JP2017002349A - High tensile steel plate and production method thereof - Google Patents

High tensile steel plate and production method thereof Download PDF

Info

Publication number
JP2017002349A
JP2017002349A JP2015116273A JP2015116273A JP2017002349A JP 2017002349 A JP2017002349 A JP 2017002349A JP 2015116273 A JP2015116273 A JP 2015116273A JP 2015116273 A JP2015116273 A JP 2015116273A JP 2017002349 A JP2017002349 A JP 2017002349A
Authority
JP
Japan
Prior art keywords
toughness
temperature
less
steel plate
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015116273A
Other languages
Japanese (ja)
Other versions
JP6299676B2 (en
Inventor
克行 一宮
Katsuyuki Ichinomiya
克行 一宮
長谷 和邦
Kazukuni Hase
和邦 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015116273A priority Critical patent/JP6299676B2/en
Publication of JP2017002349A publication Critical patent/JP2017002349A/en
Application granted granted Critical
Publication of JP6299676B2 publication Critical patent/JP6299676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high tensile steel plate having a plate thickness of 35 to 100 mm, a yield stress of 460 MPa or more and excellent in CTOD (Crack Tip Opening Displacement) property of a heat affected zone which is multi-pass welded, and a production method therefor.SOLUTION: There is provided the high tensile steel plate which has a component composition containing, by mass%, C:0.010 to 0.080%, Si:0.01 to 0.50%, Mn:0.20 to 1.80%, P:0.012% or less, S:0.0035% or less, sol.Al:0.010 to 0.060%, Ni:0.1 to 2.0%, Cr:1.0 to 4.0%, Nb:0.005 to 0.040%, Ti:0.005 to 0.025%, N:0.0020 to 0.0050%, satisfying 35Cr+8Mn≥63, and the balance Fe with inevitable impurities, and which has a yield stress YS of 460 MPa or more and absorption energy vE-80°C of 200 J or more at a test temperature of -80°C in a Charpy impact test.SELECTED DRAWING: None

Description

本発明は、船舶や海洋構造物、圧力容器、ペンストックなどの鋼構造物に用いられる高張力鋼板とその製造方法に関し、特に、板厚が35〜100mm、降伏応力YSが460MPa以上で、母材の強度および靭性特性に優れるだけでなく、多層盛溶接した溶接熱影響部における低温靭性にも優れる厚肉の高張力鋼板およびその製造方法に関するものである。   The present invention relates to a high-strength steel plate used for steel structures such as ships, offshore structures, pressure vessels, and penstocks, and a method for producing the same, and in particular, a plate thickness of 35 to 100 mm, a yield stress YS of 460 MPa or more, The present invention relates to a thick high-strength steel sheet that not only excels in strength and toughness of the material, but also excels in low-temperature toughness in the weld heat-affected zone subjected to multi-layer welding.

船舶や海洋構造物、圧力容器、ペンストックなどの鋼構造物に用いられる鋼板(厚鋼板)は、溶接接合して所望の形状および寸法の構造物として仕上げられる。そのため、これらの鋼板には、鋼構造物としての安全性を確保する観点から、母材の強度が高く、靭性に優れていることは勿論のこと、溶接部(溶接金属や溶接熱影響部)の靭性にも優れていることが要求される。   Steel plates (thick steel plates) used for steel structures such as ships, marine structures, pressure vessels, and penstock are welded and finished as structures having desired shapes and dimensions. Therefore, in these steel plates, from the viewpoint of ensuring safety as a steel structure, the strength of the base material is high and the toughness is excellent, as well as the welded portion (welded metal or weld heat affected zone). The toughness is also required to be excellent.

鋼板の靭性を評価する基準としては、従来、主にシャルピー衝撃試験による吸収エネルギーが用いられてきたが、近年では、より信頼性の高い亀裂開口変位試験(CTOD試験;Crack Tip Opening Displacement Test)が用いられることが多くなってきている。この試験は、靭性評価部に疲労予亀裂を発生させた試験片を3点曲げし、破壊直前の亀裂の口開き量(塑性変形量)を測定して脆性破壊の発生抵抗を評価しようとするものである。なお、以降、上記「CTOD試験」で得られた評価結果を「CTOD値」または「CTOD特性」ともいう。   As a standard for evaluating the toughness of a steel sheet, absorption energy by a Charpy impact test has been mainly used, but in recent years, a more reliable crack opening displacement test (CTOD test; Crack Tip Opening Displacement Test) is used. It is increasingly used. This test is intended to evaluate the resistance to brittle fracture by bending a specimen with fatigue precracking in the toughness evaluation section at three points and measuring the amount of crack opening (plastic deformation) just before fracture. Is. Hereinafter, the evaluation result obtained in the “CTOD test” is also referred to as “CTOD value” or “CTOD characteristic”.

ところで、上記CTOD試験では疲労予亀裂を用いるので、極めて微小な領域が靭性の評価部となるため、局所的な脆化域(以下、局所脆化域とも記す。)が存在すると、シャルピー衝撃試験で良好な靭性が得られても、低いCTOD値を示すことがある。上記局所脆化域は、板厚が厚い鋼板などに多層盛溶接を施した際、複雑な熱履歴を受ける溶接熱影響部(HAZ:Heat Affected Zone)で発生し易く、特に、ボンド部(溶接金属と母材の境界)や、溶接熱影響部の中で上記ボンド部に近く、多層盛溶接時に2相域に再加熱される部分(1サイクル目の溶接で粗粒となり、後続の溶接による入熱でフェライトとオーステナイトの2相域に再加熱される領域、以降、「2相域再加熱部」ともいう)が局所脆化域となり易い。ボンド部近傍の溶接熱影響部の靭性が低下するのは、ボンド部近傍の溶接熱影響部は、融点直下の高温に曝されて、オーステナイト粒が粗大化し、続く冷却時により靭性の低い上部ベイナイト組織が生成し易いためである。また、溶接熱影響部のボンド部近傍の2相域再加熱部では、ウッドマンステッテン組織や島状マルテンサイトMAなどの脆化組織が生成し易いことも、ボンド部近傍の溶接熱影響部の靭性が低下する理由である。   By the way, since the fatigue precrack is used in the CTOD test, a very small region serves as a toughness evaluation part. Therefore, when a local embrittlement region (hereinafter also referred to as a local embrittlement region) exists, a Charpy impact test is performed. Even when good toughness is obtained, a low CTOD value may be exhibited. The local embrittlement region is likely to occur in a weld heat affected zone (HAZ) that receives a complex thermal history when multi-layer welding is performed on a thick steel plate or the like, and in particular, a bond portion (welding) The boundary between the metal and the base material) and the weld heat affected zone, which is close to the bond part, and is reheated to the two-phase region during multi-layer welding (coarse grains are formed in the first cycle welding, resulting from subsequent welding) A region that is reheated to a two-phase region of ferrite and austenite by heat input, hereinafter also referred to as a “two-phase region reheating part”) tends to be a local embrittlement region. The toughness of the weld heat affected zone in the vicinity of the bond portion is reduced because the weld heat affected zone in the vicinity of the bond portion is exposed to a high temperature just below the melting point, the austenite grains become coarse, and the lower toughness is lower during subsequent cooling. This is because the tissue is easy to generate. Moreover, in the two-phase region reheated part near the bond part of the welding heat affected zone, an embrittled structure such as Woodman Stetten structure and island martensite MA is likely to be generated. That is why the toughness is reduced.

そこで、上記溶接熱影響部の靭性低下を抑制するため、従来から、鋼中にTiNを微細分散させて、オーステナイト粒の粗大化を抑制したり、フェライト変態核として利用したりする技術が実用化されている。しかし、溶接熱影響部のボンド部近傍では、TiNが溶解する温度域にまで加熱されることがあるため、上記TiNの析出効果が消失してしまうという問題がある。   Therefore, in order to suppress the toughness degradation of the above-mentioned weld heat affected zone, conventionally, a technology to finely disperse TiN in steel to suppress coarsening of austenite grains or to use as a ferrite transformation nucleus has been put into practical use. Has been. However, in the vicinity of the bond portion of the welding heat affected zone, there is a problem that the TiN precipitation effect disappears because it may be heated to a temperature range where TiN dissolves.

その他の技術としては、例えば、特許文献1や特許文献2には、希土類元素(REM:Rare Earth Metal)をTiと共に複合添加し、鋼中に微細粒子を分散させることによって、オーステナイトの粒成長を抑制し、溶接部の靭性を向上させる技術が開示されている。
また、Tiの酸化物を鋼中に微細分散させる技術や、BNのフェライト核生成能と酸化物分散を組み合わせる技術、さらには、CaやREMを添加して硫化物の形態を制御することにより、靭性を高める技術も提案されている。しかし、これらの技術は、比較的低強度で、合金元素量が少なく、溶接熱影響部の組織がフェライトを有する鋼板を対象としている。
As other technologies, for example, in Patent Document 1 and Patent Document 2, rare earth elements (REM: Rare Earth Metal) are added together with Ti, and fine particles are dispersed in steel, thereby austenite grain growth. Techniques for suppressing and improving the toughness of the weld are disclosed.
In addition, the technology of finely dispersing Ti oxide in steel, the technology of combining BN ferrite nucleation ability and oxide dispersion, and further adding Ca and REM to control the form of sulfide, Techniques for increasing toughness have also been proposed. However, these techniques are intended for a steel sheet having a relatively low strength, a small amount of alloy elements, and a weld heat-affected zone having ferrite.

そこで、溶接熱影響部におけるフェライトの生成を促進する技術として、例えば、特許文献3には、Mnの添加量を2.0質量%以上に高める技術が開示されている。しかし、Mnは、連続鋳造で鋼素材(スラブ)を製造した場合、中心部に偏析し易い元素であり、Mn偏析部は、溶接後の冷却時に変態が促進され、高硬度となるため破壊の起点となり易い。そのため、Mnの過剰添加は、溶接熱影響部のみならず母材の靭性低下をも引き起こす。   Thus, as a technique for promoting the generation of ferrite in the weld heat affected zone, for example, Patent Document 3 discloses a technique for increasing the amount of Mn added to 2.0 mass% or more. However, when Mn is a steel material (slab) produced by continuous casting, it is an element that is easily segregated at the center. Easy to start. Therefore, excessive addition of Mn causes not only the weld heat affected zone but also the toughness of the base material.

一方、2相域再加熱部は、多層盛溶接時における2相域への再加熱で、オーステナイトに逆変態した領域に炭素が濃化し、冷却中に島状マルテンサイトMAを含む脆弱なベイナイト組織が生成するため、靭性が低下するという問題がある。そこで、鋼成分を低C、低Si化して島状マルテンサイトMAの生成を抑制して靭性を向上させ、さらに、Cuを添加することにより、母材強度を高める技術が開示されている(例えば、特許文献4、5参照)。これらの技術は、時効処理によってCuを析出させて強度を高めるものであるが、多量のCuを添加するため、熱間加工性が低下し、生産性を阻害するという問題がある。   On the other hand, the two-phase region reheat part is a fragile bainite structure containing carbon in the martensite MA during cooling due to carbon re-concentration in the region transformed back to austenite by reheating to the two-phase region during multi-layer welding. As a result, the toughness is reduced. Therefore, a technique has been disclosed in which the steel component is made low C and low Si to suppress the formation of island martensite MA to improve toughness, and further, Cu is added to increase the base material strength (for example, Patent Documents 4 and 5). These techniques are intended to increase the strength by precipitating Cu by aging treatment. However, since a large amount of Cu is added, there is a problem that hot workability is lowered and productivity is hindered.

ところで、近年、船舶や海洋構造物、圧力容器、ペンストックなどの鋼構造物は、大型化する傾向にあり、それに伴い、鋼構造物に使用される鋼板の厚肉化と高強度化が進められている。鋼構造物に用いられる鋼板には、主として板厚が35〜100mm程度の厚肉鋼板が用いられているが、降伏応力YSが420MPa級やそれ以上の強度を得るためには、合金元素の添加量が多い方が有利である。しかし、合金元素の多量の添加は、ボンド部や2相域再加熱部の靭性確保を困難にすることは上述したとおりである。   By the way, in recent years, steel structures such as ships, offshore structures, pressure vessels, and penstocks have tended to increase in size, and accordingly, steel sheets used for steel structures have been made thicker and stronger. It has been. For steel plates used in steel structures, thick steel plates with a plate thickness of about 35 to 100 mm are mainly used. In order to obtain a yield stress YS of 420 MPa or higher, addition of alloying elements is required. Larger amounts are advantageous. However, as described above, the addition of a large amount of the alloy element makes it difficult to ensure the toughness of the bond portion and the two-phase region reheated portion.

この問題に対して、特許文献6には、溶接熱影響部の2相域再加熱部の島状マルテンサイトMAを低減するために、MnとCrの添加量を適正化する技術が開示されている。しかし、この技術は、入熱量が500kJ/cmを超える大入熱溶接用鋼材に関する技術であり、入熱量が100kJ/cm以下の小〜中入熱で多層盛溶接する鋼板を対象とするものではない。また、特許文献6の技術は、Nbを添加していないため、制御圧延技術を適用することができず、母材の靭性が十分ではないという問題がある。   With respect to this problem, Patent Document 6 discloses a technique for optimizing the addition amounts of Mn and Cr in order to reduce the island-like martensite MA in the two-phase region reheating part of the welding heat affected zone. Yes. However, this technology is a technology related to a steel material for large heat input welding with a heat input amount exceeding 500 kJ / cm, and is not intended for a steel plate that is multilayer-welded with small to medium heat inputs with a heat input amount of 100 kJ / cm or less. Absent. Moreover, since the technique of patent document 6 does not add Nb, there is a problem that the control rolling technique cannot be applied and the toughness of the base material is not sufficient.

また、特許文献7には、所定の成分組成の下で炭素当量Ceqを適正化することによって、合金元素の多い鋼成分であっても、420MPa以上の降伏応力と良好な低温靭性、特にCTOD特性を両立させる技術が提案されている。この技術によって、鋼構造物に適用することができ、降伏応力が420MPa以上で、小〜中入熱による多層盛溶接した溶接熱影響部のCTOD特性に優れる高張力鋼材を製造することが可能となった。   Further, Patent Document 7 describes that by optimizing the carbon equivalent Ceq under a predetermined component composition, a yield stress of 420 MPa or more and good low-temperature toughness, particularly CTOD characteristics, even for a steel component with a large amount of alloy elements. A technique for achieving both has been proposed. This technology can be applied to steel structures, and it is possible to produce a high-tensile steel material having a yield stress of 420 MPa or more and excellent CTOD characteristics of a weld heat-affected zone obtained by multi-layer welding by small to medium heat input. became.

特公平03−053367号公報Japanese Patent Publication No. 03-053367 特開昭60−184663号公報JP 60-184663 A 特開2003−147484号公報JP 2003-147484 A 特開平05−186823号公報JP 05-186823 A 特開2001−335884号公報Japanese Patent Laid-Open No. 2001-335484 特許第5365146号公報Japanese Patent No. 5365146 特開2012−184500号公報JP 2012-184500 A

上述したように、近年、鋼構造物は、重厚長大化する傾向にあり、それに伴い、船舶や海洋構造物の分野においては、高強度(高降伏応力)で板厚が厚く、かつ、溶接熱影響部の低温靭性に優れる鋼板、特に、板厚が35〜100mmで、降伏応力が460〜620MPaであり、多層盛溶接した溶接熱影響部が優れたCTOD特性を有する鋼板に対する要望が高まっている。   As described above, in recent years, steel structures tend to be heavy and long, and accordingly, in the field of ships and marine structures, high strength (high yield stress), thick plate thickness, and welding heat There is a growing demand for steel plates having excellent low temperature toughness of the affected zone, particularly steel plates having a plate thickness of 35 to 100 mm, a yield stress of 460 to 620 MPa, and a multilayer heat-welded weld heat affected zone having excellent CTOD characteristics. .

上記の要望に対し、前述した特許文献7に開示の技術によって、合金元素の多い鋼成分系であっても420MPa以上の降伏応力と良好な低温靭性(以下、CTOD特性とも記す。)を実現するための方途は拓かれた。しかし、板厚が50mm超の鋼板においては、板厚が50mm以下の鋼板の場合と同様の強度特性を得るまでには至っていない。すなわち、特許文献7に記載の技術では、板厚が50mm以下の鋼板では降伏応力が500MPa以上の強度が得られるが、例えば、板厚が70mmの鋼板では、降伏応力が高々462MPaのものが得られている。しかし、高強度化を狙って、合金元素を単に多量に添加するだけでは、CTOD特性が低下してしまう。このように、特許文献7に開示の技術をはじめ、従来の技術によっては、板厚が35〜100mmで、降伏応力が460〜620MPaであり、多層盛溶接した溶接熱影響部が優れたCTOD特性を有する鋼板がまだ得られていなかった。   In response to the above-described demand, the technique disclosed in Patent Document 7 described above realizes a yield stress of 420 MPa or more and good low-temperature toughness (hereinafter also referred to as CTOD characteristics) even in a steel component system with many alloying elements. The way to do it was pioneered. However, steel sheets having a thickness of more than 50 mm have not yet achieved the same strength characteristics as those of steel sheets having a thickness of 50 mm or less. That is, in the technique described in Patent Document 7, a steel sheet having a thickness of 50 mm or less can provide a strength with a yield stress of 500 MPa or more. For example, a steel sheet with a thickness of 70 mm can have a yield stress of at most 462 MPa. It has been. However, simply adding a large amount of an alloy element with the aim of increasing the strength will degrade the CTOD characteristics. Thus, depending on the conventional technique including the technique disclosed in Patent Document 7, the plate thickness is 35 to 100 mm, the yield stress is 460 to 620 MPa, and the CTOD characteristics in which the weld heat-affected zone is excellent in multi-layer welding. A steel plate having no has not yet been obtained.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、板厚が35〜100mm、降伏応力が460MPa以上で、入熱量が100kJ/cm以下で多層盛溶接した溶接熱影響部におけるCTOD特性に優れる高張力鋼板を提供するとともに、その有利な製造方法を提案することにある。   The present invention has been made in view of the above-described problems of the prior art, and the purpose thereof is multilayer overlay welding with a plate thickness of 35 to 100 mm, a yield stress of 460 MPa or more, and a heat input of 100 kJ / cm or less. An object of the present invention is to provide a high-tensile steel sheet having excellent CTOD characteristics in the heat affected zone and to propose an advantageous manufacturing method thereof.

発明者らは、上記課題を解決するため、鋼の成分組成が溶接部に及ぼす影響に着目して鋭意検討を重ねた。その結果、以下のことを知見した。
i)CTOD特性は、鋼板全厚の試験片で評価されるため、中心偏析部が破壊の起点となる。従って、溶接熱影響部のCTOD特性を向上するためには、中心偏析し易い元素、具体的にはC、Mn、P、NiおよびNbの含有量を適正範囲に制御し、中心偏析部の硬さの上昇を抑制することが重要である。
ii)溶接熱影響部の靭性を向上させるためには、鋼中に均一微細に分散させたTiNを析出させて、溶接熱影響部のボンド部近傍でのオーステナイト粒の粗大化を抑制することが有効である。
iii)CTOD値と強度とはトレードオフの関係にあるので、単にCeqを上昇させて高強度化を図ると、CTOD特性が低下してしまうが、低C−低P−高Ni系の成分系とすることで、強度−CTOD特性のバランスを改善することができる。
iv)さらに、溶接熱影響部の靭性をより向上させるためには、硫化物の形態制御を目的として添加しているCaの化合物(CaS)を晶出させて、溶接熱影響部の靭性向上に利用するのが有効である。
v)また、鋼素材を特定の成分組成としつつ、鋼板の製造方法において、スラブ加熱温度、圧延条件を制御することで、強度、靱性に優れた鋼板を製造することができる。
In order to solve the above-mentioned problems, the inventors have conducted intensive studies focusing on the influence of the composition of steel on the weld. As a result, the following was found.
i) Since the CTOD characteristic is evaluated with a test piece having a full thickness of the steel sheet, the central segregation portion is the starting point of the fracture. Therefore, in order to improve the CTOD characteristics of the weld heat affected zone, the content of elements that are easily segregated at the center, specifically, the contents of C, Mn, P, Ni, and Nb are controlled within an appropriate range, and the hardness of the center segregated zone is increased. It is important to suppress the increase in height.
ii) In order to improve the toughness of the weld heat affected zone, TiN dispersed uniformly and finely in steel is precipitated to suppress the austenite grain coarsening in the vicinity of the bond portion of the weld heat affected zone. It is valid.
iii) Since the CTOD value and the strength are in a trade-off relationship, simply increasing Ceq to increase the strength decreases the CTOD characteristics, but the low C-low P-high Ni component system By doing so, the balance of strength-CTOD characteristics can be improved.
iv) Further, in order to further improve the toughness of the weld heat affected zone, the Ca compound (CaS) added for the purpose of controlling the form of sulfide is crystallized to improve the toughness of the weld heat affected zone. It is effective to use.
v) Moreover, the steel plate excellent in intensity | strength and toughness can be manufactured by controlling a slab heating temperature and rolling conditions in the manufacturing method of a steel plate, setting a steel raw material as a specific component composition.

上記知見に基づいて開発した本発明の要旨は、次の通りである。
[1]質量%で、C:0.010〜0.080%、Si:0.01〜0.50%、Mn:0.20〜1.80%、P:0.012%以下、S:0.0035%以下、sol.Al:0.010〜0.060%、Ni:0.1〜2.0%、Cr:1.0〜4.0%、Nb:0.005〜0.040%、Ti:0.005〜0.025%、N:0.0020〜0.0050%を含有し、さらに、Crを35Cr+8Mn≧63を満たして含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、降伏応力YSが460MPa以上、シャルピー衝撃試験における−80℃の試験温度での吸収エネルギーvE−80℃が200J以上である高張力鋼板。
The gist of the present invention developed based on the above findings is as follows.
[1] By mass%, C: 0.010 to 0.080%, Si: 0.01 to 0.50%, Mn: 0.20 to 1.80%, P: 0.012% or less, S: 0.0035% or less, sol. Al: 0.010-0.060%, Ni: 0.1-2.0%, Cr: 1.0-4.0%, Nb: 0.005-0.040%, Ti: 0.005- 0.025%, N: 0.0020 to 0.0050%, further containing Cr satisfying 35Cr + 8Mn ≧ 63, with the balance being composed of Fe and inevitable impurities, yield stress YS Is a high-tensile steel plate having an absorption energy vE-80 ° C. of 200 J or more at a test temperature of −80 ° C. in a Charpy impact test.

[2]さらに、質量%で、Cu:1.0%未満、Mo:0.05〜0.50%、V:0.005〜0.05%、B:0.0005〜0.0030%、Ca:0.0005〜0.0050%およびMg:0.0002〜0.0030%の中から選ばれる1種または2種以上を含有することを特徴とする前記[1]に記載の高張力鋼板。   [2] Further, in mass%, Cu: less than 1.0%, Mo: 0.05 to 0.50%, V: 0.005 to 0.05%, B: 0.0005 to 0.0030%, The high-tensile steel plate according to the above [1], containing one or more selected from Ca: 0.0005 to 0.0050% and Mg: 0.0002 to 0.0030% .

[3]さらに、質量%で、O:0.0030%以下含有し、かつ、上記Ca,SおよびOが下記(1)式を満たして含有する前記[2]に記載の高張力鋼板。
0<{Ca−(0.18+130×Ca)×O}/(1.25×S)<1 ・・・(1)
ただし、上記式中の各元素記号は、それぞれの元素の含有量(質量%)である。
[3] The high-tensile steel plate according to [2], further containing, by mass%, O: 0.0030% or less, and the Ca, S, and O satisfying the following formula (1):
0 <{Ca− (0.18 + 130 × Ca) × O} / (1.25 × S) <1 (1)
However, each element symbol in the above formula is the content (% by mass) of each element.

[4]前記[1]〜[3]のいずれかに記載の成分組成を有する鋼素材を1030〜1200℃の加熱温度に加熱した後、950℃以上の温度における累積圧下率を30%以上、950℃未満の温度における累積圧下率を30〜70%とする熱間圧延をし、1.0℃/s以上の冷却速度で600℃以下の冷却停止温度まで加速冷却を行う高張力鋼板の製造方法。   [4] After heating the steel material having the component composition according to any one of [1] to [3] to a heating temperature of 1030 to 1200 ° C., the cumulative rolling reduction at a temperature of 950 ° C. or more is 30% or more, Manufacture of high-strength steel sheets that are hot-rolled at a cumulative reduction rate of 30 to 70% at a temperature of less than 950 ° C and accelerated to a cooling stop temperature of 600 ° C or less at a cooling rate of 1.0 ° C / s or more. Method.

[5]前記加速冷却を行った後、さらに、450〜650℃の温度で焼戻処理を施す前記[4]に記載の高張力鋼板の製造方法。   [5] The method for producing a high-strength steel sheet according to [4], further including performing tempering at a temperature of 450 to 650 ° C. after the accelerated cooling.

なお、本発明において、高張力鋼板とは、降伏応力が460MPa以上の鋼板のことを指す。   In the present invention, the high-tensile steel plate refers to a steel plate having a yield stress of 460 MPa or more.

本発明によれば、船舶や海洋構造物などの大型鋼構造物用として好適な、板厚が35〜100mm、降伏応力が460MPa以上で、入熱量が100kJ/cm以下で多層盛溶接した溶接熱影響部におけるCTOD特性に優れる高張力鋼板を安定して製造し、提供することができる。   According to the present invention, welding heat that is suitable for large steel structures such as ships and marine structures, and is multi-layer welded with a plate thickness of 35 to 100 mm, a yield stress of 460 MPa or more, and a heat input of 100 kJ / cm or less. It is possible to stably produce and provide a high-tensile steel plate having excellent CTOD characteristics in the affected area.

本発明に係る高張力鋼板は、質量%で、C:0.010〜0.080%、Si:0.01〜0.50%、Mn:0.20〜1.80%、P:0.012%以下、S:0.0035%以下、sol.Al:0.010〜0.060%、Ni:0.1〜2.0%、Cr:1.0〜4.0%、Nb:0.005〜0.040%、Ti:0.005〜0.025%、N:0.0020〜0.0050%を含有し、さらに、Crを35Cr+8Mn≧63を満たして含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、降伏応力YSが460MPa以上、シャルピー衝撃試験における−80℃の試験温度での吸収エネルギーvE−80℃が200J以上である。本発明の高張力鋼板は、板厚を35〜100mmとして用いられる。   The high-tensile steel plate according to the present invention is mass%, C: 0.010 to 0.080%, Si: 0.01 to 0.50%, Mn: 0.20 to 1.80%, P: 0.00. 012% or less, S: 0.0035% or less, sol. Al: 0.010-0.060%, Ni: 0.1-2.0%, Cr: 1.0-4.0%, Nb: 0.005-0.040%, Ti: 0.005- 0.025%, N: 0.0020 to 0.0050%, further containing Cr satisfying 35Cr + 8Mn ≧ 63, with the balance being composed of Fe and inevitable impurities, yield stress YS Is 460 MPa or more, and the absorbed energy vE-80 ° C. at a test temperature of −80 ° C. in a Charpy impact test is 200 J or more. The high-tensile steel plate of the present invention is used with a plate thickness of 35 to 100 mm.

以下、本発明の高張力鋼板について説明する。まず、本発明の高張力鋼板が有すべき成分組成について説明する。以下において、成分組成の「%」表示は質量%を意味する。   Hereinafter, the high-tensile steel plate of the present invention will be described. First, the component composition that the high-tensile steel sheet of the present invention should have will be described. In the following, “%” notation of the component composition means mass%.

C:0.010〜0.080%
Cは、高張力鋼板としての母材の強度の確保に必要な元素である。C含有量が0.010%未満では焼入性が低下するため、目標の強度(降伏応力YS≧460MPa)を確保するためには、CuやNi、Cr、Moなどの焼入性向上元素を多量に含有することが必要となり、原料コストの上昇や溶接性の低下を招く。一方、C含有量が0.080%を超えると、溶接部の靭性が低下する。よって、C含有量は0.010〜0.080%の範囲とする。好ましくは、C含有量は0.015〜0.075%の範囲である。さらに好ましくは、C含有量は0.020〜0.065%の範囲である。
C: 0.010-0.080%
C is an element necessary for ensuring the strength of the base material as a high-tensile steel plate. When the C content is less than 0.010%, the hardenability is lowered. Therefore, in order to ensure the target strength (yield stress YS ≧ 460 MPa), a hardenability improving element such as Cu, Ni, Cr, or Mo is used. It is necessary to contain a large amount, leading to an increase in raw material costs and a decrease in weldability. On the other hand, if the C content exceeds 0.080%, the toughness of the welded portion decreases. Therefore, the C content is in the range of 0.010 to 0.080%. Preferably, the C content is in the range of 0.015 to 0.075%. More preferably, the C content is in the range of 0.020 to 0.065%.

Si:0.01〜0.50%
Siは、脱酸剤として、また、母材の強度を高めるために含有する元素であり、0.01%以上含有する必要がある。しかし、Siを0.50%超えて多量に含有すると、溶接性の低下と溶接部の靭性低下を招く。よって、Si含有量は0.01〜0.50%の範囲とする。好ましくは、Si含有量は0.01〜0.35%の範囲である。
Si: 0.01 to 0.50%
Si is an element to be contained as a deoxidizer and to increase the strength of the base material, and it is necessary to contain 0.01% or more. However, if Si is contained in a large amount exceeding 0.50%, the weldability and the toughness of the weld are lowered. Therefore, the Si content is in the range of 0.01 to 0.50%. Preferably, the Si content is in the range of 0.01 to 0.35%.

Mn:0.20〜1.80%
Mnは、母材および溶接部の強度を確保するために、0.20%以上含有する必要がある。しかし、Mnを1.80%超えて含有すると、溶接性を低下させるだけでなく、焼入性が過剰となって母材および溶接部の靭性を低下させる。よって、Mn含有量は0.20〜1.80%の範囲とする。好ましくは、Mn含有量は0.30〜1.80%の範囲である。
Mn: 0.20 to 1.80%
Mn needs to be contained in an amount of 0.20% or more in order to ensure the strength of the base material and the weld. However, when Mn is contained exceeding 1.80%, not only the weldability is lowered, but also the hardenability becomes excessive and the toughness of the base material and the welded portion is lowered. Therefore, the Mn content is in the range of 0.20 to 1.80%. Preferably, the Mn content is in the range of 0.30 to 1.80%.

P:0.012%以下
Pは、鋼板中に不可避的に混入してくる不純物元素であり、母材および溶接部の靭性を低下させる元素でもある。特に、P含有量が0.012%を超えると、CTOD特性が著しく低下するため、本発明ではP含有量の上限を0.012%に制限する。好ましくは、P含有量は0.008%以下である。
P: 0.012% or less P is an impurity element inevitably mixed in the steel sheet, and is also an element that lowers the toughness of the base material and the weld. In particular, when the P content exceeds 0.012%, the CTOD characteristics are remarkably lowered. Therefore, in the present invention, the upper limit of the P content is limited to 0.012%. Preferably, the P content is 0.008% or less.

S:0.0035%以下
Sは、鋼板中に不可避的に混入してくる不純物元素であり、0.0035%超えで含有すると、母材および溶接部の靭性を低下させる。よって、S含有量の上限は0.0035%とする。好ましくは、S含有量は0.0030%以下である。
S: 0.0035% or less S is an impurity element inevitably mixed in the steel sheet, and if contained in excess of 0.0035%, the toughness of the base metal and the welded portion is lowered. Therefore, the upper limit of the S content is 0.0035%. Preferably, the S content is 0.0030% or less.

sol.Al:0.010〜0.060%
Alは、溶鋼を脱酸するために含有する元素であり、sol.Alで0.010%以上含有する必要がある。一方、sol.Alで0.060%を超えて含有すると、母材および溶接部の靭性を低下させるとともに、溶接による希釈によって溶接金属に混入し、靭性を低下させるので、sol.Alの上限は0.060%とする。好ましくは、sol.Alで0.017〜0.055%の範囲である。さらに好ましくは、sol.Alで0.020〜0.055%の範囲である。
sol. Al: 0.010 to 0.060%
Al is an element contained for deoxidizing molten steel. It is necessary to contain 0.010% or more of Al. On the other hand, sol. When the content of Al exceeds 0.060%, the toughness of the base metal and the welded portion is lowered, and it is mixed into the weld metal by dilution by welding, so that the toughness is lowered. The upper limit of Al is 0.060%. Preferably, sol. The range of Al is 0.017 to 0.055%. More preferably, sol. It is 0.020 to 0.055% of Al.

Ni:0.1〜2.0%
Niは、鋼板の強度と靭性の向上に有効である他、溶接部のCTOD特性の向上にも有効な元素である。これらの効果を得るためには、Niを0.1%以上含有することが必要である。一方、Niは高価な元素であること、過度にNiを含有すると、鋳造時にスラブ表面疵の発生を招くことから、Ni含有量の上限は2.0%とする。好ましくは、Ni含有量は0.1〜1.8%の範囲である。
Ni: 0.1 to 2.0%
Ni is an element effective not only for improving the strength and toughness of the steel sheet but also for improving the CTOD characteristics of the weld. In order to obtain these effects, it is necessary to contain 0.1% or more of Ni. On the other hand, Ni is an expensive element, and excessively containing Ni causes slab surface defects during casting, so the upper limit of Ni content is 2.0%. Preferably, the Ni content is in the range of 0.1-1.8%.

Cr:1.0〜4.0%
Crは、鋼板の焼入性を向上して母材の強度や靭性を確保するのに有用な元素である。また、フェライト安定化元素であり、Mnによる過度のオーステナイト安定化を防止し、島状マルテンサイトMAの生成を抑制する効果を有する。すなわち、Mn単独の含有は焼入れ性を高めるだけであるが、フェライト安定化元素であるCrを含有することによって、Mnによる過度のオーステナイト安定化が緩和され、島状マルテンサイトMAの生成が抑制される。このような効果を得るためには、Crを1.0%以上含有することを必要とする。しかし、Crを過剰に含有すると、溶接熱影響部の硬さが上昇し、靭性が低下するので、Cr含有量の上限は4.0%とする。好ましくは、Cr含有量は1.0〜3.8%の範囲である。
Cr: 1.0-4.0%
Cr is an element useful for improving the hardenability of the steel sheet and ensuring the strength and toughness of the base material. Moreover, it is a ferrite stabilizing element and has the effect of preventing excessive austenite stabilization by Mn and suppressing the formation of island martensite MA. That is, the inclusion of Mn alone only enhances hardenability, but by containing Cr as a ferrite stabilizing element, excessive austenite stabilization by Mn is mitigated, and the formation of island martensite MA is suppressed. The In order to acquire such an effect, it is necessary to contain 1.0% or more of Cr. However, if Cr is excessively contained, the hardness of the weld heat affected zone increases and the toughness decreases, so the upper limit of the Cr content is 4.0%. Preferably, the Cr content is in the range of 1.0 to 3.8%.

なお、本発明において、溶接熱影響部における島状マルテンサイトMAの生成を抑制する効果を得るために、7Cr+18Mn≦63を満たすことが必要であるが、前述したように、Mn含有量が0.20〜1.80%であると共に、Cr含有量が1.0〜4.0%であることから、必然的に上記の7Cr+18Mn≦63は満たされる。   In the present invention, in order to obtain the effect of suppressing the formation of island martensite MA in the weld heat affected zone, it is necessary to satisfy 7Cr + 18Mn ≦ 63, but as described above, the Mn content is 0.00. Since it is 20 to 1.80% and the Cr content is 1.0 to 4.0%, the above 7Cr + 18Mn ≦ 63 is necessarily satisfied.

Nb:0.005〜0.040%
Nbは、オーステナイトの低温域における未再結晶域の形成に寄与する元素であり、この温度域で熱間圧延することにより、母材の組織の微細化および高靭性化を図ることができる。また、焼入れ性の向上や焼戻し軟化抵抗にも効果があり、母材の強度の向上に有効な元素でもある。上記の効果を得るためには、Nbを0.005%以上含有する必要がある。一方、Nbを0.040%を超えて含有すると、溶接熱影響部の靭性が低下するため、Nb含有量の上限は0.040%とする。好ましくは、Nb含有量は0.007〜0.035%の範囲である。
Nb: 0.005 to 0.040%
Nb is an element that contributes to the formation of a non-recrystallized region in the low temperature region of austenite. By hot rolling in this temperature region, the microstructure of the base material can be refined and the toughness can be increased. It is also effective in improving hardenability and resistance to temper softening and is an element effective in improving the strength of the base material. In order to acquire said effect, it is necessary to contain Nb 0.005% or more. On the other hand, if the Nb content exceeds 0.040%, the toughness of the weld heat affected zone decreases, so the upper limit of the Nb content is 0.040%. Preferably, the Nb content is in the range of 0.007 to 0.035%.

Ti:0.005〜0.025%
Tiは、溶鋼が凝固する際、TiNとなって析出し、溶接部におけるオーステナイトの粗大化を抑制し、溶接部の靭性向上に寄与する。しかし、Tiを0.005%未満で含有すると、溶接部の靭性向上の効果が小さい。一方、Tiを0.025%を超えて含有すると、TiNが粗大化して母材や溶接部の靭性改善効果が得られない。よって、Ti含有量は0.005〜0.025%の範囲とする。好ましくは、Ti含有量は0.006〜0.023%の範囲である。
Ti: 0.005-0.025%
Ti precipitates as TiN when the molten steel is solidified, and suppresses austenite coarsening in the welded portion, thereby contributing to improvement in the toughness of the welded portion. However, when Ti is contained at less than 0.005%, the effect of improving the toughness of the welded portion is small. On the other hand, when Ti is contained exceeding 0.025%, TiN becomes coarse and the toughness improving effect of the base material and the welded portion cannot be obtained. Therefore, Ti content is taken as 0.005 to 0.025% of range. Preferably, the Ti content is in the range of 0.006 to 0.023%.

N:0.0020〜0.0050%
Nは、TiやAlと結合して析出物を形成することによって結晶粒を微細化し、母材の靭性を向上させる効果がある。また、溶接熱影響部の組織の粗大化を抑制するTiNを形成するために必要な元素でもある。これらの効果を発現させるために、Nを0.0020%以上含有させる。しかし、Nを0.0050%を超えて含有すると、固溶Nの増加により、母材や溶接部の靭性が著しく低下したり、TiNb複合析出物の生成に伴う固溶Nbの減少によって強度低下を招いたりすることから、N含有量の上限は0.0050%とする。好ましくは、N含有量は0.0020〜0.0047%の範囲である。
N: 0.0020 to 0.0050%
N has an effect of refining crystal grains by combining with Ti or Al to form precipitates and improving the toughness of the base material. It is also an element necessary for forming TiN that suppresses the coarsening of the structure of the heat affected zone. In order to express these effects, N is contained 0.0020% or more. However, if N is contained in excess of 0.0050%, the toughness of the base metal and the welded portion is remarkably reduced due to an increase in the solid solution N, and the strength is lowered due to the decrease in the solid solution Nb accompanying the formation of TiNb composite precipitates. Therefore, the upper limit of the N content is set to 0.0050%. Preferably, the N content is in the range of 0.0020 to 0.0047%.

35Cr+8Mn≧63
Crは、フェライト安定化元素であり、Mnによる過度のオーステナイト安定化を緩和し、溶接熱影響部における島状マルテンサイトMAの生成を抑制する効果がある。すなわち、Mn単独添加では焼入れ性を高めるだけであるが、フェライト安定化元素であるCrを添加することによって、Mnによる過度のオーステナイト安定化が緩和され、島状マルテンサイトMAの生成が抑制される。上記効果をより高めるためには、CrをMnとの関係において、35Cr+8Mn≧63を満たすよう含有することが必要である。
35Cr + 8Mn ≧ 63
Cr is a ferrite stabilizing element, and has an effect of relaxing excessive austenite stabilization by Mn and suppressing generation of island martensite MA in the weld heat affected zone. That is, the addition of Mn alone only enhances the hardenability, but by adding Cr, which is a ferrite stabilizing element, excessive austenite stabilization by Mn is mitigated and the formation of island martensite MA is suppressed. . In order to further enhance the above effect, it is necessary to contain Cr so as to satisfy 35Cr + 8Mn ≧ 63 in relation to Mn.

なお、本発明の高張力鋼板は、上記成分以外の残部は、Feおよび不可避的不純物である。ただし、上記成分以外であっても、本発明の作用効果を害しない範囲内であれば、含有することを拒むものではない。なお、不可避的不純物としては、例えばOを0.01%以下の範囲で含有することができる。また、好ましくは、Oを0.003%以下の範囲で含有する。   In the high-tensile steel sheet of the present invention, the balance other than the above components is Fe and inevitable impurities. However, even if it is other than the said component, if it is in the range which does not injure the effect of this invention, it does not refuse containing. In addition, as an inevitable impurity, O can be contained, for example in 0.01% or less of range. Preferably, O is contained in the range of 0.003% or less.

本発明の高張力鋼板は、上記成分組成に加えてさらに、Cu、Mo、V、B、CaおよびMgのうちから選ばれる1種または2種以上を下記の範囲で含有することができる。   The high-tensile steel sheet of the present invention can further contain one or more selected from Cu, Mo, V, B, Ca, and Mg in the following range in addition to the above component composition.

Cu:1.0%未満
Cuは、母材の強度を高めるために有効な元素であり、上記効果を得るためには、Cuを0.1%以上含有することが好ましい。しかし、Cuを1.0%以上含有すると、熱間加工性を低下するため、Cu含有量は1.0%未満とすることが好ましい。より好ましくは、Cu含有量は0.7%以下である。
Cu: less than 1.0% Cu is an element effective for increasing the strength of the base material, and in order to obtain the above effect, it is preferable to contain 0.1% or more of Cu. However, when Cu is contained in an amount of 1.0% or more, the hot workability is lowered, so the Cu content is preferably less than 1.0%. More preferably, the Cu content is 0.7% or less.

Mo:0.05〜0.50%
Moは、母材を高強度化するために有効な元素であり、特に高張力鋼板での強度向上効果が大きい。上記効果を得るためには、Moを0.05%以上含有することが好ましい。しかし、過剰にMoを含有すると靭性に悪影響を及ぼすため、Mo含有量の上限は0.50%とすることが好ましい。より好ましくは、Mo含有量は0.10〜0.45%の範囲である。
Mo: 0.05 to 0.50%
Mo is an effective element for increasing the strength of the base material, and has a particularly large strength improvement effect in a high-tensile steel plate. In order to acquire the said effect, it is preferable to contain 0.05% or more of Mo. However, since excessive inclusion of Mo adversely affects toughness, the upper limit of the Mo content is preferably 0.50%. More preferably, the Mo content is in the range of 0.10 to 0.45%.

V:0.005〜0.05%
Vは、母材の強度と靭性の向上に有効な元素であるため、0.005%以上含有することができる。しかし、V含有量が0.05%を超えると、靭性の低下を招くため、Vを含有する場合は0.005〜0.05%の範囲とすることが好ましい。より好ましくは、V含有量は0.005〜0.045%の範囲である。
V: 0.005-0.05%
V is an element effective for improving the strength and toughness of the base material, and therefore can be contained in an amount of 0.005% or more. However, if the V content exceeds 0.05%, the toughness is reduced, so when V is contained, the content is preferably in the range of 0.005 to 0.05%. More preferably, the V content is in the range of 0.005 to 0.045%.

B:0.0005〜0.0030%
Bは、オーステナイト域から冷却される際にオーステナイト粒界に偏析し、焼入性を向上させることで強度を高める効果がある。この効果を得るためには、Bを0.0005%以上含有することが好ましい。この効果は、B含有量が0.0030%で飽和し、さらに0.0030%を超えて過剰に含有すると、溶接熱影響部において島状マルテンサイトMAの生成を促進し、靭性を低下させる場合がある。そのため、Bは0.0005〜0.030%の範囲で含有することが好ましい。
B: 0.0005 to 0.0030%
B is segregated at the austenite grain boundary when cooled from the austenite region, and has the effect of increasing the strength by improving the hardenability. In order to acquire this effect, it is preferable to contain B 0.0005% or more. This effect is achieved when the B content is saturated at 0.0030%, and when it exceeds 0.0030%, the formation of island martensite MA is promoted in the weld heat affected zone, and the toughness is reduced. There is. Therefore, it is preferable to contain B in 0.0005 to 0.030% of range.

Ca:0.0005〜0.0050%
Caは、Sと結合してCaSを形成し、Sを固定することによって硫化物の形態を制御し、靭性を向上させる元素である。この効果を得るためには、Caを0.0005%以上含有することが好ましい。しかし、Caを0.0050%を超えて含有しても、その効果は飽和する。よって、Caは0.0005〜0.0050%の範囲で含有することが好ましい。
Ca: 0.0005 to 0.0050%
Ca combines with S to form CaS, and by fixing S, the form of sulfide is controlled and the toughness is improved. In order to acquire this effect, it is preferable to contain 0.0005% or more of Ca. However, even if Ca is contained exceeding 0.0050%, the effect is saturated. Therefore, Ca is preferably contained in the range of 0.0005 to 0.0050%.

Mg:0.0002〜0.0030%
Mgは、Caと同様にSを固定することによって靭性を向上させる元素である。この効果を得るためには、Mgを0.0002%以上含有することが好ましい。しかし、Mgを0.0030%を超えて含有しても、その効果は飽和する。よって、Mgは0.0002〜0.0030%の範囲で含有することが好ましい。
Mg: 0.0002 to 0.0030%
Mg is an element that improves toughness by fixing S in the same manner as Ca. In order to acquire this effect, it is preferable to contain 0.0002% or more of Mg. However, even if Mg exceeds 0.0030%, the effect is saturated. Therefore, it is preferable to contain Mg in the range of 0.0002 to 0.0030%.

O:0.0030%以下、かつ{Ca−(0.18+130×Ca)×O}/(1.25×S)が0超え1未満
前述したように、本発明の高張力鋼板は、不可避的不純物としてOを含んでもよいが、Oは、0.0030%を超えて含有すると、母材の靭性を低下する場合があるため、O含有量の上限は0.0030%とすることが好ましい。より好ましくは、O含有量は0.0025%以下である。
O: 0.0030% or less, and {Ca− (0.18 + 130 × Ca) × O} / (1.25 × S) is greater than 0 and less than 1, As described above, the high-tensile steel sheet of the present invention is unavoidable. O may be contained as an impurity, but if O is contained in an amount exceeding 0.0030%, the toughness of the base material may be lowered. Therefore, the upper limit of the O content is preferably 0.0030%. More preferably, the O content is 0.0025% or less.

また、本発明の高張力鋼板は、上記に説明したCa、SおよびOが下記(1)式を満たして含有することが好ましい。
0<{Ca−(0.18+130×Ca)×O}/(1.25×S)<1 ・・・(1)
ただし、上記(1)式中の各元素記号は、それぞれの元素の含有量(質量%)である。
上記(1)式の中辺である{Ca−(0.18+130×Ca)×O}/(1.25×S)は、硫化物形態制御に有効なCaとSの原子濃度の比を示す指標値(ACR(Atomic Concentration Ratio)とも称される)であり、硫化物の形態を推定することができる。
Moreover, it is preferable that Ca, S, and O demonstrated above satisfy | fill the following (1) Formula, and the high-tensile steel plate of this invention contains.
0 <{Ca− (0.18 + 130 × Ca) × O} / (1.25 × S) <1 (1)
However, each element symbol in the above formula (1) is the content (% by mass) of each element.
{Ca− (0.18 + 130 × Ca) × O} / (1.25 × S), which is the middle side of the above formula (1), indicates the ratio of the atomic concentrations of Ca and S that are effective for sulfide morphology control. It is an index value (also called ACR (Atomic Concentration Ratio)), and the form of sulfide can be estimated.

Caの硫化物であるCaSは、酸化物に比べて低温で晶出するため、均一に微細分散させるのに有利である。そこで、CaSを晶出させるとともに、CaS晶出後も固溶Sを確保するようにすれば、晶出したCaSの表面上にMnSが析出して、高温でも溶解し難い複合硫化物を形成する。さらに、上記MnSの周囲には、Mnの希薄帯が形成されるので、フェライト変態がより促進される。   Since CaS, which is a sulfide of Ca, crystallizes at a lower temperature than oxides, it is advantageous for uniform fine dispersion. Therefore, if CaS is crystallized and solid solution S is ensured even after CaS crystallization, MnS precipitates on the surface of the crystallized CaS to form a composite sulfide that is difficult to dissolve even at high temperatures. . Further, since a Mn dilute band is formed around the MnS, the ferrite transformation is further promoted.

上記のようにCaSを微細に分散して晶出させるためには、Caの含有量およびCa添加時の溶鋼中のSやOの含有量を適正範囲に制御する必要があり、ACRの値を上記(1)の範囲に制御することによって、フェライト変態生成核となるCaSを微細に分散させることができる。
上記ACRが0以下では、CaSが晶出せず、SはMnS単独の形態で析出するため、溶接熱影響部のフェライト生成核が得られない場合がある。また、単独で析出したMnSは、圧延時に伸長されて母材の靭性低下を引き起こす原因となりうる。一方、ACRが1以上では、Sが完全にCaによって固定され、フェライト生成核として働くMnSがCaS上に析出しなくなり、フェライト生成核となる複合硫化物の微細分散を実現することができないため、溶接熱影響部の靭性向上効果が得られない場合がある。したがって、上記ACRの値が0超え1未満の場合に、CaS上にMnSが析出して複合硫化物を形成し、これがフェライト生成核として有効に機能する。より好ましいACRの値は0.2〜0.8の範囲である。
In order to finely disperse and crystallize CaS as described above, it is necessary to control the Ca content and the S and O contents in the molten steel at the time of Ca addition to an appropriate range. By controlling in the range of (1) above, CaS serving as ferrite transformation nuclei can be finely dispersed.
When the ACR is 0 or less, CaS does not crystallize, and S precipitates in the form of MnS alone, so that the ferrite formation nuclei in the weld heat affected zone may not be obtained. Further, MnS precipitated alone can be elongated at the time of rolling to cause a decrease in the toughness of the base material. On the other hand, when the ACR is 1 or more, S is completely fixed by Ca, and MnS acting as a ferrite nuclei does not precipitate on CaS, and fine dispersion of the composite sulfide that becomes a ferrite nuclei cannot be realized. The toughness improving effect of the weld heat affected zone may not be obtained. Therefore, when the ACR value is greater than 0 and less than 1, MnS is deposited on CaS to form a composite sulfide, which effectively functions as a ferrite nuclei. A more preferable ACR value is in the range of 0.2 to 0.8.

次に、本発明の高張力鋼板の製造方法について説明する。
前述した本発明の高張力鋼板は、従来の高張力鋼板の製造方法と同様に、転炉や電気炉、真空溶解炉等で鋼を溶製し、必要に応じて真空脱ガス処理等の二次精錬を施す常法の精錬プロセスで本発明に適合する成分組成に調整した溶鋼を連続鋳造して鋼素材(スラブ)とした後、該スラブを再加熱し、熱間圧延して所望の板厚とし、加速冷却する工程を経て製造することができる。また、上記加速冷却後の鋼板に、さらに焼戻し処理を施す工程を経て製造することもできる。
Next, the manufacturing method of the high-tensile steel plate of this invention is demonstrated.
The high-strength steel sheet of the present invention described above is prepared by melting steel in a converter, electric furnace, vacuum melting furnace, etc., as in the case of conventional high-strength steel sheet manufacturing methods. After continuously casting a molten steel adjusted to a composition suitable for the present invention in a conventional refining process for performing next refining to obtain a steel material (slab), the slab is reheated and hot-rolled to obtain a desired plate. It can be manufactured through a thickness and accelerated cooling process. Moreover, it can also manufacture through the process of further tempering the steel plate after the said accelerated cooling.

ただし、上記工程において、スラブ再加熱温度および熱間圧延における圧下率、加速冷却の冷却速度、ならびに、その後、必要に応じて施す焼き戻し処理の条件は、以下の要件を満たすことが重要である。
なお、本発明においては、特に記載しない限り、鋼板温度は、板厚中心部(板厚tの1/2t部)の温度とする。上記板厚中心部の温度は、板厚、表面温度および冷却条件などから差分法等を用いた伝熱計算により求めることができる。
However, in the above process, it is important that the slab reheating temperature and the rolling reduction in hot rolling, the cooling rate of accelerated cooling, and the conditions of the tempering treatment to be performed as necessary thereafter satisfy the following requirements. .
In the present invention, unless otherwise specified, the steel plate temperature is the temperature at the center of the plate thickness (1/2 t portion of the plate thickness t). The temperature at the central portion of the plate thickness can be obtained by heat transfer calculation using a difference method or the like from the plate thickness, surface temperature, cooling conditions, and the like.

加熱温度(スラブ再加熱温度):1030〜1200℃
熱間圧延前に行う前のスラブ再加熱温度は、スラブ内部に存在する鋳造欠陥を熱間圧延によって確実に圧着させるため、1030℃以上とする必要がある。しかし、1200℃を超える温度に加熱すると、凝固時に析出したTiNが粗大化し、母材や溶接部の靭性が低下するため、加熱温度の上限は1200℃とする。好ましくは1030〜1170℃の範囲である。
Heating temperature (slab reheating temperature): 1030 to 1200 ° C
The slab reheating temperature before the hot rolling needs to be 1030 ° C. or higher in order to surely press-bond the casting defects existing inside the slab by hot rolling. However, when heated to a temperature exceeding 1200 ° C., TiN precipitated during solidification becomes coarse and the toughness of the base material and the welded portion decreases, so the upper limit of the heating temperature is 1200 ° C. Preferably it is the range of 1030-1170 degreeC.

950℃以上の温度域における熱間圧延の累積圧下率:30%以上
熱間圧延時における再結晶を利用してオーステナイト粒を微細化するためには、950℃以上の再結晶温度域における累積圧下率を30%以上とすることが必要である。950℃以上の温度域における累積圧下率が30%未満では、スラブ再加熱時に生成した異常粗大粒が残存し、母材の靭性に悪影響を及ぼす場合がある。好ましくは、950℃以上の温度域における累積圧下率は35%以上である。なお、この段階における累積圧下率の上限は、950℃未満の温度域における圧下率を確保できればよく、特に制限はない。
Cumulative rolling reduction of hot rolling in a temperature range of 950 ° C. or higher: 30% or higher Cumulative rolling in a recrystallization temperature range of 950 ° C. or higher in order to refine austenite grains using recrystallization during hot rolling The rate needs to be 30% or more. If the cumulative rolling reduction in the temperature range of 950 ° C. or higher is less than 30%, abnormal coarse particles generated during reheating of the slab may remain, which may adversely affect the toughness of the base material. Preferably, the cumulative rolling reduction in the temperature range of 950 ° C. or higher is 35% or higher. The upper limit of the cumulative rolling reduction at this stage is not particularly limited as long as the rolling reduction in a temperature range of less than 950 ° C. can be secured.

950℃未満の温度域における熱間圧延の累積圧下率:30〜70%
950℃未満の温度域で圧延されたオーステナイト粒は、十分に再結晶しないため、圧延後のオーステナイト粒は偏平に変形したままで、内部に変形帯などの欠陥を多量に含んだ内部歪の高い組織となる。上記内部歪は、フェライト変態の駆動力として働き、フェライト変態を促進する。しかし、950℃未満の温度域における累積圧下率が30%未満では、歪エネルギーの蓄積が十分でなく、フェライト変態が起こり難くなるため母材の靭性が低下する。一方、950℃未満の温度域における累積圧下率が70%を超えると、逆にポリゴナルフェライトの生成が促進されて、高強度と高靭性を両立できなくなる。好ましくは、950℃未満の温度域における累積圧下率は40〜65%の範囲である。
Cumulative rolling reduction of hot rolling in a temperature range below 950 ° C .: 30 to 70%
Since austenite grains rolled in a temperature range below 950 ° C. do not recrystallize sufficiently, the austenite grains after rolling remain flatly deformed and have a high internal strain containing a large amount of defects such as deformation bands inside. Become an organization. The internal strain acts as a driving force for ferrite transformation and promotes ferrite transformation. However, if the cumulative rolling reduction in the temperature range of less than 950 ° C. is less than 30%, the strain energy is not sufficiently accumulated and ferrite transformation is difficult to occur, so that the toughness of the base material is lowered. On the other hand, if the cumulative rolling reduction in the temperature range of less than 950 ° C. exceeds 70%, the formation of polygonal ferrite is promoted and high strength and high toughness cannot be achieved at the same time. Preferably, the cumulative rolling reduction in the temperature range below 950 ° C. is in the range of 40 to 65%.

なお、熱間圧延の終了温度は650〜850℃の範囲とすることが好ましい。熱間圧延の終了温度が650℃未満では、加工フェライトが残留して靭性が低下する場合がある。一方、熱間圧延の終了温度が850℃を超えると、組織が粗粒となり、靭性が低下する場合がある。   In addition, it is preferable to make the completion | finish temperature of hot rolling into the range of 650-850 degreeC. If the end temperature of hot rolling is less than 650 ° C., the processed ferrite may remain and the toughness may decrease. On the other hand, when the end temperature of hot rolling exceeds 850 ° C., the structure becomes coarse and the toughness may be lowered.

冷却停止温度:600℃以下、かつ冷却停止温度までの冷却速度:1.0℃/s以上
上記熱間圧延終了後は、冷却速度を1.0℃/s以上とし、600℃以下の冷却停止温度まで加速冷却することが重要である。上記の冷却速度が1.0℃/s未満では、強度が低いフェライトの生成を抑制できないため、十分な母材の強度が得られない。そのため、上記の冷却速度は1.0℃/s以上とする。好ましくは、上記の冷却速度は1.2℃/s以上である。なお、冷却速度の上限については特に制限はないが、母材の靭性を確保する観点から、上記の冷却速度は30℃/s以下が好ましい。
また、上記冷却停止温度を600℃以下とする理由は、上記冷却停止温度が600℃より高いと、フェライト+パーライトや上部ベイナイトなどの組織の分率が高くなり、高強度と高靭性とが両立しなくなるからである。ただし、加速冷却の冷却停止温度は、島状マルテンサイトMAなどの靭性に劣る硬質相の生成を抑制する観点から、350℃以上とすることが好ましい。なお、上記加速冷却後に焼戻し処理を施す場合には、上記加速冷却の冷却停止温度の下限は特に制限はない。
Cooling stop temperature: 600 ° C. or lower, and cooling rate to the cooling stop temperature: 1.0 ° C./s or higher After the hot rolling is completed, the cooling rate is set to 1.0 ° C./s or higher and cooling is stopped at 600 ° C. It is important to accelerate cooling to temperature. When the cooling rate is less than 1.0 ° C./s, the formation of ferrite with low strength cannot be suppressed, and thus sufficient strength of the base material cannot be obtained. Therefore, the cooling rate is set to 1.0 ° C./s or more. Preferably, the cooling rate is 1.2 ° C./s or higher. In addition, although there is no restriction | limiting in particular about the upper limit of a cooling rate, From a viewpoint of ensuring the toughness of a base material, said cooling rate has preferable 30 degrees C / s or less.
The reason why the cooling stop temperature is 600 ° C. or lower is that when the cooling stop temperature is higher than 600 ° C., the fraction of the structure such as ferrite + pearlite and upper bainite becomes high, and both high strength and high toughness are achieved. Because it will not. However, the cooling stop temperature for accelerated cooling is preferably 350 ° C. or higher from the viewpoint of suppressing the generation of a hard phase inferior toughness such as island martensite MA. In addition, when performing a tempering process after the said accelerated cooling, there is no restriction | limiting in particular in the minimum of the cooling stop temperature of the said accelerated cooling.

焼戻し温度:450〜650℃
上記加速冷却後、焼戻し処理を施す場合には、焼戻し温度は、鋼板の板厚中心温度で450〜650℃の範囲とすることが好ましい。焼戻し温度が450℃未満では、十分な焼戻しの効果が得られない場合がある。一方、650℃を超える温度で焼戻しを行うと、炭窒化物が粗大に析出して靭性が低下したり、強度の低下を招いたりする場合がある。そのため、焼戻し温度は450〜650℃の範囲とすることが好ましい。また、焼戻し処理の加熱方法は、焼戻し時における炭化物の粗大化を抑制する観点から、誘導加熱で行うことが好ましい。
なお、上記焼き戻し処理時間は、10〜300minの範囲とすることが好ましい。
Tempering temperature: 450-650 ° C
When the tempering treatment is performed after the accelerated cooling, the tempering temperature is preferably in the range of 450 to 650 ° C. at the plate thickness center temperature of the steel plate. If the tempering temperature is less than 450 ° C., sufficient tempering effect may not be obtained. On the other hand, when tempering is performed at a temperature exceeding 650 ° C., carbonitrides are coarsely precipitated and the toughness may be reduced or the strength may be reduced. Therefore, the tempering temperature is preferably in the range of 450 to 650 ° C. Moreover, it is preferable to perform the heating method of a tempering process by induction heating from a viewpoint of suppressing the coarsening of the carbide | carbonized_material at the time of tempering.
The tempering time is preferably in the range of 10 to 300 min.

上記に説明したように、本発明の高張力鋼板は、溶接熱影響部におけるオーステナイト粒の粗大化を抑制し、さらに、高温でも溶解しないフェライト変態生成核を微細に分散させて、溶接熱影響部の組織を微細化する。そのため、溶接熱影響部おいても高い靭性が得られる。特に、多層盛溶接時の熱サイクルにより2相域に再加熱される領域においては、最初の溶接により溶接熱影響部の組織が微細化されているため、未変態領域の靭性が向上するだけでなく、再変態するオーステナイト粒も微細化することができるため、溶接時の入熱による靭性の低下を大幅に軽減することができる。   As described above, the high-tensile steel plate of the present invention suppresses the austenite grain coarsening in the weld heat affected zone, and further finely disperses ferrite transformation nuclei that do not melt even at high temperatures, thereby providing a weld heat affected zone. Refine the structure. Therefore, high toughness can be obtained even in the weld heat affected zone. In particular, in the region reheated to the two-phase region by the thermal cycle during multi-layer welding, the structure of the weld heat-affected zone is refined by the first welding, so only the toughness of the untransformed region is improved. In addition, since the austenite grains that are retransformed can also be made finer, a reduction in toughness due to heat input during welding can be greatly reduced.

表1に示した各種成分組成を有する符号A〜Xの鋼を溶製し、連続鋳造法で鋼素材(スラブ)とした後、表2に示した種々の条件で熱間圧延し、加速冷却し、あるいはさらに焼戻し処理を施して、板厚が50〜100mmの厚鋼板No.1〜30を製造した。
次いで、上記厚鋼板を以下の評価試験に供した。
After smelting steels of symbols A to X having various component compositions shown in Table 1 and making them steel materials (slabs) by a continuous casting method, they are hot-rolled under various conditions shown in Table 2 and accelerated cooling. Or a further tempering treatment to obtain a thick steel plate No. 50 having a thickness of 50 to 100 mm. 1-30 were manufactured.
Subsequently, the said thick steel plate was used for the following evaluation tests.

<母材の評価>
(強度特性)
厚鋼板の板厚1/2の位置から、鋼板の圧延方向に直角な方向を長さ方向とするJIS4号試験片を採取し、降伏応力YS、引張強さTS、さらに降伏比YR(=(YS×100)/TS(%))を測定し、YS≧460MPaおよびTS≧570MPaを満たすものを母材の強度特性が良好と評価した。
(靭性特性)
厚鋼板の板厚1/2の位置から、鋼板の圧延方向に直角な方向を長さ方向とするJIS Z2202に規定されたVノッチ試験片を採取し、シャルピー衝撃試験で−80℃における吸収エネルギーvE−80℃を測定し、vE−80℃≧200Jを満たすものを母材の靭性特性が良好と評価した。
<Evaluation of base material>
(Strength characteristics)
A JIS No. 4 test piece having a length direction perpendicular to the rolling direction of the steel plate was taken from the position of the steel plate thickness 1/2, and yield stress YS, tensile strength TS, and yield ratio YR (= ( YS × 100) / TS (%)) was measured, and those satisfying YS ≧ 460 MPa and TS ≧ 570 MPa were evaluated as having good strength properties of the base material.
(Toughness characteristics)
A V-notch test piece defined in JIS Z2202 whose length direction is perpendicular to the rolling direction of the steel plate is taken from the position of the steel plate thickness 1/2, and the absorbed energy at −80 ° C. in the Charpy impact test. When vE- 80 ° C was measured, a material satisfying vE- 80 ° C ≥ 200 J was evaluated as having good toughness characteristics of the base material.

<溶接部の評価>
(靭性特性)
厚鋼板から試験片を採取し、K型開先を付与した後、溶接入熱35kJ/cmのサブマージアーク溶接で多層盛溶接を行って溶接継手を作製し、鋼板の板厚1/4位置のストレート側のボンド部をノッチ位置とするVノッチ試験片を採取し、シャルピー衝撃試験で−80℃における吸収エネルギーvE−80℃を測定した。上記試験は、各条件で3本行い、平均のvE−80℃が150J以上である溶接継手を靭性良好と評価した。
(CTOD特性)
上記と同様にして溶接継手を作製し、ストレート側のボンド部を三点曲げCTOD試験片のノッチ位置とするCTOD試験片を採取し、−60℃におけるCTOD値(δ−60℃)を測定した。上記試験は、各条件で3本行い、CTOD値(δ−60℃)が0.50mm以上であるものを、溶接継手のCTOD特性が良好と評価した。
<Evaluation of weld zone>
(Toughness characteristics)
After collecting a test piece from a thick steel plate and giving a K-shaped groove, multi-layer welding is performed by submerged arc welding with a welding heat input of 35 kJ / cm to produce a welded joint. A V-notch test piece having the straight bond portion as a notch position was collected, and the absorbed energy vE- 80 ° C at -80 ° C was measured by a Charpy impact test. The above test was performed three times under each condition, and a welded joint having an average vE- 80 ° C of 150 J or more was evaluated as having good toughness.
(CTOD characteristics)
A welded joint was prepared in the same manner as described above, and a CTOD test piece having a straight bond portion as a notch position of a three-point bending CTOD test piece was collected, and a CTOD value (−60 ° C.) at −60 ° C. was measured. . Three tests were performed under each condition, and those having a CTOD value (δ-60 ° C.) of 0.50 mm or more were evaluated as having good CTOD characteristics of the welded joint.

Figure 2017002349
Figure 2017002349

Figure 2017002349
Figure 2017002349

上記測定の結果を表2に併記した。表2から、表1に示した符号A〜Eの鋼は、いずれも本発明の成分組成を満たすものであり、該鋼のスラブを用いて本発明に適合する条件で製造した発明例の鋼板は、いずれも母材および溶接部の強度特性と靭性に優れている。
これに対して、本発明の成分組成を満たす鋼スラブを用いて本発明から外れる条件で製造した比較例の鋼板、あるいは、本発明の成分組成を満たさない鋼のスラブを用いて本発明に適合する条件で製造した比較例の鋼板は、母材および溶接部の強度特性と靭性が上記発明例の鋼板より劣っていることがわかる。
The results of the above measurements are also shown in Table 2. From Table 2, steels of reference signs A to E shown in Table 1 all satisfy the composition of the present invention, and steel plates of inventive examples manufactured under conditions suitable for the present invention using the steel slabs. Are excellent in the strength characteristics and toughness of the base material and the weld.
On the other hand, the steel plate of the comparative example manufactured on the conditions which deviate from this invention using the steel slab which satisfy | fills the component composition of this invention, or the present invention using the slab of the steel which does not satisfy | fill the component composition of this invention It can be seen that the steel plate of the comparative example manufactured under the conditions to be used is inferior in strength characteristics and toughness of the base material and the welded portion to the steel plate of the above-described invention example.

本発明の高張力鋼板は、船舶や海洋構造物、圧力容器、ペンストックなどの鋼構造物の他、建築や橋梁等の土木・建築分野にも適用することができる。   The high-tensile steel plate of the present invention can be applied to civil engineering / architectural fields such as buildings and bridges, as well as steel structures such as ships, offshore structures, pressure vessels, and penstocks.

Claims (5)

質量%で、
C:0.010〜0.080%、
Si:0.01〜0.50%、
Mn:0.20〜1.80%、
P:0.012%以下、
S:0.0035%以下、
sol.Al:0.010〜0.060%、
Ni:0.1〜2.0%、
Cr:1.0〜4.0%、
Nb:0.005〜0.040%、
Ti:0.005〜0.025%、
N:0.0020〜0.0050%を含有し、さらに、
Crを35Cr+8Mn≧63を満たして含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、降伏応力YSが460MPa以上、シャルピー衝撃試験における−80℃の試験温度での吸収エネルギーvE−80℃が200J以上である高張力鋼板。
% By mass
C: 0.010 to 0.080%,
Si: 0.01 to 0.50%,
Mn: 0.20 to 1.80%
P: 0.012% or less,
S: 0.0035% or less,
sol. Al: 0.010 to 0.060%,
Ni: 0.1 to 2.0%,
Cr: 1.0-4.0%,
Nb: 0.005 to 0.040%,
Ti: 0.005 to 0.025%,
N: 0.0020 to 0.0050% is contained, and
Cr is contained satisfying 35Cr + 8Mn ≧ 63, the remainder has a component composition consisting of Fe and inevitable impurities, the yield stress YS is 460 MPa or more, and the absorbed energy vE-80 at a test temperature of −80 ° C. in the Charpy impact test A high-tensile steel plate having a temperature of 200J or higher.
さらに、質量%で、Cu:1.0%未満、Mo:0.05〜0.50%、V:0.005〜0.05%、B:0.0005〜0.0030%、Ca:0.0005〜0.0050%およびMg:0.0002〜0.0030%の中から選ばれる1種または2種以上を含有する請求項1に記載の高張力鋼板。   Furthermore, by mass%, Cu: less than 1.0%, Mo: 0.05 to 0.50%, V: 0.005 to 0.05%, B: 0.0005 to 0.0030%, Ca: 0 The high-tensile steel sheet according to claim 1, containing one or more selected from .0005 to 0.0050% and Mg: 0.0002 to 0.0030%. さらに、質量%で、O:0.0030%以下含有し、かつ、前記Ca、SおよびOが下記(1)式を満たして含有する請求項2に記載の高張力鋼板。

0<{Ca−(0.18+130×Ca)×O}/(1.25×S)<1 ・・・(1)
ただし、上記式中の各元素記号は、それぞれの元素の含有量(質量%)である。
Furthermore, the high-tensile steel plate according to claim 2, which is contained by mass%, O: 0.0030% or less, and wherein the Ca, S and O satisfy the following formula (1).
0 <{Ca− (0.18 + 130 × Ca) × O} / (1.25 × S) <1 (1)
However, each element symbol in the above formula is the content (% by mass) of each element.
請求項1〜3のいずれか1項に記載の成分組成を有する鋼素材を1030〜1200℃の加熱温度に加熱した後、950℃以上の温度における累積圧下率を30%以上、950℃未満の温度における累積圧下率を30〜70%とする熱間圧延をし、1.0℃/s以上の冷却速度で600℃以下の冷却停止温度まで加速冷却を行う高張力鋼板の製造方法。   After heating the steel raw material which has a component composition of any one of Claims 1-3 to the heating temperature of 1030-1200 degreeC, the cumulative reduction rate in the temperature of 950 degreeC or more is 30% or more and less than 950 degreeC. A method for producing a high-strength steel sheet, which is hot-rolled at a cumulative rolling reduction of 30 to 70% and accelerated cooling to a cooling stop temperature of 600 ° C. or lower at a cooling rate of 1.0 ° C./s or higher. 前記加速冷却を行った後、さらに、450〜650℃の温度で焼戻処理を施す請求項4に記載の高張力鋼板の製造方法。   The method for producing a high-tensile steel sheet according to claim 4, further comprising a tempering treatment at a temperature of 450 to 650 ° C after the accelerated cooling.
JP2015116273A 2015-06-09 2015-06-09 High-tensile steel plate and manufacturing method thereof Active JP6299676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015116273A JP6299676B2 (en) 2015-06-09 2015-06-09 High-tensile steel plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015116273A JP6299676B2 (en) 2015-06-09 2015-06-09 High-tensile steel plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017002349A true JP2017002349A (en) 2017-01-05
JP6299676B2 JP6299676B2 (en) 2018-03-28

Family

ID=57753298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015116273A Active JP6299676B2 (en) 2015-06-09 2015-06-09 High-tensile steel plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6299676B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108728743A (en) * 2018-06-11 2018-11-02 鞍钢股份有限公司 The good Marine Engineering Steel of low temperature fracture toughness and its manufacturing method
CN114908284A (en) * 2021-02-09 2022-08-16 宝山钢铁股份有限公司 Collision-rupture-resistant steel for ship structure and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070193666A1 (en) * 2005-10-24 2007-08-23 Exxonmobil Upstream Research Company High Strength Dual Phase Steel With Low Yield Ratio, High Toughness and Superior Weldability
JP2010229453A (en) * 2009-03-26 2010-10-14 Jfe Steel Corp High strength thick steel plate having excellent toughness to one layer large heat input welding affected zone and method of manufacturing the same
JP2011190481A (en) * 2010-03-12 2011-09-29 Jfe Steel Corp Steel plate superior in toughness of weld heat-affected zone
JP2012177192A (en) * 2011-02-02 2012-09-13 Jfe Steel Corp HIGH-STRENGTH THICK STEEL PLATE HAVING TENSILE STRENGTH (TS) OF 780 MPa OR HIGHER, AND EXCELLENT IN TOUGHNESS OF HEAT-AFFECTED ZONE IN HIGH-HEAT-INPUT WELD AND IN HARDENING RESISTANCE OF HEAT-AFFECTED ZONE IN LOW-HEAT-INPUT WELD, AND METHOD FOR PRODUCTION THEREOF
JP2012219351A (en) * 2011-04-12 2012-11-12 Kobe Steel Ltd High-strength thick steel plate with excellent toughness
JP2013019015A (en) * 2011-07-11 2013-01-31 Jfe Steel Corp Steel plate having weld heat-affected zone excellent in toughness
JP2013151742A (en) * 2011-12-28 2013-08-08 Jfe Steel Corp High toughness and high tensile strength steel and method for producing the same
WO2016068094A1 (en) * 2014-10-28 2016-05-06 Jfeスチール株式会社 High-tensile steel sheet having excellent low-temperature toughness in weld heat-affected zone, and method for manufacturing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070193666A1 (en) * 2005-10-24 2007-08-23 Exxonmobil Upstream Research Company High Strength Dual Phase Steel With Low Yield Ratio, High Toughness and Superior Weldability
JP2010229453A (en) * 2009-03-26 2010-10-14 Jfe Steel Corp High strength thick steel plate having excellent toughness to one layer large heat input welding affected zone and method of manufacturing the same
JP2011190481A (en) * 2010-03-12 2011-09-29 Jfe Steel Corp Steel plate superior in toughness of weld heat-affected zone
JP2012177192A (en) * 2011-02-02 2012-09-13 Jfe Steel Corp HIGH-STRENGTH THICK STEEL PLATE HAVING TENSILE STRENGTH (TS) OF 780 MPa OR HIGHER, AND EXCELLENT IN TOUGHNESS OF HEAT-AFFECTED ZONE IN HIGH-HEAT-INPUT WELD AND IN HARDENING RESISTANCE OF HEAT-AFFECTED ZONE IN LOW-HEAT-INPUT WELD, AND METHOD FOR PRODUCTION THEREOF
JP2012219351A (en) * 2011-04-12 2012-11-12 Kobe Steel Ltd High-strength thick steel plate with excellent toughness
JP2013019015A (en) * 2011-07-11 2013-01-31 Jfe Steel Corp Steel plate having weld heat-affected zone excellent in toughness
JP2013151742A (en) * 2011-12-28 2013-08-08 Jfe Steel Corp High toughness and high tensile strength steel and method for producing the same
WO2016068094A1 (en) * 2014-10-28 2016-05-06 Jfeスチール株式会社 High-tensile steel sheet having excellent low-temperature toughness in weld heat-affected zone, and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108728743A (en) * 2018-06-11 2018-11-02 鞍钢股份有限公司 The good Marine Engineering Steel of low temperature fracture toughness and its manufacturing method
CN114908284A (en) * 2021-02-09 2022-08-16 宝山钢铁股份有限公司 Collision-rupture-resistant steel for ship structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP6299676B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP5177310B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
JP5950045B2 (en) Steel sheet and manufacturing method thereof
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP5439887B2 (en) High-strength steel and manufacturing method thereof
JP5924058B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
JP4946092B2 (en) High-strength steel and manufacturing method thereof
JP5509685B2 (en) Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
JP5630322B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
JP5136156B2 (en) Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method
JP4878219B2 (en) Steel sheet with excellent HAZ toughness and small reduction in strength due to heat treatment after welding
KR101971772B1 (en) Method of manufacturing steel plate for high-heat input welding
US10300564B2 (en) Weld joint
JP6299676B2 (en) High-tensile steel plate and manufacturing method thereof
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP6226163B2 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method
JP5233364B2 (en) Steel material for large heat input welding
JP5233365B2 (en) Steel material for large heat input welding
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
JP5857693B2 (en) Steel plate for large heat input and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180212

R150 Certificate of patent or registration of utility model

Ref document number: 6299676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250