JP2009084643A - Hot rolled steel sheet having excellent fatigue property and stretch flange formability balance - Google Patents

Hot rolled steel sheet having excellent fatigue property and stretch flange formability balance Download PDF

Info

Publication number
JP2009084643A
JP2009084643A JP2007256154A JP2007256154A JP2009084643A JP 2009084643 A JP2009084643 A JP 2009084643A JP 2007256154 A JP2007256154 A JP 2007256154A JP 2007256154 A JP2007256154 A JP 2007256154A JP 2009084643 A JP2009084643 A JP 2009084643A
Authority
JP
Japan
Prior art keywords
less
ferrite
rolled steel
strength
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007256154A
Other languages
Japanese (ja)
Other versions
JP4955497B2 (en
Inventor
Toshio Murakami
俊夫 村上
Masahiro Nomura
正裕 野村
Yoichi Mukai
陽一 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007256154A priority Critical patent/JP4955497B2/en
Publication of JP2009084643A publication Critical patent/JP2009084643A/en
Application granted granted Critical
Publication of JP4955497B2 publication Critical patent/JP4955497B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot rolled steel sheet having excellent fatigue properties and an excellent balance in strength-stretch flange formability. <P>SOLUTION: The hot rolled steel sheet having excellent fatigue properties and stretch flange formability has a composition comprising, by mass, 0.01 to 0.10% C, ≤2.0% Si and 0.5 to 2.5% Mn, and further comprising one or more kinds of elements selected from V, Nb, Ti, Mo, Zr and W by 0.01 to 0.30%, respectively, and also, satisfying equations (1) and (2), and the balance Fe with inevitable impurities; wherein a ferrite fraction is >90%, a ferrite grain size is ≤10 μm, a precipitate average grain size r(nm) satisfies equation (3) (X(V-W) is expressed by equation (5)), and the average grain size r and a precipitation fraction f satisfy equation (4). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車の足回り、フレーム部品等の強度と加工性及び疲労特性が必要な部品に用いられる優れた強度−伸びフランジ性バランス及び高疲労特性を示す熱延鋼板に関する。   The present invention relates to a hot-rolled steel sheet exhibiting an excellent strength-stretch flangeability balance and high fatigue characteristics used for parts that require strength, workability, and fatigue characteristics such as automobile undercarriages and frame parts.

近年、自動車部品の高強度化が進み、自動車の足回り部品やフレーム部品等でも高強度化が進んでいるが、部品の軽量化のためには、静的強度とともに疲労強度の改善が必要とされている。また、複雑な形状に加工されるため、加工性(延性)との両立が求められている。
熱延鋼板の強度、伸びフランジ性及び疲労特性に関する従来知見として、特許文献1には、Ti−Mo又はTi−Nb−Moの複合析出物を微細に分散させたフェライト組織にして、強度,伸び及び伸びフランジ性を改善することが記載され、特許文献2には、同じく微細なTi−Mo複合析出物を分散させたフェライト主体組織にして、強度、疲労特性及び加工特性を改善することが記載されている。
In recent years, the strength of automobile parts has been increased, and the strength of automobile undercarriage parts and frame parts has also been increased. However, in order to reduce the weight of parts, it is necessary to improve the fatigue strength as well as the static strength. Has been. Moreover, since it is processed into a complicated shape, compatibility with workability (ductility) is required.
As conventional knowledge about the strength, stretch flangeability and fatigue characteristics of hot-rolled steel sheets, Patent Document 1 describes the strength and elongation of a ferrite structure in which composite precipitates of Ti-Mo or Ti-Nb-Mo are finely dispersed. Patent Document 2 describes that a ferrite main structure in which fine Ti-Mo composite precipitates are dispersed is used to improve strength, fatigue characteristics and processing characteristics. Has been.

特開2002−322540号公報JP 2002-322540 A 特開2003−321748号公報JP 2003-321748 A

特許文献1,2に記載された熱延鋼板は、フェライト組織中にTi,Mo,Nb等の炭化物を微細に分散析出させ、主相フェライトを析出強化している。この微細に分散析出した析出物は、転位の繰り返し運動に対して障害物になり、疲労特性を改善するものと考えられている。しかし、これらの熱延鋼板では、十分な疲労特性改善効果が得られたとはいえなかった。
従って、本発明は、優れた伸びフランジ性及び高疲労特性を兼備した熱延鋼板を得ることを目的とする。
In the hot-rolled steel sheets described in Patent Documents 1 and 2, carbides such as Ti, Mo, and Nb are finely dispersed and precipitated in the ferrite structure, and the main phase ferrite is strengthened by precipitation. These finely dispersed precipitates are considered to be obstacles to dislocation repetitive motion and improve fatigue characteristics. However, these hot-rolled steel sheets cannot be said to have a sufficient fatigue property improving effect.
Accordingly, an object of the present invention is to obtain a hot-rolled steel sheet having both excellent stretch flangeability and high fatigue characteristics.

本発明者らの研究により、熱延鋼板をフェライト主体組織とし、フェライトをV,Ti,Nbなどの炭化物により析出強化することで、強度を向上させつつ伸びフランジ性を高めることができ、さらにその析出物サイズを適切に制御(適度に粗大化)することにより、高い疲労特性改善効果が得られることが分かった。これは、析出物サイズを適度に粗大化することにより、転位が析出物を通過する機構がカッティング機構からオロワン機構に変わり、析出物が疲労試験中の転位の繰り返し運動に対し有効な障害物になるためと考えられる。カッティング機構からオロワン機構に遷移する析出物のサイズは、析出物の種類(析出物を構成する成分)によって変化するので、鋼組成の影響を考慮する必要がある。なお、前記特許文献1,2の熱延鋼板では、析出物が微細すぎて(鋼組成に応じた適切な析出物サイズが得られていない)、十分な疲労特性改善効果が得られなかったものと考えられる。   According to the research of the present inventors, the hot rolled steel sheet has a ferrite main structure, and the ferrite is precipitated and strengthened with carbides such as V, Ti, and Nb, so that the stretch flangeability can be improved while improving the strength. It was found that a high fatigue property improvement effect can be obtained by appropriately controlling the precipitate size (appropriately coarsening). This is because, by appropriately coarsening the precipitate size, the mechanism of dislocation passing through the precipitate changes from the cutting mechanism to the Orowan mechanism, and the precipitate becomes an effective obstacle to the repetitive movement of dislocations during the fatigue test. It is thought to be. Since the size of the precipitate that transitions from the cutting mechanism to the Orowan mechanism varies depending on the type of precipitate (component constituting the precipitate), it is necessary to consider the influence of the steel composition. In the hot-rolled steel sheets of Patent Documents 1 and 2, the precipitates were too fine (a suitable precipitate size according to the steel composition was not obtained), and a sufficient fatigue property improvement effect was not obtained. it is conceivable that.

本発明に係る疲労特性及び伸びフランジ性に優れた熱延鋼板は、質量%で、C:0.01%以上、0.10%以下、Si:2.0%以下、Mn:0.5%以上、2.5%以下を含み、さらにV:0.01%以上、0.30%以下、Nb:0.01%以上、0.30%以下、Ti:0.01%以上、0.30%以下、Mo:0.01%以上、0.30%以下、Zr:0.01%以上、0.30%以下、W:0.01%以上、0.30%以下の1種又は2種以上を下記条件式(1)、(2)を満たすように含み、残部がFe及び不可避不純物からなり、フェライト分率が90%超、フェライト粒径が10μm以下で、析出物の平均粒径r(nm)が下記条件式(3)を満たし、平均粒径rと析出物分率fが下記条件式(4)を満たすことを特徴とする。
Pc=C−12×(V/51+Nb/93+Ti/48+Mo/96+Zr/91+W/184) ・・・・(1)
−0.03≦Pc≦0.01 ・・・・(2)
r≧207÷(27.4X(V)+23.5X(Nb)+31.4X(Ti)+17.6X(Mo)+25.5X(Zr)+23.5X(W)) ・・・・(3)
r/f≦13000 ・・・・(4)
ここで、式(3)のX(M)(M:V,Nb,Ti,Mo,Zr,W)は析出物を構成する元素の平均原子量比であり、下記一般式(5)で表される。
X(M)=(Mの質量%/Mの原子量)/(V/51+Nb/93+Ti/48+Mo/96+Zr/91+W/184) ・・・・(5)
ただし、式(1),(5)中の元素記号は当該元素の質量%を意味する。
The hot-rolled steel sheet having excellent fatigue characteristics and stretch flangeability according to the present invention is mass%, C: 0.01% or more, 0.10% or less, Si: 2.0% or less, Mn: 0.5% Including: 2.5% or less, V: 0.01% or more, 0.30% or less, Nb: 0.01% or more, 0.30% or less, Ti: 0.01% or more, 0.30 % Or less, Mo: 0.01% or more, 0.30% or less, Zr: 0.01% or more, 0.30% or less, W: 0.01% or more, 0.30% or less The above is included so as to satisfy the following conditional expressions (1) and (2), the balance is Fe and inevitable impurities, the ferrite fraction is over 90%, the ferrite grain size is 10 μm or less, and the average grain size r of the precipitates (Nm) satisfies the following conditional expression (3), and the average particle diameter r and the precipitate fraction f satisfy the following conditional expression (4): That.
Pc = C-12 × (V / 51 + Nb / 93 + Ti / 48 + Mo / 96 + Zr / 91 + W / 184) (1)
−0.03 ≦ Pc ≦ 0.01 (2)
r ≧ 207 ÷ (27.4X (V) + 23.5X (Nb) + 31.4X (Ti) + 17.6X (Mo) + 25.5X (Zr) + 23.5X (W)) (3)
r / f ≦ 13000 (4)
Here, X (M) (M: V, Nb, Ti, Mo, Zr, W) in the formula (3) is an average atomic weight ratio of elements constituting the precipitate, and is represented by the following general formula (5). The
X (M) = (mass% of M / atomic weight of M) / (V / 51 + Nb / 93 + Ti / 48 + Mo / 96 + Zr / 91 + W / 184) (5)
However, the element symbol in Formula (1), (5) means the mass% of the said element.

上記高強度熱延鋼板は、必要に応じて、さらにCu:1%以下、Ni:1%以下、Cr:1%以下、B:20ppm以下のいずれか1種又は2種以上、又は/及びAl:0.1%以下、P:0.1%以下の1種又は2種を含むことができる。   The high-strength hot-rolled steel sheet is, as necessary, further, Cu: 1% or less, Ni: 1% or less, Cr: 1% or less, B: 20 ppm or less, one or more, or / and Al : 0.1% or less and P: 0.1% or less can be included.

本発明によれば、加工性と疲労特性が共に優れた熱延鋼板を得ることができる。本発明に係る熱延鋼板は、加工性及び疲労特性が必要とされる自動車の足回り、フレーム部品等の製造に適している。
なお、本発明において加工性は、強度−伸びフランジバランス(TS×λ)で評価し、疲労特性は疲労限度比(FL/TS)で評価する。TSは引張強さ、Elは伸び、λは穴広げ率(伸びフランジ性)、FLは疲労強度を意味する。
According to the present invention, a hot-rolled steel sheet having excellent workability and fatigue characteristics can be obtained. The hot-rolled steel sheet according to the present invention is suitable for manufacturing automobile undercarriages and frame parts that require workability and fatigue characteristics.
In the present invention, workability is evaluated by strength-stretch flange balance (TS × λ), and fatigue characteristics are evaluated by fatigue limit ratio (FL / TS). TS means tensile strength, El means elongation, λ means hole expansion rate (stretch flangeability), and FL means fatigue strength.

まず、本発明に係る高強度熱延鋼板の組成及び組織限定理由について説明する。
・C:0.01%以上、0.10%以下
Cはフェライト中に炭化物系析出物を形成し、フェライトの析出強化に寄与する。しかし、0.01%未満では析出強化量が不足し、疲労特性が不足する。0.10%を超えると析出強化による強度・疲労特性改善効果が飽和する。従って、C含有量は上記のとおりとする。好ましくは、0.02%以上、0.08%以下である。
First, the composition of the high-strength hot-rolled steel sheet according to the present invention and the reason for limiting the structure will be described.
C: 0.01% or more and 0.10% or less C forms carbide-based precipitates in the ferrite and contributes to precipitation strengthening of the ferrite. However, if it is less than 0.01%, the precipitation strengthening amount is insufficient and the fatigue characteristics are insufficient. If it exceeds 0.10%, the effect of improving the strength and fatigue characteristics by precipitation strengthening is saturated. Accordingly, the C content is as described above. Preferably, it is 0.02% or more and 0.08% or less.

・Si:2.0%以下(0%を含む)
Siはフェライトを固溶強化し伸びフランジ性及び疲労特性の改善に寄与する。しかし、Siはフェライト形成を促進する元素であり、2.0%を超えるとフェライト変態温度が高くなって、フェライト粒径が粗大になりすぎ、伸びフランジ性及び疲労特性が低下する。従って、Si含有量は上記のとおりとする。好ましくは0.2%以上、1.8%以下である。
・Mn:0.5%以上、2.5%以下
Mnは焼き入れ性を高め、フェライト変態温度を低下させ、フェライト粒径を微細化させる。しかし、0.5%未満であるとフェライト変態温度が高く、フェライト粒径が粗大になり、伸びフランジ性及び疲労特性が低下する。2.5%を超えると焼き入れ性が高くなり、フェライト変態を過度に抑制しすぎることでフェライト分率が低下し、伸びフランジ性が低下する。従って、Mn含有量は上記のとおりとする。好ましくは0.8%以上、2.0%以下である。
・ Si: 2.0% or less (including 0%)
Si solidifies and strengthens ferrite and contributes to improvement of stretch flangeability and fatigue characteristics. However, Si is an element that promotes ferrite formation. If it exceeds 2.0%, the ferrite transformation temperature becomes high, the ferrite grain size becomes too large, and the stretch flangeability and fatigue characteristics deteriorate. Therefore, the Si content is as described above. Preferably they are 0.2% or more and 1.8% or less.
Mn: 0.5% or more and 2.5% or less Mn increases hardenability, lowers the ferrite transformation temperature, and refines the ferrite grain size. However, if it is less than 0.5%, the ferrite transformation temperature is high, the ferrite grain size becomes coarse, and the stretch flangeability and fatigue characteristics deteriorate. If it exceeds 2.5%, the hardenability becomes high, and the ferrite fraction is lowered by excessively suppressing the ferrite transformation, and the stretch flangeability is lowered. Therefore, the Mn content is as described above. Preferably they are 0.8% or more and 2.0% or less.

・V:0.01%以上、0.30%以下
・Nb:0.01%以上、0.30%以下
・Ti:0.01%以上、0.30%以下
・Mo:0.01%以上、0.30%以下
・Zr:0.01%以上、0.30%以下
・W:0.01%以上、0.30%以下
炭化物形成元素であるこれらの元素を添加することでフェライト中に炭化物系析出物を分散させて析出強化し、強度及び疲労特性を高めることができる。しかし、それぞれ下限値未満であると析出強化量が不足し、疲労特性が不足する。それぞれ上限値を超えるとオーステナイト域での圧延中に析出し、析出物サイズが粗大化してr/fが過大になり、疲労特性が不足する。従って、V,Nb,Ti,Mo,Zr,W含有量は上記のとおりとする。好ましくはいずれも0.03%以上、0.2%以下である。なお、これらの元素の合計含有量が多すぎると、熱延前の加熱で析出物が完全に固溶せず、未固溶の粗大析出物の量が多くなりr/fが過大になるため、好ましい合計含有量は0.55%以下である。
・ V: 0.01% or more, 0.30% or less ・ Nb: 0.01% or more, 0.30% or less ・ Ti: 0.01% or more, 0.30% or less ・ Mo: 0.01% or more 0.30% or less ・ Zr: 0.01% or more, 0.30% or less ・ W: 0.01% or more, 0.30% or less Addition of these elements which are carbide forming elements into ferrite Carbide-based precipitates can be dispersed and strengthened by precipitation to increase strength and fatigue characteristics. However, if it is less than the lower limit, the precipitation strengthening amount is insufficient and the fatigue characteristics are insufficient. When the upper limit value is exceeded, precipitation occurs during rolling in the austenite region, the precipitate size becomes coarse, r / f becomes excessive, and fatigue characteristics are insufficient. Therefore, the V, Nb, Ti, Mo, Zr, and W contents are as described above. Preferably, both are 0.03% or more and 0.2% or less. If the total content of these elements is too large, the precipitates are not completely dissolved by heating before hot rolling, and the amount of undissolved coarse precipitates increases and r / f becomes excessive. The preferable total content is 0.55% or less.

Pc=C−12×(V/51+Nb/93+Ti/48+Mo/96+Zr/91+W/184)((1)式)
−0.03≦Pc≦0.01((2)式)
Pc(成分パラメータ)は炭化物として固定されないフリーの炭素量又は炭化物形成元素量を意味する。Pcが正の場合はフリーなCが存在し、負の場合はフリーな炭化物形成元素が存在することを意味する。Pcが0.01超では、フェライト分率が90%以下になり、伸びフランジ性が低下する。Pcが−0.03未満では、フリーな炭化物形成元素が存在することで、析出物が粗大化してr/fが過大となり、析出強化量が不足するとともに、疲労特性が低下する。従って、Pcは上記のとおりとする。好ましくは−0.02〜0の範囲である。
Pc = C-12 × (V / 51 + Nb / 93 + Ti / 48 + Mo / 96 + Zr / 91 + W / 184) (Expression (1))
−0.03 ≦ Pc ≦ 0.01 (Formula (2))
Pc (component parameter) means the amount of free carbon or carbide-forming element that is not fixed as carbide. When Pc is positive, free C exists, and when Pc is negative, it means that a free carbide-forming element exists. When Pc exceeds 0.01, the ferrite fraction becomes 90% or less, and the stretch flangeability deteriorates. If Pc is less than −0.03, the presence of free carbide-forming elements causes the precipitates to become coarse, resulting in excessive r / f, resulting in insufficient precipitation strengthening and reduced fatigue characteristics. Therefore, Pc is as described above. Preferably it is the range of -0.02-0.

・Cu:1%以下
・Ni:1%以下
・Cr:1%以下
・B:20ppm以下
これらの元素は鋼の焼き入れ性を高めてフェライト変態温度を低温化し、フェライト粒径を微細化する。その結果、疲労特性及び伸びフランジ性が改善する。しかし、これらの元素の含有量が上限値を超えるとフェライト変態を抑制し,フェライト分率を低下させる。従って、Cu,Ni,Cr,B含有量は上記のとおりとする。好ましくは、Cu,Ni,Crはいずれも0.8%以下、B:15ppm以下である。
Cu: 1% or less Ni: 1% or less Cr: 1% or less B: 20 ppm or less These elements increase the hardenability of the steel, lower the ferrite transformation temperature, and refine the ferrite grain size. As a result, fatigue characteristics and stretch flangeability are improved. However, if the content of these elements exceeds the upper limit, ferrite transformation is suppressed and the ferrite fraction is reduced. Accordingly, the Cu, Ni, Cr, and B contents are as described above. Preferably, Cu, Ni, and Cr are all 0.8% or less and B: 15 ppm or less.

・P:0.1%以下
・Al:0.1%以下
Pは固溶強化の効果があるが、添加しすぎると粒界に偏析し、粒界強度を低下させることで伸びフランジ性が低下する。0.1%まで添加可能である。好ましくは、0.03%以下である。
Alは脱酸元素であるとともに、Nを固定し、Nによる時効効果を抑制し脆化を抑制する作用がある。0.1%程度まで添加してよい。好ましくは、0.08%以下である。
・ P: 0.1% or less ・ Al: 0.1% or less P has the effect of solid solution strengthening, but if added too much, it segregates at the grain boundary and lowers the grain boundary strength, thereby reducing stretch flangeability. To do. It can be added up to 0.1%. Preferably, it is 0.03% or less.
Al is a deoxidizing element and also has an effect of fixing N, suppressing the aging effect by N, and suppressing embrittlement. You may add to about 0.1%. Preferably, it is 0.08% or less.

・その他
S,N,Oは窒化物、酸化物を形成し、これが破壊の基点となり、疲労特性・伸びフランジ性を劣化させるので低い方がよく、S:0.010%以下、N:0.0060%以下、O:0.00010%以下に規制することが望ましい。
Ca,Mg,REMは介在物を微細にすることで伸びフランジ性や疲労特性の改善に寄与するので、添加してもよい。添加する場合は、いずれも0.01%以下が望ましい。
・ Others S, N, and O form nitrides and oxides, which become the starting point of fracture and deteriorate fatigue characteristics and stretch flangeability, so it is better to be lower. S: 0.010% or less, N: 0.00. It is desirable to regulate to 0060% or less and O: 0.00010% or less.
Ca, Mg, and REM contribute to improvement of stretch flangeability and fatigue characteristics by making inclusions finer, and may be added. In the case of addition, 0.01% or less is desirable in all cases.

・フェライト分率(面積分率):90%超
フェライト主体の均一な組織にすることで、伸びフランジ性を向上させることができる。フェライト分率が低下し第2相(ベイナイト、マルテンサイト、残留オーステナイト、パーライト)が混入すると、変形時に第2相とフェライト界面に応力集中が起こり、小さな歪みでも破壊が起こるようになることで、伸びフランジ性が劣化する。このため、フェライト分率は90%超とする。フェライト分率は好ましくは95%以上、さらに好ましくは98%以上である。
-Ferrite fraction (area fraction): more than 90% Stretch flangeability can be improved by forming a uniform structure mainly composed of ferrite. When the ferrite fraction decreases and the second phase (bainite, martensite, retained austenite, pearlite) is mixed, stress concentration occurs at the interface between the second phase and the ferrite during deformation, and even small strains cause destruction. Stretch flangeability deteriorates. For this reason, the ferrite fraction is over 90%. The ferrite fraction is preferably 95% or more, more preferably 98% or more.

・フェライトの平均粒径:10μm以下
フェライト粒径は疲労特性に対し、Hall−Petchの関係(σ∝d−1/2)をもつ(σ:降伏応力、d:結晶粒径)。また、フェライト粒径を微細化することで、変形を加えたときのフェライト粒界への応力集中が小さくなり、破壊が抑制されるため、伸びフランジ性が改善する。このため、フェライトの平均粒径は10μm以下とする。好ましくは8μm以下、さらに好ましくは6μm以下である。
Average ferrite grain size: 10 μm or less Ferrite grain size has a Hall-Petch relationship (σ∝d −1/2 ) for fatigue properties (σ: yield stress, d: crystal grain size). Further, by reducing the ferrite grain size, the stress concentration at the ferrite grain boundary when deformation is applied is reduced and the fracture is suppressed, so that stretch flangeability is improved. For this reason, the average particle diameter of a ferrite shall be 10 micrometers or less. Preferably it is 8 micrometers or less, More preferably, it is 6 micrometers or less.

・r≧207÷(27.4X(V)+23.5X(Nb)+31.4X(Ti)+17.6X(Mo)+25.5X(Zr)+23.5X(W))(式(3))
・r/f≦13000(式(4))
この2つの規定は、フェライト中の析出物の平均粒径r(nm)を転位によりカッティングされないサイズに制御し、同時に析出物の粒子間距離(r/f)を小さい値に制限することを意味する。fはフェライト中の析出物分率(面積分率)である。これにより、転位が析出物を通過する機構がカッティング機構からオロワン機構に変わり、同時に繰り返し応力付与中の転位の移動に対する抵抗力を大きくし、疲労特性を改善することができる。条件式(4)において、r/fは好ましくは10000以下、さらに好ましくは8000以下である。
・ R ≧ 207 ÷ (27.4X (V) + 23.5X (Nb) + 31.4X (Ti) + 17.6X (Mo) + 25.5X (Zr) + 23.5X (W)) (Formula (3))
・ R / f ≦ 13000 (Formula (4))
These two rules mean that the average particle size r (nm) of the precipitates in the ferrite is controlled to a size that is not cut by dislocation, and at the same time, the interparticle distance (r / f) of the precipitates is limited to a small value. To do. f is a precipitate fraction (area fraction) in ferrite. As a result, the mechanism through which dislocations pass through precipitates changes from the cutting mechanism to the Orowan mechanism, and at the same time, the resistance to movement of dislocations during repeated stress application can be increased, and fatigue characteristics can be improved. In conditional expression (4), r / f is preferably 10,000 or less, more preferably 8000 or less.

条件式(3)の右辺は、転位によりカッティングされない析出物の最小粒子径(臨界粒子径)rcを表す。この臨界粒子径は、「鉄鋼の析出メタラジー最前線」P.69〜80(社団法人日本鉄鋼協会 材料の組織と特性部会 析出制御メタラジー研究会編集、社団法人日本鉄鋼協会発行(2001))によれば、析出物の硬さと略反比例の関係がある(前記文献の図10のグラフ参照)。発明者らは、前記炭化物形成元素を単独又は複合添加する場合に、析出物の硬さに対する各元素の寄与度を当該元素の平均原子量比(式(5))に比例するものと推測し、臨界粒子径と析出物の硬さの関係(前記図10)から、近似的に前記条件式(3)を導出した。なお、条件式(3)において,平均原子量比X(M)の係数は,それぞれ元素M(M:V,Nb,Ti,Mo,Zr,W)の炭化物のビッカース硬さ(前記文献の図9参照)である。
前記条件式(3)は、転位が析出物を通過する機構としてオロワン機構が発現されるためには、鋼組成に応じた適切な析出物サイズ(臨界粒子径以上のサイズ)が存在することを示す。この条件式(3)が本発明の熱延鋼板の疲労特性を改善するうえで技術的意義を有することは、後述する実施例により実証されている。
The right side of the conditional expression (3) represents the minimum particle diameter (critical particle diameter) rc of the precipitate that is not cut by dislocation. This critical particle size is shown in “The Forefront of Precipitation Metallurgy of Steel”, p. 69-80 (Japan Steel Association Material Structure and Property Subcommittee, edited by Precipitation Control Metallurgy Study Group, published by Japan Iron and Steel Institute (2001)), there is an inverse relationship between hardness of precipitates (the above-mentioned literature) (See the graph of FIG. 10). The inventors presume that when the carbide forming element is added alone or in combination, the contribution of each element to the hardness of the precipitate is proportional to the average atomic weight ratio of the element (formula (5)), From the relationship between the critical particle size and the hardness of the precipitate (FIG. 10), the conditional expression (3) was derived approximately. In the conditional expression (3), the coefficient of the average atomic weight ratio X (M) is the Vickers hardness of the carbide of the element M (M: V, Nb, Ti, Mo, Zr, W) (FIG. 9 of the above-mentioned document). Reference).
Conditional expression (3) indicates that there is an appropriate precipitate size (size larger than the critical particle size) according to the steel composition in order for the Orowan mechanism to be expressed as a mechanism for dislocation passing through the precipitate. Show. The fact that this conditional expression (3) has technical significance in improving the fatigue properties of the hot-rolled steel sheet of the present invention has been proved by the examples described later.

続いて、本発明に係る高強度熱延鋼板の製造方法について説明する。
典型的な製造方法は、鋼素材を加熱した後、仕上げ圧延を含む熱間圧延、熱延後の急冷、急冷停止後の巻き取り、続いて巻き取り後の保持である。以下、各工程について説明する。
・加熱
熱間圧延前の加熱は1100℃以上、1300℃以下で行う。この加熱によりオーステナイト単相とし、かつV,Nb,Ti,Mo,Zr,Wをオーステナイトに固溶させる。加熱温度が1100℃未満ではV,Nb,Ti,Mo,Zr,Wがオーステナイトに固溶できず、粗大な炭化物が形成されるため疲労特性改善効果が得られない。一方、1300℃を越える温度は操業上困難である。望ましい加熱時間は10分以上、12時間以下である。加熱時間が短いと析出物を固溶させられず、加熱時間が長すぎると生産性を阻害する。
Then, the manufacturing method of the high intensity | strength hot-rolled steel plate which concerns on this invention is demonstrated.
A typical manufacturing method includes heating a steel material, hot rolling including finish rolling, rapid cooling after hot rolling, winding after stopping the rapid cooling, and subsequently holding after winding. Hereinafter, each step will be described.
-Heating Heating before hot rolling is performed at 1100 ° C or higher and 1300 ° C or lower. By this heating, an austenite single phase is formed, and V, Nb, Ti, Mo, Zr, and W are dissolved in austenite. When the heating temperature is less than 1100 ° C., V, Nb, Ti, Mo, Zr, and W cannot be dissolved in austenite, and coarse carbides are formed, so that the effect of improving fatigue characteristics cannot be obtained. On the other hand, temperatures exceeding 1300 ° C. are difficult to operate. Desirable heating time is 10 minutes or more and 12 hours or less. If the heating time is short, the precipitate cannot be dissolved, and if the heating time is too long, productivity is hindered.

・熱間圧延
熱間圧延は、仕上げ圧延温度が850℃以上、1050℃以下の範囲になるように行う。仕上げ圧延温度が低すぎると熱間圧延時に炭化物がオーステナイト中に析出し、粗大になりすぎるため、所望のr/fが得られない。一方、高すぎるとオーステナイトが粗大化し、フェライト分率が低下し、ベイナイト、マルテンサイト分率が増加するため、伸びフランジ性が低下する。
・熱延後の急冷及び巻き取り
熱延後は650℃以上、800℃以下の温度域まで20℃/s以上で急冷した後、580以上、650℃以下で巻き取る。これはフェライト析出ノーズに急冷してフェライトを形成させるためである。
急冷停止温度が高すぎるとフェライトが形成されず、低すぎるとベイナイトやマルテンサイトが形成され、疲労特性及び伸びフランジ性が低下する。
冷却速度は遅いと冷却中にオーステナイトが粗大化するため、冷却速度は速いことが望ましいが、速すぎると制御が困難となるため、好ましくは150℃/s未満、さらに好ましくは120℃/s未満とする。
巻き取り温度が高すぎると表面酸化が促進され、表面性状が悪くなるため好ましくない。巻き取り温度が低すぎるとベイナイトが形成され、伸びフランジ性が低下する。
-Hot rolling Hot rolling is performed so that the finish rolling temperature is in the range of 850 ° C or higher and 1050 ° C or lower. If the finish rolling temperature is too low, carbides precipitate in the austenite during hot rolling and become too coarse, so that the desired r / f cannot be obtained. On the other hand, if it is too high, austenite is coarsened, the ferrite fraction is lowered, and the bainite and martensite fractions are increased, so that the stretch flangeability is lowered.
-Rapid cooling and winding after hot rolling After hot rolling, it is quenched at 20 ° C / s or higher to a temperature range of 650 ° C or higher and 800 ° C or lower, and then wound at 580 ° C or higher and 650 ° C or lower. This is because the ferrite precipitation nose is rapidly cooled to form ferrite.
If the quenching stop temperature is too high, ferrite is not formed, and if it is too low, bainite and martensite are formed, and fatigue characteristics and stretch flangeability are deteriorated.
If the cooling rate is slow, the austenite becomes coarse during cooling, so it is desirable that the cooling rate be fast. However, if it is too fast, it becomes difficult to control, so it is preferably less than 150 ° C / s, more preferably less than 120 ° C / s. And
If the winding temperature is too high, surface oxidation is promoted and the surface properties are deteriorated, which is not preferable. When the coiling temperature is too low, bainite is formed and stretch flangeability is deteriorated.

・巻き取り後の保持
巻き取り後、500℃以上、700℃以下に1時間以上保持する焼鈍を行う。これにより、フェライト中の析出物の平均粒径を適度なサイズに調整する。この温度が低すぎるか保持時間が短いと適度に粗大化した析出物サイズが得られず、高すぎるか保持時間が長いと析出物サイズが粗大になり過ぎ、r/fが大きくなり、疲労特性が低下する。
-Holding after winding After winding, annealing which hold | maintains at 500 degreeC or more and 700 degrees C or less for 1 hour or more is performed. Thereby, the average particle diameter of the precipitate in ferrite is adjusted to an appropriate size. If the temperature is too low or the holding time is short, a suitably coarse precipitate size cannot be obtained. If the temperature is too high or the holding time is long, the precipitate size becomes too coarse, r / f increases, and fatigue characteristics Decreases.

表1に示す成分の50kg鋳塊を溶製し、熱間圧延により25mm厚の板材とし、これを供試材とした。なお、いずれの供試材もN含有量が40ppmであった。   A 50 kg ingot having the components shown in Table 1 was melted and hot rolled to form a 25 mm thick plate, which was used as a test material. All the test materials had an N content of 40 ppm.

Figure 2009084643
Figure 2009084643

この供試材を、表2に示す条件で熱間圧延し、熱延鋼板を製造した。より詳しくは、表2に示す加熱温度に1時間保持した後、表2に示す温度で仕上げ圧延を行い、仕上げ板厚は3mmとした。仕上げ圧延後、直ちに30℃/sの冷却速度で表2に示す急冷停止温度まで冷却し、表2に示す温度で巻き取り、続いて表2に示す温度に2hr保持して焼鈍した後、炉冷した(一部(b)は焼鈍をせず、巻き取りのままとした)。
得られた熱延鋼板からサンプルを採取し、組織観察、引張試験、疲労試験、伸びフランジ特性試験を下記要領で実施した。
This test material was hot-rolled under the conditions shown in Table 2 to produce a hot-rolled steel sheet. More specifically, after holding at the heating temperature shown in Table 2 for 1 hour, finish rolling was performed at the temperature shown in Table 2, and the finished plate thickness was 3 mm. Immediately after the finish rolling, the steel is cooled to the quenching stop temperature shown in Table 2 at a cooling rate of 30 ° C./s, wound at the temperature shown in Table 2, and subsequently annealed by holding at the temperature shown in Table 2 for 2 hr. It was cooled (part (b) was not annealed and was kept wound).
Samples were collected from the obtained hot-rolled steel sheets and subjected to structure observation, tensile test, fatigue test, and stretch flange characteristic test in the following manner.

Figure 2009084643
Figure 2009084643

・組織観察(フェライト分率、フェライト粒径)
鋼板中心部のTD面の組織を観察した。サンプルは鏡面に研磨した後、3%ナイタール腐食液で腐食し、×400で5視野観察及び撮影し、等軸状の結晶粒の白い領域をフェライト、残りの領域をその他の組織とした。フェライト分率は、画像解析ソフト(Micromedia社製Image Pro Plus)を用いて測定し、フェライト粒径はJISG0552記載のフェライト粒径の測定方法(比較法)を用いて粒度番号を測定し、下記式(7)からフェライト粒径を求めた。
フェライト粒径=1/(8×21/2(mm) ・・・(7)
G:フェライト粒度番号
-Microstructure observation (ferrite fraction, ferrite particle size)
The structure of the TD surface at the center of the steel plate was observed. The sample was polished to a mirror surface and then corroded with a 3% nital etchant, and observed and photographed at 5 fields with × 400. The white area of equiaxed crystal grains was used as ferrite, and the remaining area as other structures. The ferrite fraction is measured using image analysis software (Image Pro Plus manufactured by Micromedia), and the ferrite particle size is measured using the ferrite particle size measuring method (comparison method) described in JIS G0552, and the following formula is used. The ferrite particle size was determined from (7).
Ferrite grain size = 1 / (8 × 2 G ) 1/2 (mm) (7)
G: Ferrite grain size number

・析出物観察(r、r/f)
フェライト中の析出物の平均粒径rは、抽出レプリカ法により析出物を抽出し、フェライト領域を透過形電子顕微鏡にて、倍率×150000で1μm×1μmの領域を観察及び撮影し、その中に観察された析出物(円相当直径で2nm以上)を画像解析して各粒子の面積を求め、その面積から円相当直径を求めて平均値を算出し、平均粒径rとした。
また、析出物の面積を足し合わせ、観察面積に占める析出物面積からフェライト中の析出物分率(面積率)fを求め、平均粒径rと析出物分率fからr/fを計算した。
・ Precipitation observation (r, r / f)
The average particle diameter r of the precipitates in the ferrite is determined by extracting the precipitates by the extraction replica method, and observing and photographing the 1 μm × 1 μm region at a magnification of 150,000 with a transmission electron microscope. The observed precipitate (equivalent circle diameter of 2 nm or more) was image-analyzed to determine the area of each particle, and the equivalent circle diameter was determined from the area to calculate the average value, which was defined as the average particle diameter r.
Further, the areas of the precipitates were added, the precipitate fraction (area ratio) f in the ferrite was determined from the precipitate area occupying the observation area, and r / f was calculated from the average particle diameter r and the precipitate fraction f. .

・引張試験
引張試験は、サンプルをJISZ2201記載の5号試験片に加工し、JISZ2241に従って実施し、引張強さ(TS)を測定した。
・疲労試験
疲労試験は、サンプルの表裏面を0.5mmずつ研削し、その後、JISZ2275記載の平面曲げ試験で疲労強度(FL)を測定した。また、疲労強度(FL)と引張強さ(TS)から疲労限度比(FL/TS)を計算した。
疲労特性の評価として、疲労限度比(FL/TS)が0.60以上を良好、0.65以上を特に良好と評価した。
-Tensile test The tensile test processed the sample into the No. 5 test piece of JISZ2201, implemented according to JISZ2241, and measured the tensile strength (TS).
・ Fatigue test
In the fatigue test, the front and back surfaces of the sample were ground by 0.5 mm, and then the fatigue strength (FL) was measured by a plane bending test described in JISZ2275. Further, the fatigue limit ratio (FL / TS) was calculated from the fatigue strength (FL) and the tensile strength (TS).
As the evaluation of fatigue characteristics, the fatigue limit ratio (FL / TS) was evaluated as 0.60 or more as good and 0.65 or more as particularly good.

・伸びフランジ特性試験
伸びフランジ特性試験として穴広げ試験を行い、穴広げ率(λ)を測定した。穴広げ試験は、日本鉄鋼連盟規格JFST1001に従って行った。また、穴広げ率(γ)と引張強さ(TS)から強度−伸びフランジバランス(λ×TS)を計算した。
伸びフランジ特性の評価として、強度−伸びフランジバランス(λ×TS)が50000以上で良好、60000以上で特に良好と評価した。
-Stretch flange characteristic test A hole expansion test was performed as an stretch flange characteristic test, and the hole expansion ratio (λ) was measured. The hole expansion test was performed in accordance with Japan Iron and Steel Federation Standard JFST1001. Further, the strength-elongation flange balance (λ × TS) was calculated from the hole expansion rate (γ) and the tensile strength (TS).
As the evaluation of stretch flange characteristics, the strength-stretch flange balance (λ × TS) was evaluated to be good when it was 50000 or more, and particularly good when it was 60000 or more.

Figure 2009084643
Figure 2009084643

Figure 2009084643
Figure 2009084643

表3,4の測定結果から、試験例No.1,2,5〜9,12〜15,17,18,20〜26,28,30は、クレームに規定された組成、フェライト分率、フェライト粒径、析出物の平均粒径r、及びr/fの各要件を満たし、FL/TS及びTS×γが優れる。
一方、その他の試験例は、クレームに規定された組成、フェライト分率、フェライト粒径、析出物の平均粒径r、及びr/fの少なくとも1つの要件を満たさず、FL/TSとTS×γの一方又は双方が劣る。
From the measurement results in Tables 3 and 4, test example No. 1, 2, 5-9, 12-15, 17, 18, 20-26, 28, 30 are the composition, ferrite fraction, ferrite grain size, average grain size r of the precipitate, and r as defined in the claims. Each requirement of / f is satisfied, and FL / TS and TS × γ are excellent.
On the other hand, other test examples do not satisfy at least one requirement of the composition, ferrite fraction, ferrite particle size, average particle size r of precipitates, and r / f specified in the claims, and FL / TS and TS × One or both of γ is inferior.

Claims (4)

質量%で、C:0.01%以上、0.10%以下、Si:2.0%以下、Mn:0.5%以上、2.5%以下を含み、さらにV:0.01%以上、0.30%以下、Nb:0.01%以上、0.30%以下、Ti:0.01%以上、0.30%以下、Mo:0.01%以上、0.30%以下、Zr:0.01%以上、0.30%以下、W:0.01%以上、0.30%以下の1種又は2種以上を下記条件式(1)、(2)を満たすように含み、残部がFe及び不可避不純物からなり、フェライト分率が90%超、フェライト粒径が10μm以下で、析出物の平均粒径r(nm)が下記条件式(3)を満たし、平均粒径rと析出物分率fが下記条件式(4)を満たすことを特徴とする疲労特性及び強度−伸びフランジ性バランスに優れた熱延鋼板。
Pc=C−12×(V/51+Nb/93+Ti/48+Mo/96+Zr/91+W/184) ・・・・(1)
−0.03≦Pc≦0.01 ・・・・(2)
r≧207÷(27.4X(V)+23.5X(Nb)+31.4X(Ti)+17.6X(Mo)+25.5X(Zr)+23.5X(W)) ・・・・(3)
r/f≦13000 ・・・・(4)
ここで、式(3)のX(M)(M:V,Nb,Ti,Mo,Zr,W)は析出物を構成する元素の平均原子量比であり、下記一般式(5)で表される。
X(M)=(Mの質量%/Mの原子量)/(V/51+Nb/93+Ti/48+Mo/96+Zr/91+W/184) ・・・・(5)
ただし、式(1),(5)中の元素記号は当該元素の質量%を意味する。
In mass%, C: 0.01% or more, 0.10% or less, Si: 2.0% or less, Mn: 0.5% or more, 2.5% or less, and V: 0.01% or more 0.30% or less, Nb: 0.01% or more, 0.30% or less, Ti: 0.01% or more, 0.30% or less, Mo: 0.01% or more, 0.30% or less, Zr : 0.01% or more and 0.30% or less, W: 0.01% or more and 0.30% or less including one or two or more so as to satisfy the following conditional expressions (1) and (2), The balance is Fe and inevitable impurities, the ferrite fraction is over 90%, the ferrite particle size is 10 μm or less, the average particle size r (nm) of the precipitate satisfies the following conditional expression (3), A hot-rolled steel excellent in fatigue characteristics and strength-stretch flangeability balance, wherein the precipitate fraction f satisfies the following conditional expression (4) .
Pc = C-12 × (V / 51 + Nb / 93 + Ti / 48 + Mo / 96 + Zr / 91 + W / 184) (1)
−0.03 ≦ Pc ≦ 0.01 (2)
r ≧ 207 ÷ (27.4X (V) + 23.5X (Nb) + 31.4X (Ti) + 17.6X (Mo) + 25.5X (Zr) + 23.5X (W)) (3)
r / f ≦ 13000 (4)
Here, X (M) (M: V, Nb, Ti, Mo, Zr, W) in the formula (3) is an average atomic weight ratio of elements constituting the precipitate, and is represented by the following general formula (5). The
X (M) = (mass% of M / atomic weight of M) / (V / 51 + Nb / 93 + Ti / 48 + Mo / 96 + Zr / 91 + W / 184) (5)
However, the element symbol in Formula (1), (5) means the mass% of the said element.
さらにCu:1%以下、Ni:1%以下、Cr:1%以下、B:20ppm以下のいずれか1種又は2種以上を含むことを特徴とする請求項1に記載された疲労特性及び強度−伸びフランジ性バランスに優れた熱延鋼板。 The fatigue characteristics and strength according to claim 1, further comprising one or more of Cu: 1% or less, Ni: 1% or less, Cr: 1% or less, and B: 20ppm or less. -Hot rolled steel sheet with excellent stretch flangeability balance. さらにAl:0.1%以下を含むことを特徴とする請求項1又は2に記載された疲労特性及び強度−伸びフランジ性バランスに優れた熱延鋼板。 Furthermore, Al: 0.1% or less is included, The hot-rolled steel sheet excellent in the fatigue characteristics and strength-stretch flangeability balance described in claim 1 or 2. さらにP:0.1%以下を含むことを特徴とする請求項1〜3のいずれかに記載された疲労特性及び強度−伸びフランジ性バランスに優れた熱延鋼板。 Furthermore, P: 0.1% or less is contained, The hot-rolled steel plate excellent in the fatigue characteristics and strength-stretch flangeability balance as described in any one of Claims 1-3 characterized by the above-mentioned.
JP2007256154A 2007-09-28 2007-09-28 Hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability balance Expired - Fee Related JP4955497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007256154A JP4955497B2 (en) 2007-09-28 2007-09-28 Hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability balance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007256154A JP4955497B2 (en) 2007-09-28 2007-09-28 Hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability balance

Publications (2)

Publication Number Publication Date
JP2009084643A true JP2009084643A (en) 2009-04-23
JP4955497B2 JP4955497B2 (en) 2012-06-20

Family

ID=40658449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007256154A Expired - Fee Related JP4955497B2 (en) 2007-09-28 2007-09-28 Hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability balance

Country Status (1)

Country Link
JP (1) JP4955497B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004779A1 (en) * 2009-07-10 2011-01-13 Jfeスチール株式会社 High-strength steel sheet and manufacturing method therefor
WO2011122030A1 (en) * 2010-03-31 2011-10-06 Jfeスチール株式会社 Hot-dip galvanized steel sheet with high tensile strength and superior processability and method for producing same
WO2011122031A1 (en) * 2010-03-31 2011-10-06 Jfeスチール株式会社 Hot-rolled steel sheet with high tensile strength and superior processability and method for producing same
WO2011126154A1 (en) * 2010-04-09 2011-10-13 Jfeスチール株式会社 High-strength steel sheet having excellent hot rolling workability, and process for production thereof
KR20140026608A (en) * 2011-07-20 2014-03-05 제이에프이 스틸 가부시키가이샤 High-strength steel sheet for warm forming and process for producing same
WO2015029873A1 (en) 2013-08-26 2015-03-05 株式会社神戸製鋼所 Thick steel sheet having excellent fatigue properties, and method for producing same
JP2015520802A (en) * 2012-05-08 2015-07-23 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv Automotive chassis parts manufactured from high strength formable hot rolled steel sheets
KR20160144439A (en) 2014-05-22 2016-12-16 가부시키가이샤 고베 세이코쇼 Thick steel plate
KR20190028770A (en) 2016-08-19 2019-03-19 가부시키가이샤 고베 세이코쇼 After-treatment steel sheet and its manufacturing method
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104745934A (en) * 2015-03-26 2015-07-01 攀钢集团攀枝花钢铁研究院有限公司 Hot rolled steel plate for automotive frame and production method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287685A (en) * 1993-03-30 1994-10-11 Kobe Steel Ltd High strength hot rolled sheet excellent in elongation flanging property and fatigue characteristic
JPH06293910A (en) * 1993-04-07 1994-10-21 Nippon Steel Corp Production of high strength hot rolled steel plate excellent in bore expandability and ductility
JPH11117039A (en) * 1997-10-15 1999-04-27 Kawasaki Steel Corp High tensile strength hot rolled steel plate excellent in workability, and its production
JP2000328186A (en) * 1999-05-13 2000-11-28 Kobe Steel Ltd High strength hot rolled steel sheet with hyperfine ferritic structure excellent in stretch-flanging property and its production
JP2001200339A (en) * 1999-11-12 2001-07-24 Nippon Steel Corp Hot rolled steel sheet excellent in burring property and fatigue characteristics, and its manufacturing method
JP2002161340A (en) * 2000-11-24 2002-06-04 Nippon Steel Corp Hot rolled steel sheet superior in burring workability and fatigue characteristics, and manufacturing method therefor
JP2002322539A (en) * 2001-01-31 2002-11-08 Nkk Corp Thin steel sheet having excellent press formability and working method therefor
JP2003321748A (en) * 2002-04-26 2003-11-14 Jfe Steel Kk High tensile strength welded steel tube having excellent workability and fatigue property, production method thereof and steel strip for welded steel tube stock
JP2004131802A (en) * 2002-10-10 2004-04-30 Sumitomo Metal Ind Ltd High strength steel member, and production method therefor
JP2004143518A (en) * 2002-10-23 2004-05-20 Sumitomo Metal Ind Ltd Hot rolled steel sheet
JP2004250749A (en) * 2003-02-20 2004-09-09 Nippon Steel Corp High strength thin steel sheet having burring property, and production method therefor
JP2006063360A (en) * 2004-08-25 2006-03-09 Sumitomo Metal Ind Ltd High tensile hot-dip galvanized steel sheet and its manufacturing method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287685A (en) * 1993-03-30 1994-10-11 Kobe Steel Ltd High strength hot rolled sheet excellent in elongation flanging property and fatigue characteristic
JPH06293910A (en) * 1993-04-07 1994-10-21 Nippon Steel Corp Production of high strength hot rolled steel plate excellent in bore expandability and ductility
JPH11117039A (en) * 1997-10-15 1999-04-27 Kawasaki Steel Corp High tensile strength hot rolled steel plate excellent in workability, and its production
JP2000328186A (en) * 1999-05-13 2000-11-28 Kobe Steel Ltd High strength hot rolled steel sheet with hyperfine ferritic structure excellent in stretch-flanging property and its production
JP2001200339A (en) * 1999-11-12 2001-07-24 Nippon Steel Corp Hot rolled steel sheet excellent in burring property and fatigue characteristics, and its manufacturing method
JP2002161340A (en) * 2000-11-24 2002-06-04 Nippon Steel Corp Hot rolled steel sheet superior in burring workability and fatigue characteristics, and manufacturing method therefor
JP2002322539A (en) * 2001-01-31 2002-11-08 Nkk Corp Thin steel sheet having excellent press formability and working method therefor
JP2003321748A (en) * 2002-04-26 2003-11-14 Jfe Steel Kk High tensile strength welded steel tube having excellent workability and fatigue property, production method thereof and steel strip for welded steel tube stock
JP2004131802A (en) * 2002-10-10 2004-04-30 Sumitomo Metal Ind Ltd High strength steel member, and production method therefor
JP2004143518A (en) * 2002-10-23 2004-05-20 Sumitomo Metal Ind Ltd Hot rolled steel sheet
JP2004250749A (en) * 2003-02-20 2004-09-09 Nippon Steel Corp High strength thin steel sheet having burring property, and production method therefor
JP2006063360A (en) * 2004-08-25 2006-03-09 Sumitomo Metal Ind Ltd High tensile hot-dip galvanized steel sheet and its manufacturing method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212411B2 (en) 2009-07-10 2015-12-15 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
JP2011017060A (en) * 2009-07-10 2011-01-27 Jfe Steel Corp High-strength steel sheet and manufacturing method therefor
WO2011004779A1 (en) * 2009-07-10 2011-01-13 Jfeスチール株式会社 High-strength steel sheet and manufacturing method therefor
JP2011225980A (en) * 2010-03-31 2011-11-10 Jfe Steel Corp Hot-rolled steel sheet with high tensile strength and superior processability and method for producing same
JP2011225978A (en) * 2010-03-31 2011-11-10 Jfe Steel Corp Hot-dip galvanized steel sheet with high tensile strength and superior processability and method for producing same
WO2011122031A1 (en) * 2010-03-31 2011-10-06 Jfeスチール株式会社 Hot-rolled steel sheet with high tensile strength and superior processability and method for producing same
CN102906296A (en) * 2010-03-31 2013-01-30 杰富意钢铁株式会社 Hot-rolled steel sheet with high tensile strength and superior processability and method for producing same
WO2011122030A1 (en) * 2010-03-31 2011-10-06 Jfeスチール株式会社 Hot-dip galvanized steel sheet with high tensile strength and superior processability and method for producing same
US9068238B2 (en) 2010-03-31 2015-06-30 Jfe Steel Corporation High tensile strength hot rolled steel sheet having excellent formability and method for manufacturing the same
WO2011126154A1 (en) * 2010-04-09 2011-10-13 Jfeスチール株式会社 High-strength steel sheet having excellent hot rolling workability, and process for production thereof
CN102834539A (en) * 2010-04-09 2012-12-19 杰富意钢铁株式会社 High-strength steel sheet having excellent hot rolling workability, and process for production thereof
EP2557193A4 (en) * 2010-04-09 2017-04-19 JFE Steel Corporation High-strength steel sheet having excellent hot rolling workability, and process for production thereof
TWI485261B (en) * 2010-04-09 2015-05-21 Jfe Steel Corp High strength steel sheet having excellent warm stamp formability and method for manufacturing the same
KR101607033B1 (en) 2011-07-20 2016-03-28 제이에프이 스틸 가부시키가이샤 High-strength steel sheet for warm press forming and method for manufacturing thereof
KR20140026608A (en) * 2011-07-20 2014-03-05 제이에프이 스틸 가부시키가이샤 High-strength steel sheet for warm forming and process for producing same
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same
JP2015520802A (en) * 2012-05-08 2015-07-23 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv Automotive chassis parts manufactured from high strength formable hot rolled steel sheets
US9908566B2 (en) 2012-05-08 2018-03-06 Tata Steel Ijmuiden B.V. Automotive chassis part made from high strength formable hot rolled steel sheet
WO2015029873A1 (en) 2013-08-26 2015-03-05 株式会社神戸製鋼所 Thick steel sheet having excellent fatigue properties, and method for producing same
KR20160144439A (en) 2014-05-22 2016-12-16 가부시키가이샤 고베 세이코쇼 Thick steel plate
KR20180115352A (en) 2014-05-22 2018-10-22 가부시키가이샤 고베 세이코쇼 Thick steel plate
KR20190028770A (en) 2016-08-19 2019-03-19 가부시키가이샤 고베 세이코쇼 After-treatment steel sheet and its manufacturing method

Also Published As

Publication number Publication date
JP4955497B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4955497B2 (en) Hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability balance
JP4955496B2 (en) High-strength hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability
JP4955499B2 (en) High strength hot rolled steel sheet with excellent fatigue strength and stretch flangeability
JP4324072B2 (en) Lightweight high strength steel with excellent ductility and its manufacturing method
JP5858174B2 (en) Low yield ratio high strength cold-rolled steel sheet and method for producing the same
JP6779320B2 (en) Clad steel sheet with excellent strength and formability and its manufacturing method
JP5042914B2 (en) High strength steel and manufacturing method thereof
JP4712838B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP5370620B1 (en) Thin steel plate and manufacturing method thereof
JP2005336526A (en) High strength steel sheet having excellent workability and its production method
JP2016169433A (en) Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment
JP2009084687A (en) High-strength steel sheet for can manufacturing and method for manufacturing the same
JP2018188675A (en) High strength hot-rolled steel sheet and production method thereof
JP4424185B2 (en) Hot rolled steel sheet and its manufacturing method
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP4737761B2 (en) High strength hot-rolled steel sheet with excellent strength-elongation balance and fatigue properties
JP2009001909A (en) Manufacturing method of high-strength cold-rolled steel sheet
JP6418418B2 (en) Steel material for large heat input welding
JP5845837B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof
JP6390572B2 (en) Cold-rolled steel sheet, plated steel sheet, and production method thereof
JP2016028174A (en) High strength hot rolled steel sheet and hot-dip galvanized high strength hot rolled steel sheet excellent in flageability and punchability and production methods of them
WO2010109702A1 (en) Cold-rolled steel sheet
JP4712839B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
JP6042265B2 (en) High-strength cold-rolled steel sheet excellent in yield strength and formability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120315

R150 Certificate of patent or registration of utility model

Ref document number: 4955497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees