JP6795083B2 - Steel plate and its manufacturing method - Google Patents

Steel plate and its manufacturing method Download PDF

Info

Publication number
JP6795083B2
JP6795083B2 JP2019502269A JP2019502269A JP6795083B2 JP 6795083 B2 JP6795083 B2 JP 6795083B2 JP 2019502269 A JP2019502269 A JP 2019502269A JP 2019502269 A JP2019502269 A JP 2019502269A JP 6795083 B2 JP6795083 B2 JP 6795083B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
surface layer
mass
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019502269A
Other languages
Japanese (ja)
Other versions
JPWO2019050010A1 (en
Inventor
茂樹 木津谷
茂樹 木津谷
克行 一宮
克行 一宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2019050010A1 publication Critical patent/JPWO2019050010A1/en
Application granted granted Critical
Publication of JP6795083B2 publication Critical patent/JP6795083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、建築、橋梁、造船、海洋構造物、建産機、タンク、ペンストックなどの鋼製構造物等に用いられる鋼板、中でも板厚100mm以上の厚鋼板およびその製造方法に関する。 The present invention relates to steel plates used for steel structures such as buildings, bridges, shipbuilding, offshore structures, construction machines, tanks, penstocks, etc., particularly thick steel plates having a thickness of 100 mm or more and methods for manufacturing the same.

建築、橋梁、造船、海洋構造物、建産機、タンク、ペンストックなどの構造物に、鋼材が使用される場合は、当該構造物の形状に対応して、鋼材を溶接により接合して所望の形状に仕上げられる。近年、かような鋼製構造物の大型化が著しく、使用される鋼材の高強度化や厚肉化も進められている。例えば、非特許文献1には、ジャッキアップリグのラック用に開発された、板厚210mmの極めて厚い鋼板について報告されている。この非特許文献1には、厚鋼板の板厚中心部の靭性を確保するための、成分組成や製造条件が記載されている。 When steel materials are used for structures such as buildings, bridges, shipbuilding, marine structures, construction machines, tanks, pen stocks, etc., it is desirable to join the steel materials by welding according to the shape of the structures. It is finished in the shape of. In recent years, the size of such steel structures has increased remarkably, and the strength and wall thickness of the steel materials used have been increased. For example, Non-Patent Document 1 reports an extremely thick steel plate having a thickness of 210 mm, which was developed for a rack of a jack-up rig. This non-patent document 1 describes a component composition and manufacturing conditions for ensuring the toughness of the central portion of the thick steel plate.

大谷幸三郎、他4名、「ジャッキアップリグのラック用極厚(210mm)800N/mm2級鋼板の開発」、新日鉄技報、1993年、第348号、p.10-16Kozaburo Otani, 4 others, "Development of extra-thick (210mm) 800N / mm 2nd grade steel plate for jack-up rig rack", Nippon Steel Technical Report, 1993, No. 348, p.10-16

板厚が100mm以上の高強度鋼板は、熱間圧延後に焼入れ焼もどしを施すことによって、高強度に加えて高靭性を付与して製造されるのが通例である。このようにして厚鋼板を製造する際、熱間圧延後の焼入れ工程における冷却速度は、鋼板表層よりも該表層の内側の鋼板内部で低下するため、鋼板内部ではフェライトなど比較的低強度の組織が形成されやすくなる。鋼板内部でこのような低強度の組織が生成されることを抑制するには、多量の合金元素の添加が必要となる。
ここで、鋼板の表層とは、鋼板の表裏面からそれぞれ板厚方向へ1/4t(tは板厚を表す)の位置を境とする、表面側および裏面側の各領域を指し、この表層より内側(1/4tを含む)を鋼板の内部とする。
A high-strength steel plate having a plate thickness of 100 mm or more is usually manufactured by imparting high toughness in addition to high strength by quenching and tempering after hot rolling. When a thick steel sheet is manufactured in this way, the cooling rate in the quenching process after hot rolling is lower inside the steel sheet inside the surface layer than the surface layer of the steel sheet, so that the inside of the steel sheet has a relatively low strength structure such as ferrite. Is more likely to be formed. In order to suppress the formation of such a low-strength structure inside the steel sheet, it is necessary to add a large amount of alloying elements.
Here, the surface layer of the steel sheet refers to each region on the front surface side and the back surface side, which is defined by the position of 1 / 4t (t represents the plate thickness) in the plate thickness direction from the front and back surfaces of the steel plate, respectively, and this surface layer. The inner side (including 1 / 4t) is the inside of the steel sheet.

特に、厚鋼板内部の強度と靭性を満足させるためには、焼入れ時にベイナイトまたはベイナイトとマルテンサイトの混合組織を鋼板内部に生成させることが重要であり、Mn、Ni、Cr、Mo等の合金元素を多量に添加する必要がある。 In particular, in order to satisfy the strength and toughness inside the thick steel sheet, it is important to generate bainite or a mixed structure of bainite and martensite inside the steel sheet during quenching, and alloying elements such as Mn, Ni, Cr and Mo. Need to be added in large quantities.

一方で、上記のような合金元素を多量に添加した場合、焼入れ時の冷却速度が鋼板内部に比べて速い鋼板表層では、靭性に劣るマルテンサイト組織が形成されるため、焼もどしした後でも鋼板内部に比べ鋼板表層の靭性が低下する。 On the other hand, when a large amount of alloying elements as described above is added, a martensite structure having inferior toughness is formed on the surface layer of the steel sheet, which has a faster cooling rate during quenching than the inside of the steel sheet, so that the steel sheet is formed even after being tempered. The toughness of the surface layer of the steel sheet is lower than that of the inside.

しかしながら、上記した冷却の速い鋼板表層における靭性低下について、非特許文献1に触れられていないように、これまで検討がなされてこなかった。 However, as mentioned in Non-Patent Document 1, the decrease in toughness of the surface layer of the steel sheet that cools quickly has not been studied so far.

本発明は上記の事情に鑑みてなされたものであって、鋼板内部は勿論、鋼板表層についても、靭性に優れた高強度の鋼板を安定的に製造することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to stably produce a high-strength steel sheet having excellent toughness not only inside the steel sheet but also on the surface layer of the steel sheet.

本発明者らは、上記課題を解決するため、降伏強度620MPa以上かつ板厚100mm以上の厚鋼板を対象に、鋼板表層における靭性および鋼板内部における強度の低下を抑制するためのミクロ組織制御因子について鋭意究明したところ、以下I〜IIIの知見を得た。 In order to solve the above problems, the present inventors have made a microstructure control factor for suppressing a decrease in toughness on the surface layer of a steel sheet and strength inside the steel sheet for a thick steel sheet having a yield strength of 620 MPa or more and a sheet thickness of 100 mm or more. As a result of diligent investigation, the following findings I to III were obtained.

I.焼入れ時に鋼板表層に比べて著しく冷却速度が低下する鋼板内部において良好な靭性を維持したまま高い強度を得るためには、冷却速度の低い焼入れであってもミクロ組織をマルテンサイトおよび/またはベイナイト組織とすることが重要であり、そのためには、成分組成を適切に選定し、かつ炭素当量を0.57%以上とする必要がある。 I. In order to obtain high strength while maintaining good toughness inside the steel plate, where the cooling rate is significantly lower than that of the surface layer of the steel plate during quenching, the microstructure is martensite and / or bainite structure even when quenching at a low cooling rate. For that purpose, it is necessary to appropriately select the component composition and set the carbon equivalent to 0.57% or more.

II.上記のように選定された成分組成を有する鋼板を焼入れるときに、焼入れ時の冷却速度が速くなる鋼板表層においては、靭性確保に不利なマルテンサイト組織が形成され、焼もどし後においても一旦形成されたブロックやパケットと呼ばれるマルテンサイト組織の組織単位は変化しないことから、安定的な靭性の確保が難しくなる。 II. When quenching a steel sheet having the component composition selected as described above, a martensite structure that is disadvantageous for ensuring toughness is formed in the surface layer of the steel sheet in which the cooling rate during quenching becomes high, and once formed even after quenching. Since the organizational unit of the martensite structure called a hardened block or packet does not change, it becomes difficult to secure stable toughness.

III.靭性に不利な焼もどしマルテンサイト単相組織の形成を抑制するためには、鋼板表層および鋼板内部が(Ar3変態点+50)℃(Ar3変態点−20)℃の温度域にあるときの平均冷却速度を0.2〜10℃/sの範囲に制御することにより、鋼板表層に所定割合以上のベイナイトを形成させることが重要である。 III. In order to suppress the formation of rewound martensite single-phase structure, which is disadvantageous to toughness, when the surface layer of the steel sheet and the inside of the steel sheet are in the temperature range of (Ar 3 transformation point + 50) ° C to (Ar 3 transformation point -20) ° C. It is important to form bainite in a predetermined ratio or more on the surface layer of the steel sheet by controlling the average cooling rate of the steel sheet in the range of 0.2 to 10 ° C./s.

本発明は、上記の新規な知見に立脚するものであり、その要旨構成は、以下のとおりである。 The present invention is based on the above-mentioned novel findings, and the gist structure thereof is as follows.

1.質量%で、
C:0.080%以上0.200%以下、
Si:0.40%以下、
Mn:0.50%以上5.00%以下、
P:0.015%以下、
S:0.0050%以下、
Cr:3.00%以下、
Ni:5.00%以下、
Al:0.080%以下、
N:0.0070%以下および
B:0.0030%以下
を、下記式(1)を満足する範囲にて含有し、残部はFeおよび不可避的不純物の成分組成を有する鋼板であって、
該鋼板の表層にベイナイト面積分率が10%以上の組織を有し、該表層より内側の鋼板内部の降伏強度が620MPa以上である鋼板。

[C]+[Mn]/6+[Ni]/15+[Cr]/15≧0.57 … (1)
ここで、
[]は、該[]内元素の含有量(質量%)である。
1. 1. By mass%
C: 0.080% or more and 0.200% or less,
Si: 0.40% or less,
Mn: 0.50% or more and 5.00% or less,
P: 0.015% or less,
S: 0.0050% or less,
Cr: 3.00% or less,
Ni: 5.00% or less,
Al: 0.080% or less,
N: 0.0070% or less and B: 0.0030% or less are contained in a range satisfying the following formula (1), and the balance is a steel sheet having a component composition of Fe and unavoidable impurities.
A steel sheet having a bainite surface integral of 10% or more on the surface layer of the steel sheet and a yield strength of 620 MPa or more inside the steel sheet inside the surface layer.
Note [C] + [Mn] / 6 + [Ni] / 15 + [Cr] / 15 ≧ 0.57… (1)
here,
[] Is the content (mass%) of the element in [].

2.前記成分組成は、さらに、
質量%で、
Cu:0.50%以下、
Mo:1.50%以下、
Nb:0.100%以下、
V:0.200%以下および
Ti:0.005%以上0.020%以下
のうちから選ばれる1種または2種以上を前記式(1)に代えて下記式(2)を満足する範囲にて含有する、上記1に記載の鋼板。

[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/15≧0.57 … (2)
ここで、
[]は、該[]内元素の含有量(質量%)である。
2. 2. The component composition further
By mass%
Cu: 0.50% or less,
Mo: 1.50% or less,
Nb: 0.100% or less,
V: 0.200% or less and
Ti: The steel sheet according to 1 above, which contains one or more selected from 0.005% or more and 0.020% or less in place of the above formula (1) within a range satisfying the following formula (2).
Note [C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [Mo] + [V]) / 15 ≧ 0.57… (2)
here,
[] Is the content (mass%) of the element in [].

3.前記成分組成は、さらに、
質量%で、
Mg:0.0005%以上0.0100%以下、
Ta:0.010%以上0.200%以下、
Zr:0.0050%以上0.1000%以下、
Y:0.001%以上0.010%以下、
Ca:0.0005%以上0.0050%以下および
REM:0.0005%以上0.0200%以下
のうちから選ばれる1種または2種以上を含有する、上記1または2に記載の鋼板。
3. 3. The component composition further
By mass%
Mg: 0.0005% or more and 0.0100% or less,
Ta: 0.010% or more and 0.200% or less,
Zr: 0.0050% or more and 0.1000% or less,
Y: 0.001% or more and 0.010% or less,
Ca: 0.0005% or more and 0.0050% or less and
REM: The steel sheet according to 1 or 2 above, which contains one or more selected from 0.0005% or more and 0.0200% or less.

4.質量%で、
C:0.080%以上0.200%以下、
Si:0.40%以下、
Mn:0.50%以上5.00%以下、
P:0.015%以下、
S:0.0050%以下、
Cr:3.00%以下、
Ni:5.00%以下、
Al:0.080%以下、
N:0.0070%以下および
B:0.0030%以下
を、下記式(1)を満足する範囲にて含有し、残部はFeおよび不可避的不純物の成分組成を有する鋼素材に、熱間圧延を施して熱延鋼板とし、
該熱延鋼板を冷却した後に、Ac3変態点以上1050℃以下の温度域に加熱した後、
(Ar3変態点+50)℃(Ar3変態点−20)℃の温度域における平均冷却速度が0.2〜10℃/sである冷却処理を施して350℃以下まで冷却する鋼板の製造方法。

[C]+[Mn]/6+[Ni]/15+[Cr]/15≧0.57 … (1)
ここで、
[]は、該[]内元素の含有量(質量%)である。
4. By mass%
C: 0.080% or more and 0.200% or less,
Si: 0.40% or less,
Mn: 0.50% or more and 5.00% or less,
P: 0.015% or less,
S: 0.0050% or less,
Cr: 3.00% or less,
Ni: 5.00% or less,
Al: 0.080% or less,
N: 0.0070% or less and B: 0.0030% or less are contained in a range satisfying the following formula (1), and the balance is heat-rolled by hot rolling on a steel material having a component composition of Fe and unavoidable impurities. Rolled steel plate
After cooling the hot-rolled steel sheet, it is heated to a temperature range above the Ac 3 transformation point and below 1050 ° C.
A method for manufacturing a steel sheet that is cooled to 350 ° C or lower by performing a cooling treatment in which the average cooling rate in the temperature range of (Ar 3 transformation point +50) ° C to (Ar 3 transformation point-20) ° C is 0.2 to 10 ° C / s.
Note [C] + [Mn] / 6 + [Ni] / 15 + [Cr] / 15 ≧ 0.57… (1)
here,
[] Is the content (mass%) of the element in [].

5.前記成分組成は、さらに、
質量%で、
Cu:0.50%以下、
Mo:1.50%以下、
Nb:0.100%以下、
V:0.200%以下および
Ti:0.005%以上0.020%以下
のうちから選ばれる1種または2種以上を前記式(1)に代えて下記式(2)を満足する範囲にて含有する、上記4に記載の鋼板の製造方法。

[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/15≧0.57 … (2)
ここで、
[]は、該[]内元素の含有量(質量%)である。
5. The component composition further
By mass%
Cu: 0.50% or less,
Mo: 1.50% or less,
Nb: 0.100% or less,
V: 0.200% or less and
Ti: Manufacture of the steel sheet according to 4 above, which contains one or more selected from 0.005% or more and 0.020% or less in place of the above formula (1) within a range satisfying the following formula (2). Method.
Note [C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [Mo] + [V]) / 15 ≧ 0.57… (2)
here,
[] Is the content (mass%) of the element in [].

6.前記成分組成は、さらに、
質量%で、
Mg:0.0005%以上0.0100%以下、
Ta:0.010%以上0.200%以下、
Zr:0.0050%以上0.1000%以下、
Y:0.001%以上0.010%以下、
Ca:0.0005%以上0.0050%以下および
REM:0.0005%以上0.0200%以下
のうちから選ばれる1種または2種以上を含有する、上記4または5に記載の鋼板の製造方法。
6. The component composition further
By mass%
Mg: 0.0005% or more and 0.0100% or less,
Ta: 0.010% or more and 0.200% or less,
Zr: 0.0050% or more and 0.1000% or less,
Y: 0.001% or more and 0.010% or less,
Ca: 0.0005% or more and 0.0050% or less and
REM: The method for producing a steel sheet according to 4 or 5 above, which contains one or more selected from 0.0005% or more and 0.0200% or less.

本発明によれば、鋼板内部だけでなく鋼板表層についても靭性に優れた、高強度の鋼板を安定的に製造することができる。 According to the present invention, it is possible to stably produce a high-strength steel sheet having excellent toughness not only inside the steel sheet but also on the surface layer of the steel sheet.

[成分組成]
以下、本発明の一実施形態に係る鋼板の製造条件について説明する。まず、鋼の成分組成の限定理由について述べる。なお、本明細書において、各成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。
[Ingredient composition]
Hereinafter, the manufacturing conditions of the steel sheet according to the embodiment of the present invention will be described. First, the reasons for limiting the composition of steel will be described. In the present specification, "%" representing the content of each component element means "mass%" unless otherwise specified.

C:0.080%以上0.200%以下
Cは、構造用鋼に求められる強度を安価に得るために有用な元素であり、その効果を得るために0.080%以上の添加が必要である。一方、0.200%を超えて含有すると、母材および溶接部の靭性を顕著に劣化させるため、上限を0.200%とする。好ましくは0.080%以上0.140%以下とする。
C: 0.080% or more and 0.200% or less C is an element useful for obtaining the strength required for structural steel at low cost, and it is necessary to add 0.080% or more in order to obtain the effect. On the other hand, if the content exceeds 0.200%, the toughness of the base metal and the welded portion is significantly deteriorated, so the upper limit is set to 0.200%. It is preferably 0.080% or more and 0.140% or less.

Si:0.40%以下
Siは脱酸のために、好ましくは0.05%以上で添加するが、0.40%を超えて添加すると母材および溶接熱影響部の靭性が顕著に低下するため、Si量は0.40%以下とする。好ましくは0.05%以上0.30%以下とする。より好ましくは0.05%以上0.25%以下とする。
Si: 0.40% or less
Si is preferably added at 0.05% or more for deoxidation, but if it is added in excess of 0.40%, the toughness of the base metal and the heat-affected zone of the weld is significantly reduced, so the Si amount should be 0.40% or less. It is preferably 0.05% or more and 0.30% or less. More preferably, it is 0.05% or more and 0.25% or less.

Mn:0.50%以上5.00%以下
Mnは母材強度を確保する観点から添加するが、0.50%未満の添加ではその効果が十分ではない。一方、5.00%を超えて添加すると、母材の靭性が劣化するだけではなく、中心偏析を助長するため上限を5.00%とする。好ましくは0.60%以上2.00%以下とする。より好ましくは0.60%以上1.60%以下とする。
Mn: 0.50% or more and 5.00% or less
Mn is added from the viewpoint of ensuring the strength of the base metal, but the effect is not sufficient if the addition is less than 0.50%. On the other hand, if it is added in excess of 5.00%, not only the toughness of the base metal deteriorates but also the central segregation is promoted, so the upper limit is set to 5.00%. It is preferably 0.60% or more and 2.00% or less. More preferably, it is 0.60% or more and 1.60% or less.

P:0.015%以下
Pは、0.015%を超えて含有すると、母材および溶接熱影響部の靭性を著しく低下させる。そのため、0.015%以下に制限する。好ましくは、0.010%以下とする。なお、0.001%未満とするのは工業的規模の製造では難しいため、0.001%以上の含有は許容される。
P: 0.015% or less When P is contained in excess of 0.015%, the toughness of the base metal and the heat-affected zone of the weld is significantly reduced. Therefore, limit it to 0.015% or less. Preferably, it is 0.010% or less. Since it is difficult to make it less than 0.001% in industrial scale manufacturing, a content of 0.001% or more is allowed.

S:0.0050%以下
Sは、0.0050%を超えて含有すると、母材および溶接熱影響部の靭性を顕著に低下させる。そのため、Sは0.0050%以下とする。好ましくは、0.0010%以下とする。なお、0.0001%未満とするのは工業的規模の製造では難しいため、0.0001%以上の含有は許容される。
S: 0.0050% or less When S is contained in excess of 0.0050%, the toughness of the base metal and the heat-affected zone of the weld is significantly reduced. Therefore, S should be 0.0050% or less. Preferably, it is 0.0010% or less. Since it is difficult to make it less than 0.0001% in industrial scale manufacturing, a content of 0.0001% or more is allowed.

Cr:3.00%以下
Crは、母材の高強度化に有効な元素であり、好ましくは0.10%以上で添加するが、多量に添加すると溶接性を低下させる。そのため、Crは3.00%以下とする。好ましくは、0.10%以上2.00%以下とする。
Cr: 3.00% or less
Cr is an element effective for increasing the strength of the base material, and is preferably added at 0.10% or more, but when added in a large amount, the weldability is lowered. Therefore, Cr should be 3.00% or less. Preferably, it is 0.10% or more and 2.00% or less.

Ni:5.00%以下
Niは、鋼の強度および溶接熱影響部の靭性を向上させる有益な元素であり、好ましくは0.50%以上で添加するが、5.00%を超えて添加すると、経済性が著しく低下する。そのため、Niは5.00%以下とする。好ましくは、0.50%以上4.00%以下とする。
Ni: 5.00% or less
Ni is a beneficial element that improves the strength of steel and the toughness of the heat-affected zone of welding, and is preferably added at 0.50% or more, but if it is added in excess of 5.00%, the economic efficiency is significantly reduced. Therefore, Ni should be 5.00% or less. Preferably, it is 0.50% or more and 4.00% or less.

Al:0.080%以下
Alは、溶鋼を十分に脱酸するために添加されるが、0.080%を超えて添加すると母材中に固溶するAl量が多くなり、母材靭性を低下させる。そのため、Alは0.080%以下とする。好ましくは、0.030%以上0.080%以下とする。より好ましくは、0.030%以上0.060%以下とする。
Al: 0.080% or less
Al is added to sufficiently deoxidize the molten steel, but if it is added in excess of 0.080%, the amount of Al that dissolves in the base metal increases and the toughness of the base metal decreases. Therefore, Al should be 0.080% or less. Preferably, it is 0.030% or more and 0.080% or less. More preferably, it is 0.030% or more and 0.060% or less.

N:0.0070%以下
Nは、Alなどと窒化物を形成することによって組織を微細化し、母材および溶接熱影響部の靭性を向上させる効果を有するため、好ましくは0.0020%以上のNを添加してもよい。しかしながら、0.0070%を超えて添加すると、母材中に析出する窒化物量が増加し、母材靭性が著しく低下し、さらに溶接熱影響部においても粗大な炭窒化物を形成し靭性を低下させる。そのため、Nは0.0070%以下とする。好ましくは、0.0050%以下とし、より好ましくは0.0040%以下とする。なお、Nは0%であってもよい。
N: 0.0070% or less N has the effect of refining the structure by forming a nitride with Al or the like and improving the toughness of the base metal and the heat-affected zone of welding. Therefore, 0.0020% or more of N is preferably added. You may. However, if it is added in excess of 0.0070%, the amount of nitrides precipitated in the base metal increases, the toughness of the base metal is remarkably lowered, and coarse carbonitrides are formed even in the weld heat affected zone to lower the toughness. Therefore, N is set to 0.0070% or less. It is preferably 0.0050% or less, and more preferably 0.0040% or less. In addition, N may be 0%.

B:0.0030%以下
Bは、オーステナイト粒界に偏析することで粒界からのフェライト変態を抑制し、焼入性を高める効果を有するため、好ましくは0.0003%以上で添加する。一方、0.0030%を超えて添加すると、炭窒化物として析出し焼入性を低下させ靭性低下を引き起こす。そのため、Bは0.0030%以下とする。好ましくは、0.0003%以上0.0030%以下とする。より好ましくは0.0005%以上0.0020%以下とする。
B: 0.0030% or less B is preferably added at 0.0003% or more because it has the effect of suppressing ferrite transformation from the grain boundaries by segregating at the austenite grain boundaries and enhancing hardenability. On the other hand, if it is added in excess of 0.0030%, it precipitates as a carbonitride, which lowers the hardenability and causes a decrease in toughness. Therefore, B is set to 0.0030% or less. Preferably, it is 0.0003% or more and 0.0030% or less. More preferably, it is 0.0005% or more and 0.0020% or less.

炭素当量CeqIIW
本発明では、特に板厚100mm以上の鋼板の内部において降伏強度で620MPa以上の強度と良好な靭性を確保するために、適切な成分組成の設計が必要であり、炭素当量CeqIIWに関する下記式(1)を満足する範囲に成分組成を調整する必要がある。なぜなら、炭素等量が下記式(1)を満足しない場合、強度に劣るフェライトなどが形成されやすく、安定的に所望の強度を確保することが難しくなるためである。

[C]+[Mn]/6+[Ni]/15+[Cr]/15≧0.57 … (1)
ここで、
[]は、該[]内元素の含有量(質量%)での含有量である。
Carbon equivalent CeqIIW
In the present invention, it is necessary to design an appropriate component composition in order to secure a yield strength of 620 MPa or more and good toughness, particularly inside a steel sheet having a plate thickness of 100 mm or more, and the following equation (1) regarding carbon equivalent CeqIIW ) Satisfying the component composition. This is because when the carbon equivalent does not satisfy the following formula (1), ferrite or the like having inferior strength is likely to be formed, and it becomes difficult to stably secure the desired strength.
Note [C] + [Mn] / 6 + [Ni] / 15 + [Cr] / 15 ≧ 0.57… (1)
here,
[] Is the content of the element in [] in terms of content (mass%).

以上、本発明の基本成分について説明した。上記成分以外の残部はFeおよび不可避的不純物であるが、本発明では、その他の元素についても必要に応じて適宜含有させることができる。 The basic components of the present invention have been described above. The rest other than the above components are Fe and unavoidable impurities, but in the present invention, other elements can be appropriately contained as needed.

具体的には、さらに強度および靭性を高める目的で、Cu:0.50%以下、Mo:1.50%以下、Nb:0.100%以下、V:0.200%以下およびTi:0.005%以上0.020%以下、のうちから選ばれる1種または2種以上を含有させることができる。
この場合には、炭素当量CeqIIWについて、上記式(1)に代えて下記式(2)を満足する範囲に成分組成を調整する。
[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/15≧0.57 … (2)
ここで、
[]は、該[]内元素の含有量(質量%)での含有量である。
Specifically, for the purpose of further increasing strength and toughness, Cu: 0.50% or less, Mo: 1.50% or less, Nb: 0.100% or less, V: 0.200% or less, and Ti: 0.005% or more and 0.020% or less. It can contain one or more selected species.
In this case, for the carbon equivalent CeqIIW, the component composition is adjusted within a range that satisfies the following formula (2) instead of the above formula (1).
[C] + [Mn] / 6+ ([Cu] + [Ni]) / 15+ ([Cr] + [Mo] + [V]) / 15 ≧ 0.57… (2)
here,
[] Is the content of the element in [] in terms of content (mass%).

Cu:0.50%以下
Cuは、靭性を損なうことなく鋼の強度の向上が図れるが、0.50%より多く添加すると熱間加工時に鋼板表層に割れを生じる。そのため、Cuを含有させる場合は0.50%以下とする。好ましくは、0.03%以上0.40%以下とする。
Cu: 0.50% or less
Cu can improve the strength of steel without impairing toughness, but if more than 0.50% is added, the surface layer of the steel sheet will crack during hot working. Therefore, when Cu is contained, it should be 0.50% or less. Preferably, it is 0.03% or more and 0.40% or less.

Mo:1.50%以下
Moは、母材の高強度化に有効な元素であるが、1.50%を超えて添加すると合金炭化物の析出により硬度を上昇させ靭性を低下させる。そのため、Moを含有させる場合は、1.50%以下とする。好ましくは、0.02%以上0.80%以下とする。
Mo: 1.50% or less
Mo is an element effective for increasing the strength of the base material, but if it is added in excess of 1.50%, the hardness increases due to the precipitation of alloy carbides and the toughness decreases. Therefore, when Mo is contained, it should be 1.50% or less. Preferably, it is 0.02% or more and 0.80% or less.

Nb:0.100%以下
Nbは、母材の強度の向上に効果があるため有効であるが、0.100%を超える添加は母材の靭性を顕著に低下させる。そのため、Nbを含有させる場合は、上限を0.100%とする。好ましくは、0.025%以下とする。なお、0.003%未満とすると特性の向上効果が得られないため、添加する場合は0.003%以上とする。
Nb: 0.100% or less
Nb is effective because it is effective in improving the strength of the base metal, but addition of more than 0.100% significantly reduces the toughness of the base metal. Therefore, when Nb is contained, the upper limit is set to 0.100%. Preferably, it is 0.025% or less. If it is less than 0.003%, the effect of improving the characteristics cannot be obtained. Therefore, when it is added, it should be 0.003% or more.

V:0.200%以下
Vは、母材の強度・靭性の向上に効果があり、また、VNとして析出することで固溶Nの低下に有効であるが、0.200%を超えて添加すると硬質なVCの析出により靭性が低下する。そのため、Vを含有させる場合は、0.200%以下とする。好ましくは、0.010%以上0.100%以下とする。
V: 0.200% or less V is effective in improving the strength and toughness of the base metal, and is effective in reducing the solid solution N by precipitating as VN, but when added in excess of 0.200%, it is a hard VC. The toughness decreases due to the precipitation of. Therefore, when V is contained, it should be 0.200% or less. Preferably, it is 0.010% or more and 0.100% or less.

Ti:0.005%以上0.020%以下
Tiは、加熱時にTiNを生成し、オーステナイトの粗大化を効果的に抑制し、母材および溶接熱影響部の靭性を向上させる。しかし、0.020%を超えて添加すると、Ti窒化物が粗大化し母材の靭性を低下させる。そのため、Tiを含有させる場合は、0.005%以上0.020%以下とする。好ましくは、0.008%以上0.015%以下とする。
Ti: 0.005% or more and 0.020% or less
Ti produces TiN during heating, effectively suppresses the coarsening of austenite, and improves the toughness of the base metal and weld heat-affected zone. However, if it is added in excess of 0.020%, the Ti nitride becomes coarse and the toughness of the base metal is reduced. Therefore, when Ti is contained, it should be 0.005% or more and 0.020% or less. Preferably, it is 0.008% or more and 0.015% or less.

また、さらに材質を改善する目的で、Mg:0.0005%以上0.0100%以下、Ta:0.010%以上0.200%以下、Zr:0.0050%以上0.1000%以下、Y:0.001%以上0.010%以下、Ca:0.0005%以上0.0050%以下およびREM:0.0005%以上0.0200%以下のうちから選ばれる1種または2種以上を含有させることができる。 Further, for the purpose of further improving the material, Mg: 0.0005% or more and 0.0100% or less, Ta: 0.010% or more and 0.200% or less, Zr: 0.0050% or more and 0.1000% or less, Y: 0.001% or more and 0.010% or less, Ca: 0.0005% It can contain one or more selected from 0.0050% or more and REM: 0.0005% or more and 0.0200% or less.

Mg:0.0005%以上0.0100%以下
Mgは、高温で安定な酸化物を形成し、溶接熱影響部の旧γ粒の粗大化を効果的に抑制し、溶接部の靭性を向上させるのに有効な元素である。しかし、添加量が0.0005%未満の場合では明瞭な効果が得られず、0.0100%を超えて添加すると、介在物量が増加し靭性が低下する。そのため、Mgを含有させる場合は、0.0005%以上0.0100%以下とする。好ましくは、0.0005%以上0.0050%以下とする。
Mg: 0.0005% or more and 0.0100% or less
Mg is an element that forms a stable oxide at high temperature, effectively suppresses the coarsening of old γ grains in the weld heat affected zone, and improves the toughness of the weld. However, when the addition amount is less than 0.0005%, a clear effect cannot be obtained, and when the addition amount exceeds 0.0100%, the amount of inclusions increases and the toughness decreases. Therefore, when Mg is contained, it should be 0.0005% or more and 0.0100% or less. Preferably, it is 0.0005% or more and 0.0050% or less.

Ta:0.010%以上0.200%以下
Taは、強度向上に有効である。しかし、添加量が0.010%未満の場合では明瞭な効果が得られず、0.200%を超える場合は析出物生成により靭性が低下する。そのため、Taを含有させる場合は、0.010%以上0.200%以下とする。
Ta: 0.010% or more and 0.200% or less
Ta is effective in improving strength. However, if the addition amount is less than 0.010%, a clear effect cannot be obtained, and if it exceeds 0.200%, the toughness is lowered due to the formation of precipitates. Therefore, when Ta is contained, it should be 0.010% or more and 0.200% or less.

Zr:0.0050%以上0.1000%以下
Zrは、強度上昇に有効な元素であるが、添加量が0.0050%未満の場合は顕著な効果が得られず、また、0.1000%を超える場合には粗大な析出物を生成し靭性が低下する。そのため、Zrを含有させる場合は、0.0050%以上0.1000%以下とする。
Zr: 0.0050% or more and 0.1000% or less
Zr is an element effective for increasing strength, but when the amount added is less than 0.0050%, no remarkable effect is obtained, and when it exceeds 0.1000%, coarse precipitates are formed and the toughness is lowered. .. Therefore, when Zr is contained, it should be 0.0050% or more and 0.1000% or less.

Y:0.001%以上0.010%以下
Yは、高温で安定な酸化物を形成し、溶接熱影響部の旧γ粒の粗大化を効果的に抑制し、溶接部の靭性を向上させるのに有効な元素である。しかし、0.001%未満の添加では効果が得られず、0.010%を超えて添加すると、介在物量が増加し靭性が低下する。そのため、Yを含有させる場合は、0.001%以上0.010%以下とする。
Y: 0.001% or more and 0.010% or less Y is effective in forming a stable oxide at high temperature, effectively suppressing the coarsening of old γ grains in the weld heat affected zone, and improving the toughness of the weld. It is an element. However, if less than 0.001% is added, no effect is obtained, and if more than 0.010% is added, the amount of inclusions increases and the toughness decreases. Therefore, when Y is contained, it should be 0.001% or more and 0.010% or less.

Ca:0.0005%以上0.0050%以下
Caは、硫化物系介在物の形態制御に有用な元素であり、その効果を発揮させるためには、0.0005%以上の添加が必要である。しかし、0.0050%を超えて添加すると、清浄度の低下を招き靭性を劣化させる。そのため、Caを含有させる場合は、0.0005%以上0.0050%以下とする。好ましくは0.0005%以上0.0025%以下とする。
Ca: 0.0005% or more and 0.0050% or less
Ca is an element useful for morphological control of sulfide-based inclusions, and it is necessary to add 0.0005% or more in order to exert its effect. However, if it is added in excess of 0.0050%, the cleanliness will be deteriorated and the toughness will be deteriorated. Therefore, when Ca is contained, it should be 0.0005% or more and 0.0050% or less. It is preferably 0.0005% or more and 0.0025% or less.

REM:0.0005%以上0.0200%以下
REM(希土類金属)もCaと同様に鋼中で酸化物および硫化物を形成して材質を改善する効果があり、その効果を得るためには0.0005%以上の添加が必要である。しかし、0.0200%を超えて添加しても、その効果が飽和する。そのため、REMを含有させる場合は、0.0005%以上0.0200%以下とする。好ましくは0.0005%以上0.0050%以下とする。
REM: 0.0005% or more and 0.0200% or less
Like Ca, REM (rare earth metal) has the effect of forming oxides and sulfides in steel to improve the material, and it is necessary to add 0.0005% or more to obtain this effect. However, even if it is added in excess of 0.0200%, the effect is saturated. Therefore, when REM is contained, it should be 0.0005% or more and 0.0200% or less. It is preferably 0.0005% or more and 0.0050% or less.

[組織]
本発明では、鋼板表層におけるベイナイト面積分率を10%以上とすることが肝要である。鋼板表層がこのような組織を有することにより、鋼板表層についても優れた靭性を得ることができる。鋼板表層のベイナイト面積分率は、好ましくは20%以上である。残部は焼もどしマルテンサイト、フェライト等である。
[Organization]
In the present invention, it is important that the bainite surface integral in the surface layer of the steel sheet is 10% or more. When the steel sheet surface layer has such a structure, excellent toughness can be obtained for the steel sheet surface layer as well. The bainite surface integral of the surface layer of the steel sheet is preferably 20% or more. The rest is reheated martensite, ferrite, etc.

また、鋼板表層だけでなく、鋼板内部におけるベイナイト面積分率を10%以上とすることが好ましい。鋼板内部もこのような組織を有することにより、鋼板表層と鋼板内部との特性の差が小さい鋼板を得ることができる。鋼板内部のベイナイト面積分率は、より好ましくは20%以上である。 Further, it is preferable that the bainite surface integral inside the steel sheet as well as the surface layer of the steel sheet is 10% or more. By having such a structure inside the steel sheet, it is possible to obtain a steel sheet having a small difference in characteristics between the surface layer of the steel sheet and the inside of the steel sheet. The bainite surface integral inside the steel sheet is more preferably 20% or more.

なお、鋼板表層および鋼板内部の組織の面積分率の評価は、焼入れままの鋼材の圧延方向断面のサンプルを採取し、ナイタール腐食液で組織を現出させて、200倍の光学顕微鏡で5視野以上観察し、画像解析によりベイナイト等各組織の面積分率を求めることにより、行うことができる。鋼板表層については、板厚1/8tの位置を中心として、厚さ15mmの圧延方向断面のサンプルを採取する。鋼板内部については、板厚3/8tの位置を中心として、厚さ15mmの圧延方向断面のサンプルを採取する。 To evaluate the area fraction of the structure on the surface of the steel sheet and inside the steel sheet, take a sample of the cross section of the hardened steel in the rolling direction, reveal the structure with a nital corrosive solution, and use a 200x optical microscope for 5 fields. This can be done by observing the above and obtaining the area fraction of each structure such as bainite by image analysis. For the surface layer of the steel sheet, a sample of a cross section in the rolling direction having a thickness of 15 mm is taken centering on a position of 1 / 8t in thickness. For the inside of the steel sheet, a sample of a cross section in the rolling direction having a thickness of 15 mm is taken around the position of the sheet thickness of 3 / 8t.

少なくとも鋼板表層のベイナイト面積分率が10%以上である組織を得るためには、上記の範囲に成分組成を調整した鋼素材に熱間圧延を施して得た、熱延鋼板を冷却した後に、Ac3変態点以上1050℃以下の温度域に加熱した後、(Ar3変態点+50)℃(Ar3変態点−20)℃の温度域における平均冷却速度が0.2〜10℃/sである冷却処理を施して350℃以下まで冷却する、必要がある。ここで規定される温度条件は、熱延鋼板の表層および鋼板内部が共に満足していることが肝要である。詳細は、後述する。 In order to obtain a structure in which the bainite area fraction of the surface layer of the steel sheet is at least 10% or more, the hot-rolled steel sheet obtained by hot-rolling a steel material whose composition is adjusted to the above range is cooled and then cooled. After heating to a temperature range of Ac3 transformation point or higher and 1050 ° C or lower, cooling with an average cooling rate of 0.2 to 10 ° C / s in the temperature range of (Ar 3 transformation point + 50) ° C to (Ar 3 transformation point -20) ° C. It needs to be treated and cooled to 350 ° C or below. It is important that the temperature conditions specified here satisfy both the surface layer of the hot-rolled steel sheet and the inside of the steel sheet. Details will be described later.

[靭性]
鋼板表層の靭性はこれまで着目されてこなかったが、構造物の安全性向上要求の高まりを受け、鋼板内部と同等のレベルを要求されつつある。本発明の鋼板では、鋼板表層面と鋼板内部との靭性差を、延性−脆性破面遷移温度(vTrs)により評価すると、vTrsでの差が20℃以内であることが好ましい。これにより、鋼板表面と鋼板内部とで実質的に同一の靭性が得られていると評価できるためである。ここで、vTrsは、JIS Z2242に記載の方法で評価した。vTrsの差で20℃以内とするのは、靭性のvTrsによる評価は、同じ靭性レベルであったとしても、脆性破面率の測定誤差によりその値が最大で20℃程度生じる場合があるため、実質同等と考えられる20℃以内とした。
[Toughness]
The toughness of the surface layer of a steel sheet has not been paid attention so far, but due to the increasing demand for improving the safety of structures, the same level as the inside of a steel sheet is being required. In the steel sheet of the present invention, when the toughness difference between the surface layer surface of the steel sheet and the inside of the steel sheet is evaluated by the ductility-brittle fracture surface transition temperature (vTrs), the difference in vTrs is preferably within 20 ° C. This is because it can be evaluated that substantially the same toughness is obtained on the surface of the steel sheet and the inside of the steel sheet. Here, vTrs was evaluated by the method described in JIS Z 2242. The reason why the difference in vTrs is within 20 ° C is that even if the toughness is evaluated by vTrs at the same toughness level, the value may occur up to about 20 ° C due to the measurement error of the brittle fracture surface ratio. The temperature was set within 20 ° C, which is considered to be substantially equivalent.

[降伏強度]
本発明では、鋼板の内部における降伏強度が620MPa以上であることとする。その理由は、構造物の大型化に寄与させるには620MPa以上の降伏強度を必要とするからである。
[Yield strength]
In the present invention, the yield strength inside the steel sheet is 620 MPa or more. The reason is that a yield strength of 620 MPa or more is required to contribute to the increase in size of the structure.

次に、本発明の鋼板の製造方法について説明する。以下の説明における温度は、特に断らない限り、板厚中心部(1/2t)における温度を意味するものとする。
[鋼素材]
上記成分組成の溶鋼を、転炉、電気炉、真空溶解炉等の通常の方法で溶製し、連続鋳造法または造塊法等の通常の鋳造方法でスラブ、ビレットなどの鋼素材とする。また、圧延機の荷重等の制約がある場合には、鋼素材にさらに鍛造または分塊圧延を行い、鋼素材の板厚みを小さくしても良い。
Next, the method for manufacturing the steel sheet of the present invention will be described. Unless otherwise specified, the temperature in the following description means the temperature at the center of the plate thickness (1 / 2t).
[Steel material]
The molten steel having the above composition is melted by a usual method such as a converter, an electric furnace, or a vacuum melting furnace, and used as a steel material such as a slab or a billet by a usual casting method such as a continuous casting method or an ingot forming method. Further, if there are restrictions such as the load of the rolling mill, the steel material may be further forged or lump-rolled to reduce the plate thickness of the steel material.

[熱間圧延]
上記鋼素材に対して熱間圧延を施す。鋼板表層における靭性と鋼板内部における強度および靭性とを両立するためには、熱間圧延時に、γ域での再結晶を促進し、旧γ粒径の微細化を図ることが有効である。このため、熱間圧延では、圧延終了温度をAr3点以上とすることが好ましい。
なお、Ar3変態点は、後述の式(4)により計算される値を用いることができる。
[Hot rolling]
Hot rolling is applied to the steel material. In order to achieve both the toughness on the surface layer of the steel sheet and the strength and toughness inside the steel sheet, it is effective to promote recrystallization in the γ region during hot rolling and to reduce the old γ grain size. Therefore, in hot rolling, it is preferable that the rolling end temperature is Ar 3 points or more.
As the Ar 3 transformation point, a value calculated by the equation (4) described later can be used.

[熱間圧延後の冷却]
上記熱間圧延後の鋼板を空冷または加速冷却する。特に、靱性の向上を図る場合には加速冷却が有効である。加速冷却することで、空冷に比べて高温域での滞留時間が短くなり、結晶粒径の微細化や析出物の粗大化を抑制できるためである。そのため、加速冷却する場合はAr3点未満までとする。加速冷却時の冷却は水冷、衝風により行い、いずれの場合も、鋼板表面において0.1℃/s以上の冷却速度とすることが好ましい。
[Cooling after hot rolling]
The steel sheet after the hot rolling is air-cooled or accelerated cooled. In particular, accelerated cooling is effective for improving toughness. This is because accelerated cooling shortens the residence time in a high temperature region as compared with air cooling, and can suppress finer crystal grain size and coarser precipitates. Therefore, when accelerating cooling, limit the number to less than 3 Ar points. Cooling during accelerated cooling is performed by water cooling or impulse, and in either case, it is preferable that the cooling rate is 0.1 ° C./s or higher on the surface of the steel sheet.

[熱間圧延後加熱温度:Ac3変態点以上1050℃以下]
上記冷却後の熱延鋼板を、Ac3変態点以上1050℃以下に加熱する。Ac3変態点以上に加熱するのは、鋼をオーステナイト単相に均一化するためである。再加熱温度を1050℃以下とするのは、1050℃を超える高温の再加熱ではオーステナイト粒の粗大化による母材靭性の低下が著しく低下するためである。好ましくは、Ac3変態点以上1000℃以下とする。さらに、Ac3変態点以上950℃以下がより好ましい。
[Heating temperature after hot rolling: Ac 3 transformation point or more and 1050 ° C or less]
The hot-rolled steel sheet after cooling is heated to 1050 ° C. or higher at the Ac 3 transformation point or higher. The reason for heating above the Ac 3 transformation point is to homogenize the steel into an austenite single phase. The reason why the reheating temperature is set to 1050 ° C. or lower is that the decrease in the toughness of the base metal due to the coarsening of the austenite grains is significantly reduced by the reheating at a high temperature exceeding 1050 ° C. Preferably, the temperature is not less than the Ac 3 transformation point and not more than 1000 ° C. Further, it is more preferable that the Ac 3 transformation point or more and 950 ° C. or less.

なお、Ac3変態点は、下記式(3)により計算される値を用いる。
Ac3=937.2−476.5[C]+56[Si]−19.7[Mn]−16.3[Cu]−26.6[Ni]−4.9[Cr]+38.1[Mo]+124.8[V]+136.3[Ti]+198.4[Al]+3315[B]… (3)
ここで、式(3)における各元素記号は、それぞれの成分組成の鋼素材中の含有量(質量%)を示し、含有しないものは0として計算する。
For the Ac 3 transformation point, the value calculated by the following equation (3) is used.
Ac 3 = 937.2-476.5 [C] +56 [Si] -19.7 [Mn] -16.3 [Cu] -26.6 [Ni] -4.9 [Cr] +38.1 [Mo] +124.8 [V] +136.3 [Ti] ] + 198.4 [Al] + 3315 [B] ... (3)
Here, each element symbol in the formula (3) indicates the content (mass%) of each component composition in the steel material, and those not contained are calculated as 0.

[冷却処理:(Ar3変態点+50)℃(Ar3変態点−20)℃の範囲における平均冷却速度が0.2〜10℃/s]
上記加熱後に冷却処理を施す。この冷却処理は、鋼板表層および鋼板内部を350℃以下まで冷却するにあたり、鋼板表層および鋼板内部のそれぞれにおける、(Ar3変態点+50)℃(Ar3変態点−20)℃の温度域での平均冷却速度が0.2〜10℃/sとなるように冷却処理を施すことが重要である。このような冷却を行うことで、鋼板表層にベイナイト面積分率が10%以上の組織を形成させることができ、鋼板表層の靭性を著しく向上させることができる。同様に、鋼板内部においても、ベイナイトが10%以上の組織を形成させることができる。
[Cooling process: Average cooling rate in the range of (Ar 3 transformation point + 50) ° C to (Ar 3 transformation point -20) ° C is 0.2 to 10 ° C / s]
After the above heating, a cooling treatment is performed. This cooling treatment cools the surface layer of the steel sheet and the inside of the steel sheet to 350 ° C or lower in the temperature range of (Ar 3 transformation point + 50) ° C to (Ar 3 transformation point -20) ° C in each of the surface layer of the steel sheet and the inside of the steel sheet. It is important to perform the cooling treatment so that the average cooling rate of the steel sheet is 0.2 to 10 ° C / s. By performing such cooling, a structure having a bainite surface integral of 10% or more can be formed on the surface layer of the steel sheet, and the toughness of the surface layer of the steel sheet can be remarkably improved. Similarly, inside the steel sheet, bainite can form a structure of 10% or more.

冷却速度の制御は、水の流量を調整する、間欠的に冷却を行う、衝風により冷却を行うなどの方法により行うことができる。
具体的には、鋼板表層および鋼板内部における平均冷却速度の制御は、所望の冷却速度となるように冷却方法、水量調整、間欠条件をシミュレーション等により導出して行う。
The cooling rate can be controlled by adjusting the flow rate of water, performing cooling intermittently, cooling by an impulse, or the like.
Specifically, the control of the average cooling rate on the surface layer of the steel sheet and the inside of the steel sheet is performed by deriving the cooling method, the amount of water adjustment, and the intermittent conditions by simulation or the like so as to obtain the desired cooling rate.

鋼板表層および鋼板内部の温度は、板厚、表面温度および冷却条件等から、シミュレーション計算等により求めることができる。例えば、差分法を用い、板厚方向の温度分布を計算することにより、鋼板表層から鋼板内部までの温度を求めることができる。 The temperature of the surface layer of the steel sheet and the inside of the steel sheet can be obtained by simulation calculation or the like from the plate thickness, surface temperature, cooling conditions and the like. For example, the temperature from the surface layer of the steel sheet to the inside of the steel sheet can be obtained by calculating the temperature distribution in the plate thickness direction using the difference method.

なお、Ar3変態点は、下記式(4)により計算される値を用いる。
Ar3=910−310[C]−80[Mn]−20[Cu]−15[Cr]−55[Ni]−80[Mo]… (4)
ここで、式(4)における各元素記号は、それぞれの成分組成の鋼素材中の含有量(質量%)を示し、含有しないものは0として計算する。
For the Ar 3 transformation point, the value calculated by the following equation (4) is used.
Ar 3 = 910-310 [C] -80 [Mn] -20 [Cu] -15 [Cr] -55 [Ni] -80 [Mo] ... (4)
Here, each element symbol in the formula (4) indicates the content (mass%) of each component composition in the steel material, and those not contained are calculated as 0.

[冷却停止温度:350℃以下]
上記冷却の停止温度を350℃以下とする。350℃以下まで冷却すれば、鋼板全体において変態が完了し、均一な組織が得られるためである。
冷却の方法は、工業的には水冷とすることが一般的であるが、冷却方法は水冷以外でも良く、例えば、ガス冷却などの方法もある。
[Cooling stop temperature: 350 ° C or less]
The cooling stop temperature is 350 ° C or lower. This is because when cooled to 350 ° C. or lower, transformation is completed in the entire steel sheet and a uniform structure can be obtained.
The cooling method is generally water-cooled industrially, but the cooling method may be other than water-cooling, and there is also a method such as gas cooling, for example.

[焼もどし]
上記のような急冷を行った後に、必要に応じて、450℃以上700℃以下の温度範囲で焼もどしを行う。450℃未満では残留応力の除去効果が少なく、一方、700℃を超えると、種々の炭化物が析出するとともに、母材の組織が粗大化し、強度、靭性が大幅に低下するためである。
[Burning]
After quenching as described above, if necessary, rebake in a temperature range of 450 ° C. or higher and 700 ° C. or lower. This is because if the temperature is lower than 450 ° C, the effect of removing residual stress is small, while if the temperature exceeds 700 ° C, various carbides are precipitated, the structure of the base metal becomes coarse, and the strength and toughness are significantly reduced.

なお、工業的には、鋼の強靭化を目的に繰返し焼入れする場合があるが、本発明においても繰り返し焼入れしても良い。ただし、最終の焼入れの際に、鋼板表層および鋼板内部が(Ar3変態点+50)℃(Ar3変態点−20)℃の温度域における平均冷却速度が0.2℃/s 以上10℃/s以下である冷却を施し、その後、350℃以下まで冷却を行い、450℃以上700℃以下で焼もどすことが好ましい。
In addition, industrially, there are cases where the steel is repeatedly hardened for the purpose of toughening the steel, but in the present invention as well, it may be repeatedly hardened. However, at the time of final quenching, the average cooling rate of the surface layer of the steel sheet and the inside of the steel sheet in the temperature range of (Ar 3 transformation point + 50) ° C to (Ar 3 transformation point -20) ° C is 0.2 ° C / s or more and 10 ° C / s. It is preferable to perform the following cooling, then cool to 350 ° C. or lower, and quench at 450 ° C. or higher and 700 ° C. or lower.

表1に示した鋼No.1〜31の鋼を溶製し、スラブとした後、表2に示した製造条件により板厚が100mm以上240mm以下の鋼板とし、その後、冷却処理、焼もどし処理を行い、試料No.1〜37の厚鋼板を製造し、下記の試験に供した。 Steels Nos. 1 to 31 shown in Table 1 are melted to form slabs, and then steel sheets having a thickness of 100 mm or more and 240 mm or less are obtained according to the manufacturing conditions shown in Table 2, followed by cooling treatment and tempering treatment. The thick steel plates of Sample Nos. 1 to 37 were produced and subjected to the following tests.

Figure 0006795083
Figure 0006795083

[引張試験]
各鋼板の板厚1/8t部および板厚1/4t部からΦ12.5mm丸棒引張試験片を圧延方向と直角方向に長さ50mmにて採取し、降伏強度(YS)、引張強度(TS)を測定した。降伏強度(YS)および引張強度(TS)は、JIS Z2241に準拠して測定した。
[Tensile test]
Φ12.5mm round bar tensile test pieces were sampled from the 1 / 8t and 1 / 4t thickness of each steel plate with a length of 50mm in the direction perpendicular to the rolling direction, and yield strength (YS) and tensile strength (TS). ) Was measured. Yield strength (YS) and tensile strength (TS) were measured in accordance with JIS Z 2241.

[シャルピー衝撃試験]
各鋼板の鋼板表層下2mmおよび板厚1/4t部から圧延方向を長手方向とする2mmVノッチシャルピー試験片を各15本ずつ採取し、各試験片についてvTrs(延性‐脆性破面遷移温度)をJIS Z 2242に準拠して評価した。
[Charpy impact test]
Fifteen 2 mm V-notched Charpy test pieces with the rolling direction in the longitudinal direction were collected from 2 mm below the surface layer of each steel sheet and 1 / 4t in thickness, and vTrs (ductility-brittle fracture surface transition temperature) were measured for each test piece. Evaluated in accordance with JIS Z 2242.

上記の試験結果を表2に示す。この結果から、鋼の成分組成および組織が本発明に適合する発明例の鋼板(試料No.1〜22)は、いずれも1/4t部のYSが620MPa以上、TSが720MPa以上、鋼板表層および1/4t部の靭性(vTrs)が−30℃より低温であり、vTrsの差が20℃以内となっており、母材の強度および鋼板表層と鋼板内部の靭性差が小さく、鋼板表層から鋼板内部まで、板厚方向にわたって靭性に優れていることがわかる。 The above test results are shown in Table 2. From this result, the steel sheets (Sample Nos. 1 to 22) of the invention examples in which the composition and structure of the steel conform to the present invention are all 1 / 4t portion of YS of 620MPa or more, TS of 720MPa or more, the surface layer of the steel sheet and the steel sheet. The toughness (vTrs) of 1 / 4t part is lower than -30 ℃, the difference of vTrs is within 20 ℃, the strength of the base material and the difference in toughness between the surface layer of the steel sheet and the inside of the steel sheet are small, and the surface layer of the steel sheet to the steel sheet It can be seen that the toughness is excellent up to the inside in the plate thickness direction.

Figure 0006795083
Figure 0006795083

これに対して、本発明の成分組成または組織を外れる比較例の鋼板(試料No.23〜32)は、鋼板内部のYSが620MPa未満、TSが720MPa未満、または、鋼板表層および1/4t部の靭性(vTrs )が−30℃以上、もしくは、vTrs 差が20℃を超えており、上記のいずれかの特性が劣っている。 On the other hand, the steel sheet (Sample Nos. 23 to 32) of the comparative example that deviates from the composition or structure of the present invention has a YS of less than 620 MPa and a TS of less than 720 MPa inside the steel sheet, or the surface layer of the steel sheet and 1 / 4t portion. The toughness (vTrs) is -30 ° C or higher, or the vTrs difference is more than 20 ° C, and any of the above characteristics is inferior.

また、試料No.33〜37に示すように、鋼の成分組成が本発明に適合する鋼板であっても、製造条件が本発明に適合していない場合、YS、TS、靭性、靭性差のいずれか1つ以上の特性が劣っていることがわかる。 Further, as shown in Sample Nos. 33 to 37, even if the steel sheet has a composition of steel conforming to the present invention, if the manufacturing conditions do not conform to the present invention, YS, TS, toughness, and toughness difference It can be seen that one or more of the characteristics are inferior.

本発明によれば、母材の降伏強度が620MPa以上の強度であるとともに、鋼板表層の靭性、鋼板内部の強度および靭性、並びに製造安定性に優れた100mm以上の厚鋼板を得ることができ、鋼構造物の大型化、鋼構造物の安全性の向上に大きく寄与する。 According to the present invention, it is possible to obtain a thick steel sheet having a yield strength of 620 MPa or more as a base material and having excellent toughness of the surface layer of the steel sheet, strength and toughness inside the steel sheet, and manufacturing stability of 100 mm or more. It greatly contributes to increasing the size of steel structures and improving the safety of steel structures.

Claims (6)

質量%で、
C:0.080%以上0.200%以下、
Si:0.40%以下、
Mn:0.50%以上5.00%以下、
P:0.015%以下、
S:0.0050%以下、
Cr:0.10%以上3.00%以下、
Ni:5.00%以下、
Al:0.030%以上0.080%以下、
N:0.0070%以下および
B:0.0003%以上0.0030%以下
を、下記式(1)を満足する範囲にて含有し、残部はFeおよび不可避的不純物の成分組成を有する鋼板であって、
板厚が100mm以上であり、
該鋼板の表層にベイナイト面積分率が10%以上の組織を有し、該表層より内側の鋼板内部の降伏強度が620MPa以上である鋼板。

[C]+[Mn]/6+[Ni]/15+[Cr]/15≧0.57 … (1)
ここで、
[]は、該[]内元素の含有量(質量%)である。
By mass%
C: 0.080% or more and 0.200% or less,
Si: 0.40% or less,
Mn: 0.50% or more and 5.00% or less,
P: 0.015% or less,
S: 0.0050% or less,
Cr: 0.10% or more and 3.00% or less,
Ni: 5.00% or less,
Al: 0.030% or more and 0.080% or less,
N: 0.0070% or less and B: 0.0003% or more and 0.0030% or less are contained in a range satisfying the following formula (1), and the balance is a steel sheet having a component composition of Fe and unavoidable impurities.
The plate thickness is 100 mm or more,
A steel sheet having a bainite surface integral of 10% or more on the surface layer of the steel sheet and a yield strength of 620 MPa or more inside the steel sheet inside the surface layer.
Note [C] + [Mn] / 6 + [Ni] / 15 + [Cr] / 15 ≧ 0.57… (1)
here,
[] Is the content (mass%) of the element in [].
前記成分組成は、さらに、
質量%で、
Cu:0.50%以下、
Mo:1.50%以下、
Nb:0.100%以下、
V:0.200%以下および
Ti:0.005%以上0.020%以下
のうちから選ばれる1種または2種以上を前記式(1)に代えて下記式(2)を満足する範囲にて含有する、請求項1に記載の鋼板。

[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/15≧0.57 … (2)
ここで、
[]は、該[]内元素の含有量(質量%)である。
The component composition further
By mass%
Cu: 0.50% or less,
Mo: 1.50% or less,
Nb: 0.100% or less,
V: 0.200% or less and
Ti: The steel sheet according to claim 1, which contains one or more selected from 0.005% or more and 0.020% or less in place of the above formula (1) within a range satisfying the following formula (2).
Note [C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [Mo] + [V]) / 15 ≧ 0.57… (2)
here,
[] Is the content (mass%) of the element in [].
前記成分組成は、さらに、
質量%で、
Mg:0.0005%以上0.0100%以下、
Ta:0.010%以上0.200%以下、
Zr:0.0050%以上0.1000%以下、
Y:0.001%以上0.010%以下、
Ca:0.0005%以上0.0050%以下および
REM:0.0005%以上0.0200%以下
のうちから選ばれる1種または2種以上を含有する、請求項1または2に記載の鋼板。
The component composition further
By mass%
Mg: 0.0005% or more and 0.0100% or less,
Ta: 0.010% or more and 0.200% or less,
Zr: 0.0050% or more and 0.1000% or less,
Y: 0.001% or more and 0.010% or less,
Ca: 0.0005% or more and 0.0050% or less and
REM: The steel sheet according to claim 1 or 2, which contains one or more selected from 0.0005% or more and 0.0200% or less.
質量%で、
C:0.080%以上0.200%以下、
Si:0.40%以下、
Mn:0.50%以上5.00%以下、
P:0.015%以下、
S:0.0050%以下、
Cr:0.10%以上3.00%以下、
Ni:5.00%以下、
Al:0.030%以上0.080%以下、
N:0.0070%以下および
B:0.0003%以上0.0030%以下
を、下記式(1)を満足する範囲にて含有し、残部はFeおよび不可避的不純物の成分組成を有する鋼素材に、熱間圧延を施して板厚が100mm以上の熱延鋼板とし、
該熱延鋼板を冷却した後に、Ac3変態点以上1050℃以下の温度域に加熱した後、
鋼板の表層および鋼板内部のそれぞれにおける、(Ar3変態点+50)℃(Ar3変態点−20)℃の温度域での平均冷却速度が0.2〜10℃/sである冷却処理を施して350℃以下まで冷却する、表層にベイナイト面積分率が10%以上の組織を有し、該表層より内側の鋼板内部の降伏強度が620MPa以上である鋼板の製造方法。

[C]+[Mn]/6+[Ni]/15+[Cr]/15≧0.57 … (1)
ここで、
[]は、該[]内元素の含有量(質量%)である。
By mass%
C: 0.080% or more and 0.200% or less,
Si: 0.40% or less,
Mn: 0.50% or more and 5.00% or less,
P: 0.015% or less,
S: 0.0050% or less,
Cr: 0.10% or more and 3.00% or less,
Ni: 5.00% or less,
Al: 0.030% or more and 0.080% or less,
N: 0.0070% or less and B: 0.0003% or more and 0.0030% or less are contained in a range satisfying the following formula (1), and the balance is hot-rolled on a steel material having a component composition of Fe and unavoidable impurities. It is applied to make a hot-rolled steel sheet with a thickness of 100 mm or more.
After cooling the hot-rolled steel sheet, it is heated to a temperature range above the Ac 3 transformation point and below 1050 ° C.
The surface layer of the steel sheet and the inside of the steel sheet are cooled so that the average cooling rate in the temperature range of (Ar 3 transformation point + 50) ° C to (Ar 3 transformation point -20) ° C is 0.2 to 10 ° C / s. A method for producing a steel sheet having a bainite area fraction of 10% or more on the surface layer and having a yield strength inside the steel sheet inside the surface layer of 620 MPa or more, which is cooled to 350 ° C. or less.
Note [C] + [Mn] / 6 + [Ni] / 15 + [Cr] / 15 ≧ 0.57… (1)
here,
[] Is the content (mass%) of the element in [].
前記成分組成は、さらに、
質量%で、
Cu:0.50%以下、
Mo:1.50%以下、
Nb:0.100%以下、
V:0.200%以下および
Ti:0.005%以上0.020%以下
のうちから選ばれる1種または2種以上を前記式(1)に代えて下記式(2)を満足する範囲にて含有する、請求項4に記載の鋼板の製造方法。

[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/15≧0.57 … (2)
ここで、
[]は、該[]内元素の含有量(質量%)である。
The component composition further
By mass%
Cu: 0.50% or less,
Mo: 1.50% or less,
Nb: 0.100% or less,
V: 0.200% or less and
Ti: The steel sheet according to claim 4, which contains one or more selected from 0.005% or more and 0.020% or less in place of the above formula (1) within a range satisfying the following formula (2). Production method.
Note [C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [Mo] + [V]) / 15 ≧ 0.57… (2)
here,
[] Is the content (mass%) of the element in [].
前記成分組成は、さらに、
質量%で、
Mg:0.0005%以上0.0100%以下、
Ta:0.010%以上0.200%以下、
Zr:0.0050%以上0.1000%以下、
Y:0.001%以上0.010%以下、
Ca:0.0005%以上0.0050%以下および
REM:0.0005%以上0.0200%以下
のうちから選ばれる1種または2種以上を含有する、請求項4または5に記載の鋼板の製造方法。
The component composition further
By mass%
Mg: 0.0005% or more and 0.0100% or less,
Ta: 0.010% or more and 0.200% or less,
Zr: 0.0050% or more and 0.1000% or less,
Y: 0.001% or more and 0.010% or less,
Ca: 0.0005% or more and 0.0050% or less and
REM: The method for producing a steel sheet according to claim 4 or 5, which contains one or more selected from 0.0005% or more and 0.0200% or less.
JP2019502269A 2017-09-08 2018-09-07 Steel plate and its manufacturing method Active JP6795083B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017173275 2017-09-08
JP2017173275 2017-09-08
PCT/JP2018/033286 WO2019050010A1 (en) 2017-09-08 2018-09-07 Steel sheet and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2019050010A1 JPWO2019050010A1 (en) 2019-11-07
JP6795083B2 true JP6795083B2 (en) 2020-12-02

Family

ID=65634117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019502269A Active JP6795083B2 (en) 2017-09-08 2018-09-07 Steel plate and its manufacturing method

Country Status (6)

Country Link
EP (1) EP3680358A4 (en)
JP (1) JP6795083B2 (en)
KR (1) KR102339890B1 (en)
CN (2) CN111051555B (en)
SG (1) SG11202001759QA (en)
WO (1) WO2019050010A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024015532A (en) 2020-07-28 2024-02-06 日本製鉄株式会社 wear resistant steel
JP7261364B1 (en) * 2023-01-20 2023-04-19 株式会社神戸製鋼所 steel plate

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174322A (en) * 1985-10-15 1987-07-31 Kobe Steel Ltd Manufacture of low yield ratio high tension steel plate superior in cold workability
JP5368820B2 (en) * 2008-03-27 2013-12-18 株式会社神戸製鋼所 780 MPa class low yield ratio circular steel pipe for building structure having excellent earthquake resistance and method for producing the same
CN101591756A (en) * 2008-05-26 2009-12-02 宝山钢铁股份有限公司 Low-crackle sensitive steel board with yield strength of 620 MPa grade and manufacture method thereof
JP5126326B2 (en) * 2010-09-17 2013-01-23 Jfeスチール株式会社 High strength hot-rolled steel sheet with excellent fatigue resistance and method for producing the same
JP5029749B2 (en) * 2010-09-17 2012-09-19 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in bending workability and its manufacturing method
EP2612945B1 (en) * 2010-11-05 2014-04-16 Nippon Steel & Sumitomo Metal Corporation High-strength steel plate and method for producing same
JP5924058B2 (en) * 2011-10-03 2016-05-25 Jfeスチール株式会社 High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
JP5928374B2 (en) * 2013-03-14 2016-06-01 Jfeスチール株式会社 Non-tempered low-yield ratio high-tensile steel plate and method for producing the same
WO2014141697A1 (en) * 2013-03-15 2014-09-18 Jfeスチール株式会社 Thick, tough, high tensile strength steel plate and production method therefor
WO2015093321A1 (en) * 2013-12-16 2015-06-25 新日鐵住金株式会社 H-shaped steel and method for producing same
JP6024928B2 (en) * 2013-12-27 2016-11-16 Jfeスチール株式会社 Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same
EP3120941B1 (en) * 2014-03-20 2018-03-28 JFE Steel Corporation High toughness and high tensile strength thick steel plate and production method therefor
JP6086090B2 (en) * 2014-03-28 2017-03-01 Jfeスチール株式会社 Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
CN106133175B (en) * 2014-03-31 2018-09-07 杰富意钢铁株式会社 The high deformability line-pipes steel and its manufacturing method and welded still pipe of resistance to distortion aging property and the characteristic good of resistance to HIC
WO2015162939A1 (en) * 2014-04-24 2015-10-29 Jfeスチール株式会社 Thick steel plate and manufacturing method for same
JP6361278B2 (en) 2014-05-16 2018-07-25 新日鐵住金株式会社 Manufacturing method of rolled steel
KR101994784B1 (en) * 2015-01-16 2019-07-01 제이에프이 스틸 가부시키가이샤 Thick-walled high-toughness high-strength steel plate and method for manufacturing the same
EP3385399A4 (en) * 2015-12-04 2019-05-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Non-heat-treated steel sheet having high yield strength in which hardness of a welding-heat-affected zone and degradation of low-temperature toughness of the welding-heat-affected zone are suppressed

Also Published As

Publication number Publication date
EP3680358A1 (en) 2020-07-15
JPWO2019050010A1 (en) 2019-11-07
WO2019050010A1 (en) 2019-03-14
SG11202001759QA (en) 2020-03-30
KR102339890B1 (en) 2021-12-15
CN113737103A (en) 2021-12-03
EP3680358A4 (en) 2020-07-15
KR20200034770A (en) 2020-03-31
CN111051555B (en) 2022-01-21
CN111051555A (en) 2020-04-21

Similar Documents

Publication Publication Date Title
US10604817B2 (en) High-strength steel plate for pressure vessel having excellent toughness after post weld heat treatment and manufacturing method thereof
JP6048626B1 (en) Thick, high toughness, high strength steel plate and method for producing the same
JP5871109B1 (en) Thick steel plate and manufacturing method thereof
JP5079793B2 (en) Steel material excellent in high temperature characteristics and toughness and method for producing the same
WO2015093321A1 (en) H-shaped steel and method for producing same
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JP5630322B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
JP2012122111A (en) Method for producing tmcp and tempering process type high-strength thick steel plate having both excellent productivity and weldability, and excellent in drop-weight characteristic after pwht
JP4072191B1 (en) Refractory steel material excellent in high temperature strength, toughness and reheat embrittlement resistance, and production method thereof
JP2022510216A (en) Steel material with excellent toughness of weld heat affected zone and its manufacturing method
JP5194572B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP5630321B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
CN111542621B (en) High-strength high-toughness hot-rolled steel sheet and method for producing same
JP5874664B2 (en) High strength steel plate with excellent drop weight characteristics and method for producing the same
JP6795083B2 (en) Steel plate and its manufacturing method
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP6051735B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance
JP4757858B2 (en) Refractory steel material excellent in high temperature strength, toughness and reheat embrittlement resistance, and production method thereof
JP6295632B2 (en) High strength H-section steel with excellent toughness
JP5151510B2 (en) Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties
JP4757857B2 (en) Refractory steel material excellent in high temperature strength, toughness and reheat embrittlement resistance, and production method thereof
JP6631702B2 (en) High-strength steel sheet with excellent low-temperature toughness
JP4821182B2 (en) Manufacturing method of high-tensile steel plate with excellent workability
JP5168045B2 (en) Refractory steel material excellent in high temperature strength, toughness and reheat embrittlement resistance, and production method thereof
JP2005206938A (en) STRUCTURAL Fe-Cr BASED STEEL PLATE AND METHOD FOR PRODUCTION THEREOF

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200826

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200826

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200903

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R150 Certificate of patent or registration of utility model

Ref document number: 6795083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250