JP3525905B2 - Method for producing structural steel with excellent toughness in weld heat affected zone - Google Patents

Method for producing structural steel with excellent toughness in weld heat affected zone

Info

Publication number
JP3525905B2
JP3525905B2 JP2001094945A JP2001094945A JP3525905B2 JP 3525905 B2 JP3525905 B2 JP 3525905B2 JP 2001094945 A JP2001094945 A JP 2001094945A JP 2001094945 A JP2001094945 A JP 2001094945A JP 3525905 B2 JP3525905 B2 JP 3525905B2
Authority
JP
Japan
Prior art keywords
affected zone
tin
toughness
cooling
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001094945A
Other languages
Japanese (ja)
Other versions
JP2002283024A (en
Inventor
伸 石川
健次 大井
俊幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001094945A priority Critical patent/JP3525905B2/en
Publication of JP2002283024A publication Critical patent/JP2002283024A/en
Application granted granted Critical
Publication of JP3525905B2 publication Critical patent/JP3525905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、船舶、建築、海
洋構造物、鋼管および貯槽などの用途に供して好適な溶
接熱影響部の靱性に優れた構造用鋼材の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a structural steel material which is suitable for use in ships, buildings, marine structures, steel pipes, storage tanks and the like, and which has excellent toughness in a weld heat affected zone.

【0002】[0002]

【従来の技術】鋼板の溶接熱影響部は、加熱中および冷
却中にオーステナイト粒が粗大化し、冷却後の組織も粗
大化して靱性が劣化する。このため、例えば特公昭55−
26164 号公報に開示されているように、鋼中に微細なTi
Nを分散させることによってオーステナイト粒の成長を
抑制して靱性を向上させる方法が広く採用されている。
2. Description of the Related Art In a heat-affected zone of a steel sheet, austenite grains are coarsened during heating and cooling, and the structure after cooling is also coarsened to deteriorate toughness. Therefore, for example, Japanese Patent Publication 55-
As disclosed in Japanese Patent No. 26164, fine Ti is contained in steel.
A method of suppressing the growth of austenite grains and improving toughness by dispersing N is widely adopted.

【0003】このように、TiNを利用する場合、オース
テナイト粒の微細化に十分な量のTiNを確保する必要が
あるが、それと同時に連続鋳造鋳片の表面割れ防止およ
び固溶Nによる熱影響部の靱性劣化防止などの観点か
ら、例えば大入熱溶接用の造船向E級鋼等においては、
Ti量は0.01〜0.02mass%、N量は0.003 〜0.005 mass%
程度とする成分設計がなされている。
As described above, when utilizing TiN, it is necessary to secure a sufficient amount of TiN for refining the austenite grains. At the same time, however, surface crack prevention of the continuously cast slab and heat-affected zone due to solid solution N are involved. From the viewpoint of preventing the deterioration of toughness of, for example, in E class steel for shipbuilding for large heat input welding,
Ti content is 0.01 to 0.02 mass%, N content is 0.003 to 0.005 mass%
The degree of composition is designed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、Tiおよ
びNの添加量を所定の範囲に制御した場合であっても、
鋳造時の冷却条件が変化した場合には、製造した鋼板の
溶接熱影響部における靱性値にばらつきが生じるという
問題があった。この発明の目的は、上記の問題を有利に
解決して、溶接熱影響部の靱性に優れた構造用鋼材を提
供することである。
However, even when the addition amounts of Ti and N are controlled within a predetermined range,
When the cooling conditions at the time of casting are changed, there is a problem that the toughness values in the weld heat affected zone of the manufactured steel sheet vary. An object of the present invention is to advantageously solve the above problems and provide a structural steel material having excellent toughness in the weld heat affected zone.

【0005】[0005]

【課題を解決するための手段】さて、発明者らは、上記
の問題を解決するために、TiNの粒径分布と鋼組成およ
び鋳造時の冷却条件について広範囲にわたる検討を行っ
た結果、以下に述べる知見を得た。 a)加熱時におけるオーステナイト粒の粗大化を防止す
るには、高温でも溶解しない程度のTi,N量を確保した
上で、TiNの初期平均粒径(円相当直径)を0.02〜0.04
μm の範囲とすることが有効である。 b)母材中におけるTiNの分布状態は、鋳片の冷却速度
をTi/N比に応じて適切に制御することによって、コン
トロールすることができる。 この発明は、上記の知見に立脚するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the inventors have extensively studied the grain size distribution of TiN, the steel composition, and the cooling conditions during casting. I obtained the findings. a) In order to prevent coarsening of austenite grains at the time of heating, ensure that Ti and N contents are not dissolved even at a high temperature, and set the initial average grain size (circle equivalent diameter) of TiN to 0.02 to 0.04.
It is effective to set in the range of μm. b) The distribution state of TiN in the base material can be controlled by appropriately controlling the cooling rate of the slab according to the Ti / N ratio. The present invention is based on the above findings.

