JP2004143518A - Hot rolled steel sheet - Google Patents
Hot rolled steel sheet Download PDFInfo
- Publication number
- JP2004143518A JP2004143518A JP2002308932A JP2002308932A JP2004143518A JP 2004143518 A JP2004143518 A JP 2004143518A JP 2002308932 A JP2002308932 A JP 2002308932A JP 2002308932 A JP2002308932 A JP 2002308932A JP 2004143518 A JP2004143518 A JP 2004143518A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- ferrite
- steel sheet
- less
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、自動車や各種の産業機械に用いられる高強度部材の素材として好適な熱延鋼板、なかでも熱延のままで細粒組織を有する加工性と耐疲労特性に優れた熱延鋼板に関する。
【0002】
【従来の技術】
自動車を初めとする輸送用機械や各種産業機械の構造部材の素材として用いられる鋼材には、強度、加工性及び靱性などの機械的性質に優れることが要求される。こうした機械的性質を総合的に向上させるためには鋼材の組織を微細化することが有効であり、鋼材の組織微細化による高強度化は、合金成分を節減できるので製品コストの低減にも有効である。このため、従来から微細な組織を得るための製造方法が数多く検討されてきた。
【0003】
従来技術における組織の微細化手段としては、例えば、特許文献1〜3に「大圧下圧延」に関する技術が、又、特許文献4及び5に「制御圧延・制御冷却」に関する技術が提案されている。
【0004】
すなわち、特許文献1には、連続熱間圧延の後段において、圧下率が40%以上、平均歪速度が60秒−1の圧下を加え、更に、2秒以内に連続して圧下率が40%以上の圧下を加える大圧下圧延により組織を微細化する技術が開示されている。しかし、上記の特許文献1で提案された技術は、1パス当たりの圧下量を40%以上にする必要があり、一般的なホットストリップミルでは実現し難い。更に、板厚形状の制御も困難である。
【0005】
特許文献2には、圧延直後、0.5秒以内の圧延歪を蓄積した状態から急冷して鋼の組織を微細化する技術が開示されている。しかし、この特許文献2で提案された方法では、通常仕上げタンデム圧延機の出側で行う、温度計測と板厚及び板幅の計測に支障をきたすため、生産性が低下する。
【0006】
特許文献3には、いわゆる「C−Si−Mn鋼」を動的再結晶域で多パス圧延し、平均粒径で2μm未満の細粒組織とする技術が開示されている。しかし、一般的なホットストリップミルにおいて、圧延温度を安定して動的再結晶温度域に制御することは極めて困難である。
【0007】
特許文献4には、いわゆる「C−Si−Mn鋼」の仕上げ圧延前に表面を強制冷却し、表層部が細粒の熱延鋼板を得る技術が開示されている。しかし、この特許文献4で提案された技術の場合、鋼板の内部における粒径は10μm以上と大きいし、表層部の細粒化を行っただけでは鋼材全体の強化への寄与は極めて僅かしかない。
【0008】
特許文献5には、いわゆる「C−Si−Mn−Ti鋼」において、1100〜950℃の温度範囲で圧下量が20%以上となる圧延を施して動的再結晶させる第1段階の圧延工程と、950℃未満で700℃以上の温度範囲で5℃/秒以上の冷却速度で冷却しながら1パス当たりの圧下量が20%以上で、累積圧下率が50%以上となる圧延を行って静的再結晶を繰り返す第2段階の圧延工程とによって、平均粒径が2μm以下の鋼板を得る技術が開示されている。しかし、Tiの含有量が規定値を下回る鋼の場合には、上記第1段階の動的再結晶が不十分となって結晶粒を微細化し難いし、Ti無添加の鋼の場合には、上記の圧延技術を適用してもその粒径は11μm以上のものでしかない。
【0009】
【特許文献1】
特公平5−65564号公報
【特許文献2】
特公平4−11608号公報
【特許文献3】
特開平11−152544号公報
【特許文献4】
特開平9−137248号公報
【特許文献5】
特開平11−92859号公報
【0010】
【発明が解決しようとする課題】
本発明は、上記現状に鑑みてなされたもので、その目的は、自動車や各種の産業機械に用いられる高強度部材の素材として好適な熱延鋼板を提供することである。具体的には、溶接性を満足できる範囲のC含有量で、延性、穴広げ性及び耐疲労特性が良好な熱延鋼板を安定して提供することである。
【0011】
【課題を解決するための手段】
本発明の要旨は、下記(1)、(2)に示す熱延鋼板にある。
【0012】
(1)質量%で、C:0.05〜0.2%、Si:0.001〜3.0%、Mn:0.5〜3.0%、P:0.001〜0.2%、Al:0.001〜3%、V:0.1%を超えて1.0%までを含み、残部はFe及び不純物からなり、組織が平均粒径1〜5μmのフェライトを主相とし、フェライト粒内に平均粒径が50nm以下のVの炭窒化物が存在することを特徴とする熱延鋼板。
【0013】
(2)質量%で、C:0.05〜0.2%、Si:0.001〜3.0%、Mn:0.5〜3.0%、P:0.001〜0.2%、Al:0.001〜3%、V:0.1%を超えて1.0%までを含み、更に、下記(a)群から(c)群までのうちの1群以上から選ばれる少なくとも1種以上の成分を含み、残部はFe及び不純物からなり、組織が平均粒径1〜5μmのフェライトを主相とし、フェライト粒内に平均粒径が50nm以下のVの炭窒化物が存在することを特徴とする熱延鋼板。
【0014】
(a)Nb:0.005〜0.10%及びTi:0.005〜0.20%、
(b)Ca:0.0002〜0.010%、Zr:0.01〜0.10%及びREM(希士類元素):0.002〜0.10%、
(c)Cr:0.05〜1.0%及びMo:0.05〜1.0%。
【0015】
ここで、フェライトの「平均粒径」とは、いわゆる「切片法」で求めた平均切片長さを1.128倍して得たものを指す。
【0016】
「主相」とは「組織に占める割合が50%を超える相」をいう。
【0017】
本発明でいう炭窒化物には、「炭化物」と「窒化物」が含まれる。すなわち、Vの炭窒化物には、Vの「炭窒化物」だけではなくVの「炭化物」とVの「窒化物」も含まれる。
【0018】
更に、Vの「炭窒化物」は、「Vを含む炭窒化物」を指し、その「粒径」とは、個々の粒子の短径と長径の和の1/2で定義される値を指し、「平均粒径」は上記粒径の算術平均を指す。ここで、「Vを含む炭窒化物」とは、炭素(C)と窒素(N)を除いた部分に占めるVの割合が10%以上であるものを指す。
【0019】
「REM(希土類元素)」は、Sc、Y及びランタノイドの合計17元素の総称であり、REMの含有量は上記元素の合計含有量を指す。
【0020】
以下、上記(1)及び(2)の熱延鋼板に係る発明をそれぞれ(1)及び(2)の発明という。
【0021】
【発明の実施の形態】
本発明者らは、前記した目的を達成するために種々検討を行い、下記(イ)〜(ホ)の知見を得た。
【0022】
(イ)フェライト粒を微細化し、そのフェライト粒内にVを含む炭窒化物を極めて微細に析出させることにより、延性、穴広げ性及び耐疲労特性特に優れた熱延鋼板が得られる。
【0023】
(ロ)TiやNbの多量の添加では粗圧延前に未固溶の炭窒化物が増加するため、延性、穴広げ性及び耐疲労特性の劣化を招くが、Vは多量の添加でも未固溶の炭窒化物を形成し難く、これらの特性劣化がない。
【0024】
(ハ)VにTiやNbを複合添加した場合でも、TiやNbの含有量を適正化すれば、つまり、TiやNbを添加したときに未固溶の炭窒化物が形成されない条件とすれば、TiやNbの添加によって未固溶の炭窒化物が増加することはなく、延性、穴広げ性及び耐疲労強度が向上する。
【0025】
なお、上述の組織によって加工性と耐疲労特性に優れる理由は必ずしも明らかではないが、フェライト粒の微細化によるマクロ的な組織の均一化と、Vを含む微細炭窒化物によりフェライト粒内がより均一に強化されることに基づくものと推測される。
【0026】
(ニ)上述の微細なフェライト粒とフェライト粒内にVを含む微細な炭窒化物が析出した組織は、粗圧延後のタンデム圧延機列による仕上げ圧延において、最終から1段前の圧延スタンドにおいてAr3 点以上で圧延し、その後50℃/秒以上の平均冷却速度で「Ar3 点−50℃」以下の温度まで冷却した後、最終スタンドにおいて20%以下の圧下を施すことによって得られる。
【0027】
このような仕上げ圧延により前記の組織が得られる理由は必ずしも明らかではないが、最終圧延前の急冷によって、最終から1段前のスタンドでの圧延でオーステナイトに付与された歪みが維持された状態のままで最終スタンドでの圧延を受けるため歪みが蓄積されることや、最終から1段前のスタンドと最終スタンドとの間でフェライト核生成の潜伏時間が消費されて最終スタンドでの圧延を受けることなどによって、(1) フェライトの核生成が促進されてフェライトが微細化することや(2) 炭素が過飽和なフェライトになり、Vの炭窒化物の微細析出が促進されることなど、によるものと推測される。
【0028】
前記(1)及び(2)の本発明は、上記の知見に基づいて完成されたものである。
【0029】
以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。
(A)熱延鋼板の化学組成
C:
Cは、鋼板の強度を高める作用を有し、0.05%以上含有させることで効果が得られる。しかし、その含有量が0.20%を超えると加工性の低下や溶接性の劣化を招く。したがって、Cの含有量を0.05〜0.2%と定めた。なお、高強度化の観点からは、Cの含有量は0.08%を超えて0.2%までとすることが好ましく、更に好ましくは0.1%を超えて0.2%までである。
【0030】
Si:
Siは、固溶強化を通じて鋼板の強度、延性及び穴広げ性を向上させる作用を有する。しかし、Siを3.0%を超えて含有させても上記作用による効果が飽和する上に、溶接性の劣化を招く。一方、下限は0%でもよいが、低減に要するコストの観点から0.001%とする。したがって、Si含有量を0.001〜3.0%とした。なお、加工性の観点からは、Siの上限を2.0%とすることが好ましい。
【0031】
Mn:
Mnは、鋼板の強度を確保するとともに、鋼中に不純物として存在するSをMnSとして固定して、連続鋳造又は熱間圧延を初めとする熱間加工中に生じる割れを抑制する作用を有する。しかし、Mnの含有量が0.5%未満の場合には前述の作用による割れ抑制の効果が得られず、一方、3.0%を超えて含有させてもその作用が飽和するだけでなく、加工性の低下を招く。このため、Mnの含有量を0.5〜3.0%と定めた。なお、高強度化の観点からのMn含有量の下限値は好ましくは1.0%である。Mn含有量の上限値は、加工性の観点から2.5%とすることが好ましく、より好ましくは2.2%未満である。
【0032】
P:
Pは、鋼板の強度を高める作用を有する。この作用を得るには0.001%以上の含有量が必要である。一方、Pを0.2%を超えて含有させると、粒界偏析による脆化だけでなく、溶接性も劣化する。したがって、Pの含有量を0.001〜0.2%とした。なお、Pの含有量の上限値は0.1%とすることが好ましく、加工性をより一層向上させるために、その上限値は0.05%とすることが一層好ましい。
【0033】
Al:
Alは、脱酸作用、主相となるフェライトが組織に占める割合の増加、更には、いわゆる「TRIP鋼」における「残留オーステナイト」の量を増やす作用を有する。しかし、その含有量が0.001%未満では前記の効果が得られない。一方、Alを3%を超えて含有させても前記の効果は飽和しコストが嵩むばかりである。したがって、Alの含有量を0.001〜3%とした。なお、脱酸のみを目的としてAlを添加する場合は、経済性の観点からAlの含有量の上限は0.10%とするのがよい。
【0034】
V:
Vは、本発明で最も重要な元素である。Vは、フェライト地に炭窒化物として微細に析出し、高強度化と、延性、穴広げ性及び耐疲労特性を向上させる作用を有する。しかし、その含有量が0.1%以下では添加効果に乏しい。一方、Vを1.0%を超えて含有させても上記の効果は飽和するし、Vの炭窒化物が粗大となって延性、穴広げ性及び、耐疲労特性が却って低下する。したがって、Vの含有量を0.1%を超えて1.0%までと定めた。なお、V含有量は0.2%〜1.0%とするのが好ましく、0.3〜1.0%とすれば一層好ましい。
【0035】
前記(1)の発明に記載の熱延鋼板の化学組成は、上記のCからVまでの元素と、残部がFe及び不純物からなるものである。
【0036】
前記(2)の発明に記載の熱延鋼板の化学組成は、前記(1)の発明に記載の鋼のFeの一部に代えて、下記(a)群から(c)群までのうちの1群以上から選ばれる少なくとも1種以上の成分を含むものである。
【0037】
(a)Nb:0.005〜0.10%及びTi:0.005〜0.20、
(b)Ca:0.0002〜0.010%、Zr:0.01〜0.10%及びREM(希士類元素):0.002〜0.10%、
(c)Cr:0.05〜1.0%及びMo:0.05〜1.0%。
【0038】
ここで上記(a)群に記載のNbとTiはフェライト地に炭窒化物として析出し、析出強化によって強度を一層高める作用を有するので、NbとTiは、以下に述べる範囲内でそれぞれを単独で含有させてもよいし、複合して含有させてもよい。
【0039】
(b)群に記載のCaからREM(希土類元素)までのいずれの元素も介在物の形状を調整して冷間加工性を改善する作用を有するので、CaからREMまでの元素は、以下に述べる範囲内でそれぞれを単独で含有させてもよいし、2種以上を複合して含有させてもよい。
【0040】
なお、REMは、前述のとおりSc、Y及びランタノイドの合計17元素を指し、ミッシュメタルの形で添加してもよい。本発明でいうREMの含有量が上記元素の合計含有量を指すことは既に述べたとおりである。
【0041】
又、上記(c)群に記載のCrとMoはいずれも固溶強化によって強度を高める作用を有するので、CrとMoは、以下に述べる範囲内でそれぞれを単独で含有させてもよいし、複合して含有させてもよい。
【0042】
(a)群(Nb及びTi):
Nb及びTiは、いずれもフェライト地に炭窒化物として析出し、析出強化によって強度を一層高める作用を有する元素である。この効果を確実に得るには、Nb及びTiのいずれも0.005%以上の含有量とすることが好ましい。しかし、Nbを0.10%を超えて、又、Tiを0.20%を超えて含有させても上記の効果は飽和し、コストが嵩むばかりである。したがって、Nb及びTiを添加する場合には、その含有量はそれぞれ0.005〜0.10%、0.005〜0.20%とするのがよい。
【0043】
なお、粗圧延前に未固溶のTiやNbの炭窒化物の量を低減し、強度、延性、穴広げ性及び耐疲労特性を一層向上させるという観点からは、Ti及びNbの含有量は、上記の規定に加えて下記▲1▼式で表される値が0.0190以下を満たすことが好ましい。より好ましくは0.0165以下、更に好ましくは0.0145以下である。
【0044】
{(48/93)Nb(%)+Ti(%)}×C(%)・・・▲1▼。
【0045】
(b)群(Ca、Zr及びREM):
Ca、Zr及びREMは、いずれも介在物の形状を調整して冷間加工性を改善する作用を有する元素である。この効果を確実に得るには、Caは0.0002%以上、Zrは0.01%以上、REMは0.002%以上の含有量とすることが好ましい。しかし、Ca、Zr、REMの含有量が、それぞれ0.010%、0.10%、0.10%を超えると、鋼中の介在物が多くなりすぎて加工性が劣化することがある。したがって、Ca、Zr及びREMを添加する場合には、その含有量はそれぞれ0.0002〜0.010%、0.01〜0.10%、0.002〜0.10%とするのがよい。
【0046】
(c)群(Cr及びMo):
Cr及びMoは、いずれも固溶強化によって鋼板の強度を高める作用を有する元素である。この効果を確実に得るには、Cr及びMoいずれも0.05%以上の含有量とすることが好ましい。しかし、Cr、Moをいずれも1.0%を超えて含有させても上記の効果は飽和し、コストが嵩むばかりである。したがって、Cr及びMoを添加する場合には、その含有量はいずれも0.05〜1.0%とするのがよい。
【0047】
上記の(a)群から(c)群までの元素については、複数の群から選ばれる元素を複合して含有させてもよい。
【0048】
なお、鋼中に混入する不純物としては、S、Nなどが挙げられるが、例えばS、Nについては、できればその含有量を以下のように規制するのが望ましい。
【0049】
S:
Sは硫化物系介在物を形成して加工性を低下させるため、その含有量は0.05%以下に抑えるのが望ましい。なお、一段と優れた加工性を確保するために、Sの含有量は0.008%以下とすることが一層好ましく、0.003%以下とすれば極めて好ましい。
【0050】
N:
Nは加工性を低下させるため、その含有量は0.01%未満に抑えることが望ましい。なお、Nの含有量は0.006%以下とすることが一層好ましい。
【0051】
又、Cu、Niは変態強化及び耐食性向上の作用を有するため、それぞれ0.05〜1.0%を含有させてもよい。
【0052】
上述の組成を有する鋼は、例えば転炉、電気炉又は平炉等により溶製されたリムド鋼、キャップド鋼、セミキルド鋼又はキルド鋼いずれであってもよく、更に、鋳型に注入する「造塊法」又は「連続鋳造法」のいずれの手段を用いて鋼塊とされたものであってもよい。
(B)熱延鋼板の組織
主相:
主相は平均粒径1〜5μmのフェライトとする必要がある。これはフェライト以外の相、例えばベイナイト、マルテンサイト、セメンタイト、パーライトが主相を形成すると強度が高くなって延性、穴拡げ性が低下するためである。なお、「主相」とは「組織に占める割合が50%を超える相」をいい、主相のフェライトが組織に占める割合は60%以上であることが好ましく、70%以上であれば一層好ましい。
【0053】
フェライトの平均粒径を1〜5μmと規定するのは次の理由による。
【0054】
すなわち、主相であるフェライトの平均粒径が5μm以下の場合には、従来の鋼板に比べ、少ない合金含有量で目標とする強度を確保でき、強度以外の特性の劣化も少なく、加えて、めっき性も良好となる。フェライトの平均粒径が5μmを超えると、組織微細化による強度増加の程度が著しく少なくなり、合金元素の含有量を増やす必要が生じ、コストの上昇をきたすし、延性、穴広げ性及び耐疲労特性の低下を招く。しかし、フェライトの平均粒径が1μm未満の微細組織になると、却って延性が低下して加工性の低下を招く。なお、大きな強度、良好な加工性及び優れた耐疲労特性を得るという点からは、フェライトの平均粒径の上限は、4μmとすることが好ましく、3μmとすれば一層好ましい。一方、より一層良好な加工性を確保するという観点からは、フェライトの平均粒径の下限は、2μmとするのがよい。
【0055】
したがって、本発明においては主相を平均粒径が1〜5μmのフェライトとした。
【0056】
ここで、フェライトの「平均粒径」とは、いわゆる「切片法」で求めた平均切片長さを1.128倍して得たものを指すことは既に述べたとおりである。
【0057】
主相であるフェライト以外の組織をまとめて第2相というとき、第2相は、セメンタイト、パーライト、ベイナイト、マルテンサイトや未変態のオーステナイト(いわゆる「残留オーステナイト」)の1種以上から構成される。なお、穴広げ性及び耐疲労特性をより一層向上させるという観点からは、第2相としてのマルテンサイト及び残留オーステナイトの割合は、それぞれ5%未満とすることが好ましく、それぞれ3%未満であれば一層好ましい。なお、第2相としてのマルテンサイト及び残留オーステナイトの割合がいずれも0%であれば極めて好ましい。
【0058】
ここで、或る相の体積割合は面積割合に等しいことが知られており、したがって、上記フェライトが組織に占める割合は、例えば、通常の2次元的な評価方法によって求めたフェライトの割合から決定すればよい。
【0059】
フェライト粒内のV炭窒化物:
主相であるフェライトの粒内には、平均粒径が50nm以下のVの炭窒化物が存在していなければならない。
【0060】
フェライトの粒内にV炭窒化物が存在しない場合には、所望の延性、穴広げ性及び耐疲労特性特に優れた熱延鋼板が得られない。又、フェライトの粒内にV炭窒化物が存在してもその平均粒径が50nmを超える場合には、延性、穴広げ性及び耐疲労特性が低下する。
【0061】
したがって、本発明においては、主相であるフェライトの粒内には、平均粒径が50nm以下のVの炭窒化物が存在することとした。
【0062】
なお、フェライトの粒内に存在するV炭窒化物の粒径は20nm以下であることが好ましく、より好ましくは10nm未満である。このフェライトの粒内に存在するV炭窒化物の粒径の下限値は、延性、穴拡げ性及び耐疲労特性の観点から2nm程度とするのがよい。好ましくは4nm以上である。
【0063】
ここで、本発明でいう炭窒化物には、「炭化物」と「窒化物」が含まれること、すなわち、Vの炭窒化物には、Vの「炭窒化物」だけではなくVの「炭化物」とVの「窒化物」も含まれること、又、Vの「炭窒化物」が「Vを含む炭窒化物」を指し、その「粒径」が、個々の粒子の短径と長径の和の1/2で定義される値を指し、「平均粒径」は上記粒径の算術平均を指すこと、更に、「Vを含む炭窒化物」が、炭素(C)と窒素(N)を除いた部分に占めるVの割合が10%以上であるものを指すことは既に述べたとおりである。
【0064】
なお、より一層の延性、穴広げ性及び耐疲労特性を熱延鋼板に具備させるためには、フェライト粒界近傍の微細析出物のない領域(いわゆる「無析出帯」)の幅は0.3μm以下であることが好ましい。無析出帯のより好ましい幅は0.2μm以下であり、0.1μm以下であれば極めて好ましい。
【0065】
前記(1)及び(2)の発明に係る熱延鋼板は、例えば、(A)項で述べた成分組成を有する鋼塊や鋼片に粗圧延を施した後、粗圧延後のタンデム圧延機列による仕上げ圧延において、最終から1段前の圧延スタンドにおいてAr3 点以上で圧延し、その後50℃/秒以上の平均冷却速度で「Ar3 点−50℃」以下の温度まで冷却した後、最終スタンドにおいて20%以下の圧下を施すことによって製造することができる。なお、「平均冷却速度」とは、冷却前後の温度差を冷却時間で除したものをいう。
【0066】
粗圧延に供される鋼塊や鋼片は、一旦冷却された後でAc3 点以上の温度に再加熱されたもの又は、鋳造後にAr3 点以下の温度域まで温度低下していない鋼塊若しくは熱間加工後にAr3 点以下の温度域まで温度低下していない鋼片のいずれであってもよい。なお、細粒化の観点からは一旦冷却された後でAc3 点以上の温度に再加熱されたものの方が好ましい。鋳造のままで粗圧延に供する場合、保熱又は加熱を目的として、補助加熱装置を通したり加熱炉に装入しても構わない。
【0067】
なお、鋼塊や鋼片を一旦冷却した後でAc3 点以上の温度に再加熱する場合の加熱温度は、オーステナイト結晶粒を粗大化させない1200℃以下とすることが好ましい。又、圧延温度の確保や圧延機の負荷を低減するために1000℃以上とすることが好ましい。より好ましくは1100℃以上である。
【0068】
又、鋳造後にAr3 点以下の温度域まで温度低下していない鋼塊又は熱間加工後にAr3 点以下の温度域まで温度低下していない鋼片のいずれについても、鋳造や熱間加工の後は鋼塊や鋼片を1200℃以下の温度域にまで冷却し、その後で粗圧延することが圧延中の結晶粒成長抑制のために望ましい。なお、この場合の粗圧延は圧延温度の確保や圧延機の負荷を低減するために1000℃以上の温度域から開始するのがよい。より好ましくは1100℃以上である。
【0069】
なお、熱間での粗圧延は通常の方法で行えばよい。
【0070】
仕上げ圧延中の結晶粒の成長を抑制するという観点からは、仕上げ圧延の開始温度を低くすることが好ましい。しかし、被圧延材の圧延側先端部がタンデム圧延機列に入る前の温度を低くすれば、後端部やエッジ部での温度低下が大きくなるので、被圧延材の後端部やエッジ部での温度低下を防止するために、仕上げ圧延の前に被圧延材の温度、なかでも被圧延材の後端部やエッジ部の温度を維持するために補助加熱装置を用いてもよい。この場合、補助加熱装置による加熱温度は1100℃以下にすることが好ましい。なお、上記の加熱は、仕上げ圧延としてオーステナイト領域での圧延が確保できるAc3 点以上の温度への加熱であればよいが、950℃以上の温度に加熱すれば一層好ましい。
【0071】
仕上げ圧延は、タンデム圧延機列の最終から1段前の圧延スタンドにおいてAr3 点以上で圧延し、その後50℃/秒以上の平均冷却速度で「Ar3 点−50℃」以下の温度まで冷却した後、最終スタンドにおいて20%以下の圧下を施す。
【0072】
上記の条件によれば、フェライトの核生成が促進されるので所望の微細なフェライトが安定且つ確実に得られる。
【0073】
最終から1段前のスタンドでの圧延は、Ar3 点未満では加工フェライトの生成を招くのみならず、軟質なフェライトへの歪み集中により未変態オーステナイトへの歪み蓄積が不十分となり、フェライトの微細化が達成できないことがある。圧延歪みの蓄積の観点からは圧延温度は「Ar3 点+100℃」以下が好ましく、より好ましくは「Ar3 点+60℃」以下である。1段前スタンドでの圧延後の平均冷却速度が50℃/秒を下回る場合にも、フェライトの微細化が達成できないことがある。平均冷却速度は100℃/秒以上が好ましく、より好ましくは200℃/秒以上である。
【0074】
最終から1段前のスタンドで圧延した後の冷却温度が「Ar3 点−50℃」を上回る場合、所望のサイズへのフェライトの微細化が達成できないことがある。。最終から1段前のスタンドで圧延した後の冷却温度は、「Ar3 点−100℃」以下であることがより好ましく、「Ar3 点−150℃」以下であれば極めて好ましい。
【0075】
なお、最終スタンドにおける圧延は、その1段前のスタンドにおける圧延後の冷却水が最終スタンドの出側(タンデム圧延機列の出側)に流れ出ないようにする水切りの機能や、前記1段前のスタンドとの間で被圧延材に張力を付与して通板性と板厚形状の劣化を防止する機能、更には、ロール抜熱による冷却効果をも併せ持つものである。したがって、最終スタンドにおいては、被圧延材とロールを接触させるだけとし、圧延の圧下率は0%としても構わない。但し、歪み蓄積を十分に行って、フェライトの結晶粒を一層微細にするという観点からは、最終スタンドにおける圧延の圧下率は1%以上とすることが好ましく、更に好ましくは5%以上である。一方、圧下率の上限は、20%とすることがよい。20%を上回ると加工フェライトの生成を引き起こし加工性の低下を招くことがあるし、圧下率過多のために板厚形状不良を生じることもある。圧下率の上限は、15%であれば一層好ましく、10%であれば極めて好ましい。
【0076】
なお、熱間圧延は、圧延荷重低減などを目的に潤滑剤を用いて行うのが好ましい。又、「タンデム熱延」のタンデム圧延機列の最終から2段前のスタンドまでのスタンドの間で、圧下による被圧延材の温度上昇を抑えるために冷却を行っても構わない。潤滑圧延は、最終から1段前までのスタンドで行うことが通板性の観点から好ましい。
【0077】
仕上げ圧延後は被圧延材である鋼板を冷却して巻き取ればよい。仕上げ圧延後の冷却条件、巻き取り温度や巻き取り後の冷却条件は、製造しようとする熱延鋼板の組織に応じて適宜定めればよい。
【0078】
例えば、第2相としてパーライトやセメンタイトを含む組織にしたい場合には、ベイナイトやマルテンサイトといった低温変態相の形成を回避するような条件で冷却及び巻き取りを行えばよい。又、第2相としてベイナイト又は、いわゆる「DP鋼(二相鋼)」や「TRIP鋼」のような複合組織を得たい場合には、冷却曲線上のフェライト領域のノーズを通過するような冷却を行ってフェライト変態を促進した後、パーライト変態を避けてベイナイトやマルテンサイトの領域に急冷した後、巻き取りを行えばよい。
【0079】
なお、フェライトの粒径を極めて微細にするという観点からすれば、仕上げ圧延後の極めて短時間のうちに、例えば上記仕上げ圧延後0.5秒以内に、冷却を開始することがより好ましい。しかし、このような仕上げ圧延終了直後の冷却は、温度、板厚・板幅計測に支障をきたし生産性の低下を招くため、生産性の向上には設備改良が必要になり設備コストの上昇が避けられない。
【0080】
なお、本発明に係る熱延鋼板に溶融亜鉛めっき、合金化溶融亜鉛めっき、電気めっきなどの表面処理を施した場合には、優れた耐食性をも兼備した表面処理鋼板を得ることができる。
【0081】
以下、実施例により本発明を更に詳しく説明する。
【0082】
【実施例】
表1に示す化学組成の鋼を、実験圧延機を使用して、表2に示す条件で加熱し、粗圧延及び仕上圧延相当の圧延を行って板厚3.2mmの鋼板とし、更に、冷却した後に巻き取りシミュレーションを行った。
【0083】
巻き取りシミュレーションは、巻き取り温度まで冷却した鋼板を、巻き取り温度に保持した電気炉に装入し、その温度で1時間保持した後、20℃/時の平均冷却速度で冷却することにより行い、巻き取り後の温度履歴を模擬した。
【0084】
【表1】
【0085】
【表2】
【0086】
得られた鋼板から試験片を採取し、組織、引張特性、穴拡げ性及び耐疲労特性を調査した。
【0087】
組織は、光学顕微鏡又は電子顕微鏡を用いて相の判定をするとともに、フェライトの平均粒径と面積率(したがって、体積率)、無析出帯のサイズ(幅)及びVの炭窒化物の粒径を求めた。
【0088】
引張試験は、得られた鋼板からJIS5号引張試験片を採取して行った。
【0089】
又、縦横それぞれ100mmの正方形の試験片を採取し、その中央にポンチで直径が10mmの打ち抜き穴をクリアランス12.5%であけ、頂角60°の円錐ポンチで前記の穴を拡げる試験を行い、下記▲2▼式によって穴広げ率(HER(%))を求めた。
【0090】
HER(%)={(板厚貫通割れ発生時の穴径−初期穴径)/初期穴径}×100・・・▲2▼。
【0091】
耐疲労特性は、図1に示す試験片を用いた両振り平面曲げ試験によって評価した。すなわち、幅20mmの試験片を用いて平面曲げ試験を行い、107 回の繰り返しに耐える応力(すなわち疲労限度)を求め、これを疲労強度とした。
【0092】
表3に、前記の各調査結果をまとめて示す。なお、表3には疲労限度比(疲労強度/引張強度)も併記した。
【0093】
【表3】
【0094】
表3から明らかなように、本発明で定める化学組成と組織を有する試験番号1〜12の熱延鋼板は、強度−延性バランス(TS×El)、強度−穴広げ性バランス(TS×HER)及び耐疲労特性(疲労限度比)に優れた熱延鋼板となっている。
【0095】
これに対して、本発明で規定する条件から外れた試験番号13〜15の場合には、延性、穴拡げ性及び耐疲労特性の少なくともいずれかにおいて劣っている。
【0096】
すなわち、試験番号13は、鋼のVの含有量が本発明の規定を上回り、組織におけるV炭窒化物の粒径も大きいので、延性及び穴拡げ性が低く、更に、耐疲労特性も劣っている。
【0097】
試験番号14は、鋼のMnの含有量が本発明の規定を上回り、組織におけるフェライトの割合も36%と低いので、延性及び穴拡げ性に劣っている。
【0098】
試験番号15は、鋼のCの含有量が本発明の規定を上回り、組織におけるフェライトの割合も45%と低いので、延性及び穴拡げ性に劣っている。
【0099】
【発明の効果】
本発明の熱延鋼板は、強度、延性、穴拡げ性及び耐疲労特性に優れるので、自動車や各種の産業機械に用いられる高強度構造部材の素材として利用することができる。
【図面の簡単な説明】
【図1】実施例で用いた疲労試験用の試験片を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hot-rolled steel sheet suitable as a material for high-strength members used in automobiles and various industrial machines, and more particularly to a hot-rolled steel sheet having a fine-grained structure while being hot-rolled and having excellent workability and fatigue resistance properties. .
[0002]
[Prior art]
2. Description of the Related Art Steel materials used as materials for structural members of transportation machines including automobiles and various industrial machines are required to have excellent mechanical properties such as strength, workability, and toughness. In order to comprehensively improve such mechanical properties, it is effective to refine the structure of steel materials. Higher strength by refining the structure of steel materials is effective in reducing product costs because alloy components can be reduced. It is. For this reason, conventionally, many manufacturing methods for obtaining a fine structure have been studied.
[0003]
As means for refining the structure in the prior art, for example,
[0004]
That is, in
[0005]
Patent Literature 2 discloses a technique in which, immediately after rolling, a state in which rolling strain is accumulated within 0.5 seconds and rapidly cooled to refine the structure of steel. However, the method proposed in Patent Document 2 interferes with the temperature measurement and the measurement of the sheet thickness and the sheet width, which are usually performed on the outlet side of the finishing tandem rolling mill, so that the productivity is reduced.
[0006]
Patent Document 3 discloses a technique in which a so-called "C-Si-Mn steel" is subjected to multi-pass rolling in a dynamic recrystallization region to obtain a fine grain structure having an average grain size of less than 2 µm. However, in a general hot strip mill, it is extremely difficult to stably control the rolling temperature to a dynamic recrystallization temperature range.
[0007]
Patent Document 4 discloses a technique of forcibly cooling the surface of a so-called "C-Si-Mn steel" before finish rolling to obtain a hot-rolled steel sheet having a fine surface layer. However, in the case of the technique proposed in Patent Document 4, the grain size inside the steel sheet is as large as 10 μm or more, and the contribution to the strengthening of the entire steel material is very small only by making the surface layer finer. .
[0008]
Patent Document 5 discloses a first-stage rolling process in which a so-called "C-Si-Mn-Ti steel" is subjected to rolling in which the rolling reduction is 20% or more in a temperature range of 1100 to 950 ° C and dynamic recrystallization is performed. And rolling at a cooling rate of 5 ° C./sec or more in a temperature range of less than 950 ° C. and 700 ° C. or more while rolling so that the rolling reduction per pass is 20% or more and the cumulative rolling reduction is 50% or more. A technique for obtaining a steel sheet having an average grain size of 2 μm or less by a second-stage rolling process in which static recrystallization is repeated is disclosed. However, in the case of steel having a Ti content below the specified value, the first-stage dynamic recrystallization is insufficient, making it difficult to refine crystal grains, and in the case of steel without Ti, Even if the above-mentioned rolling technique is applied, the particle size is only 11 μm or more.
[0009]
[Patent Document 1]
Japanese Patent Publication No. 5-65564 [Patent Document 2]
Japanese Patent Publication No. 4-111608 [Patent Document 3]
JP-A-11-152544 [Patent Document 4]
Japanese Patent Application Laid-Open No. Hei 9-137248 [Patent Document 5]
Japanese Patent Application Laid-Open No. 11-92959
[Problems to be solved by the invention]
The present invention has been made in view of the above situation, and an object of the present invention is to provide a hot-rolled steel sheet suitable as a material for high-strength members used in automobiles and various industrial machines. Specifically, an object of the present invention is to stably provide a hot-rolled steel sheet having good ductility, hole-expandability, and fatigue resistance properties with a C content in a range that can satisfy weldability.
[0011]
[Means for Solving the Problems]
The gist of the present invention resides in the following hot-rolled steel sheets (1) and (2).
[0012]
(1) In mass%, C: 0.05 to 0.2%, Si: 0.001 to 3.0%, Mn: 0.5 to 3.0%, P: 0.001 to 0.2% , Al: 0.001 to 3%, V: more than 0.1% to 1.0%, the balance being Fe and impurities, the structure of which has a main phase of ferrite having an average grain size of 1 to 5 μm, A hot-rolled steel sheet comprising V ferrite having an average grain size of 50 nm or less in ferrite grains.
[0013]
(2) In mass%, C: 0.05 to 0.2%, Si: 0.001 to 3.0%, Mn: 0.5 to 3.0%, P: 0.001 to 0.2% , Al: 0.001 to 3%, V: more than 0.1% to 1.0%, and at least one selected from one or more of the following groups (a) to (c): One or more components are contained, the balance being Fe and impurities, and the structure is mainly composed of ferrite having an average grain size of 1 to 5 μm, and carbonitrides of V having an average grain size of 50 nm or less are present in the ferrite grains. A hot-rolled steel sheet characterized by the above-mentioned.
[0014]
(A) Nb: 0.005 to 0.10% and Ti: 0.005 to 0.20%,
(B) Ca: 0.0002 to 0.010%, Zr: 0.01 to 0.10% and REM (rare element): 0.002 to 0.10%,
(C) Cr: 0.05 to 1.0% and Mo: 0.05 to 1.0%.
[0015]
Here, the “average particle size” of ferrite refers to a value obtained by multiplying the average intercept length obtained by the so-called “intercept method” by 1.128.
[0016]
The “main phase” refers to a “phase that accounts for more than 50% of the organization”.
[0017]
The carbonitride referred to in the present invention includes "carbide" and "nitride". That is, V carbonitrides include not only V “carbonitrides” but also V “carbides” and V “nitrides”.
[0018]
Further, the “carbonitride” of V refers to “carbonitride containing V”, and the “particle size” is a value defined by a half of the sum of the minor axis and major axis of each particle. "Average particle size" refers to the arithmetic average of the above particle sizes. Here, "carbonitride containing V" refers to a carbon nitride having a ratio of 10% or more in a portion excluding carbon (C) and nitrogen (N).
[0019]
“REM (rare earth element)” is a general term for a total of 17 elements of Sc, Y and lanthanoids, and the content of REM indicates the total content of the above elements.
[0020]
Hereinafter, the inventions relating to the hot-rolled steel sheets (1) and (2) are referred to as inventions (1) and (2), respectively.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have conducted various studies in order to achieve the above object, and obtained the following findings (a) to (e).
[0022]
(A) A hot-rolled steel sheet having particularly excellent ductility, hole expanding properties and fatigue resistance can be obtained by refining ferrite grains and precipitating carbon-containing nitride containing V in the ferrite grains extremely finely.
[0023]
(B) If a large amount of Ti or Nb is added, the amount of undissolved carbonitrides increases before rough rolling, which causes deterioration of ductility, hole expanding property and fatigue resistance. It is difficult to form dissolved carbonitrides, and there is no deterioration in these properties.
[0024]
(C) Even in the case where Ti and Nb are added to V in a complex manner, if the contents of Ti and Nb are optimized, that is, the condition that no undissolved carbonitride is formed when Ti or Nb is added is adopted. For example, the addition of Ti or Nb does not increase the amount of undissolved carbonitrides, and improves the ductility, hole expanding properties, and fatigue strength.
[0025]
The reason why the above-described structure provides excellent workability and fatigue resistance is not necessarily clear. However, the microstructure of the ferrite grains is made uniform by macro-refining, and the inside of the ferrite grains is further increased by the fine carbonitride containing V. It is presumed to be based on uniform reinforcement.
[0026]
(D) The above-mentioned fine ferrite grains and the structure in which the fine carbonitrides containing V are precipitated in the ferrite grains are subjected to finish rolling by a series of tandem rolling mills after rough rolling in a rolling stand one stage before the final stage. It can be obtained by rolling at an Ar temperature of 3 points or more, and then cooling it to a temperature of not more than “Ar 3 points-50 ° C.” at an average cooling rate of 50 ° C./second or more, and then subjecting the final stand to a reduction of 20% or less.
[0027]
Although the reason why the above-described structure is obtained by such finish rolling is not necessarily clear, the rapid cooling before the final rolling causes the strain imparted to the austenite in the rolling at the stand one stage before the final rolling to be maintained. Strain accumulates because it is subjected to rolling at the final stand as it is, and the latent time for ferrite nucleation is consumed between the stand one stage before the final and the final stand, and undergoes rolling at the final stand This causes (1) the ferrite nucleation to be promoted to make the ferrite finer, and (2) the carbon becoming supersaturated ferrite, which promotes the fine precipitation of V carbonitride. Guessed.
[0028]
The present invention of the above (1) and (2) has been completed based on the above findings.
[0029]
Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" of the content of each element means "% by mass".
(A) Chemical composition C of hot-rolled steel sheet:
C has an effect of increasing the strength of the steel sheet, and an effect can be obtained by containing 0.05% or more. However, if the content exceeds 0.20%, workability and weldability deteriorate. Therefore, the content of C is determined to be 0.05 to 0.2%. From the viewpoint of increasing the strength, the content of C is preferably more than 0.08% and up to 0.2%, more preferably more than 0.1% and up to 0.2%. .
[0030]
Si:
Si has an effect of improving the strength, ductility, and hole-expandability of a steel sheet through solid solution strengthening. However, even if the content of Si exceeds 3.0%, the effect of the above-described action is saturated and the weldability is deteriorated. On the other hand, the lower limit may be 0%, but is set to 0.001% from the viewpoint of cost required for reduction. Therefore, the Si content is set to 0.001 to 3.0%. From the viewpoint of workability, the upper limit of Si is preferably set to 2.0%.
[0031]
Mn:
Mn has the effect of securing the strength of the steel sheet, fixing S present as an impurity in the steel as MnS, and suppressing cracking that occurs during hot working such as continuous casting or hot rolling. However, when the content of Mn is less than 0.5%, the effect of suppressing cracking by the above-described action cannot be obtained. On the other hand, when the content exceeds 3.0%, not only the action is saturated but also , Resulting in a reduction in workability. For this reason, the content of Mn is set to 0.5 to 3.0%. Note that the lower limit of the Mn content from the viewpoint of increasing the strength is preferably 1.0%. The upper limit of the Mn content is preferably 2.5% from the viewpoint of workability, and more preferably less than 2.2%.
[0032]
P:
P has an effect of increasing the strength of the steel sheet. To obtain this effect, a content of 0.001% or more is required. On the other hand, when P is contained in excess of 0.2%, not only embrittlement due to grain boundary segregation but also weldability is deteriorated. Therefore, the content of P is set to 0.001 to 0.2%. The upper limit of the P content is preferably 0.1%, and in order to further improve the workability, the upper limit is more preferably 0.05%.
[0033]
Al:
Al has a deoxidizing effect, an increase in the proportion of ferrite as a main phase in the structure, and an effect of increasing the amount of “retained austenite” in so-called “TRIP steel”. However, if the content is less than 0.001%, the above effects cannot be obtained. On the other hand, even if Al is contained in excess of 3%, the above effect is saturated and the cost is increased. Therefore, the content of Al is set to 0.001 to 3%. When Al is added only for the purpose of deoxidation, the upper limit of the Al content is preferably 0.10% from the viewpoint of economy.
[0034]
V:
V is the most important element in the present invention. V is finely precipitated as a carbonitride on a ferrite ground, and has an effect of increasing strength and improving ductility, hole expanding properties and fatigue resistance properties. However, when the content is 0.1% or less, the effect of addition is poor. On the other hand, even if V is contained in excess of 1.0%, the above effect is saturated, and the carbonitride of V becomes coarse, and the ductility, hole expanding property and fatigue resistance are rather deteriorated. Therefore, the content of V is set to be more than 0.1% and up to 1.0%. The V content is preferably 0.2% to 1.0%, and more preferably 0.3% to 1.0%.
[0035]
The chemical composition of the hot-rolled steel sheet according to the invention (1) is composed of the above-mentioned elements from C to V, with the balance being Fe and impurities.
[0036]
The chemical composition of the hot-rolled steel sheet according to the invention of the above (2) is the same as that of the following groups (a) to (c), instead of part of Fe of the steel according to the invention of the above (1). It contains at least one or more components selected from one or more groups.
[0037]
(A) Nb: 0.005 to 0.10% and Ti: 0.005 to 0.20;
(B) Ca: 0.0002 to 0.010%, Zr: 0.01 to 0.10% and REM (rare element): 0.002 to 0.10%,
(C) Cr: 0.05 to 1.0% and Mo: 0.05 to 1.0%.
[0038]
Here, Nb and Ti described in the above group (a) precipitate as carbonitride on the ferrite ground and have an effect of further increasing the strength by precipitation strengthening. Therefore, Nb and Ti are used alone within the range described below. May be contained, or may be contained in combination.
[0039]
(B) Since any of the elements from Ca to REM (rare earth element) described in group (b) has the effect of adjusting the shape of inclusions and improving cold workability, the elements from Ca to REM are as follows. Each of them may be contained alone within the stated range, or two or more thereof may be contained in combination.
[0040]
REM refers to a total of 17 elements of Sc, Y and lanthanoid as described above, and may be added in the form of misch metal. As described above, the REM content in the present invention indicates the total content of the above elements.
[0041]
Further, since Cr and Mo described in the above group (c) both have an effect of increasing the strength by solid solution strengthening, each of Cr and Mo may be contained alone within the range described below, It may be contained in combination.
[0042]
(A) Groups (Nb and Ti):
Both Nb and Ti are elements that precipitate as carbonitride on ferrite ground and have the effect of further increasing the strength by precipitation strengthening. In order to surely obtain this effect, it is preferable that the contents of both Nb and Ti be 0.005% or more. However, even if the content of Nb exceeds 0.10% and the content of Ti exceeds 0.20%, the above effect is saturated and the cost is increased. Therefore, when Nb and Ti are added, their contents are preferably 0.005 to 0.10% and 0.005 to 0.20%, respectively.
[0043]
In addition, from the viewpoint of reducing the amount of undissolved Ti and Nb carbonitrides before rough rolling and further improving the strength, ductility, hole expanding properties and fatigue resistance properties, the contents of Ti and Nb are In addition to the above-mentioned rules, it is preferable that the value represented by the following formula (1) satisfies 0.0190 or less. It is more preferably 0.0165 or less, still more preferably 0.0145 or less.
[0044]
{(48/93) Nb (%) + Ti (%)} × C (%) (1).
[0045]
(B) Groups (Ca, Zr and REM):
Ca, Zr and REM are all elements that have the effect of adjusting the shape of inclusions and improving cold workability. To ensure this effect, it is preferable that the content of Ca is 0.0002% or more, the content of Zr is 0.01% or more, and the content of REM is 0.002% or more. However, if the contents of Ca, Zr, and REM exceed 0.010%, 0.10%, and 0.10%, respectively, the amount of inclusions in the steel becomes too large, and the workability may be deteriorated. Therefore, when Ca, Zr and REM are added, their contents are preferably 0.0002 to 0.010%, 0.01 to 0.10%, and 0.002 to 0.10%, respectively. .
[0046]
(C) Groups (Cr and Mo):
Cr and Mo are both elements having the effect of increasing the strength of the steel sheet by solid solution strengthening. In order to surely obtain this effect, it is preferable that the contents of Cr and Mo are both 0.05% or more. However, even if both Cr and Mo are contained in excess of 1.0%, the above effects are saturated and the cost is increased. Therefore, when Cr and Mo are added, the content of each is preferably 0.05 to 1.0%.
[0047]
With respect to the elements from the above groups (a) to (c), elements selected from a plurality of groups may be contained in combination.
[0048]
In addition, as impurities mixed in steel, S, N and the like can be mentioned. For example, it is desirable to regulate the contents of S and N as follows, if possible.
[0049]
S:
Since S forms sulfide-based inclusions and reduces workability, its content is desirably suppressed to 0.05% or less. In order to ensure more excellent workability, the S content is more preferably 0.008% or less, and most preferably 0.003% or less.
[0050]
N:
Since N reduces workability, its content is desirably suppressed to less than 0.01%. Note that the N content is more preferably 0.006% or less.
[0051]
Since Cu and Ni have the functions of strengthening the transformation and improving the corrosion resistance, each of them may contain 0.05 to 1.0%.
[0052]
The steel having the above-described composition may be, for example, any of rimed steel, capped steel, semi-killed steel, and killed steel melted by a converter, an electric furnace, an open-hearth furnace, and the like. Or a continuous casting method.
(B) Structure main phase of hot rolled steel sheet:
The main phase must be ferrite having an average particle size of 1 to 5 μm. This is because when a phase other than ferrite, for example, bainite, martensite, cementite, or pearlite forms a main phase, the strength is increased and ductility and hole expanding properties are reduced. The “main phase” refers to “a phase whose ratio in the structure exceeds 50%”, and the ratio of the main phase ferrite to the structure is preferably 60% or more, and more preferably 70% or more. .
[0053]
The ferrite has an average particle size of 1 to 5 μm for the following reason.
[0054]
That is, when the average grain size of the ferrite, which is the main phase, is 5 μm or less, the target strength can be secured with a smaller alloy content as compared with the conventional steel sheet, and the deterioration of properties other than the strength is small. Plating properties are also good. If the average grain size of ferrite exceeds 5 μm, the degree of increase in strength due to the refinement of the structure becomes extremely small, and it becomes necessary to increase the content of alloying elements, resulting in an increase in cost, ductility, hole-expandability and fatigue resistance. This leads to deterioration of characteristics. However, when the ferrite has a fine structure with an average particle size of less than 1 μm, the ductility is rather lowered and the workability is lowered. From the viewpoint of obtaining high strength, good workability, and excellent fatigue resistance, the upper limit of the average grain size of ferrite is preferably 4 μm, and more preferably 3 μm. On the other hand, from the viewpoint of ensuring even better workability, the lower limit of the average grain size of ferrite is preferably set to 2 μm.
[0055]
Therefore, in the present invention, the main phase is ferrite having an average particle size of 1 to 5 μm.
[0056]
Here, as described above, the “average particle size” of ferrite refers to a value obtained by multiplying the average intercept length obtained by the so-called “intercept method” by 1.128.
[0057]
When the structures other than the main phase, ferrite, are collectively referred to as a second phase, the second phase is composed of one or more of cementite, pearlite, bainite, martensite, and untransformed austenite (so-called “retained austenite”). . In addition, from the viewpoint of further improving the hole expanding property and the fatigue resistance property, the ratios of martensite and retained austenite as the second phase are each preferably less than 5%, and if each is less than 3%. More preferred. It is particularly preferable that the ratios of martensite and retained austenite as the second phase are both 0%.
[0058]
Here, it is known that the volume ratio of a certain phase is equal to the area ratio. Therefore, the ratio of the ferrite to the structure is determined from, for example, the ratio of the ferrite obtained by a normal two-dimensional evaluation method. do it.
[0059]
V carbonitride in ferrite grains:
V carbonitride having an average particle diameter of 50 nm or less must be present in the grains of the ferrite as the main phase.
[0060]
If V carbonitride does not exist in the ferrite grains, a hot-rolled steel sheet having desired ductility, hole-expandability and fatigue resistance, in particular, cannot be obtained. Further, even if V carbonitride is present in the ferrite grains, if the average grain size exceeds 50 nm, the ductility, hole expanding properties, and fatigue resistance properties decrease.
[0061]
Therefore, in the present invention, it has been determined that V-carbonitrides having an average particle size of 50 nm or less exist in the grains of the main phase ferrite.
[0062]
The particle size of the V carbonitride present in the ferrite grains is preferably 20 nm or less, and more preferably less than 10 nm. The lower limit of the particle size of the V carbonitride present in the ferrite grains is preferably about 2 nm from the viewpoints of ductility, hole expandability and fatigue resistance. Preferably it is 4 nm or more.
[0063]
Here, the carbonitride referred to in the present invention includes “carbide” and “nitride”, that is, the carbonitride of V includes not only “carbonitride” of V but also “carbide of V”. ”And V“ nitride ”are also included, and“ carbonitride ”of V refers to“ carbonitride containing V ”, and the“ particle size ”is defined as the minor axis and major axis of each particle. "Average particle size" refers to the arithmetic mean of the above particle size, and "carbonitride containing V" refers to carbon (C) and nitrogen (N). As described above, it indicates that the ratio of V in the portion excluding is 10% or more.
[0064]
In order to provide the hot-rolled steel sheet with more ductility, hole expanding property and fatigue resistance, the width of a region without fine precipitates near the ferrite grain boundary (so-called “precipitation-free zone”) is 0.3 μm. The following is preferred. The more preferable width of the non-precipitation zone is 0.2 μm or less, and very preferably 0.1 μm or less.
[0065]
The hot-rolled steel sheet according to the inventions (1) and (2) is, for example, a tandem rolling mill after rough rolling is performed on a steel ingot or a billet having the component composition described in (A). In the finishing rolling by the row, rolling is performed at the Ar three points or more in the rolling stand one stage before the final stage, and then cooled at a mean cooling rate of 50 ° C./sec or more to a temperature of “Ar three points-50 ° C.” or less, It can be manufactured by subjecting the final stand to a reduction of 20% or less. The “average cooling rate” refers to a value obtained by dividing a temperature difference before and after cooling by a cooling time.
[0066]
The steel ingots and slabs to be subjected to rough rolling are those that have been once cooled and then reheated to a temperature of three or more Ac, or steel ingots that have not been cooled to a temperature range of three or less Ar after casting. Alternatively, any steel slab whose temperature has not been lowered to a temperature range of three or less Ar after hot working may be used. From the viewpoint of grain refinement, it is more preferable that the material is once cooled and then reheated to a temperature of three or more Ac. When subjected to rough rolling as cast, it may be passed through an auxiliary heating device or charged into a heating furnace for the purpose of heat retention or heating.
[0067]
In addition, when the steel ingot or the steel slab is once cooled and then reheated to a temperature of three or more Ac, the heating temperature is preferably 1200 ° C. or less that does not coarsen austenite crystal grains. The temperature is preferably set to 1000 ° C. or higher in order to secure the rolling temperature and reduce the load on the rolling mill. More preferably, the temperature is 1100 ° C. or higher.
[0068]
Moreover, not lowered the temperature after temperature drop to between steel ingot or heat not processed until Ar 3 point or less of the temperature range to Ar 3 point or less of the temperature range after casting any regard to the steel slab, casting and hot working Thereafter, it is desirable to cool the steel ingot or slab to a temperature range of 1200 ° C. or lower and then perform rough rolling to suppress the growth of crystal grains during rolling. In this case, the rough rolling is preferably started from a temperature range of 1000 ° C. or higher in order to secure a rolling temperature and reduce the load on the rolling mill. More preferably, the temperature is 1100 ° C. or higher.
[0069]
In addition, hot rough rolling may be performed by an ordinary method.
[0070]
From the viewpoint of suppressing the growth of crystal grains during finish rolling, it is preferable to lower the starting temperature of finish rolling. However, if the temperature before the rolling-side tip of the material to be rolled enters the tandem rolling mill row is lowered, the temperature drop at the rear end and the edge becomes large, so that the rear end and the edge of the material to be rolled are reduced. In order to prevent the temperature from dropping in the process, an auxiliary heating device may be used before the finish rolling to maintain the temperature of the material to be rolled, especially the temperature of the rear end and the edge of the material to be rolled. In this case, the heating temperature of the auxiliary heating device is preferably set to 1100 ° C. or lower. Note that the above-mentioned heating may be heating to a temperature of three or more Ac at which rolling in the austenite region can be ensured as finish rolling, but heating to a temperature of 950 ° C. or more is more preferable.
[0071]
Finish rolling is carried out at a rolling stand immediately before the last stage of the tandem rolling mill row at three or more Ar points, and then cooled at a mean cooling rate of 50 ° C./sec or more to a temperature of “Ar three points−50 ° C.” or less. After that, a reduction of 20% or less is applied in the final stand.
[0072]
According to the above conditions, nucleation of ferrite is promoted, so that desired fine ferrite can be stably and reliably obtained.
[0073]
Rolling at the stand one step before the final stage causes not only the formation of processed ferrite at less than three points of Ar, but also insufficient concentration of strain in untransformed austenite due to concentration of strain in soft ferrite. May not be achieved. From the viewpoint of accumulation of rolling distortion, the rolling temperature is preferably “Ar 3 points + 100 ° C.” or less, and more preferably “Ar 3 points + 60 ° C.” or less. Even when the average cooling rate after the rolling at the first-stage stand is lower than 50 ° C./sec, the ferrite can not be refined in some cases. The average cooling rate is preferably at least 100 ° C./sec, more preferably at least 200 ° C./sec.
[0074]
If the cooling temperature after rolling at the stand one stage before the final stage is higher than “Ar 3 points−50 ° C.”, it may not be possible to achieve the reduction in size of the ferrite to a desired size. . The cooling temperature after rolling at the stand one stage before the final stage is more preferably “Ar 3 points−100 ° C.” or less, and very preferably “Ar 3 points−150 ° C.” or less.
[0075]
The rolling at the final stand is performed by a draining function for preventing the cooling water after the rolling at the previous stage from flowing out to the exit side of the final stand (the exit side of the row of tandem rolling mills). It has a function of applying tension to the material to be rolled with the stand and preventing the deterioration of the sheet passing property and the sheet thickness shape, and also has a cooling effect by heat removal from the roll. Therefore, in the final stand, the rolling material may be brought into contact with the roll only, and the rolling reduction may be 0%. However, from the viewpoint of sufficiently accumulating the strain and making the crystal grains of ferrite finer, the rolling reduction in the final stand is preferably 1% or more, more preferably 5% or more. On the other hand, the upper limit of the rolling reduction is preferably set to 20%. If it exceeds 20%, ferrite may be formed and workability may be degraded. In addition, an excessive reduction ratio may cause a failure in sheet thickness shape. The upper limit of the rolling reduction is more preferably 15%, and very preferably 10%.
[0076]
The hot rolling is preferably performed using a lubricant for the purpose of reducing the rolling load and the like. Further, cooling may be performed between the stand from the last stage of the tandem rolling mill row of “tandem hot rolling” to the stand two steps before to suppress the temperature rise of the material to be rolled due to the reduction. It is preferable that the lubricating rolling is performed on the stand from the last stage to the immediately preceding stage from the viewpoint of sheet passing property.
[0077]
After the finish rolling, the steel sheet to be rolled may be cooled and wound. The cooling conditions after the finish rolling, the winding temperature, and the cooling conditions after the winding may be appropriately determined according to the structure of the hot-rolled steel sheet to be manufactured.
[0078]
For example, when a structure containing pearlite or cementite is desired as the second phase, cooling and winding may be performed under conditions that avoid the formation of a low-temperature transformation phase such as bainite or martensite. Further, when it is desired to obtain bainite or a composite structure such as a so-called “DP steel (dual phase steel)” or “TRIP steel” as the second phase, cooling such as passing through a nose of a ferrite region on a cooling curve is performed. After the ferrite transformation is promoted by performing quenching, quenching may be performed after quenching to the bainite or martensite region while avoiding the pearlite transformation.
[0079]
From the viewpoint of making the grain size of ferrite extremely fine, it is more preferable to start cooling within an extremely short time after finish rolling, for example, within 0.5 seconds after the finish rolling. However, such cooling immediately after the end of finish rolling hinders the measurement of temperature, sheet thickness and sheet width and causes a decrease in productivity. Inevitable.
[0080]
When the hot-rolled steel sheet according to the present invention is subjected to surface treatment such as hot-dip galvanizing, galvannealing, and electroplating, it is possible to obtain a surface-treated steel sheet that also has excellent corrosion resistance.
[0081]
Hereinafter, the present invention will be described in more detail with reference to examples.
[0082]
【Example】
A steel having a chemical composition shown in Table 1 was heated using an experimental rolling mill under the conditions shown in Table 2, and was subjected to rolling corresponding to rough rolling and finish rolling to obtain a steel sheet having a thickness of 3.2 mm. After that, a winding simulation was performed.
[0083]
The winding simulation is performed by charging a steel sheet cooled to the winding temperature into an electric furnace maintained at the winding temperature, holding the steel sheet at that temperature for 1 hour, and then cooling at an average cooling rate of 20 ° C./hour. The temperature history after winding was simulated.
[0084]
[Table 1]
[0085]
[Table 2]
[0086]
Specimens were obtained from the obtained steel sheet, and the structure, tensile properties, hole expandability, and fatigue resistance properties were investigated.
[0087]
The structure is determined by using an optical microscope or an electron microscope to determine the phase, and the average grain size and area ratio of ferrite (accordingly, the volume ratio), the size (width) of the precipitation-free zone, and the grain size of V carbonitride I asked.
[0088]
The tensile test was performed by collecting a JIS No. 5 tensile test piece from the obtained steel sheet.
[0089]
In addition, a square test piece of 100 mm in length and width was sampled, a punched hole having a diameter of 10 mm was punched in the center with a punch at a clearance of 12.5%, and a test was conducted in which the hole was expanded with a conical punch having a vertex angle of 60 °. The hole expansion ratio (HER (%)) was determined by the following equation (2).
[0090]
HER (%) = {(hole diameter at the time of occurrence of through-thickness cracking−initial hole diameter) / initial hole diameter} × 100 (2).
[0091]
The fatigue resistance was evaluated by a swing plane bending test using the test piece shown in FIG. That performs a plane bending test by using a test piece of
[0092]
Table 3 summarizes the results of each of the above surveys. Table 3 also shows the fatigue limit ratio (fatigue strength / tensile strength).
[0093]
[Table 3]
[0094]
As is clear from Table 3, the hot-rolled steel sheets of Test Nos. 1 to 12 having the chemical composition and structure defined in the present invention have strength-ductility balance (TS × El) and strength-hole expanding balance (TS × HER). It is a hot-rolled steel sheet with excellent fatigue resistance characteristics (fatigue limit ratio).
[0095]
On the other hand, in the case of Test Nos. 13 to 15 out of the conditions defined in the present invention, at least one of ductility, hole expanding property and fatigue resistance is inferior.
[0096]
That is, in Test No. 13, since the V content of the steel exceeded the requirement of the present invention and the grain size of V carbonitride in the structure was large, the ductility and hole expanding properties were low, and the fatigue resistance was also poor. I have.
[0097]
Test No. 14 is inferior in ductility and hole expandability because the Mn content of the steel exceeds the requirement of the present invention and the proportion of ferrite in the structure is as low as 36%.
[0098]
Test No. 15 is inferior in ductility and hole expandability because the C content of the steel exceeds the requirement of the present invention and the proportion of ferrite in the structure is as low as 45%.
[0099]
【The invention's effect】
The hot-rolled steel sheet of the present invention is excellent in strength, ductility, hole expandability, and fatigue resistance, and can be used as a material for high-strength structural members used in automobiles and various industrial machines.
[Brief description of the drawings]
FIG. 1 is a view showing a test piece for a fatigue test used in an example.
Claims (2)
(a)Nb:0.005〜0.10%及びTi:0.005〜0.20%
(b)Ca:0.0002〜0.010%、Zr:0.01〜0.10%及びREM(希士類元素):0.002〜0.10%
(c)Cr:0.05〜1.0%及びMo:0.05〜1.0%In mass%, C: 0.05-0.2%, Si: 0.001-3.0%, Mn: 0.5-3.0%, P: 0.001-0.2%, Al: 0.001 to 3%, V: more than 0.1% to 1.0%, and at least one or more selected from one or more of the following groups (a) to (c): The balance is composed of Fe and impurities, the structure is mainly composed of ferrite having an average grain size of 1 to 5 μm, and carbonitride of V having an average grain size of 50 nm or less is present in the ferrite grains. And hot rolled steel sheet.
(A) Nb: 0.005 to 0.10% and Ti: 0.005 to 0.20%
(B) Ca: 0.0002 to 0.010%, Zr: 0.01 to 0.10%, and REM (rare element): 0.002 to 0.10%
(C) Cr: 0.05-1.0% and Mo: 0.05-1.0%
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002308932A JP4304421B2 (en) | 2002-10-23 | 2002-10-23 | Hot rolled steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002308932A JP4304421B2 (en) | 2002-10-23 | 2002-10-23 | Hot rolled steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004143518A true JP2004143518A (en) | 2004-05-20 |
JP4304421B2 JP4304421B2 (en) | 2009-07-29 |
Family
ID=32454940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002308932A Expired - Fee Related JP4304421B2 (en) | 2002-10-23 | 2002-10-23 | Hot rolled steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4304421B2 (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006161112A (en) * | 2004-12-08 | 2006-06-22 | Sumitomo Metal Ind Ltd | High-strength hot rolled steel sheet and its production method |
JP2006183138A (en) * | 2004-11-30 | 2006-07-13 | Jfe Steel Kk | Thin steel sheet and its production method |
JP2006183139A (en) * | 2004-11-30 | 2006-07-13 | Jfe Steel Kk | Automobile member and its production method |
JP2006183141A (en) * | 2004-11-30 | 2006-07-13 | Jfe Steel Kk | High-strength hot rolled steel sheet and its production method |
US20080199347A1 (en) * | 2005-08-04 | 2008-08-21 | Arcelormittal France | Method of Producing High-Strength Steel Plates with Excellent Ductility and Plates Thus Produced |
JP2008285741A (en) * | 2007-05-21 | 2008-11-27 | Sumitomo Metal Ind Ltd | High-strength hot rolled steel sheet and method for producing the same |
JP2009019214A (en) * | 2007-06-15 | 2009-01-29 | Sumitomo Metal Ind Ltd | High-strength steel sheet and its manufacturing method |
WO2009017256A1 (en) | 2007-07-31 | 2009-02-05 | Jfe Steel Corporation | High-strength steel sheet |
JP2009084637A (en) * | 2007-09-28 | 2009-04-23 | Kobe Steel Ltd | High strength hot rolled steel sheet having excellent fatigue property and stretch flange formability |
JP2009084643A (en) * | 2007-09-28 | 2009-04-23 | Kobe Steel Ltd | Hot rolled steel sheet having excellent fatigue property and stretch flange formability balance |
JP2009084648A (en) * | 2007-09-28 | 2009-04-23 | Kobe Steel Ltd | High strength hot rolled steel sheet having excellent fatigue strength and stretch-flange formability |
WO2011004779A1 (en) | 2009-07-10 | 2011-01-13 | Jfeスチール株式会社 | High-strength steel sheet and manufacturing method therefor |
JP2011074497A (en) * | 2004-11-30 | 2011-04-14 | Jfe Steel Corp | Thin steel sheet |
JP2011102434A (en) * | 2004-11-30 | 2011-05-26 | Jfe Steel Corp | Method for manufacturing high-strength hot-rolled steel sheet |
US7955444B2 (en) | 2005-08-05 | 2011-06-07 | Jfe Steel Corporation | High strength steel sheet and method for manufacturing the same |
WO2011122030A1 (en) * | 2010-03-31 | 2011-10-06 | Jfeスチール株式会社 | Hot-dip galvanized steel sheet with high tensile strength and superior processability and method for producing same |
WO2011122031A1 (en) * | 2010-03-31 | 2011-10-06 | Jfeスチール株式会社 | Hot-rolled steel sheet with high tensile strength and superior processability and method for producing same |
KR101149184B1 (en) * | 2010-08-30 | 2012-05-25 | 현대제철 주식회사 | METHOD OF MANUFACTURING THE HIGH STRENGTH STRUCTURAL STEEL OF TENSILE STRENGTH OF 750MPa GRADE AND HIGH STRENGTH AND THE STEEL USING THEREOF |
JP2012172235A (en) * | 2011-02-24 | 2012-09-10 | Jfe Steel Corp | High-strength hot-rolled steel sheet having excellent bending workability and method for producing the same |
JP2012172234A (en) * | 2011-02-24 | 2012-09-10 | Jfe Steel Corp | High-strength hot-rolled steel sheet having excellent bending workability, and method for producing the same |
JP2012172237A (en) * | 2011-02-24 | 2012-09-10 | Jfe Steel Corp | High-strength hot-rolled steel sheet having excellent bending workability and method for producing the same |
JP2012172236A (en) * | 2011-02-24 | 2012-09-10 | Jfe Steel Corp | High-strength hot-rolled steel sheet having excellent bending workability, and method for producing the same |
JP2013019046A (en) * | 2011-06-14 | 2013-01-31 | Jfe Steel Corp | High strength hot dip galvanized hot rolled steel sheet and method for producing the same |
WO2013111556A1 (en) * | 2012-01-26 | 2013-08-01 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet and method for producing same |
WO2013115205A1 (en) * | 2012-01-31 | 2013-08-08 | Jfeスチール株式会社 | Hot-rolled steel for power generator rim and method for manufacturing same |
WO2014051005A1 (en) | 2012-09-26 | 2014-04-03 | 新日鐵住金株式会社 | Composite-structure steel sheet and process for producing same |
US20140178712A1 (en) * | 2011-08-09 | 2014-06-26 | Naoki Maruyama | High yield ratio hot rolled steel sheet which has excellent low temperature impact energy absorption and haz softening resistance and method of production of same |
WO2014122215A1 (en) * | 2013-02-11 | 2014-08-14 | Tata Steel Ijmuiden B.V. | A high-strength hot-rolled steel strip or sheet with excellent formability and fatigue performance and a method of manufacturing said steel strip or sheet |
US8815025B2 (en) | 2005-11-25 | 2014-08-26 | Jfe Steel Corporation | High strength steel excellent in uniform elongation properties and method of manufacturing the same |
US9738273B2 (en) | 2012-01-31 | 2017-08-22 | Mitsubishi Electric Corporation | Vehicle control apparatus |
KR20180027588A (en) | 2015-07-31 | 2018-03-14 | 신닛테츠스미킨 카부시키카이샤 | Processed Organic Transformation Type Composite Steel Sheet and Method of Manufacturing the Same |
KR20190034281A (en) | 2016-08-18 | 2019-04-01 | 신닛테츠스미킨 카부시키카이샤 | Hot-rolled steel sheet |
US10273566B2 (en) | 2012-12-11 | 2019-04-30 | Nippon Steel & Sumitomo Metal Corporation | Hot-rolled steel sheet and method for producing same |
CN115917027A (en) * | 2020-04-14 | 2023-04-04 | 日本制铁株式会社 | Near net shape steel material and its producing method |
-
2002
- 2002-10-23 JP JP2002308932A patent/JP4304421B2/en not_active Expired - Fee Related
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4735211B2 (en) * | 2004-11-30 | 2011-07-27 | Jfeスチール株式会社 | Automotive member and manufacturing method thereof |
JP2006183138A (en) * | 2004-11-30 | 2006-07-13 | Jfe Steel Kk | Thin steel sheet and its production method |
JP2006183139A (en) * | 2004-11-30 | 2006-07-13 | Jfe Steel Kk | Automobile member and its production method |
JP2006183141A (en) * | 2004-11-30 | 2006-07-13 | Jfe Steel Kk | High-strength hot rolled steel sheet and its production method |
JP2011102434A (en) * | 2004-11-30 | 2011-05-26 | Jfe Steel Corp | Method for manufacturing high-strength hot-rolled steel sheet |
JP4682822B2 (en) * | 2004-11-30 | 2011-05-11 | Jfeスチール株式会社 | High strength hot rolled steel sheet |
JP2011074497A (en) * | 2004-11-30 | 2011-04-14 | Jfe Steel Corp | Thin steel sheet |
JP4730070B2 (en) * | 2004-11-30 | 2011-07-20 | Jfeスチール株式会社 | Manufacturing method of thin steel sheet |
JP2006161112A (en) * | 2004-12-08 | 2006-06-22 | Sumitomo Metal Ind Ltd | High-strength hot rolled steel sheet and its production method |
JP4581665B2 (en) * | 2004-12-08 | 2010-11-17 | 住友金属工業株式会社 | High-strength hot-rolled steel sheet and its manufacturing method |
US9732404B2 (en) * | 2005-08-04 | 2017-08-15 | Arcelormittal France | Method of producing high-strength steel plates with excellent ductility and plates thus produced |
US20080199347A1 (en) * | 2005-08-04 | 2008-08-21 | Arcelormittal France | Method of Producing High-Strength Steel Plates with Excellent Ductility and Plates Thus Produced |
US7955444B2 (en) | 2005-08-05 | 2011-06-07 | Jfe Steel Corporation | High strength steel sheet and method for manufacturing the same |
US8815025B2 (en) | 2005-11-25 | 2014-08-26 | Jfe Steel Corporation | High strength steel excellent in uniform elongation properties and method of manufacturing the same |
JP2008285741A (en) * | 2007-05-21 | 2008-11-27 | Sumitomo Metal Ind Ltd | High-strength hot rolled steel sheet and method for producing the same |
JP2009019214A (en) * | 2007-06-15 | 2009-01-29 | Sumitomo Metal Ind Ltd | High-strength steel sheet and its manufacturing method |
WO2009017256A1 (en) | 2007-07-31 | 2009-02-05 | Jfe Steel Corporation | High-strength steel sheet |
JP2009084648A (en) * | 2007-09-28 | 2009-04-23 | Kobe Steel Ltd | High strength hot rolled steel sheet having excellent fatigue strength and stretch-flange formability |
JP2009084643A (en) * | 2007-09-28 | 2009-04-23 | Kobe Steel Ltd | Hot rolled steel sheet having excellent fatigue property and stretch flange formability balance |
JP2009084637A (en) * | 2007-09-28 | 2009-04-23 | Kobe Steel Ltd | High strength hot rolled steel sheet having excellent fatigue property and stretch flange formability |
WO2011004779A1 (en) | 2009-07-10 | 2011-01-13 | Jfeスチール株式会社 | High-strength steel sheet and manufacturing method therefor |
US9212411B2 (en) | 2009-07-10 | 2015-12-15 | Jfe Steel Corporation | High strength steel sheet and method for manufacturing the same |
WO2011122030A1 (en) * | 2010-03-31 | 2011-10-06 | Jfeスチール株式会社 | Hot-dip galvanized steel sheet with high tensile strength and superior processability and method for producing same |
WO2011122031A1 (en) * | 2010-03-31 | 2011-10-06 | Jfeスチール株式会社 | Hot-rolled steel sheet with high tensile strength and superior processability and method for producing same |
JP2011225978A (en) * | 2010-03-31 | 2011-11-10 | Jfe Steel Corp | Hot-dip galvanized steel sheet with high tensile strength and superior processability and method for producing same |
JP2011225980A (en) * | 2010-03-31 | 2011-11-10 | Jfe Steel Corp | Hot-rolled steel sheet with high tensile strength and superior processability and method for producing same |
US9068238B2 (en) | 2010-03-31 | 2015-06-30 | Jfe Steel Corporation | High tensile strength hot rolled steel sheet having excellent formability and method for manufacturing the same |
CN102906296A (en) * | 2010-03-31 | 2013-01-30 | 杰富意钢铁株式会社 | Hot-rolled steel sheet with high tensile strength and superior processability and method for producing same |
KR101149184B1 (en) * | 2010-08-30 | 2012-05-25 | 현대제철 주식회사 | METHOD OF MANUFACTURING THE HIGH STRENGTH STRUCTURAL STEEL OF TENSILE STRENGTH OF 750MPa GRADE AND HIGH STRENGTH AND THE STEEL USING THEREOF |
JP2012172236A (en) * | 2011-02-24 | 2012-09-10 | Jfe Steel Corp | High-strength hot-rolled steel sheet having excellent bending workability, and method for producing the same |
JP2012172234A (en) * | 2011-02-24 | 2012-09-10 | Jfe Steel Corp | High-strength hot-rolled steel sheet having excellent bending workability, and method for producing the same |
JP2012172237A (en) * | 2011-02-24 | 2012-09-10 | Jfe Steel Corp | High-strength hot-rolled steel sheet having excellent bending workability and method for producing the same |
JP2012172235A (en) * | 2011-02-24 | 2012-09-10 | Jfe Steel Corp | High-strength hot-rolled steel sheet having excellent bending workability and method for producing the same |
JP2013019046A (en) * | 2011-06-14 | 2013-01-31 | Jfe Steel Corp | High strength hot dip galvanized hot rolled steel sheet and method for producing the same |
US20140178712A1 (en) * | 2011-08-09 | 2014-06-26 | Naoki Maruyama | High yield ratio hot rolled steel sheet which has excellent low temperature impact energy absorption and haz softening resistance and method of production of same |
TWI453287B (en) * | 2011-08-09 | 2014-09-21 | Nippon Steel & Sumitomo Metal Corp | High impact ratio hot rolled steel sheet having excellent impact energy absorption characteristics and HAZ softening resistance under low temperature and manufacturing method thereof |
JP5565534B2 (en) * | 2012-01-26 | 2014-08-06 | Jfeスチール株式会社 | High strength hot-rolled steel sheet and manufacturing method thereof |
WO2013111556A1 (en) * | 2012-01-26 | 2013-08-01 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet and method for producing same |
JP5578288B2 (en) * | 2012-01-31 | 2014-08-27 | Jfeスチール株式会社 | Hot-rolled steel sheet for generator rim and manufacturing method thereof |
US10301698B2 (en) | 2012-01-31 | 2019-05-28 | Jfe Steel Corporation | Hot-rolled steel sheet for generator rim and method for manufacturing the same |
WO2013115205A1 (en) * | 2012-01-31 | 2013-08-08 | Jfeスチール株式会社 | Hot-rolled steel for power generator rim and method for manufacturing same |
US9738273B2 (en) | 2012-01-31 | 2017-08-22 | Mitsubishi Electric Corporation | Vehicle control apparatus |
KR20150038727A (en) | 2012-09-26 | 2015-04-08 | 신닛테츠스미킨 카부시키카이샤 | Composite-structure steel sheet and process for producing same |
WO2014051005A1 (en) | 2012-09-26 | 2014-04-03 | 新日鐵住金株式会社 | Composite-structure steel sheet and process for producing same |
US9863026B2 (en) | 2012-09-26 | 2018-01-09 | Nippon Steel & Sumitomo Metal Corporation | Dual phase steel sheet and manufacturing method thereof |
US10273566B2 (en) | 2012-12-11 | 2019-04-30 | Nippon Steel & Sumitomo Metal Corporation | Hot-rolled steel sheet and method for producing same |
JP2016513174A (en) * | 2013-02-11 | 2016-05-12 | タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv | High-strength hot-rolled steel strip or steel plate having very excellent formability and fatigue performance, and method for producing the steel strip or steel plate |
CN104981551B (en) * | 2013-02-11 | 2017-03-08 | 塔塔钢铁艾默伊登有限责任公司 | There is excellent formability and the high-strength hot-rolled steel band of fatigue behaviour or the method for sheet material and the described steel band of production or sheet material |
CN104981551A (en) * | 2013-02-11 | 2015-10-14 | 塔塔钢铁艾默伊登有限责任公司 | High-strength hot-rolled steel strip or sheet with excellent formability and fatigue performance and method of manufacturing said steel strip or sheet |
US9920391B2 (en) | 2013-02-11 | 2018-03-20 | Tata Steel Ijmuiden B.V. | High-strength hot-rolled steel strip or sheet with excellent formability and fatigue performance and a method of manufacturing said steel strip or sheet |
KR20150115748A (en) * | 2013-02-11 | 2015-10-14 | 타타 스틸 이즈무이덴 베.뷔. | A high-strength hot-rolled steel strip or sheet with excellent formability and fatigue performance and a method of manufacturing said steel strip or sheet |
WO2014122215A1 (en) * | 2013-02-11 | 2014-08-14 | Tata Steel Ijmuiden B.V. | A high-strength hot-rolled steel strip or sheet with excellent formability and fatigue performance and a method of manufacturing said steel strip or sheet |
KR102010114B1 (en) | 2013-02-11 | 2019-08-12 | 타타 스틸 이즈무이덴 베.뷔. | A high-strength hot-rolled steel strip or sheet with excellent formability and fatigue performance and a method of manufacturing said steel strip or sheet |
KR20180027588A (en) | 2015-07-31 | 2018-03-14 | 신닛테츠스미킨 카부시키카이샤 | Processed Organic Transformation Type Composite Steel Sheet and Method of Manufacturing the Same |
US10689724B2 (en) | 2015-07-31 | 2020-06-23 | Nippon Steel Corporation | Steel sheet with strain induced transformation type composite structure and method of manufacturing same |
KR20190034281A (en) | 2016-08-18 | 2019-04-01 | 신닛테츠스미킨 카부시키카이샤 | Hot-rolled steel sheet |
US11255005B2 (en) | 2016-08-18 | 2022-02-22 | Nippon Steel Corporation | Hot-rolled steel sheet |
CN115917027A (en) * | 2020-04-14 | 2023-04-04 | 日本制铁株式会社 | Near net shape steel material and its producing method |
Also Published As
Publication number | Publication date |
---|---|
JP4304421B2 (en) | 2009-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4304421B2 (en) | Hot rolled steel sheet | |
US10435762B2 (en) | High-yield-ratio high-strength cold-rolled steel sheet and method of producing the same | |
JP5029361B2 (en) | Hot-rolled steel sheet, cold-rolled steel sheet and methods for producing them | |
JP5967319B2 (en) | High strength steel plate and manufacturing method thereof | |
JP5093422B2 (en) | High strength steel plate and manufacturing method thereof | |
JP5370016B2 (en) | High-strength hot-rolled steel sheet excellent in hole expansibility and method for producing the same | |
CN109072371B (en) | High-strength steel sheet for warm working and method for producing same | |
JP4161935B2 (en) | Hot-rolled steel sheet and manufacturing method thereof | |
JP4304473B2 (en) | Manufacturing method of ultra fine grain hot rolled steel sheet | |
JP5446885B2 (en) | Cold rolled steel sheet manufacturing method | |
JP2004002969A (en) | High tension hot-rolled steel plate excellent in stretch characteristics and stretch flange formability, and its producing method | |
JP5446886B2 (en) | Cold rolled steel sheet manufacturing method | |
JP6866933B2 (en) | Hot-rolled steel sheet and its manufacturing method | |
JP6866932B2 (en) | Hot-rolled steel sheet and its manufacturing method | |
JP5482513B2 (en) | Cold rolled steel sheet and method for producing the same | |
JP5821810B2 (en) | Manufacturing method of fine-grained steel sheet | |
JP6769576B1 (en) | High-strength galvanized steel sheet and its manufacturing method | |
JP5187320B2 (en) | Cold rolled steel sheet manufacturing method | |
JP4710558B2 (en) | High-tensile steel plate with excellent workability and method for producing the same | |
JP4158737B2 (en) | Manufacturing method of fine grain hot rolled steel sheet | |
JP4905147B2 (en) | Thin high tensile hot-rolled steel sheet and manufacturing method thereof | |
EP4043594B1 (en) | High-strength steel sheet, shock-absorbing member, and method for producing high-strength steel sheet | |
JP4803210B2 (en) | Manufacturing method of fine grain hot rolled steel sheet | |
JP4207527B2 (en) | Manufacturing method of hot-rolled steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050920 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050922 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080327 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080327 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090401 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090414 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4304421 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120515 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120515 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140515 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |