacturing costs of industrial products. This is the actual situation.

本発明は、か−る状況のもとでなされたものであって、
PH=3のような厳しい環境下においても水素誘起割れ
が全くなく、優れた耐水素誘起割れ性を有する鋼板を製
造し得る方法を提供することを目的とするものである。
The present invention was made under such circumstances, and
It is an object of the present invention to provide a method for producing a steel sheet that is free from hydrogen-induced cracking and has excellent hydrogen-induced cracking resistance even under a harsh environment such as pH=3.

(課題を解決するための手段) 本発明者らは、上記の問題点を解決するべく鋼の化学成
分、圧延・冷却条件等について検討し、耐水素誘起割れ
性の優れた非調質鋼板、調質鋼板のいずれも製造可能な
方法を見い出すべく鋭意研究を行った。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present inventors have studied the chemical composition of steel, rolling/cooling conditions, etc., and have developed a non-tempered steel sheet with excellent hydrogen-induced cracking resistance. We conducted extensive research to find a method that would allow us to manufacture both heat-treated steel sheets.

その結果、鋼の化学成分を適切に調整すると共に、非調
質鋼を得る場合と調質鋼を得る場合とに応じて、熱間圧
延での特定温度域での圧下率と圧延仕上温度、並びに圧
延終了後の冷却速度をコントロールすることにより、所
望の非調質鋼を得ることができ、また更に焼もどしの条
件もコントロールすることにより、所望の調質鋼を得る
ことが可能であることを見い出し、ここに本発明をなす
に至ったのである。
As a result, in addition to appropriately adjusting the chemical composition of the steel, the rolling reduction rate and rolling finishing temperature in a specific temperature range during hot rolling, depending on whether to obtain non-thermal steel or heat-treated steel, In addition, by controlling the cooling rate after rolling, it is possible to obtain the desired non-tempered steel, and furthermore, by controlling the tempering conditions, it is possible to obtain the desired tempered steel. This discovery led to the creation of the present invention.

すなわち、本発明は、C:0.03〜0.20%、Si
:0.02−0.60%、Mn:0.50〜2.50%
、P:0.020%以下、S:0.003%以下、A 
Q :0.OO5〜0.060%、Ti:0.005%
以下、Ca:0.OO05−0,0050%及びN:0
.0050%以下を含み、更に必要に応じて、Nb:0
.OO5−0,100%、V:0.OO5〜0゜100
%、Cu:0.05−1.50%、Ni: 0 、05
〜1.50%、Cr:0.05〜0.50%及びMO:
0.05〜0.50%のうちの1種又は2種以上を含み
、残部が鉄及び不可避的不純物からなる鋼片を加熱、熱
間圧延を行うに当って、要するに、(1)非調質鋼の場
合には、900℃以下での圧下率が60%以上、圧延仕
上温度が(Ar3−30’c)以上とする圧延を終了し
た後、冷却速度CR(’C/S)が後述の式(1)、(
2)で示される範囲で450℃以上600℃未満の温度
まで加速冷却し、その後、放冷することを特徴とするも
のであり、(2)また、調質鋼の場合には、900℃以
下での圧下率が30%以上、圧延仕上温度が(Ar33
0℃)以上とする圧延を終了した後、冷却速度CR(℃
/s)が後述の式(3)、(4)で示される範囲で60
0℃未満の任意の温度まで加速冷却し、その後頁にAC
1〜500℃の温度範囲にて焼もどしを行うことを特徴
とするものである。
That is, in the present invention, C: 0.03 to 0.20%, Si
:0.02-0.60%, Mn:0.50-2.50%
, P: 0.020% or less, S: 0.003% or less, A
Q:0. OO5~0.060%, Ti:0.005%
Below, Ca: 0. OO05-0,0050% and N:0
.. 0050% or less, and if necessary, Nb:0
.. OO5-0, 100%, V: 0. OO5~0°100
%, Cu: 0.05-1.50%, Ni: 0,05
~1.50%, Cr:0.05~0.50% and MO:
In short, when heating and hot rolling a steel billet containing one or more of 0.05 to 0.50%, with the remainder consisting of iron and unavoidable impurities, (1) In the case of quality steel, after finishing rolling at a temperature of 900°C or lower with a rolling reduction of 60% or higher and a finishing temperature of (Ar3-30'c) or higher, the cooling rate CR ('C/S) is set as described below. Equation (1), (
It is characterized by accelerated cooling to a temperature of 450°C or more and less than 600°C within the range shown in 2), and then allowed to cool. The rolling reduction rate is 30% or more, and the rolling finishing temperature is (Ar33
After finishing the rolling to achieve a temperature of 0°C or higher, the cooling rate CR (°C
/s) is 60 in the range shown by formulas (3) and (4) below.
Accelerated cooling to any temperature below 0℃, then AC
It is characterized by tempering in a temperature range of 1 to 500°C.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

先ず、本発明における化学成分の限定理由について説明
する。
First, the reasons for limiting the chemical components in the present invention will be explained.

Cは強度を確保するために0.03%以上を必要とする
が、0.20%を超えて含有されると溶接割れ感受性が
高くなる。よって、C含有量は0゜03〜0.20%の
範囲とする。
Although 0.03% or more of C is required to ensure strength, if the content exceeds 0.20%, the susceptibility to weld cracking increases. Therefore, the C content is set in the range of 0.03% to 0.20%.

Siは脱酸に必要な元素であり、そのためには含有量は
0.02%以上を必要とする。しかし、多量に含有され
ると靭性を劣化させる。よって、Si含有量は0.02
〜0.60%の範囲とする。
Si is an element necessary for deoxidation, and for that purpose the content needs to be 0.02% or more. However, when contained in large amounts, toughness deteriorates. Therefore, the Si content is 0.02
The range is 0.60%.

Mnは強度確保のために必要な元素であるが、含有量が
0.50%未満ではこの効果は少なく、また2、50%
を超えて含有されると溶接性が損われる。よって、Mn
含有量は0.50〜2.50%の範囲とする。
Mn is a necessary element to ensure strength, but if the content is less than 0.50%, this effect will be small;
If the content exceeds the above, weldability will be impaired. Therefore, Mn
The content is in the range of 0.50 to 2.50%.

Pは、本来、鋼の偏析部の硬さを上昇し、耐水素誘起割
れ性を劣化させるので好ましくないが、本発明の要件を
満足する限りにおいては、特にP含有量の規則は不要で
ある。しかし、溶接部の靭性低下を防止する点がら、P
含有量は0.020%以下に規制する。
P is inherently undesirable because it increases the hardness of the segregated parts of steel and deteriorates the hydrogen-induced cracking resistance, but as long as the requirements of the present invention are satisfied, there is no need for any particular rules regarding the P content. . However, P
The content is regulated to 0.020% or less.

SはA系介在物を形成し、耐水素誘起割れ性を害する元
素であり、好ましくなく、そのために。。
S is an element that forms A-based inclusions and impairs hydrogen-induced cracking resistance, and is therefore undesirable. .

003%以下に規制する。0.003% or less.

AQは脱酸元素として0.005%以上が必要であるが
、多量の含有は靭性の劣化を招来するので0.060%
を上限とする必要がある。よって、AQ含有量は0.0
05〜0.060%の範囲とする。
AQ is required as a deoxidizing element in a content of 0.005% or more, but since too much content causes deterioration of toughness, it should be added in a content of 0.060%.
must be the upper limit. Therefore, AQ content is 0.0
The range is 0.05% to 0.060%.

Tiは容易にNと結合して窒化物を形成する元素である
。・この窒化物が鋼板中の偏析部近傍に析出すると水素
誘起割れの発生点となり易い。このため、T1含有量は
0.005%以下に規制する。
Ti is an element that easily combines with N to form nitride. - If these nitrides precipitate near the segregated areas in the steel sheet, they are likely to become points of occurrence for hydrogen-induced cracking. For this reason, the T1 content is regulated to 0.005% or less.

Caは硫化物系介在物の球状化に効果のある元素であり
、含有量が0.0005%未満ではこの効果は少なく、
また、0.0050%を超えて含有されると靭性を劣化
させる。よって、Ca含有量は0.0005〜0.00
50%の範囲とする。
Ca is an element that is effective in spheroidizing sulfide inclusions, and if the content is less than 0.0005%, this effect is small;
Moreover, if the content exceeds 0.0050%, the toughness will deteriorate. Therefore, the Ca content is 0.0005 to 0.00
The range is 50%.