【0006】すなわち、この発明の要旨構成は次のとお
りである。 1.質量%で、C:0.01〜0.18%、Si:0.02〜0.60%、
Mn:0.60〜2.00%、P:0.030 %以下、S:0.015 %以
下、Al:0.005 〜0.100 %、Ti:0.007 〜0.030 %およ
びN:0.0040〜0.0100%を含有し、残部はFeおよび不可
避的不純物の組成になる鋳片の冷却に際し、鋳片全厚に
わたって平均した1500℃から1100℃までの冷却時間t
15/11 (秒)とTi/N比について、次式(1) 22600/(t15/11)1.25≦Ti/N≦ 1818000/(t15/11)1.7 --- (1) の関係を満足させることを特徴とする溶接熱影響部の靱
性に優れた構造用鋼材の製造方法。
That is, the gist of the present invention is as follows. 1. % By mass, C: 0.01 to 0.18%, Si: 0.02 to 0.60%,
Mn: 0.60 to 2.00%, P: 0.030% or less, S: 0.015% or less, Al: 0.005 to 0.100%, Ti: 0.007 to 0.030% and N: 0.0040 to 0.0100%, and the balance Fe and unavoidable impurities. Cooling time t from 1500 ° C to 1100 ° C averaged over the entire thickness of the slab when cooling the slab with the composition
Regarding 15/11 (seconds) and Ti / N ratio, the following equation (1) 22600 / (t 15/11 ) 1.25 ≤ Ti / N ≤ 1818000 / (t 15/11 ) 1.7 --- (1) A method for manufacturing a structural steel material having excellent toughness in a heat-affected zone of a weld, which is characterized by satisfying.

【0007】2.上記1において、鋼材が、さらに質量
%でCu:0.02〜1.5 %、Ni:0.02〜0.6 %、Cr:0.05〜
0.50%、Mo:0.02〜0.50%、Nb:0.003 〜0.030 %およ
びV:0.03〜0.15%のうちから選んだ1種または2種以
上を含有する組成になることを特徴とする溶接熱影響部
の靱性に優れた構造用鋼材の製造方法。
2. In the above 1, the steel material further contains Cu: 0.02 to 1.5%, Ni: 0.02 to 0.6%, and Cr: 0.05 to
0.50%, Mo: 0.02 to 0.50%, Nb: 0.003 to 0.030% and V: 0.03 to 0.15% of the welding heat-affected zone characterized by having a composition containing one or more selected from A method for manufacturing a structural steel material having excellent toughness.

【0008】3.上記1または2において、鋼材が、さ
らに質量%でB:0.0002〜0.0020%、REM:0.001 〜0.0
20 %およびCa:0.001 〜0.010 %のうちから選んだ1
種または2種以上を含有する組成になることを特徴とす
る溶接熱影響部の靱性に優れた構造用鋼材の製造方法。
3. In the above 1 or 2, the steel material further contains B: 0.0002 to 0.0020% and REM: 0.001 to 0.0% by mass.
1 selected from 20% and Ca: 0.001 to 0.010%
A method for producing a structural steel material having excellent toughness in a heat-affected zone of a weld, which is characterized by having a composition containing one or more kinds.

【0009】[0009]

【発明の実施の形態】以下、この発明を具体的に説明す
る。まず、この発明において、素材の成分組成を上記の
範囲に限定した理由について説明する。なお、以下に示
す成分組成の%表示はいずれも「質量%」である。 C:0.01〜0.18% Cは、強度の向上に有用な元素であり、母材強度を確保
するためには0.01%以上の含有を必要とするが、0.18%
を超えて含有すると靱性および溶接性が劣化するので、
C量は0.01〜0.18%の範囲に限定した。なお、実用上の
好適範囲は0.06〜0.14%である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. First, the reason why the component composition of the raw material is limited to the above range in the present invention will be described. In addition, all of the component percentages shown below are "mass%". C: 0.01 to 0.18% C is an element useful for improving the strength, and 0.01% or more is necessary to secure the strength of the base material, but 0.18%
If contained in excess of 10%, the toughness and weldability will deteriorate, so
The C content was limited to the range of 0.01 to 0.18%. The practically suitable range is 0.06 to 0.14%.

【0010】Si:0.02〜0.60% Siは、強度増加に有用な元素であるが、含有量が0.02%
未満ではその添加効果に乏しく、一方0.60%を超えると
溶接熱影響部の靱性が著しく劣化するので、Si量は0.02
〜0.60%の範囲に限定した。
Si: 0.02 to 0.60% Si is an element useful for increasing strength, but its content is 0.02%.
If less than 0.60%, the effect of addition is poor, while if over 0.60%, the toughness of the weld heat-affected zone deteriorates significantly, so the Si content is 0.02%.
It was limited to the range of ~ 0.60%.

【0011】Mn:0.60〜2.00% Mnも、Siと同様、強度増加に有用な元素であるが、含有
量が0.60%未満ではその添加効果に乏しく、一方2.00%
を超えると母材の靱性が著しく劣化するので、Mn量は0.
60〜2.00%の範囲に限定した。なお、好ましくは1.00〜
1.70%の範囲である。
Mn: 0.60-2.00% Like Si, Mn is also an element useful for increasing strength, but if the content is less than 0.60%, its effect of addition is poor, while 2.00%.
If it exceeds 1.0, the toughness of the base material deteriorates significantly, so the Mn content is 0.
Limited to the range of 60-2.00%. In addition, preferably from 1.00
The range is 1.70%.

【0012】P:0.030 %以下 Pは、靱性を劣化させる元素であるため、極力低減する
ことが好ましいが、0.030 %までは許容できる。
P: 0.030% or less P is an element that deteriorates toughness, so it is preferable to reduce it as much as possible, but 0.030% is acceptable.

【0013】S:0.015 %以下 Sは、鋼中で主にMnSとして存在し、圧延組織および溶
接熱影響部の組織を微細化する作用がある。しかしなが
ら、含有量が 0.015%を超えると母材の靱性を劣化させ
るので、0.015 %を上限とした。
S: 0.015% or less S is mainly present as MnS in steel and has an action of refining the structure of the rolled structure and the weld heat affected zone. However, if the content exceeds 0.015%, the toughness of the base material deteriorates, so 0.015% was made the upper limit.

【0014】Al:0.005 〜0.100 % Alは、脱酸のために少なくとも 0.005%の添加を必要と
するが、0.100 %を超えると脱酸効果は飽和し、むしろ
コストの上昇を招くので、Alは 0.005〜0.100%の範囲
で含有させるものとした。
Al: 0.005-0.100% Al requires the addition of at least 0.005% for deoxidation, but if it exceeds 0.100%, the deoxidizing effect saturates and rather raises the cost. It was made to contain in 0.005 to 0.100% of range.

【0015】Ti:0.007 〜0.030 % Tiは、主にTiNとして存在し、結晶粒の微細化に不可欠
の元素である。TiNは高温においても安定で、溶接熱影
響部のオーステナイト粒成長を抑制する作用を有してい
る。溶接時において、溶融線近傍でもこの効果を得るた
めには、1400℃以上の高温域でも十分なTiN量を確保す
る必要があり、そのためには少なくとも0.007 %のTiを
必要とする。一方、Ti量が 0.030%を超えると鋼の清浄
性、靱性を低下させる。従って、Ti量は 0.007〜0.030
%の範囲に限定した。
Ti: 0.007 to 0.030% Ti is mainly present as TiN and is an element essential for refining crystal grains. TiN is stable even at high temperatures and has an effect of suppressing the growth of austenite grains in the heat affected zone of welding. At the time of welding, in order to obtain this effect even in the vicinity of the melting line, it is necessary to secure a sufficient amount of TiN even in a high temperature region of 1400 ° C. or higher, and for this purpose, Ti of at least 0.007% is required. On the other hand, if the Ti content exceeds 0.030%, the cleanliness and toughness of the steel deteriorate. Therefore, the Ti amount is 0.007 to 0.030.
It was limited to the range of%.

【0016】N:0.0040〜0.0100% Nは、Tiと結合してTiNを形成し、結晶粒の微細化に有
効に寄与する。上述したとおり、TiNは溶接熱影響部の
オーステナイト粒成長を抑制する作用を有しており、溶
接時に溶接線近傍でもこの効果を得るためには、1400℃
以上の高温域でも十分なTiN量を確保する必要があり、
そのためには0.0040%以上のNを必要ととする。一方、
Ti量が0.0100%を超えると溶接加熱時に固溶状態で存在
し、熱影響部の靱性を低下させる。従って、N量は0.00
40〜0.0100%の範囲に限定した。
N: 0.0040 to 0.0100% N combines with Ti to form TiN, which effectively contributes to the refinement of crystal grains. As described above, TiN has the effect of suppressing the growth of austenite grains in the heat-affected zone of the weld. To obtain this effect near the weld line during welding, 1400 ° C
It is necessary to secure a sufficient amount of TiN even in the above high temperature range,
Therefore, N of 0.0040% or more is required. on the other hand,
When the amount of Ti exceeds 0.0100%, it exists in a solid solution state during welding heating and reduces the toughness of the heat affected zone. Therefore, the amount of N is 0.00
It was limited to the range of 40-0.0100%.

【0017】以上、必須成分について説明したが、この
発明ではこれら必須成分の他にも、以下の成分を適宜含
有させることができる。 Cu:0.02〜1.5 %、Ni:0.02〜0.6 %、Cr:0.05〜0.50
%、Mo:0.02〜0.50%、Nb:0.003 〜0.030 %および
V:0.03〜0.15%のうちから選んだ1種または2種以上 Cu,Ni,Cr,Mo,NbおよびVはいずれも、焼入れ性を向
上させることによって母材強度を向上させる元素である
が、この効果を得るためにはそれぞれ、Cu≧0.02%、Ni
≧0.02%、Cr≧0.05%、Mo≧0.02%、Nb≧0.003 %、V
≧0.03%の添加が必要である。一方、Cuは 1.5%を超え
ると熱間加工性の低下が著しくなるので1.5 %を上限と
した。Niは、0.60%を超えると製造コストの上昇を招く
ので0.60%を上限とした。Nbは、0.030 %を超えると熱
影響部の靱性を低下させるので、0.030 %を上限とし
た。また、Cr,Mo,Vについては、多量添加は溶接性、
靱性を劣化させるので、それぞれ0.50%、0.50%、0.15
%を上限とした。
Although the essential components have been described above, the following components can be appropriately contained in addition to these essential components in the present invention. Cu: 0.02 to 1.5%, Ni: 0.02 to 0.6%, Cr: 0.05 to 0.50
%, Mo: 0.02 to 0.50%, Nb: 0.003 to 0.030%, and V: 0.03 to 0.15%. One or more selected from Cu, Ni, Cr, Mo, Nb and V are all hardenable. Is an element that improves the strength of the base material by improving Cu. However, in order to obtain this effect, Cu ≧ 0.02%, Ni
≧ 0.02%, Cr ≧ 0.05%, Mo ≧ 0.02%, Nb ≧ 0.003%, V
Addition of ≧ 0.03% is necessary. On the other hand, when Cu exceeds 1.5%, the hot workability deteriorates significantly, so 1.5% was made the upper limit. If Ni exceeds 0.60%, the manufacturing cost rises, so 0.60% was made the upper limit. When Nb exceeds 0.030%, the toughness of the heat-affected zone deteriorates, so 0.030% was made the upper limit. Regarding Cr, Mo and V, addition of a large amount causes weldability,
It deteriorates toughness, so 0.50%, 0.50%, 0.15%
% Was set as the upper limit.

【0018】B:0.0002〜0.0020%、 REM:0.001 〜0.
020 %およびCa:0.001 〜0.010 %のうちから選んだ1
種または2種以上 B,REM およびCaはいずれも、圧延後のフェライト粒の
微細化に有効に寄与する元素である。すなわち、Bは、
結晶粒界に偏析して粗大なフェライトの生成を抑制し、
圧延後のフェライト粒径を微細化する作用を有してい
る。この効果は、0.0002%以上の添加により認められる
が、0.0020%を超える添加は母材の靱性を低下させるの
で、0.0002〜0.0020%の範囲とした。REM およびCaはそ
れぞれ、高温で安定な微細酸化物を形成することによ
り、圧延後のフェライト粒を微細化する。さらに、溶接
熱影響部の靱性を向上させる効果もある。これらの効果
は REM, Caいずれも 0.001%以上の添加で認められる。
一方、REM , Caはいずれも、多量に添加すると鋼の清浄
性、母材靱性が低下するので、それぞれ 0.020%、 0.0
10%を上限とした。
B: 0.0002 to 0.0020%, REM: 0.001 to 0.
020% and Ca: 1 selected from 0.001 to 0.010%
All or one or more of B, REM and Ca are elements that effectively contribute to the refinement of ferrite grains after rolling. That is, B is
Suppresses the formation of coarse ferrite by segregating at the grain boundaries,
It has the effect of refining the ferrite grain size after rolling. This effect is recognized by addition of 0.0002% or more, but addition of more than 0.0020% reduces the toughness of the base material, so the range was made 0.0002 to 0.0020%. REM and Ca each form a stable fine oxide at high temperature, thereby making the ferrite grains after rolling fine. Further, it also has the effect of improving the toughness of the weld heat affected zone. These effects are observed when REM and Ca are added at 0.001% or more.
On the other hand, if REM and Ca are added in large amounts, the cleanliness of the steel and the toughness of the base material decrease, so 0.020% and 0.0
The upper limit was 10%.

【0019】なお、この発明では、製造された鋼材に含
有されるTiNの初期平均粒径(円相当直径)を0.02〜0.
04μm とすることが重要である。というのは、TiNは微
細なほど高密度となるため加熱時のオーステナイト粒の
微細化に有効であるが、径が小さいほど高温での溶解速
度が速く、平均粒径が0.02μm 未満では大部分のTiNが
溶接中に溶解してしまうために十分な効果が得られず、
一方平均粒径が0.04μm より大きい場合には、TiN密度
が低くなるため十分なオーステナイト粒の微細化効果が
得られないからである。
In the present invention, the initial average grain size (circle equivalent diameter) of TiN contained in the manufactured steel material is 0.02 to 0.
It is important to set it to 04 μm. This is because the finer the TiN, the higher the density, so it is effective for refining the austenite grains during heating. However, the smaller the diameter, the faster the dissolution rate at high temperature, and most of the average grain size is less than 0.02 μm. TiN melts during welding, so a sufficient effect cannot be obtained,
On the other hand, when the average particle size is larger than 0.04 μm, the TiN density becomes low and the sufficient austenite grain refining effect cannot be obtained.

【0020】TiNの平均粒径を0.02〜0.04μm とするた
めには、TiおよびNの添加量に加えて、凝固時の冷却速
度を制御する必要がある。図1は、この発明の成分組成
範囲を満足する5種類の鋼を4種類の冷却パターンで凝
固させた後、熱間圧延した鋼板について、TiN平均粒径
に及ぼすTi/N比と冷却速度の影響について調査した結
果である。なお、TiNの平均粒径は、鋼板表面を電解エ
ッチングしたのち、SEM 観察し、SEM 像を画像解析する
ことにより求めた。また、冷却速度の指標としては、Ti
Nの析出、成長が起こる1500℃から1100℃までの冷却時
間t15/11 を用いた。
In order to set the average particle size of TiN to 0.02 to 0.04 μm, it is necessary to control the cooling rate during solidification in addition to the addition amounts of Ti and N. FIG. 1 shows the Ti / N ratio and the cooling rate on the TiN average grain size of a steel sheet hot-rolled after solidifying 5 kinds of steel satisfying the compositional range of the present invention with 4 kinds of cooling patterns. This is the result of an investigation on the impact. The average particle size of TiN was determined by electrolytically etching the surface of the steel sheet, then observing with SEM, and performing image analysis of the SEM image. In addition, as an index of cooling rate, Ti
A cooling time t 15/11 from 1500 ° C. to 1100 ° C. at which N precipitation and growth occurs is used.

【0021】同図に示したとおり、TiNの平均粒径は、
Ti/N比と冷却速度によって大きく変化することが分か
る。そして、t15/11が一定で、TiおよびN量がこの発明
の適正範囲を満足していれば、TiNの平均粒径はTi/N
比によってほぼ一義的に定まり、従ってTi/N比が粒径
制御に最適な指標であることも明らかとなった。
As shown in the figure, the average particle size of TiN is
It can be seen that it greatly changes depending on the Ti / N ratio and the cooling rate. If t 15/11 is constant and the Ti and N contents satisfy the proper range of the present invention, the average grain size of TiN is Ti / N.
It was also clarified that the ratio was almost uniquely determined, and therefore the Ti / N ratio was the optimum index for grain size control.

【0022】次に、図2に、平均粒径:0.02μm および
0.04μm を与える冷却速度およびTi/N比をプロットし
た結果を示す。同図の結果から、0.02μm のTiN平均粒
径を与えるTi/N比:(Ti/N)20 は次式(2) (Ti/N)20 = 22600/(t15/11)1.25 --- (2) で、また0.04μm のTiN平均粒径を与えるTi/N比:
(Ti/N)40 は次式(3) (Ti/N)40 = 1818000/(t15/11)1.7 --- (3) で、それぞれ表されることが分かった。よって、平均粒
径を0.02〜0.04μm の範囲に制御するためには、Ti/N
比および1500℃から1100℃までの冷却時間t15/11 につ
いて、次式(1) の関係を満足する範囲に制御すれば良い
ことが分かる。 22600/(t15/11)1.25≦Ti/N≦ 1818000/(t15/11)1.7 --- (1)
Next, referring to FIG. 2, the average particle size: 0.02 μm and
The results of plotting the cooling rate and the Ti / N ratio giving 0.04 μm are shown. From the results of FIG, Ti / N ratio gives a TiN average particle size of 0.02μm: (Ti / N) 20 by the following equation (2) (Ti / N) 20 = 22600 / (t 15/11) 1.25 - -At (2), Ti / N ratio giving TiN average particle size of 0.04 μm:
It was found that (Ti / N) 40 is expressed by the following equation (3) (Ti / N) 40 = 1818000 / (t 15/11 ) 1.7 --- (3). Therefore, in order to control the average particle size within the range of 0.02 to 0.04 μm, Ti / N
It is understood that the ratio and the cooling time t 15/11 from 1500 ° C. to 1100 ° C. should be controlled within a range that satisfies the relationship of the following expression (1). 22600 / (t 15/11 ) 1.25 ≤ Ti / N ≤ 1818000 / (t 15/11 ) 1.7 --- (1)

【0023】なお、従来では、冷却速度が大きいほどTi
Nの平均粒径が微細化することが知られていたが、従来
の鋼板で、成分組成や冷却速度をそれぞれ個別に所定の
範囲に制御しても最適なTiN粒径が得られないことがあ
ったのは、組成と冷却速度を同時に制御していなかった
ことが原因であると考えられる。
In the past, the higher the cooling rate, the more Ti
It has been known that the average grain size of N becomes finer. However, in the conventional steel sheet, even if the composition and the cooling rate are individually controlled within predetermined ranges, the optimum TiN grain size cannot be obtained. It is considered that the reason was that the composition and the cooling rate were not controlled at the same time.

【0024】以上述べてきたように、Ti/N比およびt
15/11 を併せて制御すれば、TiN平均粒径を0.02〜0.04
μm の範囲に制御することができ、その結果、加熱時に
おけるオーステナイト粒の粗大化を効果的に抑制して、
熱影響部の靱性を確保することができるのである。この
理由については、まだ明確に解明されたわけではない
が、次のとおりと考えられる。すなわち、冷却中のTiN
の成長はTiの拡散に律速されているためTi量が多いほど
サイズが大きくなると考えられるが、この発明の成分範
囲では、冷却速度とTi/N比を一定に制御すればほぼ同
一の平均粒径を与えることができる。これは、TiNの成
長がTi量の増加により大きくなる一方、Ti量が一定のと
きN量の増加(Ti/N比の減少)と共にTiN密度が増加
して一個当たりのサイズが小さくなるためであると推定
される。従って、冷却速度の制御に加えて、Ti,Nの添
加量だけではなく、Ti/N比を制御することにより、よ
り広い成分範囲および冷却条件において所定のTiN粒径
を得ることができるものと考えられる。
As described above, the Ti / N ratio and t
If you also control 15/11 , the TiN average particle size will be 0.02-0.04.
It can be controlled in the range of μm, and as a result, it effectively suppresses coarsening of austenite grains during heating,
It is possible to secure the toughness of the heat affected zone. The reason for this is not clear yet, but it is considered as follows. That is, TiN during cooling
Since the growth rate of Ti is controlled by the diffusion of Ti, the larger the amount of Ti, the larger the size. However, in the composition range of the present invention, if the cooling rate and the Ti / N ratio are controlled to be constant, almost the same average grain size is obtained. The diameter can be given. This is because the growth of TiN increases as the Ti content increases, while the TiN density increases as the N content increases (the Ti / N ratio decreases) and the size per unit decreases when the Ti content is constant. It is estimated that there is. Therefore, by controlling not only the addition amounts of Ti and N but also the Ti / N ratio in addition to the control of the cooling rate, it is possible to obtain a predetermined TiN grain size in a wider component range and cooling conditions. Conceivable.

【0025】次に,この発明の鋼材の製造方法について
説明する。上記の好適成分組成範囲を満足する鋼を、転
炉、電気等で溶製し、連続鋳造法あるいは造塊法により
凝固させる。この時、1500℃から1100℃までの冷却時間
15/11 を、Ti/N比に応じて調整し、前記(1) 式を満
足する条件で冷却する。また、操業上冷却時間を変化さ
せることが困難な場合には、Ti/N比を冷却条件に合わ
せて適正範囲として製造すればよい。さらに、鋳片は所
定の厚さに圧延されるが、圧延時に通常行われている12
00℃以下で数時間以内の加熱ではTiNの分布状態はほと
んど変化しない。以上述べてきたように、Ti/N比と15
00℃から1100℃までの冷却時間t15/11を適切に制御す
れば、TiN平均粒径を0.02〜0.04μm とすることがで
き、その結果、熱影響部の靱性に優れた鋼材を製造する
ことができる。
Next, a method for manufacturing the steel material of the present invention will be described. Steel satisfying the above preferable composition range is melted by a converter, electricity, etc. and solidified by a continuous casting method or an ingot method. At this time, the cooling time t 15/11 from 1500 ° C. to 1100 ° C. is adjusted according to the Ti / N ratio, and cooling is performed under the conditions that satisfy the above expression (1). If it is difficult to change the cooling time during operation, the Ti / N ratio may be adjusted to an appropriate range according to the cooling conditions. Furthermore, the slab is rolled to a predetermined thickness, which is usually done during rolling12
When heated below 00 ° C for several hours, the distribution state of TiN hardly changes. As described above, the Ti / N ratio and 15
By properly controlling the cooling time t 15/11 from 00 ° C to 1100 ° C, the TiN average grain size can be set to 0.02 to 0.04 μm, and as a result, a steel material having excellent toughness in the heat affected zone can be manufactured. be able to.

【0026】[0026]

【実施例】表1に示す成分組成になる鋼を、転炉で溶製
し、連続鋳造法により 200mmおよび 300mm厚のスラブと
した。各スラブについて、凝固時における1500℃から11
00℃までの冷却時間t15/11 を鋳込み速度、水冷条件な
どを基に計算した結果、厚さ方向で平均すると、厚み:
200 mmのスラブは1900s、厚み:300 mmのスラブは3400
sであった。それぞれの冷却条件において、0.02μm お
よび0.04μm のTiN平均粒径を与えるTi/N比((Ti/
N)20 および (Ti/N)40 ) を前記(2), (3)式より算出
した。また、これらのスラブを加熱圧延により50mmの板
厚に仕上げたのち、板厚1/4部からTiN分布測定用試料
を採取し、SEM によりTiNの平均粒径を求めた。さら
に、板厚1/4 部から圧延方向と直角方向に12mm×75mm×
80mmの試験片を採取し、高周波加熱装置により入熱:40
0 kJ/cmのエレクトロガスアーク溶接の溶融線近傍の熱
影響部に相当する熱サイクル(最高加熱温度1400℃)を
付与したのち、シャルピー衝撃試験片を採取し、−40℃
におけるシャルピー吸収エネルギー(vE-40)を測定し
た。得られた結果を表2に示す。
EXAMPLE Steels having the composition shown in Table 1 were melted in a converter and made into slabs having a thickness of 200 mm and 300 mm by a continuous casting method. For each slab, 1500 ° C to 11 at solidification
As a result of calculating the cooling time t 15/11 up to 00 ° C. on the basis of the casting speed, the water cooling condition, etc., and averaging in the thickness direction, the thickness:
200 mm slab is 1900 s, thickness: 300 mm slab is 3400 s
It was s. Under each cooling condition, the Ti / N ratio ((Ti /
N) 20 and (Ti / N) 40 ) were calculated from the equations (2) and (3). Further, these slabs were finished by heating and rolling to a plate thickness of 50 mm, TiN distribution measurement samples were taken from 1/4 of the plate thickness, and the average particle size of TiN was determined by SEM. Furthermore, from the plate thickness 1/4 part in the direction perpendicular to the rolling direction, 12 mm × 75 mm ×
80mm test piece is sampled and heat input by high frequency heating device: 40
After applying a heat cycle (maximum heating temperature 1400 ° C) corresponding to the heat affected zone near the fusion line of 0 kJ / cm electrogas arc welding, a Charpy impact test piece was sampled at -40 ° C
Charpy absorbed energy (vE-40) was measured. The obtained results are shown in Table 2.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】表2から明らかなように、この発明に従い
得られた鋼材は、母材のTiN平均粒径が0.02〜0.04μm
の範囲を満足し、溶接熱影響部において高靱性が得られ
ている。これに対し、この発明の要件を満足しないもの
は、熱影響部の靱性が低い。特に成分組成がこの発明の
適正範囲を満足していても、Ti/N比と冷却条件がこの
発明の条件を満たしていない場合(No.11 〜16)には、
TiNが微細化あるいは粗大化しすぎて、良好な靱性は得
られなかった。
As is clear from Table 2, the steel material obtained according to the present invention has a TiN average grain size of the base material of 0.02 to 0.04 μm.
Is satisfied, and high toughness is obtained in the weld heat affected zone. On the other hand, those that do not satisfy the requirements of the present invention have low toughness in the heat-affected zone. In particular, even if the component composition satisfies the proper range of the present invention, if the Ti / N ratio and cooling conditions do not satisfy the conditions of the present invention (No. 11 to 16),
Good toughness was not obtained because the TiN was refined or coarsened too much.

【0030】[0030]

【発明の効果】かくして、この発明によれば、大入熱溶
接熱影響部においても良好な靱性を有する鋼材を歩留り
よく製造することが可能となり、各種溶接構造物の安全
性を格段に向上させることができる。
As described above, according to the present invention, it becomes possible to produce a steel material having a good toughness even in the heat-affected zone having a large heat input, with a good yield, and to remarkably improve the safety of various welded structures. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】 TiN平均粒径におよぼす鋳片の冷却条件とTi
/N比の影響を示す図である。
Fig. 1 TiN cooling condition and Ti influence on TiN average grain size
It is a figure which shows the influence of / N ratio.

【図2】 TiN平均粒径に及ぼす鋳片の冷却条件および
Ti/N比の影響を示す図である。
FIG. 2 shows the cooling conditions of the slab that affect the TiN average grain size and
It is a figure which shows the influence of Ti / N ratio.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−264614(JP,A) 特開 昭64−5644(JP,A) 特開 平9−104946(JP,A) 特開 平9−24448(JP,A) 特開 昭61−113715(JP,A) 特公 昭55−26164(JP,B1) (58)調査した分野(Int.Cl.7,DB名) B22D 11/22 B22D 11/00 C22C 38/00 301 C22C 38/14 C22C 38/58 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-3-264614 (JP, A) JP-A 64-5644 (JP, A) JP-A 9-104946 (JP, A) JP-A 9- 24448 (JP, A) JP-A-61-113715 (JP, A) JP-B-55-26164 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) B22D 11/22 B22D 11 / 00 C22C 38/00 301 C22C 38/14 C22C 38/58

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量%で、 C:0.01〜0.18%、 Si:0.02〜0.60%、 Mn:0.60〜2.00%、 P:0.030 %以下、 S:0.015 %以下、 Al:0.005 〜0.100 %、 Ti:0.007 〜0.030 %および N:0.0040〜0.0100% を含有し、残部はFeおよび不可避的不純物の組成になる
鋳片の冷却に際し、鋳片全厚にわたって平均した1500℃
から1100℃までの冷却時間t15/11 (秒)とTi/N比に
ついて、次式(1) 22600/(t15/11)1.25≦Ti/N≦ 1818000/(t15/11)1.7 --- (1) の関係を満足させることを特徴とする溶接熱影響部の靱
性に優れた構造用鋼材の製造方法。
1. In mass%, C: 0.01 to 0.18%, Si: 0.02 to 0.60%, Mn: 0.60 to 2.00%, P: 0.030% or less, S: 0.015% or less, Al: 0.005 to 0.100%, Ti : 0.007 to 0.030% and N: 0.0040 to 0.0100% with the balance being Fe and unavoidable impurities in the composition. When cooling the slab, 1500 ° C averaged over the entire thickness of the slab.
From the cooling time t 15/11 (in seconds) and Ti / N ratio of up to 1100 ° C., the following equation (1) 22600 / (t 15/11 ) 1.25 ≦ Ti / N ≦ 1818000 / (t 15/11) 1.7 - --A method for producing a structural steel material having excellent toughness in a heat-affected zone of a weld, which satisfies the relationship of (1).
【請求項2】 請求項1において、鋼材が、さらに質量
%で Cu:0.02〜1.5 %、 Ni:0.02〜0.6 %、 Cr:0.05〜0.50%、 Mo:0.02〜0.50%、 Nb:0.003 〜0.030 %および V:0.03〜0.15% のうちから選んだ1種または2種以上を含有する組成に
なることを特徴とする溶接熱影響部の靱性に優れた構造
用鋼材の製造方法。
2. The steel material according to claim 1, further comprising, by mass%, Cu: 0.02 to 1.5%, Ni: 0.02 to 0.6%, Cr: 0.05 to 0.50%, Mo: 0.02 to 0.50%, Nb: 0.003 to 0.030. % And V: 0.03 to 0.15%, a composition containing one or more selected from the group consisting of 0.03 to 0.15%, and a method for producing a structural steel material excellent in toughness of a weld heat affected zone.
【請求項3】 請求項1または2において、鋼材が、さ
らに質量%で B:0.0002〜0.0020%、 REM:0.001 〜0.020 %および Ca:0.001 〜0.010 % のうちから選んだ1種または2種以上を含有する組成に
なることを特徴とする溶接熱影響部の靱性に優れた構造
用鋼材の製造方法。
3. The steel material according to claim 1 or 2, further comprising one or more selected from B: 0.0002 to 0.0020%, REM: 0.001 to 0.020% and Ca: 0.001 to 0.010% in mass%. A method for producing a structural steel material excellent in toughness of a heat-affected zone of a weld, characterized by having a composition containing.
JP2001094945A 2001-03-29 2001-03-29 Method for producing structural steel with excellent toughness in weld heat affected zone Expired - Fee Related JP3525905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001094945A JP3525905B2 (en) 2001-03-29 2001-03-29 Method for producing structural steel with excellent toughness in weld heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001094945A JP3525905B2 (en) 2001-03-29 2001-03-29 Method for producing structural steel with excellent toughness in weld heat affected zone

Publications (2)

Publication Number Publication Date
JP2002283024A JP2002283024A (en) 2002-10-02
JP3525905B2 true JP3525905B2 (en) 2004-05-10

Family

ID=18949071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001094945A Expired - Fee Related JP3525905B2 (en) 2001-03-29 2001-03-29 Method for producing structural steel with excellent toughness in weld heat affected zone

Country Status (1)

Country Link
JP (1) JP3525905B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200940723A (en) * 2004-07-21 2009-10-01 Nippon Steel Corp A weldable structural steel excellent in low temperature toughness at heat affected zone
JP4252974B2 (en) * 2005-05-25 2009-04-08 株式会社日本製鋼所 Clad steel base material and method for producing clad steel using the clad steel base material
JP5110989B2 (en) * 2007-07-12 2012-12-26 株式会社神戸製鋼所 Large steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics
JP5796379B2 (en) * 2011-07-11 2015-10-21 Jfeスチール株式会社 Steel for welded structure excellent in CTOD characteristics of high heat input weld heat affected zone
JP5820341B2 (en) * 2012-06-19 2015-11-24 株式会社神戸製鋼所 Steel with excellent toughness in weld heat affected zone
CN111334713A (en) * 2020-03-30 2020-06-26 包头钢铁(集团)有限责任公司 Q390D steel plate and production method thereof

Also Published As

Publication number Publication date
JP2002283024A (en) 2002-10-02

Similar Documents

Publication Publication Date Title
JP3863878B2 (en) Welded structural steel with excellent weld heat affected zone toughness, manufacturing method thereof, and welded structure using the same
JP3895687B2 (en) Steel plate for depositing TiN + ZrN for welded structure, method for producing the same, and welded structure using the same
JP3895686B2 (en) Steel sheet for depositing TiN + MnS for welded structure, method for producing the same, and welded structure using the same
WO2002040731A1 (en) STEEL PLATE TO BE PRECIPITATING TiN+CuS FOR WELDED STRUCTURES, METHOD FOR MANUFACTURING THE SAME, WELDING FABRIC USING THE SAME
EP1533392A1 (en) Steel product for high heat input welding and method for production thereof
EP2784168B1 (en) Steel material for welding
WO2023276516A1 (en) High-strength steel sheet and method for producing same
JPH08158006A (en) High strength steel excellent in toughness in weld heat-affected zone
JP3546308B2 (en) Large heat input welding steel
JP3525905B2 (en) Method for producing structural steel with excellent toughness in weld heat affected zone
JP3323414B2 (en) Steel with excellent heat-affected zone toughness in large heat input welding and method for producing the same
JP4144123B2 (en) Non-tempered high-tensile steel with excellent base material and weld heat-affected zone toughness
CN116529396A (en) High Ni alloy excellent in weld high temperature cracking resistance
JP3852118B2 (en) Steel material with excellent toughness of weld heat affected zone
US9403242B2 (en) Steel for welding
JP3464567B2 (en) Welded structural steel with excellent toughness in the heat affected zone
JP4357080B2 (en) Solidified grain refined steel and solidified grain refined austenitic stainless steel and their welded joints
JP2004332034A (en) Method for producing thick high tension steel plate excellent in heat affected zone ctod characteristic
JPH108132A (en) Production of thick steel plate excellent in toughness
JP3502805B2 (en) Method for producing steel with excellent toughness in weld joint
JP4039223B2 (en) Thick steel plate with excellent super tough heat input weld heat affected zone toughness and method for producing the same
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP7173423B1 (en) High-strength steel plate and its manufacturing method
JP7127751B2 (en) Steel plate and its manufacturing method
JP3399125B2 (en) Steel material with excellent toughness of weld heat affected zone

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040209

R150 Certificate of patent or registration of utility model

Ref document number: 3525905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees