JP3541021B2 - Steel material with excellent toughness - Google Patents

Steel material with excellent toughness Download PDF

Info

Publication number
JP3541021B2
JP3541021B2 JP2001185360A JP2001185360A JP3541021B2 JP 3541021 B2 JP3541021 B2 JP 3541021B2 JP 2001185360 A JP2001185360 A JP 2001185360A JP 2001185360 A JP2001185360 A JP 2001185360A JP 3541021 B2 JP3541021 B2 JP 3541021B2
Authority
JP
Japan
Prior art keywords
steel
less
toughness
steel material
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001185360A
Other languages
Japanese (ja)
Other versions
JP2003003227A (en
Inventor
昌紀 皆川
浩幸 白幡
浩司 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001185360A priority Critical patent/JP3541021B2/en
Publication of JP2003003227A publication Critical patent/JP2003003227A/en
Application granted granted Critical
Publication of JP3541021B2 publication Critical patent/JP3541021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、造船、建築、橋梁、タンク及び圧力容器等の大型鋼構造物向けの強度と靭性に優れた構造用鋼材に関するものである。
【0002】
【従来の技術】
近年の鋼構造物の軽量化又は鋼構造物の大型化に伴って板厚50mm以上にも達する構造用厚鋼板が用いられることとなり、使用される鋼材に対する要求は一段と厳しくなっている。そのために、これらの構造用鋼材には強度と靭性の向上が望まれるが、高強度化は靭性を低下させる場合が多い。このため、強度と靭性の両方の性質を向上させるべく種種の技術が提案されている。
【0003】
強度と靭性を両立し得る冶金的因子として従来から知られている手段が、ミクロ組織の細粒化とNiの多量添加である。Niの多量添加は経済性を著しく損なうため、ミクロ組織を細粒化するべく、これまでに制御圧延・制御冷却技術あるいは多段熱処理技術に関する多くの研究開発が行われてきた。
【0004】
制御圧延・制御冷却技術については、例えば板厚25mm程度であればフェライト粒径にて15μm程度までの細粒化が可能であり広く実用化されてきたが、更なる細粒化が求められるのみならず、従来から圧延温度が制限されることによる生産性の低下の問題が未解決となっている。さらには厚手材(特にその板厚中心部)においては十分な加工歪および冷却速度の確保が困難であることから、例えば板厚50mm程度の板厚中心部においてはフェライト粒径にて30μm程度までしか細粒化できないため制御圧延・制御冷却の適用板厚には限界があった。
【0005】
多段熱処理を行うことは厚手材でも多少細粒化の効果が得られるが、生産性を大幅に損なうため現実的な手段とはなり得ない。
【0006】
制御圧延・制御冷却、あるいは多段熱処理の技術思想と異なる細粒化の思想として、粒内変態を利用するものがあり、特開平4−279248号公報には粒子径が0.1〜3.0μmの範囲内にあるTiを含む酸化物と該酸化物とTiN、MnSの複合析出物粒子の合計が、40〜300個/mm2を含有する鋳片に鋳造し、MnS、TiN、VNの複合析出によるオーステナイト粒内から粒内フェライトの生成によりミクロ組織を細粒化せしめる技術が開示されているが、粒内変態に先立つオーステナイト粒の微細化効果が小さい。
【0007】
以上述べたように厚鋼板のミクロ組織を安定して微細化し靭性を向上させ得る技術は必ずしも満足できないのが現状である。
【0008】
【発明が解決しようとする課題】
本発明は、上記現状に鑑み、大型構造用鋼として要求される強度と靭性とを兼ね備えた鋼材、特に圧延前に1373°K〜1573°Kの加熱温度に加熱しても再加熱オーステナイト粒径が小さく、低圧下率の圧延であってもフェライトが微細粒化し、靭性が向上し得る鋼材を提供することにある。
【0009】
【課題を解決するための手段】
【0010】
本発明者は、鋼成分及び鋼中に分散させる酸化物粒子並びに旧オーステナイト粒径を規定することにより、強度と靭性に優れた鋼材が得られることを見出して、本発明を完成した。
【0011】
本発明の要旨は以下の通りである。
【0012】
(1) 質量%で、
C:0.05〜0.2%、
Si:0.05〜0.4%、
Mn:0.4〜2.0%、
P:0.02%以下、
S:0.02%以下、
Al:0.005〜0.04%、
Ti:0.005〜0.03%、
Ca:0.0005〜0.003%
を含有し、残部はFe及び不可避不純物から成る鋼で、かつ、この鋼中に円相当径で0.005〜2.0μmの酸化物粒子を単位面積当たりの個数密度で100〜3000個/mm2含有し、その酸化物粒子の組成が少なくともCa、Al、Oを含み、Oを除いた元素が質量比で、
Ca:5%以上、
Al:5%以上
をそれぞれ含有し、CaとAlとの合計が50%以上で、残部がその他不可避不純物からなり、かつ鋼を1200℃の温度で60分間加熱したときの旧オーステナイト粒径が114.8μm以下となることを特徴とする靭性の優れた鋼材。
【0013】
(2) 前記酸化物粒子の組成が少なくともCa、Al、O、Sを含み、Oを除いた元素が質量比で、
Ca:5%以上、
Al:5%以上、
S:1%以上
をそれぞれ含有し、CaとAlとSとの合計が51%以上で、残部がその他不可避不純物から成ることを特徴とする上記(1)記載の靭性に優れた鋼材。
【0014】
(3) 質量%で、
C:0.05〜0.2%、
Si:0.05〜0.4%、
Mn:0.4〜2.0%、
P:0.02%以下、
S:0.02%以下、
Al:0.005〜0.04%、
Ti:0.005〜0.03%、
Ca:0.0005〜0.003%、
Mg:0.002%以下
を含有し、残部はFe及び不可避不純物から成る鋼で、かつ、この鋼中に円相当径で0.005〜2.0μmの酸化物粒子を単位面積当たりの個数密度で100〜3000個/mm2含有し、その酸化物粒子の組成が少なくともCa、Al、Mg、Oを含み、Oを除いた元素が質量比で、
Ca:5%以上、
Al:5%以上、
Mg:1%以上
をそれぞれ含有し、CaとAlとMgとの合計が51%以上で、残部がその他不可避不純物からなり、かつ鋼を1200℃の温度で60分間加熱したときの旧オーステナイト粒径が114.8μm以下となることを特徴とする靭性の優れた鋼材。
【0015】
(4) 前記酸化物粒子の組成が少なくともCa、Al、Mg、O、Sを含み、Oを除いた元素が質量比で、
Ca:5%以上、
Al:5%以上、
Mg:1%以上、
S:1%以上
をそれぞれ含有し、CaとAlとMgとSとの合計が52%以上で、残部がその他不可避不純物から成ることを特徴とする上記(3)記載の靭性に優れた鋼材。
【0016】
(5) 質量%で、
Nb:0.05%以下、
V:0.1%以下、
Cr:0.6%以下、
Mo:0.6%以下
の内の1種または2種以上を含有することを特徴とする上記(1)〜(4)のいずれかに記載の靭性に優れた鋼材。
【0017】
(6) 質量%で、
Cu:1.0%以下、
Ni:1.0%以下
の内の1種または2種を含有することを特徴とする上記(1)〜(5)のいすれかに記載の靭性に優れた鋼材。
【0018】
(7) 質量%で、
B:0.0005〜0.003%
を含有することを特徴とする上記(1)〜(6)のいずれかに記載の鋼材。
【0020】
【発明の実施の形態】
以下、本発明について詳細に説明する。本発明者らは靭性を向上させる金属組織要因として、1000〜1300℃に加熱される再加熱オーステナイト細粒化を、酸化物を利用して達成することを検討した。再加熱オーステナイト粒が細粒化することでその後の変態によって生成するフェライト粒が細粒になるためである。
【0021】
再加熱オーステナイト粒を細粒化するためには高温でのオーステナイト粒成長を抑制することが必要である。その手段として最も有効な方法は、分散粒子によりオーステナイトの粒界をピンニングし、粒界の移動を止める方法が考えられる。そのような作用をする分散粒子の一つとしては、従来、Ti窒化物と酸化物が有効であると考えられていた。しかしながら、Ti窒化物は1000℃以上の高温では固溶する割合が大きくなるため、ピンニング効果が小さく、ピンニング粒子に適さない。このため、高温で安定な酸化物をピンニング粒子として活用することにした。
【0022】
また、分散粒子による結晶粒界のピンニング効果は、分散粒子の体積率が大きいほど、一個の粒子径が大きいほど大きい。ただし、分散粒子の体積率は鋼中に含まれる粒子を構成する元素の濃度によって上限があるので、体積率を一定と仮定した場合には、粒子径はある程度小さい方がピンニングには有効である。このような観点から、本発明者らは酸化物の体積分率を大きく、かつ適正な粒子径となるよう、種々の検討を行った。
【0023】
酸化物の体積分率を大きくする手段の一つとして、酸素量を増大させることがあるが、酸素量の増大は材質に有害な粗大酸化物をも多数生成する原因となるため、有効な手段ではない。そこで本発明者らは、酸素を最大限に利用するため、酸素との溶解度積が小さい元素を活用することを検討した。酸素との溶解度積が小さい、すなわち強脱酸元素として、一般的にはAlが用いられる。しかしながら、Alだけでは酸素を充分利用するには不充分で、さらにAlよりも強い脱酸元素が必要で、鉄鋼の脱酸工程で汎用的に使用されるCaを活用することが重要である。Caは酸素との溶解度積が小さいため、同量の酸素に対してAlよりも一層多量の酸化物を生成することができる。脱酸元素としてCaを用いた実験を行った結果、鋼中に生成する酸化物粒子の組成として、CaとAlが含まれることが必要であり、その合計が50%以上で、且つ、その中で、 Caが5%以上、Alが5%以上含まれることで、酸化物の体積分率すなわち酸化物量を大きくすることが可能となることを知見した。この結果を基に、鋼中に含まれる酸化物粒子の組成を、少なくともCa、Al、Oを含み、Oを除いた元素が質量比でCaを5%以上、Alを5%以上とした。
【0024】
また、Caと同時にMgを使用することも酸化物を多数生成させることに有効である。MgはCaほどの効果はないものの、Alより強い脱酸元素であり、酸素との溶解度積が小さい。したがって、MgをCaと複合して脱酸に使用することで酸化物個数を一層増加させることが可能となる。発明者らは脱酸元素としてCaを用いた実験を行った結果、鋼中に生成する酸化物粒子の組成として、CaとAlの他にMgが含まれることが好ましく、その合計が51%以上で、且つ、その中で、Caが5%以上、Alが5%以上、Mgが1%以上含まれることで、酸化物の体積分率すなわち酸化物量を一層大きくすることが可能となることを知見した。この結果を基に、鋼中に含まれる酸化物粒子の組成を、少なくともCa、Al、Mg、Oを含み、Oを除いた元素が質量比でCaを5%以上、Alを5%以上、Mgを1%以上とした。
【0025】
さらには、本発明者らは、酸化物の周囲にCaS及びMgSといった硫化物が析出することで、酸化物と硫化物とを併せてより一層の体積分率の増加が可能となることを見出したのである。この結果をもとに、鋼中に含まれる粒子の組成を、少なくともCa、Al、O、Sを含み、Oを除いた元素が質量比でCaを5%以上、Alを5%以上、Sを1%以上、もしくは、少なくともCa、Al、Mg、O、Sを含み、Oを除いた元素が質量比でCaを5%以上、Alを5%以上、Mgを1%以上、Sを1%以上で、 Ca、Al、Sの合計が51%以上、 Ca、Al、Mg、Sの合計が52%以上であることが更に好ましい。
【0026】
次に、ピンニングに有効な酸化物粒子の大きさについて述べる。
【0027】
分散粒子による結晶粒界のピンニング効果は、分散粒子の体積率が大きいほど、一個の粒子径が大きいほど大きいが、粒子の体積率が一定のとき、一個の酸化物粒子の大きさが小さい方が粒子数が多くなりピンニング効果が大きくなるが、あまり小さくなると粒界に存在する粒子の割合が小さくなるため、その効果は低減すると考えた。粒子の大きさを種々変化させた試験片を用いて、高温に加熱したときのオーステナイト粒径を詳細に調査した結果、ピンニングには粒子の大きさとして、0.005〜2.0μmのものが効果が大きいことをつきとめた。さらに、オーステナイト粒界の移動を止めるピンニング力は分散粒子のサイズが大きいほど強いことが判明し、粒子径0.005〜2.0μmの中でも0.1〜2.0μmの粒子の大きさが特に有効であることを知見するに至った。0.1μmより小さくなるとピンニング効果は徐々に減少し、0.005μmより小さくなるとほとんどピンニング効果を発揮しない。また、2.0μmより大きい酸化物粒子はピンニング効果はあるものの、脆性破壊の起点となることがあるため鋼材の特性上不適である。この結果より、必要な粒子径を0.005〜2.0μmとした。そして、その中でも特に0.1〜2.0μmが好ましい。
【0028】
次に、靭性に必要なピンニング粒子の個数について検討した。
【0029】
酸化物粒子個数が多いほど組織単位は微細になり、粒子個数が多いほど靭性が向上するが、特に要求特性が厳しいと考えられる液化ガス輸送用船舶の鋼材は、高強度で大入熱溶接施工される場合に要求される溶接継手低温靭性、例えば、試験温度−40℃において吸収エネルギー50J以上を満足するためには、円相当径が0.005〜2.0μmの酸化物粒子数が100個/mm2以上必要であることを知見した。ただし、粒子数が多くなるほど、その靭性向上効果は小さくなり、必要以上に粒子個数を多くすることは靭性に有害な粗大な粒子が生成する可能性が高くなることを考えると、粒子数の上限は3000個/mm2が適切である。
【0030】
この酸化物粒子の大きさ及び個数の測定は、例えば以下の要領で行う。母材となる鋼板から抽出レプリカを作製し、それを電子顕微鏡にて10000倍で20視野以上、観察面積にして1000μm2以上を観察することで該酸化物の大きさおよび個数を測定する。大きさの測定は、例えば粒子を撮影した写真をもとに、その円相当径を求める。このとき鋼板の表層部から中心部までどの部位から採取した抽出レプリカでもよい。また、粒子が適正に観察可能であれば、観察倍率を低くしてもかまわない。
【0031】
鋼材を製造するプロセスは、通常圧延まま、制御圧延、さらにこれと制御冷却と焼戻しの組合せ、および焼入れ・焼戻しの組合せであっても酸化物の効果は影響を受けない。
【0032】
即ち、本発明では酸化物を分散させているので、圧延前の鋼片を加熱炉に入れた時にオーステナイト粒の粒成長が抑制され粗大化しない。このため、圧延時に圧下率を大きくしてオーステナイト粒の微細化を行う必要がなく、特に、板厚が50mm以上に達する厚鋼板を製造するのに適する低圧下率の圧延でもフェライト粒が20μm以下に微細粒化し、靭性が向上する。
【0033】
圧延前の鋼片の加熱炉での加熱温度は、1000〜1300℃(1273〜1573°K)の範囲内が通常であり、この加熱温度範囲での旧オーステナイト粒径と靭性との関係を求めた。
【0034】
図1はその一例を説明する図で、上図はオーステナイト粒径Dγと延性脆性遷移温度(vTrs)との関係を、下図は酸化物個数が本発明範囲にある120個/mm2の場合および比較例の90個/mm2の場合の加熱温度とオーステナイト粒径との関係の一例を示す図である。なお、加熱時間は60分である。また、酸化物の個数が多いと直線Aより左側方向にプロットされ、酸化物の個数が少ないと直線Aより右側方向にプロットされる。
【0035】
靭性を表す一つの指標として延性脆性遷移温度を考えた場合、オーステナイト粒径が大きくなるとvTrsは高温になる。すなわち靭性が低下する。したがって目標とするvTrsを得るためには、オーステナイト粒径の最大値があり、その最大値以下にしなければならない。そして、オーステナイト粒径は加熱温度と保持時間との影響を受けるが、本発明の範囲の酸化物等粒子を分散することによって、鋼片を特に1373°K〜1573°Kの温度Tで時間t(s)加熱した時の旧オーステナイト粒径を直線Aより常にvTrsが−50℃以下となるオーステナイト粒径にすることができることを見出した。そして、この直線Aは下記式(1)で示される。
【0036】
即ち、この式(1)で求められるDよりもオーステナイト粒径を小さくすることにより優れた母材靭性を有することを見出した。

Figure 0003541021
具体的には、実施例に示すように、鋼を1200℃の温度で60分間加熱したときの旧オーステナイト粒径は114.8μm以下である。
【0037】
酸化物の数が少ないとオーステナイト粒径が大きくなり、上記式(1)で規定するDよりも小さくならず、加熱温度が高いとき、かつ/または加熱時間が長いとき良好な靭性が得られない。
【0038】
さらに、本発明の基本成分範囲について述べる。
【0039】
Cは鋼の強度を向上させる有効な成分であり、Cが0.05%未満では強度が確保できず、また過剰の添加は、鋼材の溶接性や溶接継手低温靭性などを著しく低下させるので、上限を0.2%とした。
【0040】
Siは母材の強度確保、脱酸などに0.05%以上必要な成分であるが、HAZの硬化により靭性が低下するのを防止するため上限を0.4%とした。
【0041】
Mnは母材の強度、靭性の確保に有効な成分として0.4%以上の添加が必要であるが、溶接部の靭性、割れ性などの許容できる範囲で上限を2.0%とした。
【0042】
Pは含有量が少ないほど望ましいが、不純物であるこれを工業的に低減させるためには多大なコストがかかることから、0.02%を上限とした。
【0043】
SはPと同様に含有量が少ないほど望ましいが、これを工業的に低減させるためには多大なコストがかかることから、0.02%を上限とした。
【0044】
Alは重要な脱酸元素であり、下限値を0.005%とした。また、Alが多量に存在すると、鋳片の表面品位が劣化するため、上限を0.04%とした。
【0045】
TiはNと結合してTi窒化物を形成してスラブ中に微細析出し、圧延組織の細粒化に有効であり、また鋼板中に存在するTi窒化物は溶接時にHAZ組織を微細化させる。これらの効果を得るために0.005%以上添加する。しかし、固溶Ti量が増加すると靭性が低下するため、0.03%を上限とした。
【0046】
CaはCa系酸化物を生成させるために0.0005%以上の添加が必要である。しかしながら、過剰の添加は粗大介在物を生成させるため、0.003%を上限とした。
【0047】
MgはCaと複合して脱酸に使用することで酸化物個数を増加させる元素である。しかしながら、過剰の添加は粗大介在物を生成させるため、Mgは0.002%以下としたが、好ましくは、0.0001〜0.002%である。
【0048】
Nb、V、Cr、Moは鋼の強度及び靭性を向上させる効果を有するがHAZ部においては過剰な添加は靭性を著しく低下させるため、それぞれ0.05%、0.1%、0.6%、0.6%を上限とした。
【0049】
Cu、Niも鋼の強度を向上させるのに有効な元素であり、Cuは鋼材の強度を向上させるために有効であるが、1.0%を超えるとHAZ靭性を低下させることから、1.0%を上限とした。Niは鋼材の強度および靭性を向上させるために有効であるが、Ni量の増加はコストを上昇させるので、1.0%を上限とした。これらの選択元素は、必要に応じて1種または2種以上を任意に含有させることができる。
【0050】
Bは鋼の焼入性を改善すると共に、強度を向上させる元素であるが、0.0005%未満では充分な効果が得られず、一方、0.003%を超えると焼入性向上効果が飽和するだけでなく、靭性に有害なB析出物を形成して靭性を低下させるので、Bは0.0005〜0.003%とした。
【0051】
【実施例】
表1に示した化学成分で、鋼板を試作した。表1において、鋼種1〜8が本発明鋼、鋼種9〜13が比較鋼である。試作鋼は転炉溶製し、RHにて真空脱ガス処理時に脱酸を行っている。連続鋳造により280mm厚鋳片に鋳造した後、加熱圧延水冷を経て、板厚60mmの鋼板として製造した。得られた鋼板の内、鋼種1、7、8の鋼板について酸化物の組成、粒子数、加熱温度(1200℃)、加熱時間(60分)、(1)式で得られるD(114.8)、旧オーステナイト粒径の実測値、靭性(vTrs)を表2に示す。
【0052】
表2から明らかなように、請求項に規定する要件を満たす1、7、8の本発明鋼は、旧オーステナイト粒径の実測値vTrsがD(114.8)よりも小さな値を示し、vTrsが−50℃以下の優れた靭性を有する。
【0054】
【表1】
Figure 0003541021
【0055】
【表2】
Figure 0003541021
【0056】
【発明の効果】
本発明によれば、強度と靭性に優れた大型構造用鋼材、特に、従来の制御圧延・制御冷却では製造することが困難であった厚鋼板を安定して供給することが可能となった。
【図面の簡単な説明】
【図1】オーステナイト粒径、延性脆性遷移温度、加熱温度との関係を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a structural steel material having excellent strength and toughness for large steel structures such as shipbuilding, buildings, bridges, tanks, pressure vessels, and the like.
[0002]
[Prior art]
In recent years, structural steel plates having a thickness of 50 mm or more have been used as the weight of steel structures has been reduced or the size of steel structures has been increased, and the requirements for steel materials used have become more severe. For this reason, these structural steel materials are required to have improved strength and toughness, but high strength often reduces toughness. For this reason, various techniques have been proposed to improve both the strength and the toughness.
[0003]
Means conventionally known as a metallurgical factor that can achieve both strength and toughness are fine grain refinement of the microstructure and addition of a large amount of Ni. Since the addition of a large amount of Ni significantly impairs economic efficiency, many researches and developments on a controlled rolling / controlled cooling technique or a multi-step heat treatment technique have been performed so far to refine the microstructure.
[0004]
As for the controlled rolling / controlled cooling technology, for example, if the plate thickness is about 25 mm, the grain size can be reduced to about 15 μm in ferrite grain size, and it has been widely used, but only further grain size reduction is required. Until now, the problem of a reduction in productivity due to the limitation of the rolling temperature has not been solved. Further, it is difficult to secure a sufficient processing strain and a cooling rate in a thick material (particularly, in the center portion of the plate thickness). Since only grain refinement can be performed, there is a limit to the sheet thickness to which controlled rolling and controlled cooling can be applied.
[0005]
Performing multi-stage heat treatment can provide a somewhat fine graining effect even with a thick material, but it cannot be a practical means because productivity is greatly impaired.
[0006]
As a concept of grain refinement different from the technical concept of controlled rolling / controlled cooling or multi-stage heat treatment, there is a technology utilizing intragranular transformation. Japanese Patent Application Laid-Open No. Hei 4-279248 discloses a particle size of 0.1 to 3.0 μm. Is cast in a slab containing a total of 40 to 300 particles / mm 2 of an oxide containing Ti and a composite precipitate particle of the oxide, TiN and MnS in the range of MnS, TiN and VN. Although a technique has been disclosed in which the microstructure is refined by forming intragranular ferrite from within the austenite grains due to precipitation, the effect of refining austenite grains prior to intragranular transformation is small.
[0007]
As described above, at present, a technology capable of stably refining the microstructure of a thick steel plate and improving toughness is not always satisfactory.
[0008]
[Problems to be solved by the invention]
In view of the above situation, the present invention relates to a steel material having both the strength and toughness required as a large structural steel, in particular, a reheated austenite grain size even if heated to a heating temperature of 1373 ° K to 1573 ° K before rolling. It is an object of the present invention to provide a steel material which has a small ferrite and fine grains even in rolling at a low draft and can improve toughness.
[0009]
[Means for Solving the Problems]
[0010]
The present inventors have found that a steel material having excellent strength and toughness can be obtained by defining the steel component, the oxide particles dispersed in the steel, and the prior austenite particle size, and completed the present invention.
[0011]
The gist of the present invention is as follows.
[0012]
(1) In mass%,
C: 0.05-0.2%,
Si: 0.05 to 0.4%,
Mn: 0.4-2.0%,
P: 0.02% or less,
S: 0.02% or less,
Al: 0.005 to 0.04%,
Ti: 0.005 to 0.03%,
Ca: 0.0005 to 0.003%
And the balance is steel consisting of Fe and unavoidable impurities, and in this steel, oxide particles having a circle equivalent diameter of 0.005 to 2.0 μm have a number density per unit area of 100 to 3,000 particles / mm. 2 containing, the composition of the oxide particles contains at least Ca, Al, O, the elements except O in mass ratio,
Ca: 5% or more,
Al: 5% or more, respectively, the total of Ca and Al is 50% or more, the balance consists of other unavoidable impurities, and the prior austenite grain size when the steel is heated at 1200 ° C. for 60 minutes is 114. A steel material excellent in toughness, characterized in that the thickness is 0.8 μm or less .
[0013]
(2) The composition of the oxide particles contains at least Ca, Al, O, and S, and the elements excluding O are in mass ratio,
Ca: 5% or more,
Al: 5% or more,
S: A steel material excellent in toughness according to the above (1), wherein the steel material contains at least 1%, the total of Ca, Al, and S is at least 51%, and the balance consists of other unavoidable impurities.
[0014]
(3) In mass%,
C: 0.05-0.2%,
Si: 0.05 to 0.4%,
Mn: 0.4-2.0%,
P: 0.02% or less,
S: 0.02% or less,
Al: 0.005 to 0.04%,
Ti: 0.005 to 0.03%,
Ca: 0.0005 to 0.003%,
Mg: a steel containing 0.002% or less, with the balance being Fe and unavoidable impurities, and oxide particles having a circle equivalent diameter of 0.005 to 2.0 μm in the steel having a number density per unit area. in in 100 to 3000 pieces / mm 2 contains comprises at least Ca composition of oxide particles, Al, Mg, and O, elemental mass ratio excluding O,
Ca: 5% or more,
Al: 5% or more,
Mg: each containing at least 1%, the total of Ca, Al, and Mg being at least 51%, the balance being other unavoidable impurities, and the prior austenite grain size when the steel was heated at 1200 ° C. for 60 minutes. Having a toughness of 114.8 μm or less .
[0015]
(4) The composition of the oxide particles contains at least Ca, Al, Mg, O, and S, and the elements excluding O are in mass ratio,
Ca: 5% or more,
Al: 5% or more,
Mg: 1% or more,
S: A steel material having excellent toughness according to the above (3), wherein the steel material contains at least 1%, the total of Ca, Al, Mg, and S is at least 52%, and the balance consists of other unavoidable impurities.
[0016]
(5) In mass%,
Nb: 0.05% or less,
V: 0.1% or less,
Cr: 0.6% or less,
Mo: The steel material having excellent toughness according to any one of the above (1) to (4), containing one or more of 0.6% or less.
[0017]
(6) In mass%,
Cu: 1.0% or less,
Ni: The steel material excellent in toughness according to any one of the above (1) to (5), which contains one or two of 1.0% or less.
[0018]
(7) In mass%,
B: 0.0005 to 0.003%
The steel material according to any one of the above (1) to (6), comprising:
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. The present inventors have studied to achieve reheating austenite grain refinement heated to 1000 to 1300 ° C. using an oxide as a metal structure factor for improving toughness. This is because when the reheated austenite grains are refined, the ferrite grains formed by the subsequent transformation are refined.
[0021]
In order to reduce the size of the reheated austenite grains, it is necessary to suppress the growth of austenite grains at a high temperature. The most effective method is to pin the austenite grain boundaries with dispersed particles and stop the movement of the grain boundaries. Conventionally, Ti nitrides and oxides have been considered to be effective as one of the dispersed particles having such an effect. However, at a high temperature of 1000 ° C. or higher, the proportion of solid solution of Ti nitride becomes large, so that the pinning effect is small and not suitable for pinning particles. For this reason, it was decided to utilize oxides stable at high temperatures as pinning particles.
[0022]
In addition, the pinning effect of the crystal grain boundary by the dispersed particles increases as the volume ratio of the dispersed particles increases and as the diameter of one particle increases. However, since the volume fraction of the dispersed particles has an upper limit depending on the concentration of the elements constituting the particles contained in the steel, if the volume fraction is assumed to be constant, a smaller particle diameter is more effective for pinning. . From such a viewpoint, the present inventors have conducted various studies to increase the volume fraction of the oxide and to obtain an appropriate particle size.
[0023]
One of the means for increasing the volume fraction of oxides is to increase the amount of oxygen. However, an increase in the amount of oxygen causes the generation of a large number of coarse oxides harmful to the material. is not. Therefore, the present inventors have studied the use of an element having a small solubility product with oxygen in order to make maximum use of oxygen. Al is generally used as a material having a small solubility product with oxygen, that is, as a strongly deoxidizing element. However, Al alone is not sufficient to sufficiently utilize oxygen, and further requires a deoxidizing element stronger than Al. Therefore, it is important to utilize Ca that is widely used in the deoxidizing step of steel. Since Ca has a small solubility product with oxygen, Ca can produce a larger amount of oxide than Al for the same amount of oxygen. As a result of conducting an experiment using Ca as a deoxidizing element, it is necessary that the composition of oxide particles generated in the steel includes Ca and Al, and the total of the compositions is 50% or more. It has been found that the inclusion of 5% or more of Ca and 5% or more of Al makes it possible to increase the volume fraction of the oxide, that is, the amount of the oxide. Based on this result, the composition of the oxide particles contained in the steel was determined to be at least 5% or more of Ca and 5% or more by mass of the elements containing at least Ca, Al, and O, excluding O.
[0024]
Use of Mg at the same time as Ca is also effective in generating a large number of oxides. Although Mg is not as effective as Ca, it is a stronger deoxidizing element than Al and has a small solubility product with oxygen. Therefore, it is possible to further increase the number of oxides by combining Mg with Ca and using it for deoxidation. The inventors conducted an experiment using Ca as a deoxidizing element. As a result, it is preferable that Mg is contained in addition to Ca and Al as a composition of oxide particles generated in the steel, and the total is 51% or more. In addition, the content of Ca is 5% or more, Al is 5% or more, and Mg is 1% or more, thereby making it possible to further increase the volume fraction of the oxide, that is, the amount of the oxide. I learned. On the basis of this result, the composition of the oxide particles contained in the steel was adjusted so that the elements containing at least Ca, Al, Mg, and O, excluding O, had a mass ratio of Ca of 5% or more, Al of 5% or more, Mg was set to 1% or more.
[0025]
Further, the present inventors have found that the precipitation of sulfides such as CaS and MgS around the oxide enables the volume fraction to be further increased by combining the oxide and the sulfide. It was. Based on this result, the composition of the particles contained in the steel was determined to be at least Ca, Al, O, and S, and the elements excluding O were 5% or more of Ca, 5% or more of Al, 1% or more, or an element containing at least Ca, Al, Mg, O and S, and excluding O is 5% or more of Ca, 5% or more of Al, 1% or more of Mg, and 1% of S by mass ratio. %, The total of Ca, Al, S is more than 51%, and the total of Ca, Al, Mg, S is more preferably more than 52%.
[0026]
Next, the size of oxide particles effective for pinning will be described.
[0027]
The effect of the dispersed particles on the pinning of the grain boundaries is larger as the volume fraction of the dispersed particles is larger and as the diameter of one particle is larger, but when the volume ratio of the particles is constant, the size of one oxide particle is smaller. It was considered that the effect of the pinning effect was reduced when the number of particles increased and the pinning effect increased, but when the particle size was too small, the ratio of the particles present at the grain boundaries was reduced. As a result of a detailed investigation of the austenite particle size when heated to a high temperature using test pieces with variously changed particle sizes, pinning has a particle size of 0.005 to 2.0 μm. I found that the effect was great. Further, it was found that the pinning force for stopping the movement of the austenite grain boundary was stronger as the size of the dispersed particles was larger, and among the particle sizes of 0.005 to 2.0 μm, the size of the particles of 0.1 to 2.0 μm was particularly large. They have found that it is effective. When it is smaller than 0.1 μm, the pinning effect gradually decreases, and when it is smaller than 0.005 μm, the pinning effect is hardly exhibited. Oxide particles larger than 2.0 μm have a pinning effect, but may be a starting point of brittle fracture, and are therefore unsuitable in properties of steel materials. From these results, the required particle diameter was set to 0.005 to 2.0 μm. And among them, 0.1 to 2.0 μm is particularly preferable.
[0028]
Next, the number of pinning particles required for toughness was examined.
[0029]
The greater the number of oxide particles, the finer the microstructure unit, and the greater the number of particles, the higher the toughness.However, steel materials for liquefied gas transport vessels, which are considered to have particularly demanding characteristics, have high strength and large heat input welding. In order to satisfy the required low-temperature toughness of a welded joint, for example, at a test temperature of −40 ° C., an absorbed energy of 50 J or more, the number of oxide particles having an equivalent circle diameter of 0.005 to 2.0 μm is 100. / Mm 2 or more is required. However, as the number of particles increases, the effect of improving the toughness decreases, and considering that increasing the number of particles more than necessary increases the possibility of generating coarse particles harmful to toughness, the upper limit of the number of particles is considered. 3,000 pieces / mm 2 are appropriate.
[0030]
The measurement of the size and the number of the oxide particles is performed, for example, in the following manner. An extraction replica is prepared from a steel sheet as a base material, and the size and the number of the oxide are measured by observing at least 20 visual fields at a magnification of 10000 and an observation area of 1000 μm 2 or more with an electron microscope. In the measurement of the size, for example, a circle equivalent diameter is obtained based on a photograph of a particle. At this time, an extracted replica collected from any part from the surface layer to the center of the steel sheet may be used. If the particles can be properly observed, the observation magnification may be reduced.
[0031]
The effect of oxides is not affected by the process for producing steel materials, which is usually performed as-rolled, controlled rolling, a combination of controlled rolling and tempering, and a combination of quenching and tempering.
[0032]
That is, in the present invention, since the oxide is dispersed, when the steel slab before rolling is placed in a heating furnace, the grain growth of austenite grains is suppressed and the grains are not coarsened. For this reason, it is not necessary to increase the rolling reduction at the time of rolling to refine the austenite grains. In particular, even when rolling at a low rolling reduction suitable for producing a thick steel sheet having a thickness of 50 mm or more, the ferrite grains are 20 μm or less. Finely grained and toughness is improved.
[0033]
The heating temperature of a steel slab before rolling in a heating furnace is usually in the range of 1000 to 1300 ° C (1273-1573 ° K), and the relationship between the prior austenite grain size and toughness in this heating temperature range is determined. Was.
[0034]
FIG. 1 is a diagram for explaining an example thereof. The upper diagram shows the relationship between the austenite grain size Dγ and the ductile brittle transition temperature (vTrs). The lower diagram shows the case where the number of oxides is 120 / mm 2 within the range of the present invention. FIG. 9 is a diagram illustrating an example of a relationship between a heating temperature and an austenite particle size in the case of 90 pieces / mm 2 of a comparative example. The heating time is 60 minutes. When the number of oxides is large, the plot is plotted to the left from the straight line A. When the number of oxides is small, plot is plotted to the right from the straight line A.
[0035]
When the ductile brittle transition temperature is considered as one index indicating toughness, vTrs becomes higher as the austenite grain size increases. That is, the toughness decreases. Therefore, in order to obtain the target vTrs, there is a maximum value of the austenite grain size, and it must be equal to or less than the maximum value. The austenite grain size is affected by the heating temperature and the holding time. By dispersing the particles such as oxides in the range of the present invention, the steel slab can be formed at a temperature T of 1373 ° K to 1573 ° K for a time t. (S) It has been found that the prior austenite particle size when heated can be made to be an austenite particle size such that vTrs is always −50 ° C. or less from the straight line A. The straight line A is represented by the following equation (1).
[0036]
That is, it has been found that the base material has excellent toughness by making the austenite grain size smaller than D obtained by the formula (1).
Figure 0003541021
Specifically, as shown in the examples, the prior austenite grain size when the steel is heated at a temperature of 1200 ° C. for 60 minutes is 114.8 μm or less.
[0037]
When the number of oxides is small, the austenite grain size becomes large, does not become smaller than D defined by the above formula (1), and good toughness cannot be obtained when the heating temperature is high and / or when the heating time is long.
[0038]
Further, the basic component range of the present invention will be described.
[0039]
C is an effective component for improving the strength of steel. If C is less than 0.05%, the strength cannot be secured, and excessive addition significantly reduces the weldability and low-temperature toughness of the welded joint of the steel material. The upper limit was set to 0.2%.
[0040]
Si is a component required at least 0.05% for securing the strength of the base material and deoxidizing, but the upper limit is set to 0.4% in order to prevent the toughness from being reduced by the hardening of the HAZ.
[0041]
Mn needs to be added in an amount of 0.4% or more as an effective component for securing the strength and toughness of the base material, but the upper limit is set to 2.0% within an allowable range of the toughness and cracking property of the welded portion.
[0042]
The smaller the content of P is, the more desirable it is. However, a great cost is required to industrially reduce the content of P, so the upper limit was made 0.02%.
[0043]
As with P, the smaller the content of S is, the more desirable it is. However, in order to reduce this industrially, a great deal of cost is required, so the upper limit was made 0.02%.
[0044]
Al is an important deoxidizing element, and the lower limit is set to 0.005%. In addition, if a large amount of Al is present, the surface quality of the slab is deteriorated, so the upper limit was made 0.04%.
[0045]
Ti combines with N to form Ti nitrides and precipitates finely in the slab, which is effective in reducing the grain size of the rolled structure. Ti nitrides present in the steel sheet refine the HAZ structure during welding. . To obtain these effects, 0.005% or more is added. However, when the amount of solid solution Ti increases, the toughness decreases. Therefore, the upper limit is set to 0.03%.
[0046]
Ca must be added in an amount of 0.0005% or more to generate a Ca-based oxide. However, since excessive addition generates coarse inclusions, the upper limit was made 0.003%.
[0047]
Mg is an element that increases the number of oxides when used in combination with Ca for deoxidation. However, since excessive addition generates coarse inclusions, Mg is set to 0.002% or less, but is preferably 0.0001 to 0.002%.
[0048]
Nb, V, Cr, and Mo have the effect of improving the strength and toughness of the steel, but in the HAZ portion, excessive addition significantly reduces toughness, so that 0.05%, 0.1%, and 0.6%, respectively. , 0.6% as the upper limit.
[0049]
Cu and Ni are also effective elements for improving the strength of the steel. Cu is effective for improving the strength of the steel material. However, if it exceeds 1.0%, the HAZ toughness is reduced. 0% was made the upper limit. Ni is effective for improving the strength and toughness of the steel material, but since an increase in the amount of Ni increases the cost, the upper limit is set to 1.0%. One or more of these optional elements can be optionally contained as needed.
[0050]
B is an element that improves the hardenability of steel and improves the strength, but if it is less than 0.0005%, a sufficient effect cannot be obtained, while if it exceeds 0.003%, the effect of improving hardenability is not obtained. Since not only saturation but also the formation of B precipitates harmful to toughness decrease the toughness, B is set to 0.0005 to 0.003%.
[0051]
【Example】
A steel plate was experimentally manufactured with the chemical components shown in Table 1. In Table 1, steel types 1 to 8 are the present invention steels, and steel types 9 to 13 are comparative steels. The prototype steel is melted in a converter and deoxidized at RH during vacuum degassing. After casting into a 280 mm thick slab by continuous casting, it was produced as a steel plate having a thickness of 60 mm through hot rolling and water cooling. Among the obtained steel sheets, the composition of the oxide, the number of particles, the heating temperature (1200 ° C.), the heating time (60 minutes), and the D (114.8) obtained by the equation (1) are obtained for steel sheets of steel types 1, 7, and 8. ), Measured values of prior austenite grain size and toughness (vTrs) are shown in Table 2.
[0052]
As apparent from Table 2, the present invention steel 1, 7, 8 that satisfies the requirements defined in the claims, Found vTrs of prior austenite grain size indicates a value smaller than D (114.8), vTrs There has excellent toughness -50 ° C. or less.
[0054]
[Table 1]
Figure 0003541021
[0055]
[Table 2]
Figure 0003541021
[0056]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it became possible to supply large-sized structural steel excellent in intensity | strength and toughness especially the thick steel plate which was difficult to manufacture by the conventional controlled rolling and controlled cooling.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between an austenite grain size, a ductile brittle transition temperature, and a heating temperature.

Claims (7)

質量%で、
C:0.05〜0.2%、
Si:0.05〜0.4%、
Mn:0.4〜2.0%、
P:0.02%以下、
S:0.02%以下、
Al:0.005〜0.04%、
Ti:0.005〜0.03%、
Ca:0.0005〜0.003%
を含有し、残部はFe及び不可避不純物から成る鋼で、かつ、この鋼中に円相当径で0.005〜2.0μmの酸化物粒子を単位面積当たりの個数密度で100〜3000個/mm2含有し、その酸化物粒子の組成が少なくともCa、Al、Oを含み、Oを除いた元素が質量比で、
Ca:5%以上、
Al:5%以上
をそれぞれ含有し、CaとAlとの合計が50%以上で、残部がその他不可避不純物からなり、かつ鋼を1200℃の温度で60分間加熱したときの旧オーステナイト粒径が114.8μm以下となることを特徴とする靭性の優れた鋼材。
In mass%,
C: 0.05-0.2%,
Si: 0.05 to 0.4%,
Mn: 0.4-2.0%,
P: 0.02% or less,
S: 0.02% or less,
Al: 0.005 to 0.04%,
Ti: 0.005 to 0.03%,
Ca: 0.0005 to 0.003%
And the balance is steel consisting of Fe and unavoidable impurities, and in this steel, oxide particles having a circle equivalent diameter of 0.005 to 2.0 μm have a number density per unit area of 100 to 3,000 particles / mm. 2 containing, the composition of the oxide particles contains at least Ca, Al, O, the element except O by mass ratio,
Ca: 5% or more,
Al: 5% or more, respectively, the total of Ca and Al is 50% or more, the balance consists of other unavoidable impurities, and the prior austenite grain size when the steel is heated at 1200 ° C. for 60 minutes is 114. A steel material having excellent toughness, characterized in that the thickness is 0.8 μm or less .
前記酸化物粒子の組成が少なくともCa、Al、O、Sを含み、Oを除いた元素が質量比で、
Ca:5%以上、
Al:5%以上、
S:1%以上
をそれぞれ含有し、CaとAlとSとの合計が51%以上で、残部がその他不可避不純物から成ることを特徴とする請求項1記載の靭性に優れた鋼材。
The composition of the oxide particles contains at least Ca, Al, O, S, and the elements excluding O are in mass ratio,
Ca: 5% or more,
Al: 5% or more,
2. The steel material having excellent toughness according to claim 1, wherein the steel material contains 1% or more of S, the total of Ca, Al and S is 51% or more, and the balance is made of other unavoidable impurities.
質量%で、
C:0.05〜0.2%、
Si:0.05〜0.4%、
Mn:0.4〜2.0%、
P:0.02%以下、
S:0.02%以下、
Al:0.005〜0.04%、
Ti:0.005〜0.03%、
Ca:0.0005〜0.003%、
Mg:0.002%以下
を含有し、残部はFe及び不可避不純物から成る鋼で、かつ、この鋼中に円相当径で0.005〜2.0μmの酸化物粒子を単位面積当たりの個数密度で100〜3000個/mm2含有し、その酸化物粒子の組成が少なくともCa、Al、Mg、Oを含み、Oを除いた元素が質量比で、
Ca:5%以上、
Al:5%以上、
Mg:1%以上
をそれぞれ含有し、CaとAlとMgとの合計が51%以上で、残部がその他不可避不純物からなり、かつ鋼を1200℃の温度で60分間加熱したときの旧オーステナイト粒径が114.8μm以下となることを特徴とする靭性の優れた鋼材。
In mass%,
C: 0.05-0.2%,
Si: 0.05 to 0.4%,
Mn: 0.4-2.0%,
P: 0.02% or less,
S: 0.02% or less,
Al: 0.005 to 0.04%,
Ti: 0.005 to 0.03%,
Ca: 0.0005 to 0.003%,
Mg: a steel containing 0.002% or less, the balance being Fe and unavoidable impurities, and an oxide particle having a circle equivalent diameter of 0.005 to 2.0 μm in the steel having a number density per unit area. in in 100 to 3000 pieces / mm 2 contains comprises at least Ca composition of oxide particles, Al, Mg, and O, elemental mass ratio excluding O,
Ca: 5% or more,
Al: 5% or more,
Mg: each containing at least 1%, the total of Ca, Al, and Mg being at least 51%, the balance being other unavoidable impurities, and the prior austenite grain size when the steel was heated at a temperature of 1200 ° C. for 60 minutes. Is excellent in toughness, characterized in that the steel material is 114.8 μm or less .
前記酸化物粒子の組成が少なくともCa、Al、Mg、O、Sを含み、Oを除いた元素が質量比で、
Ca:5%以上、
Al:5%以上、
Mg:1%以上、
S:1%以上
をそれぞれ含有し、CaとAlとMgとSとの合計が52%以上で、残部がその他不可避不純物から成ることを特徴とする請求項3記載の靭性に優れた鋼材。
The composition of the oxide particles contains at least Ca, Al, Mg, O, S, and the elements excluding O in mass ratio,
Ca: 5% or more,
Al: 5% or more,
Mg: 1% or more,
4. The steel material having excellent toughness according to claim 3, wherein the steel material contains at least 1% of S, the total of Ca, Al, Mg and S is at least 52%, and the balance consists of other unavoidable impurities.
質量%で、
Nb:0.05%以下、
V:0.1%以下、
Cr:0.6%以下、
Mo:0.6%以下
の内の1種または2種以上を含有することを特徴とする請求項1〜請求項4のいずれかに記載の靭性に優れた鋼材。
In mass%,
Nb: 0.05% or less,
V: 0.1% or less,
Cr: 0.6% or less,
The steel material having excellent toughness according to any one of claims 1 to 4, comprising one or more of Mo: 0.6% or less.
質量%で、
Cu:1.0%以下、
Ni:1.0%以下
の内の1種または2種を含有することを特徴とする請求項1〜請求項5のいすれかに記載の靭性に優れた鋼材。
In mass%,
Cu: 1.0% or less,
The steel material excellent in toughness according to any one of claims 1 to 5, wherein one or two of Ni: 1.0% or less are contained.
質量%で、
B:0.0005〜0.003%
を含有することを特徴とする請求項1〜請求項6のいずれかに記載の鋼材。
In mass%,
B: 0.0005 to 0.003%
The steel material according to any one of claims 1 to 6, further comprising:
JP2001185360A 2001-06-19 2001-06-19 Steel material with excellent toughness Expired - Lifetime JP3541021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001185360A JP3541021B2 (en) 2001-06-19 2001-06-19 Steel material with excellent toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001185360A JP3541021B2 (en) 2001-06-19 2001-06-19 Steel material with excellent toughness

Publications (2)

Publication Number Publication Date
JP2003003227A JP2003003227A (en) 2003-01-08
JP3541021B2 true JP3541021B2 (en) 2004-07-07

Family

ID=19024956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001185360A Expired - Lifetime JP3541021B2 (en) 2001-06-19 2001-06-19 Steel material with excellent toughness

Country Status (1)

Country Link
JP (1) JP3541021B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5265944B2 (en) * 2008-03-04 2013-08-14 株式会社神戸製鋼所 Marine steel with excellent corrosion resistance

Also Published As

Publication number Publication date
JP2003003227A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
JP3863878B2 (en) Welded structural steel with excellent weld heat affected zone toughness, manufacturing method thereof, and welded structure using the same
CN111051553B (en) High Mn steel and method for producing same
WO2017183630A1 (en) Steel
JPH02194115A (en) Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone
WO2013088715A1 (en) Steel material for high-heat-input welding
JP4041447B2 (en) Thick steel plate with high heat input welded joint toughness
JPH0642979B2 (en) Manufacturing method of high strength steel for welding and low temperature containing titanium oxide
JP4074536B2 (en) Steel with excellent toughness of base metal and weld heat affected zone
JP3502822B2 (en) Steel material excellent in toughness of welded heat-affected zone and method for producing the same
JP6424867B2 (en) Stainless steel having a steel structure composed of two phases of a ferrite phase and a martensite phase and a method of manufacturing the same
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
JP3323414B2 (en) Steel with excellent heat-affected zone toughness in large heat input welding and method for producing the same
EP3378962B1 (en) High heat input welded steel material
JP2009179844A (en) High tensile strength thick steel plate having excellent toughness in weld heat affected zone
JP3541021B2 (en) Steel material with excellent toughness
JP3464567B2 (en) Welded structural steel with excellent toughness in the heat affected zone
JP7207199B2 (en) Steel material and its manufacturing method
JP3215296B2 (en) Method of manufacturing steel material for welded structures with excellent toughness of weld heat affected zone
JP2002371338A (en) Steel superior in toughness at laser weld
JP3464566B2 (en) Low temperature steel with excellent toughness in the heat affected zone
TWI726798B (en) Steel and its manufacturing method
JP3502805B2 (en) Method for producing steel with excellent toughness in weld joint
JP3502842B2 (en) 600MPa class steel with excellent low YR characteristics and super high heat input weld joint toughness
JP3825728B2 (en) Steel with excellent weld heat-affected zone toughness
JP4261968B2 (en) Steel material excellent in weld heat-affected zone toughness and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040326

R151 Written notification of patent or utility model registration

Ref document number: 3541021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350