Nは、固溶状態では微量で鋼の焼入性を大きく上げて偏
析部を硬化させるため、或いはTiと結合して析出物と
なって耐水素誘起割れ性を害する元素であるため、0.
0050%以下に規制する。
In a solid solution state, N is an element that greatly increases the hardenability of steel and hardens the segregated parts even in a small amount, or because it is an element that combines with Ti to form precipitates and impairs hydrogen-induced cracking resistance.
0050% or less.

以上の各成分のほか、本発明においては、必要に応じて
、以下に示す元素Nb、V、Cu、Ni、Cr及びMO
のうちの1種又は2種以上を適量で含有させることがで
きる。
In addition to the above-mentioned components, the following elements Nb, V, Cu, Ni, Cr and MO may be used as necessary in the present invention.
One or more of these may be contained in appropriate amounts.

Nb及びVは強度の向上に効果のある元素であるが、そ
れぞれ0.005%未満ではその効果が少なく、またそ
れぞれ0.100%を超えて含有させると溶接部の靭性
を劣化させる。よって、Nb、 V(7)各含有量は0
.005−0.100%の範囲とする。
Nb and V are elements that are effective in improving strength, but if each is contained in an amount less than 0.005%, the effect is small, and if each is contained in an amount exceeding 0.100%, the toughness of the welded part is deteriorated. Therefore, each content of Nb and V(7) is 0.
.. The range is 0.005-0.100%.

Cuは、0.05%未満では強度向上に効果がなく、ま
た1、50%を超えて含有させると熱間加工性を劣化さ
せる。よって、Cu含有量は0.05〜1.50%の範
囲とする。
Cu is ineffective in improving strength if it is less than 0.05%, and deteriorates hot workability if it is contained in more than 1.50%. Therefore, the Cu content is in the range of 0.05 to 1.50%.

Niは、含有量が0.05%未満では強度、靭性の向上
に効果が少なく、また1、50%を超えて含有させると
経済性を損なう。よって、Ni含有量は0.05〜1.
50%の範囲とする。
If the Ni content is less than 0.05%, it will have little effect on improving strength and toughness, and if the content exceeds 1.50%, it will impair economic efficiency. Therefore, the Ni content is 0.05 to 1.
The range is 50%.

Cr及びMoは強度の上昇に効果のある元素であるが、
それぞれ0.05%未満ではその効果が少なく、またそ
れぞれ0.50%を超えて含有させると溶接性を劣化さ
せる。よって、Cr、Moの各含有量は0.05〜0.
50%の範囲とする。
Cr and Mo are elements that are effective in increasing strength, but
If each content is less than 0.05%, the effect will be small, and if each content exceeds 0.50%, weldability will deteriorate. Therefore, each content of Cr and Mo is 0.05 to 0.
The range is 50%.

次に、本発明における圧延、冷却等の条件の限定理由を
説明する。
Next, the reasons for limiting conditions such as rolling and cooling in the present invention will be explained.

本発明では、上記化学成分を有する鋼片を加熱、熱間圧
延し冷却するが、この冷却前のオーステナイト粒が大き
いと、冷却過程において鋼表面部に粗大ベイナイト組織
が多量に生成し、耐水素誘起割れ性を害する。したがっ
て、冷却前の熱間圧延においては、900℃以下の温度
域で60%以」二の圧下を行って、オーステナイト粒を
微細化しておく必要がある。但し、調質鋼の場合には、
900℃以上の温度域で30%以上の圧下を行い、オー
ステナイト粒を微細化する。
In the present invention, a steel slab having the above chemical composition is heated, hot rolled, and cooled. However, if the austenite grains before cooling are large, a large amount of coarse bainite structure is generated on the steel surface during the cooling process, resulting in hydrogen resistance. Detracts from induced cracking. Therefore, in hot rolling before cooling, it is necessary to perform a reduction of 60% or more in a temperature range of 900° C. or lower to refine the austenite grains. However, in the case of tempered steel,
A reduction of 30% or more is performed in a temperature range of 900° C. or more to refine the austenite grains.

また、圧延仕上温度は、その後の冷却の効果を十分発揮
させるために、(Ar3変態点−30℃)以上とする。
Further, the finishing temperature of rolling is set to be higher than (Ar3 transformation point -30°C) in order to fully exhibit the effect of subsequent cooling.

次に、熱間圧延後の冷却であるが、これは、鋼板偏析部
の硬さを低下させるため、成分含有量に応して、また非
調質鋼の場合であるか或いは調質鋼の場合であるかに応
じて、冷却速度cR(’C/s)が次式で示される範囲
にて加速冷却する必要がある。
Next is cooling after hot rolling, which is done in order to reduce the hardness of the segregated parts of the steel sheet, depending on the component content and whether it is for non-tempered steel or for tempered steel. Depending on the case, it is necessary to perform accelerated cooling within a range where the cooling rate cR ('C/s) is expressed by the following formula.

すなわち、非調質鋼の場合は次式(1)、(2)による
範囲の冷却速度CRとする。
That is, in the case of non-tempered steel, the cooling rate CR is set in the range expressed by the following equations (1) and (2).

CeqS≧0.785%の場合、 (13,3XCeqS−8,7)2≦CR≦4−0 ・
−(1)CeqS< 0 、785%の場合、 3≦CR≦40           ・(2)また、
調質鋼の場合は次式(3)、(4)による範囲の冷却速
度CRとする。
When CeqS≧0.785%, (13,3XCeqS-8,7)2≦CR≦4-0 ・
-(1) If CeqS<0, 785%, 3≦CR≦40 ・(2) Also,
In the case of tempered steel, the cooling rate CR is within the range defined by the following equations (3) and (4).

CeqS≧0.935%の場合、 (13,3XCeqS−10,7)”≦CR・(3)C
eqS< 0 、935%の場合、 3≦CR…(4) 但し、前記式(1)、 (2)或いは(3)、(4)に
おけるC eqSは次式で定義される。
When CeqS≧0.935%, (13,3XCeqS-10,7)”≦CR・(3)C
When eqS<0, 935%, 3≦CR...(4) However, C eqS in the above formulas (1), (2), (3), and (4) is defined by the following formula.

+Nb+2X N(%) すなわち、本発明者らが化学成分及び冷却速度の異なる
鋼板を用い、PH;3の初期条件のもと、硫化水素飽和
59%NaCQ−0,5%酢酸水素液中で96時間の水
素誘起割れ試験を行った結果、非調質鋼の場合には、第
1図に示すように、前記(1)及び(2)式を満足する
条件で冷却した場合、水素誘起割れの発生は皆無である
が、この(1)、(2)式を満足しない場合には水素誘
起割れが発生することが判明したのである。また、調質
鋼の場合には、第2図に示すように、前記(3)及び(
4)式を満足する条件で冷却した鋼板を本発明の条件範
囲の温度で焼もどしを行った場合、水素誘起割れの発生
は皆無であるが、これら(3)、(4)式を満足しない
場合には水素誘起割れが発生することが判明したのであ
る。
+ Nb + 2 As a result of the hydrogen-induced cracking test for hours, it was found that in the case of non-thermal steel, hydrogen-induced cracking occurs when cooled under conditions that satisfy equations (1) and (2) above, as shown in Figure 1. Although no occurrence occurred, it was found that hydrogen-induced cracking occurs when the formulas (1) and (2) are not satisfied. In addition, in the case of tempered steel, as shown in Figure 2, the above (3) and (
4) When a steel plate that has been cooled under conditions that satisfy equation (3) and (4) is tempered at a temperature within the condition range of the present invention, no hydrogen-induced cracking occurs, but these equations (3) and (4) are not satisfied. It was discovered that hydrogen-induced cracking occurs in some cases.

なお、水冷停止温度については、非調質鋼の場合には4
50℃以上600℃未満の温度とする必要がある。60
0℃以上では水冷による偏析部の硬さ低減の効果が少な
く、下限の450℃未満では、鋼板の表面部が硬化し、
耐水素誘起割れ性を害するので好ましくない。この急速
冷却後は徐冷する。
In addition, the water cooling stop temperature is 4 in the case of non-tempered steel.
The temperature needs to be 50°C or higher and lower than 600°C. 60
At temperatures above 0°C, water cooling has little effect in reducing the hardness of segregated parts, and below the lower limit of 450°C, the surface of the steel plate hardens,
This is not preferable because it impairs hydrogen-induced cracking resistance. After this rapid cooling, slow cooling is performed.

一方、調質鋼の場合の水冷停止温度は600℃未満の任
意の温度範囲とすればよく、600℃以上では水冷によ
る偏析部の硬さ低減の効果が十分でなく、耐水素誘起割
れ性を害するので好ましくない。
On the other hand, in the case of tempered steel, the water-cooling stop temperature may be any temperature range below 600°C; at temperatures above 600°C, the effect of water cooling in reducing the hardness of segregated parts is insufficient, and the hydrogen-induced cracking resistance deteriorates. It is not desirable because it causes harm.

調質鋼の場合は、更に焼もどしを行うが、偏析部の硬さ
を低減し、耐水素誘起割れ性を改善するために、その温
度を500℃以上とする必要がある。
In the case of tempered steel, tempering is further performed, but the temperature needs to be 500° C. or higher in order to reduce the hardness of the segregated portion and improve hydrogen-induced cracking resistance.

(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.

失胤孤よ 第1表に示す化学成分を有する鋼を常法により溶製し、
連続鋳造法又は造塊法により鋳造した後、第2表に示す
圧延、冷却条件によって非調質鋼板を製造した。
Lost Seed, melt the steel with the chemical composition shown in Table 1 by a conventional method,
After casting by a continuous casting method or an ingot-forming method, non-tempered steel sheets were manufactured under the rolling and cooling conditions shown in Table 2.

得られた鋼板の強度及び耐水素誘起割れ性を第2表に併
記する。
The strength and hydrogen-induced cracking resistance of the obtained steel sheets are also listed in Table 2.

なお、耐水素誘起割れ性の評価は、NACEStand
ard TM −0284に準じて行った。
In addition, the evaluation of hydrogen-induced cracking resistance was performed using NACEStand.
It was carried out according to ard TM-0284.

但し、試験に用いた溶液は、■−■2Sで飽和した人工
海水(所謂、BP溶液、pH;5))と5%NaCQ+
0.5%酢酸溶液(所謂、NACE溶液、pH=3)の
2種類である。
However, the solutions used in the test were ■-■ artificial seawater saturated with 2S (so-called BP solution, pH: 5) and 5% NaCQ+
There are two types: 0.5% acetic acid solution (so-called NACE solution, pH=3).

そして、各供試銅板より採取した試験片を無負荷状態で
上記溶液に96時間浸漬した後、断面検鏡により水素誘
起割れの有無を判定した。
A test piece taken from each test copper plate was immersed in the above solution for 96 hours under no load, and then the presence or absence of hydrogen-induced cracking was determined using a cross-sectional microscope.

」二記水素誘起割れ試験に供した試験片は、供試鋼板」
、において最も偏析の大きいと考えられる位置から、第
3図に示すように採取した。試験片2の形状及び断面検
鏡位置を第4図に示す。試験片2のサイズ(mm)は、
t X 20tllX 100 Qである。
``The test piece used in the hydrogen-induced cracking test described in Section 2 is the test steel plate.''
Samples were taken from the position where the segregation was considered to be the largest in , as shown in Figure 3. The shape of the test piece 2 and the position of the cross-sectional microscope are shown in FIG. The size (mm) of test piece 2 is
t×20tll×100Q.

また、試験片2の厚さは鋼板の表裏両面を各1.mmず
つ切削したものである。
In addition, the thickness of the test piece 2 is 1.2 mm on both the front and back sides of the steel plate. It is cut in mm increments.

各供試鋼板より各試験溶液当り3個の試験片を採取し、
何れの試験片においても水素誘起割れの発生が認められ
ない場合のみ、水素誘起割れの発生無しくO印)と判定
した。
Three test pieces were taken for each test solution from each test steel plate,
Only when no hydrogen-induced cracking was observed in any of the test pieces, it was determined that there was no hydrogen-induced cracking (marked O).

第2表から明らかなように、本発明範囲の条件で製造し
た非調質鋼板(本発明法)の場合は、pH〜5のBP溶
液においては勿論のこと、p H、3のNACE溶液に
おいても水素誘起割れが全く発生していない。
As is clear from Table 2, in the case of non-tempered steel sheets manufactured under the conditions of the present invention (method of the present invention), not only in the BP solution with a pH of ~5, but also in the NACE solution with a pH of 3. No hydrogen-induced cracking occurred at all.

一方、その製造条件が本発明範囲の条件を満たしていな
い鋼板(比較法)においては、何れも水素誘起割れが発
生している。
On the other hand, in steel sheets whose manufacturing conditions did not satisfy the conditions within the scope of the present invention (comparative method), hydrogen-induced cracking occurred in all of them.

【以下余白] 夫mオ 第3表に示す化学成分を有する鋼を常法により溶製し、
連続鋳造又は造塊法により鋳造した後、第4表に示す圧
延、冷却、焼もどし条件によって板厚25mmの調質鋼
板を製造した。
[Left below] Steel having the chemical composition shown in Table 3 is melted by a conventional method,
After casting by continuous casting or ingot-forming, tempered steel plates with a thickness of 25 mm were manufactured under the rolling, cooling, and tempering conditions shown in Table 4.

得られた鋼板の強度及び耐水素誘起割れ性を第4表に併
記する。なお、耐水素誘起割れの評価は実施例1の場合
と同様である。
The strength and hydrogen-induced cracking resistance of the obtained steel sheets are also listed in Table 4. Note that the evaluation of hydrogen-induced cracking resistance was the same as in Example 1.

第4表から明らかなように、本発明範囲の条件で製造し
た調質鋼板(本発明法)の場合は、PH=5のBP溶液
においては勿論のこと、pH,3のNACE溶液におい
ても水素誘起割れが全く発生していない。
As is clear from Table 4, in the case of heat-treated steel sheets manufactured under the conditions within the scope of the present invention (method of the present invention), hydrogen is present not only in the BP solution with a pH of 5, but also in the NACE solution with a pH of 3. No induced cracking occurred.

一方、その製造条件が本発明範囲の条件を満たしていな
い鋼板(比較法)においては、何れも水素誘起割れが発
生している。
On the other hand, in steel sheets whose manufacturing conditions did not satisfy the conditions within the scope of the present invention (comparative method), hydrogen-induced cracking occurred in all of them.

[以下余白] (発明の効果) 以上説明したように、本発明によれば、p)(=3のよ
うな厳しい環境下においても水素誘起割れは全く発生す
ることのない鋼板を、非調質鋼板として或いは調質鋼板
として安価に製造することができる。
[Blank below] (Effects of the invention) As explained above, according to the present invention, a steel plate that does not undergo any hydrogen-induced cracking even under a harsh environment such as p It can be manufactured at low cost as a steel plate or as a tempered steel plate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は水素誘起割れ発生に及ぼす成分Ce
qSと水冷時の冷却速度CRの関係を示す図、 第3図は水素誘起割れ試験片の採取位置を示す斜視図、 第4図は水素誘起割れ試験片の形状と断面検鏡位置を示
す斜視図である。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚
Figures 1 and 2 show the effect of component Ce on hydrogen-induced cracking.
A diagram showing the relationship between qS and cooling rate CR during water cooling. Figure 3 is a perspective view showing the sampling position of the hydrogen-induced cracking test piece. Figure 4 is a perspective view showing the shape and cross-sectional examination position of the hydrogen-induced cracking test piece. It is a diagram. Patent applicant Hisashi Nakamura, patent attorney representing Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】 (1)重量%で(以下、同じ)、C:0.03〜0.2
0%、Si:0.02〜0.60%、Mn:0.50〜
2.50%、P:0.020%以下、S:0.003%
以下、Al:0.005〜0.060%、Ti:0.0
05%以下、Ca:0.0005〜0.0050%及び
N:0.0050%以下を含み、残部が鉄及び不可避的
不純物からなる鋼片を加熱、熱間圧延を行うに当って、
900℃以下での圧下率が60%以上、圧延仕上温度が
(Ar_3−30℃)以上とする圧延を終了した後、冷
却速度CR(℃/s)が下式(1)、(2)で示される
範囲で450℃以上600℃未満の温度まで加速冷却し
、その後、放冷することを特徴とする耐水素誘起割れ性
の優れた非調質鋼板の製造方法。 記 CeqS≧0.785%の場合、 (13.3CeqS−8.7)^2≦CR≦40…(1
)CeqS<0.785%の場合、 3≦CR≦40…(2) 但し、 CeqS=1.3×C+Si/15+Mn/3+30×
P+2×N(%)(2)請求項1に記載の化学成分を有
する鋼片を加熱、熱間圧延を行うに当って、900℃以
下での圧下率が30%以上、圧延仕上温度が(Ar_3
−30℃)以上とする圧延を終了した後、冷却速度CR
(℃/s)が下式(3)、(4)で示される範囲で60
0℃未満の任意の温度まで加速冷却し、その後更にAc
_1〜500℃の温度範囲にて焼もどしを行うことを特
徴とする耐水素誘起割れ性の優れた鋼板の製造方法。 記 CeqS≧0.935%の場合、 (13.3CeqS−10.7)^2≦CR…(3)C
eqS<0.935%の場合、 3≦CR…(4) 但し、CeqSは請求項1の場合に同じ。 (3)請求項1又は2に記載の方法において、該鋼片は
更に、Nb:0.005〜0.100%、V:0.00
5〜0.0100%、Cu:0.05〜1.50%、N
i:0.05〜1.50%、Cr:0.05〜0.50
%及びMo:0.05〜0.50%のうちの1種又は2
種以上を含み、前記式(1)〜(2)又は(3)〜(4
)におけるCeqSが次式で定義される方法。 CeqS=1.3×C+Si/15+Mn/3+30×
P+(Cu+Ni)/15+(Cr+Mo+V)/5+
Nb+2×N(%)
[Claims] (1) In weight% (the same applies hereinafter), C: 0.03 to 0.2
0%, Si: 0.02~0.60%, Mn: 0.50~
2.50%, P: 0.020% or less, S: 0.003%
Below, Al: 0.005-0.060%, Ti: 0.0
05% or less, Ca: 0.0005 to 0.0050% and N: 0.0050% or less, and the balance is iron and unavoidable impurities.
After finishing rolling with a rolling reduction of 60% or more at 900°C or less and a finishing temperature of (Ar_3-30°C) or more, the cooling rate CR (°C/s) is determined by the following formulas (1) and (2). A method for producing a non-annealed steel sheet with excellent hydrogen-induced cracking resistance, characterized by accelerating cooling to a temperature of 450° C. or higher and lower than 600° C. within the indicated range, and then allowing it to cool. In the case of CeqS≧0.785%, (13.3CeqS-8.7)^2≦CR≦40…(1
) When CeqS<0.785%, 3≦CR≦40…(2) However, CeqS=1.3×C+Si/15+Mn/3+30×
P+2×N (%) (2) When heating and hot rolling a steel billet having the chemical composition according to claim 1, the rolling reduction at 900°C or lower is 30% or more, and the rolling finishing temperature is ( Ar_3
-30℃) or higher after finishing rolling, cooling rate CR
(℃/s) is 60 within the range shown by the following formulas (3) and (4).
Accelerated cooling to any temperature below 0°C, then further Ac
A method for producing a steel sheet with excellent hydrogen-induced cracking resistance, characterized by tempering at a temperature range of _1 to 500°C. When CeqS≧0.935%, (13.3CeqS-10.7)^2≦CR…(3)C
When eqS<0.935%, 3≦CR...(4) However, CeqS is the same as in claim 1. (3) In the method according to claim 1 or 2, the steel piece further contains Nb: 0.005 to 0.100% and V: 0.00%.
5-0.0100%, Cu: 0.05-1.50%, N
i: 0.05-1.50%, Cr: 0.05-0.50
% and Mo: 1 or 2 of 0.05 to 0.50%
The above formulas (1) to (2) or (3) to (4)
) is defined by the following formula. CeqS=1.3×C+Si/15+Mn/3+30×
P+(Cu+Ni)/15+(Cr+Mo+V)/5+
Nb+2×N(%)
JP63163435A 1988-06-30 1988-06-30 Method for producing steel sheet having excellent resistance to hydrogen-induced cracking Expired - Lifetime JPH0730392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63163435A JPH0730392B2 (en) 1988-06-30 1988-06-30 Method for producing steel sheet having excellent resistance to hydrogen-induced cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63163435A JPH0730392B2 (en) 1988-06-30 1988-06-30 Method for producing steel sheet having excellent resistance to hydrogen-induced cracking

Publications (2)

Publication Number Publication Date
JPH0211722A true JPH0211722A (en) 1990-01-16
JPH0730392B2 JPH0730392B2 (en) 1995-04-05

Family

ID=15773838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63163435A Expired - Lifetime JPH0730392B2 (en) 1988-06-30 1988-06-30 Method for producing steel sheet having excellent resistance to hydrogen-induced cracking

Country Status (1)

Country Link
JP (1) JPH0730392B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070122A (en) * 1983-09-26 1985-04-20 Sumitomo Metal Ind Ltd Manufacture of steel having superior resistance to hydrogen induced cracking
JPS61165207A (en) * 1985-01-14 1986-07-25 Nippon Steel Corp Manufacture of unrefined steel plate excellent in sour-resistant property
JPS62112722A (en) * 1985-11-13 1987-05-23 Nippon Steel Corp Production of steel sheet having excellent resistance to hydrogen induced cracking and resistance to sulfide stress corrosion cracking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070122A (en) * 1983-09-26 1985-04-20 Sumitomo Metal Ind Ltd Manufacture of steel having superior resistance to hydrogen induced cracking
JPS61165207A (en) * 1985-01-14 1986-07-25 Nippon Steel Corp Manufacture of unrefined steel plate excellent in sour-resistant property
JPS62112722A (en) * 1985-11-13 1987-05-23 Nippon Steel Corp Production of steel sheet having excellent resistance to hydrogen induced cracking and resistance to sulfide stress corrosion cracking

Also Published As

Publication number Publication date
JPH0730392B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
JP7336144B2 (en) Hot stamping steels, hot stamping processes and hot stamped components
JP6048580B2 (en) Hot rolled steel sheet and manufacturing method thereof
JP5266791B2 (en) High strength steel plate of X100 grade or more excellent in SR resistance and deformation performance and method for producing the same
RU2442839C2 (en) Steel with high expanding endurance and acceptable resistance against delayed fracture and method for its production
JP6143355B2 (en) Hot-rolled steel sheet with excellent drawability and surface hardness after carburizing heat treatment
WO2015098531A1 (en) Rolled steel material for high-strength spring and wire for high-strength spring using same
JP2005298924A (en) High strength hot rolled steel sheet having excellent stamping workability and its production method
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP2008088547A (en) Fire-resistant steel having excellent high-temperature strength, toughness and reheat embrittlement resistance and process for production of the same
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP2024500851A (en) Extra-thick steel material with excellent low-temperature impact toughness and its manufacturing method
JP2001303172A (en) Case hardening boron steel for cold forging free from formation of abnormal structure in carburiazation and its producing method
JP2002161342A (en) Structural steel superior in strength, fatigue resistance and corrosion resistance
KR20000043762A (en) Method of manufacturing super high-strength cold-rolled steel sheet improved in ductility
JP5076480B2 (en) High-strength steel sheet excellent in strength-ductility balance and deep drawability and method for producing the same
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JP3620099B2 (en) Method for producing Cr-Mo steel excellent in strength and toughness
JP2009108364A (en) High-strength steel sheet superior in deep drawability, and manufacturing method therefor
JPH0211722A (en) Manufacture of steel plate having excellent hydrogen-induced cracking resistance
JP2006241508A (en) HT490MPa CLASS REFRACTORY STEEL FOR WELDED STRUCTURE HAVING EXCELLENT GALVANIZING CRACK RESISTANCE IN WELD ZONE AND ITS PRODUCTION METHOD
CN116200662B (en) Tempered high-performance bridge weathering steel with low yield ratio and manufacturing method thereof
KR20010060758A (en) Method for manufacturing medium carbon wire rod containing high silicon without low tempreature structure
JPH02173208A (en) Production of steel sheet having excellent hydrogen induced cracking resistance
JP2009179840A (en) Method for producing high tensile steel excellent in low-temperature toughness and crack arrest property