JP4905147B2 - Thin high tensile hot-rolled steel sheet and manufacturing method thereof - Google Patents

Thin high tensile hot-rolled steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP4905147B2
JP4905147B2 JP2007010845A JP2007010845A JP4905147B2 JP 4905147 B2 JP4905147 B2 JP 4905147B2 JP 2007010845 A JP2007010845 A JP 2007010845A JP 2007010845 A JP2007010845 A JP 2007010845A JP 4905147 B2 JP4905147 B2 JP 4905147B2
Authority
JP
Japan
Prior art keywords
steel sheet
hot
steel
less
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007010845A
Other languages
Japanese (ja)
Other versions
JP2008174813A (en
Inventor
珠子 有賀
毅 横田
聡雄 小林
一洋 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007010845A priority Critical patent/JP4905147B2/en
Publication of JP2008174813A publication Critical patent/JP2008174813A/en
Application granted granted Critical
Publication of JP4905147B2 publication Critical patent/JP4905147B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車用部材の素材に適した、引張強度が980MPa以上で板厚2.5mm以下の薄物高張力熱延鋼板であって特に加工後の伸びフランジ性に優れた薄物高張力熱延鋼板およびその製造方法に関する。 The present invention is a thin high-tensile hot-rolled steel sheet having a tensile strength of 980 MPa or more and a plate thickness of 2.5 mm or less, which is suitable as a material for automobile members, and is particularly thin and high-tensile hot-rolled with excellent stretch flangeability after processing. It is related with a steel plate and its manufacturing method.

近年、環境保全につながる燃費向上の観点から、自動車用鋼板の高強度薄肉化が強く求められており、980MPaを超えるものへの要望が高まっている。鋼板をより軽量化するための薄肉化という面から板厚2.5mm以下の薄物に対する要望も強くなっている。また、自動車用部材はプレス成形により得られる複雑な形状のものが多く、高強度でありながら加工性にも優れた材料が必要である。   In recent years, from the viewpoint of improving fuel efficiency that leads to environmental conservation, there has been a strong demand for thin steel sheets for automobiles with high strength and thinness, and there is an increasing demand for those exceeding 980 MPa. There is also a strong demand for thin objects with a thickness of 2.5 mm or less from the viewpoint of thinning the steel sheet to make it lighter. Further, many automotive members have complicated shapes obtained by press molding, and materials that are high in strength and excellent in workability are required.

近年、複雑な形状で、かつ高強度の部品を得るために、焼入れ性の良好な鋼板を用い、鋼板を高温に加熱した状態でプレス加工を施し、プレス加工と同時に金型で鋼板を冷却することでマルテンサイト変態させる技術も用いられている(ダイクエンチ法)。しかしながら、この加工方法では生産性が悪いだけでなく、鋼板加熱時に鋼板表面にスケールが生成する問題や、一旦部品に加工した後は、組織がマルテンサイトとなっているため、その後の加工が全くできないなど種々の問題点がある。そのため、高強度を有し、かつ加工後のさらなる加工性(例えば伸びフランジ性)にも優れた鋼板の開発が急務とされている。   In recent years, in order to obtain parts with complex shapes and high strength, steel plates with good hardenability are used, and the steel plates are pressed in a state of being heated to a high temperature, and the steel plates are cooled with a mold simultaneously with the press processing. Therefore, a technique for transforming martensite is also used (die quench method). However, this processing method not only has low productivity, but also the problem of scale formation on the surface of the steel sheet when it is heated, and once it is processed into parts, the structure is martensite, so the subsequent processing is completely There are various problems such as inability to do so. Therefore, there is an urgent need to develop a steel sheet having high strength and excellent workability (for example, stretch flangeability) after processing.

従来、この種の鋼板は種々提案されており、例えば特許文献1には、転位密度の高いベイニティックフェライト組織が生成した、伸びフランジ性に優れた鋼板が提案されている。しかし、この鋼板は、転位密度の高いベイニティックフェライト組織を含むために伸びが乏しいという欠点がある。また、ベイニティックフェライト生成のために、ランナウトテーブル上での強冷却が不可避であり、薄物製造時にはランナウトテーブルでのストリップの走行性に問題が生じるため、板厚2.5mm以下の薄物を生産するには不向きである。   Conventionally, various steel sheets of this type have been proposed. For example, Patent Document 1 proposes a steel sheet excellent in stretch flangeability in which a bainitic ferrite structure having a high dislocation density is generated. However, this steel sheet has a drawback that it has poor elongation because it contains a bainitic ferrite structure having a high dislocation density. In addition, strong cooling on the run-out table is inevitable for the production of bainitic ferrite, and there is a problem with strip runnability on the run-out table when producing thin products, so thin products with a thickness of 2.5 mm or less are produced. It is unsuitable to do.

特許文献2には、組織の大部分をポリゴナルフェライトとし、TiCを中心として析出強化および固溶強化した伸びフランジ性に優れる鋼板が提案されている。しかし、この鋼板に用いられている一般的によく知られた析出物で980MPa以上に高張力化することは困難である。すなわち、980MPa以上の高強度化を図って多量のTiを添加すると、サイズの大きい析出物が生成しやすくなり、狙いどおりの強度を得ることが難しく、特性が不安定になりやすいという欠点がある。また、Ti添加量の増大と共に、TiCを固溶させるために必要なスラブ加熱温度が増大し、通常の設備では製造が困難となりやすい。   Patent Document 2 proposes a steel sheet excellent in stretch flangeability in which most of the structure is polygonal ferrite and precipitation strengthening and solid solution strengthening are centered on TiC. However, it is difficult to increase the tension to 980 MPa or more with generally well-known precipitates used in this steel sheet. That is, when a large amount of Ti is added to increase the strength of 980 MPa or more, precipitates having a large size are likely to be generated, and it is difficult to obtain the intended strength and the characteristics are likely to become unstable. . Moreover, the slab heating temperature necessary for dissolving TiC increases with an increase in the amount of Ti added, and manufacturing is likely to be difficult with normal equipment.

特許文献3には、微細なTiCおよび、またはNbCが析出したアシキュラーフェライト組織を有した、伸びフランジ性に優れた鋼板が提案されている。しかし、この鋼板も先に述べた特許文献1で提案された鋼板同様に、アシキュラーフェライトという転位密度の高い組織であるため十分な伸びが得られていない。   Patent Document 3 proposes a steel sheet having an acicular ferrite structure in which fine TiC and / or NbC are precipitated and having excellent stretch flangeability. However, like this steel sheet proposed in Patent Document 1 described above, this steel sheet is a structure having a high dislocation density called acicular ferrite, so that sufficient elongation is not obtained.

特許文献4には、平均粒径1〜5μmのフェライトを主相とし、平均粒径50nm以下のVの炭窒化物で析出強化した熱延鋼板が提案されている。ここでV析出物を微細に析出させるには低温での巻取りが必要であるが、その結果、析出物の量を増大させることが困難であり、強化に限界がある。このため、特許文献4の技術では、前記のようにフェライトの細粒化と組み合わせることが、高強度化のため必要である。ここで、引用文献4の技術では、フェライトを微細化するため、仕上げ圧延の際、タンデム圧延機列の最終から1段前の圧延スタンドにおいてAr点以上で圧延し、その後50℃/秒以上の平均冷却速度で「Ar点−50℃」以下の温度まで冷却した後、最終スタンドにおいて20%以下の圧下を施すことが必要であり、通常の製造ラインでは製造に困難性を伴う。また、この鋼板では、パーライト等の生成が許容されるため、伸びや伸びフランジ性が低下する懸念がある。 Patent Document 4 proposes a hot-rolled steel sheet having a ferrite having an average particle diameter of 1 to 5 μm as a main phase and precipitation strengthened with V carbonitride having an average particle diameter of 50 nm or less. Here, in order to finely precipitate the V precipitate, winding at a low temperature is necessary. As a result, it is difficult to increase the amount of the precipitate, and there is a limit to strengthening. For this reason, in the technique of Patent Document 4, it is necessary to combine with the ferrite fine graining as described above for high strength. Here, in the technique of the cited document 4, in order to make ferrite finer, at the time of finish rolling, rolling is performed at 3 or more points of Ar in a rolling stand one stage before the end of the tandem rolling mill row, and then 50 ° C./second or more. After cooling to a temperature of “Ar 3 points−50 ° C.” or less at an average cooling rate of 20% or less, it is necessary to apply a reduction of 20% or less in the final stand, which is difficult to manufacture in a normal production line. Moreover, in this steel plate, since generation | occurrence | production of pearlite etc. is accept | permitted, there exists a possibility that elongation and stretch flangeability may fall.

また、超高張力鋼板を得る技術として、特許文献5や特許文献6に開示された技術が開発されている。この技術は、フェライト単相中にC、Ti、Moよりなる微細炭化物を分散させ、伸びと伸びフランジ性がともに優れた超高張力鋼板を得ることができる技術である。しかしながら、上記特許文献2の技術と同様に、この技術では、980MPa以上の引張強度を得るために多量のCやTiを添加すると、通常のスラブ加熱温度(1150〜1250℃程度)ではスラブ中に析出しているTiCなどを完全には溶解させることができない場合がある。すなわち、高強度を得るべくTiCなどを完全に溶解させるにはより高温が必要となって製造が困難となる場合があり、また可能であっても設備に大きな負荷が掛かる。   Moreover, the technique disclosed by patent document 5 and patent document 6 is developed as a technique of obtaining an ultra high strength steel plate. This technique is a technique in which fine carbides composed of C, Ti, and Mo are dispersed in a ferrite single phase to obtain an ultra-high-strength steel sheet having excellent elongation and stretch flangeability. However, like the technique of the above-mentioned patent document 2, in this technique, when a large amount of C or Ti is added to obtain a tensile strength of 980 MPa or more, the slab is not heated at a normal slab heating temperature (about 1150 to 1250 ° C.). In some cases, the deposited TiC or the like cannot be completely dissolved. That is, in order to completely dissolve TiC or the like in order to obtain high strength, a higher temperature may be required, which may make manufacture difficult, and even if possible, a heavy load is placed on the equipment.

また、いずれの例においても、高強度と同時にプレス加工後のさらなる加工性については言及されていない。
特開平6−172924号公報 特開平6−200351号公報 特開平7−11382号公報 特開2004−143518号公報 特開2003−89848号公報 特開2002−322539号公報
In any of the examples, there is no mention of high strength and further workability after press working.
JP-A-6-172924 Japanese Patent Laid-Open No. 6-200351 JP-A-7-11382 JP 2004-143518 A JP 2003-89848 A JP 2002-322539 A

本発明はかかる事情に鑑みてなされたものであって、自動車用部材のようにプレス成形における断面形状が複雑な用途に適した、加工後の伸びフランジ性に優れ、製造も従来に比べて容易な980MPa以上の強度を有し、板厚2.5mm以下の薄物高張力熱延鋼板およびこのような薄物高張力熱延鋼板の製造方法を提供することを目的とする。また、本発明は、より設備負担を少なくしてこのような薄物高張力熱延鋼板を得ることができる製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is excellent in stretch flangeability after processing, suitable for applications in which the cross-sectional shape in press molding is complicated, such as an automobile member, and is easier to manufacture than conventional ones. such have a strength above 980 MPa, and an object thereof is to provide the following thin high strength hot-rolled steel sheet thickness 2.5mm and method of manufacturing such a thin high strength hot rolled steel sheet. Moreover, an object of this invention is to provide the manufacturing method which can reduce such an equipment burden and can obtain such a thin high-tensile-strength hot-rolled steel plate.

本発明者らは、上記目的を達成すべく鋭意検討を行なった結果、以下の知見を得た。
(a)転位密度が低い組織とし、微細析出物で強化すると、強度−伸びバランスが向上する。
(b)実質的にフェライト単相組織とし、微細析出物で強化すると、強度−伸びバランスが向上する。
(c)C、Ti、Mo、Vを添加し、さらにその添加バランスを適宜制御すると、これらが複合した炭化物が微細に析出する。
(d)複合析出物中のVの割合が低くなると、析出物が粗大化するため、伸びが低下する。
(e)Vを添加した鋼はTi、Moのみを添加した鋼に比べて低温で炭化物が溶解し、強化に効く微細析出物が効率よく得られる。
(f)加工後の伸びフランジ性向上には、炭化物の微細分散に加え、微量のTa添加が有効である。
As a result of intensive studies to achieve the above object, the present inventors have obtained the following knowledge.
(A) When the structure has a low dislocation density and is strengthened with fine precipitates, the strength-elongation balance is improved.
(B) When the ferrite single phase structure is substantially formed and strengthened with fine precipitates, the strength-elongation balance is improved.
(C) When C, Ti, Mo, and V are added and the addition balance is appropriately controlled, carbides in which these are combined are finely precipitated.
(D) When the proportion of V in the composite precipitate is lowered, the precipitate is coarsened, so that the elongation is lowered.
(E) Steel added with V dissolves carbides at a lower temperature than steel added only with Ti and Mo, and fine precipitates effective for strengthening can be obtained efficiently.
(F) In addition to fine dispersion of carbide, addition of a small amount of Ta is effective for improving stretch flangeability after processing.

本発明はこれらの知見に基づいて完成されたものであり、以下の(1)〜()を提供する。
(1)質量%で、C:0.06超〜0.24%、Si≦0.3%、Mn:0.5〜2.0%、P≦0.06%、S≦0.005%、Al≦0.06%、N≦0.006%、Mo:0.05〜0.5%、Ti:0.03〜0.2%、V:0.15超〜1.2%、Ta:0.0010〜0.0050%を含み、残部がFeおよび不可避的不純物からなり、C、Ti、Mo、V含有量が以下の(I)式を満足する成分組成を有し、面積比率で95%以上がフェライトであり、平均粒径10nm未満のTi、MoおよびVを含む炭化物が分散析出するとともに、該Ti、MoおよびVを含む炭化物は、原子%で表されるTi、Mo、Vが、V/(Ti+Mo+V)≧0.3を満たす平均組成を有することを特徴とする引張強度が980MPa以上で板厚2.5mm以下の薄物高張力熱延鋼板。
0.8≦(C/12)/{(Ti/48)+(Mo/96)+(V/51)}≦1.5 ・・・(I)
(ただし、C、Ti、Mo、Vは各成分の質量%を表す)
)上記(1)薄物高張力熱延鋼板において、表面に溶融亜鉛系めっき皮膜を有することを特徴とする薄物高張力熱延鋼板。
)質量%で、C:0.06超〜0.24%、Si≦0.3%、Mn:0.5〜2.0%、P≦0.06%、S≦0.005%、Al≦0.06%、N≦0.006%、Mo:0.05〜0.5%、Ti:0.03〜0.2%、V:0.15超〜1.2%、Ta:0.0010〜0.0050%を含み、残部がFeおよび不可避的不純物からなるとともに、C、Ti、Mo、V含有量が以下の(I)式を満足する成分組成を有する鋼片に、仕上圧延終了温度880℃以上、巻取温度570℃以上の条件で熱間圧延を施し、面積比率で95%以上がフェライトであり平均粒径10nm未満のTi、MoおよびVを含む炭化物が分散析出するとともに、該Ti、MoおよびVを含む炭化物は、原子%で表されるTi、Mo、Vが、V/(Ti+Mo+V)≧0.3を満たす平均組成を有する、引張強度が980MPa以上で板厚2.5mm以下の薄物高張力熱延鋼板を得ることを特徴とする薄物高張力熱延鋼板の製造方法。
0.8≦(C/12)/{(Ti/48)+(Mo/96)+(V/51)}≦1.5 ・・・(I)
(ただし、C、Ti、Mo、Vは各成分の質量%を表す)
)上記()の薄物高張力熱延鋼板の製造方法において、前記熱間圧延後の鋼板の表面に溶融亜鉛系めっき皮膜を有することを特徴とする薄物高張力熱延鋼板の製造方法。
The present invention has been completed based on these findings, and provides the following (1) to ( 4 ).
(1) By mass%, C: more than 0.06 to 0.24%, Si ≦ 0.3%, Mn: 0.5 to 2.0%, P ≦ 0.06%, S ≦ 0.005% , Al ≦ 0.06%, N ≦ 0.006%, Mo: 0.05 to 0.5%, Ti: 0.03 to 0.2%, V: more than 0.15 to 1.2%, Ta : Containing 0.0010 to 0.0050%, the balance being Fe and inevitable impurities, the C, Ti, Mo, V content has a component composition that satisfies the following formula (I), and in area ratio 95% or more is ferrite, and carbides containing Ti, Mo and V having an average particle size of less than 10 nm are dispersed and precipitated, and the carbides containing Ti, Mo and V are Ti, Mo, V expressed in atomic%. but the plate with the features and tensile strength than 980MPa to have an average composition satisfying the V / (Ti + Mo + V ) ≧ 0.3 The following thin high-strength hot-rolled steel sheet 2.5mm.
0.8 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} ≦ 1.5 (I)
(However, C, Ti, Mo, and V represent mass% of each component)
(2) In the thin high-strength hot-rolled steel sheet of the above (1), thin high-strength hot rolled steel sheet characterized by having a hot-dip galvanized coating on the surface.
( 3 ) By mass%, C: more than 0.06 to 0.24%, Si ≦ 0.3%, Mn: 0.5 to 2.0%, P ≦ 0.06%, S ≦ 0.005% , Al ≦ 0.06%, N ≦ 0.006%, Mo: 0.05 to 0.5%, Ti: 0.03 to 0.2%, V: more than 0.15 to 1.2%, Ta : A steel slab containing 0.0010 to 0.0050%, with the balance being Fe and inevitable impurities, and having a component composition in which the C, Ti, Mo, and V contents satisfy the following formula (I): Hot rolling is performed at a finish rolling finish temperature of 880 ° C. or higher and a coiling temperature of 570 ° C. or higher. The area ratio is 95% or more of ferrite, and carbides containing Ti, Mo, and V having an average particle size of less than 10 nm are dispersed. The carbide containing Ti, Mo, and V precipitates and Ti, Mo, V expressed in atomic% is V / (T + Mo + V) ≧ 0.3 has an average composition satisfying the tensile strength thin high-strength hot rolled steel sheet manufacturing method, characterized in that to obtain the following thin high strength hot-rolled steel sheet thickness 2.5mm above 980 MPa.
0.8 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} ≦ 1.5 (I)
(However, C, Ti, Mo, and V represent mass% of each component)
(4) above (3) of the thin high-strength hot-rolled steel sheet Oite the manufacturing method, a thin high-strength hot rolled steel sheet characterized by having a hot-dip galvanized coating on the surface of the steel sheet after the hot rolling Production method.

なお、引張強度が980MPa以上である本発明鋼板において、上記の平均粒径10nm未満のTi、MoおよびVを含む炭化物は、1μm当たり約5×10個以上、さらに高強度が必要な場合には1μm当たり約1×10個以上が分散析出していると考えられる。 In the steel sheet of the present invention having a tensile strength of 980 MPa or more, the carbide containing Ti, Mo, and V having an average particle size of less than 10 nm is about 5 × 10 5 or more per 1 μm 3 , and a higher strength is required. It is considered that about 1 × 10 6 or more per 1 μm 3 is dispersed and precipitated.

本発明によれば、Ti、Moに加えてVを適正なバランスで添加して、実質的にフェライト単相組織にTi、MoおよびVを含む微細な炭化物を分散析出させ、さらに微量のTaを添加することにより、加工後の伸びフランジ性に優れた高張力鋼板が得られる。   According to the present invention, V is added in an appropriate balance in addition to Ti and Mo, and fine carbides containing Ti, Mo and V are substantially dispersed and precipitated in the ferrite single phase structure, and a trace amount of Ta is further added. By adding, a high-tensile steel sheet excellent in stretch flangeability after processing can be obtained.

また、本発明によれば、C、Ti、Mo、Vを含む鋼片に、適正な条件で熱間圧延を施し、Ti、Mo、Vを含む微細な炭化物を分散析出させるので、析出物の量(数)の確保も容易であり、かつ、例えばスラブ加熱温度を高めるための特殊な設備を要することなく、鋼を強化することができる。   In addition, according to the present invention, the steel pieces containing C, Ti, Mo, V are hot-rolled under appropriate conditions, and fine carbides containing Ti, Mo, V are dispersed and precipitated. It is easy to secure the amount (number), and the steel can be strengthened without requiring special equipment for increasing the slab heating temperature, for example.

以下、本発明について、金属組織、化学成分、および製造方法に分けて具体的に説明する。   Hereinafter, the present invention will be specifically described by dividing it into a metal structure, a chemical component, and a production method.

[金属組織]
本発明に係る高張力鋼板は、実質的にフェライト単相組織であり、Ti、Mo、Vを含む炭化物が析出している。
[Metal structure]
The high-tensile steel sheet according to the present invention has a substantially ferrite single-phase structure, and carbides including Ti, Mo, and V are precipitated.

・実質的にフェライト単相組織
マトリックスを実質的にフェライト単相組織としたのは、伸びの向上には転位密度の低いフェライトが有効であるとともに、伸びフランジ性の向上には単相組織とすることが有効であり、特に延性に富むフェライト単相組織でその効果が顕著であるためである。ただし、マトリックスは必ずしも完全にフェライト単相組織でなくともよく、実質的にフェライト単相組織であればよい。すなわち微量の他の相ないしは析出物は許容される。好ましくは面積比率で95%以上フェライトであればよく、本発明において、実質的にフェライト単相組織とは、面積比率で95%以上フェライトであることを意味する。なお、ベイニティックフェライトやアシキュラーフェライト等の転位密度の高いフェライトは本発明におけるフェライト相には含まれず、他の相として扱う。
・ Substantially ferrite single phase structure The reason why the matrix is made substantially ferrite single phase structure is that ferrite with low dislocation density is effective for improving elongation and single phase structure for improving stretch flangeability. This is because the effect is remarkable particularly in a ferrite single-phase structure rich in ductility. However, the matrix does not necessarily have a complete ferrite single phase structure, and may be substantially a ferrite single phase structure. That is, trace amounts of other phases or precipitates are acceptable. Preferably, the ferrite may have an area ratio of 95% or more, and in the present invention, the ferrite single phase structure substantially means 95% or more of ferrite in the area ratio. Note that ferrite having a high dislocation density such as bainitic ferrite and acicular ferrite is not included in the ferrite phase in the present invention, and is handled as another phase.

・Ti、Mo、Vを含む炭化物
Ti、Mo、Vを含む炭化物は、微細となり、析出量も確保しやすいため鋼を強化するのに有効である。従来は、析出物としてMo、Vを含まないTiCを用いることが主流であった。しかしながら、Tiは析出物形成傾向が強いため粗大化しやすく、強化に対する効果が低くなることから、必要な強化量を得るには加工性を劣化させるまでの析出物が必要となる。
-Carbide containing Ti, Mo, and V Carbides containing Ti, Mo, and V are effective in strengthening steel because they become finer and the amount of precipitation is easily secured. Conventionally, it has been mainstream to use TiC containing no Mo or V as a precipitate. However, since Ti has a strong tendency to form precipitates, it is likely to be coarsened and the effect on strengthening is reduced. Therefore, precipitates are required until the workability is deteriorated in order to obtain a necessary strengthening amount.

一方、上記特許文献5に開示されているように、TiにMoを加えるだけでも析出物が微細化し、ある程度の高強度化は達成できる。しかし、単にTi、Moを含む炭化物のみで980MPa以上の引張強度を得るべく、これに見合ったレベルのTiを添加すると、前述のように一般的な熱延前の加熱温度を上回る高温が要求される場合があり、高温化を図るためには例えば特殊な設備を要するためコストアップとなる。他方、TiにVだけを加えた場合は、充分な析出物微細化が得られない。   On the other hand, as disclosed in the above-mentioned Patent Document 5, the precipitates are refined by adding Mo to Ti, and a certain degree of strength can be achieved. However, in order to obtain a tensile strength of 980 MPa or more with only carbides containing Ti and Mo, if Ti corresponding to this level is added, a high temperature exceeding the heating temperature before general hot rolling is required as described above. In order to increase the temperature, for example, special equipment is required, which increases the cost. On the other hand, when only V is added to Ti, sufficient precipitate refinement cannot be obtained.

これに対し、TiとMo、Vを含む複合炭化物は、微細に析出する上、析出物の量(数)の確保も容易であるため、加工性を劣化させずに鋼を強化することができることを、発明者らは発見した。   On the other hand, composite carbide containing Ti, Mo, and V precipitates finely, and since it is easy to ensure the amount (number) of precipitates, the steel can be strengthened without degrading workability. The inventors have discovered.

これは、MoおよびV、とくにMoは析出物形成傾向(炭化物形成傾向)がTiよりも弱いことから、TiとMo、Vを含む複合炭化物は強化に寄与しない粗大な析出物となることなく、安定して微細に存在することができ、加工性を低下させない比較的少量の添加量で有効に強化できるためと推定される。   This is because Mo and V, particularly Mo, has a tendency of precipitate formation (carbide formation tendency) to be weaker than that of Ti, so that composite carbide containing Ti, Mo, and V does not become coarse precipitates that do not contribute to strengthening. It is presumed that it can exist stably and finely, and can be effectively strengthened with a relatively small addition amount that does not deteriorate the workability.

一方、VとCの組み合わせは溶解温度が非常に低く、980MPa以上という高強度を得るために比較的多量に添加しても通常の加熱温度で容易に溶解することができる。ただしV単独添加では、Vの析出率が低くなる。このため、引張強度980MPa以上の高張力を得るだけの寸法と量の析出物を析出させるには、Tiの他にMoとVとの両方を添加することが有効であるものと考えられる。   On the other hand, the combination of V and C has a very low melting temperature, and can be easily dissolved at a normal heating temperature even when added in a relatively large amount in order to obtain a high strength of 980 MPa or more. However, when V is added alone, the deposition rate of V becomes low. For this reason, it is considered effective to add both Mo and V in addition to Ti in order to deposit a precipitate having a size and amount sufficient to obtain a high tensile strength of 980 MPa or more.

また、従来、Ti、Mo等を含有する鋼に、多量のVを添加すると、伸びが低下する傾向にあるとされており、Vの添加は比較的低い範囲に抑えられていた。しかしながら、本発明者らが詳細に検討した結果、Vの添加量を増大させるに従いVの析出率が高くなり、すなわち添加したVが炭化物として十分に析出するようになり、炭化物を安定して微細に析出させることができるため、十分な伸びを確保した上で、高強度化を達成できることを見出した。   Conventionally, when a large amount of V is added to steel containing Ti, Mo or the like, the elongation tends to decrease, and the addition of V has been suppressed to a relatively low range. However, as a result of detailed studies by the present inventors, as the amount of V added is increased, the precipitation rate of V is increased, that is, the added V is sufficiently precipitated as carbides, and the carbides are stably fined. It was found that high strength can be achieved while ensuring sufficient elongation.

炭化物が安定して微細に存在できるためには炭化物の組成が影響する。具体的には、炭化物の平均組成が原子%で表されるTi、Mo、Vが、V/(Ti+Mo+V)≧0.3を満たすようになると析出物の粗大化を抑制する効果が高くなり、所望の微細析出物を得ることができる。したがって、本発明では、原子%で表されるTi、Mo、Vが、V/(Ti+Mo+V)≧0.3を満たす範囲でTi、Mo、Vを含む炭化物が分散析出していることを要件とする。なお、V/(Ti+Mo+V)の上限は0.7程度に限定することが望ましい。   In order for the carbide to exist stably and finely, the composition of the carbide influences. Specifically, when Ti, Mo, and V, in which the average composition of carbides is expressed in atomic%, satisfy V / (Ti + Mo + V) ≧ 0.3, the effect of suppressing the coarsening of precipitates increases, Desired fine precipitates can be obtained. Therefore, in the present invention, it is a requirement that carbides containing Ti, Mo, and V are dispersed and precipitated in a range where Ti, Mo, and V expressed in atomic% satisfy V / (Ti + Mo + V) ≧ 0.3. To do. The upper limit of V / (Ti + Mo + V) is preferably limited to about 0.7.

本発明者らが見出したところでは、微細化に最適な炭化物組成はTi:Mo:Vの原子比で概ね1:1:2である。このため、炭化物の平均組成においてTi:Mo:Vの原子比が、Ti=0.6〜1.4、Mo=0.6〜1.4、V=1.4〜2.8、ただし、Ti+Mo+V=4を満足することがさらに望ましい。   As the inventors have found, the optimum carbide composition for miniaturization is approximately 1: 1: 2 in terms of atomic ratio of Ti: Mo: V. Therefore, in the average composition of carbides, the atomic ratio of Ti: Mo: V is Ti = 0.6 to 1.4, Mo = 0.6 to 1.4, V = 1.4 to 2.8, It is further desirable to satisfy Ti + Mo + V = 4.

また、この複合炭化物の平均粒径を10nm未満とすることで、析出物周囲の歪みが転位の移動の抵抗としてより効果的となり、効率よく鋼を強化できる。このため、本発明では、平均粒径10nm未満のTi、Mo、Vを含む炭化物が析出していることを要件とする。さらに好ましくは、平均粒径が5nm以下である。   Further, by setting the average particle size of the composite carbide to less than 10 nm, the distortion around the precipitate becomes more effective as the resistance of dislocation movement, and the steel can be strengthened efficiently. For this reason, in this invention, it is required that the carbide | carbonized_material containing Ti, Mo, and V with an average particle diameter of less than 10 nm has precipitated. More preferably, the average particle size is 5 nm or less.

なお、強度にほとんど影響しない粗大析出物にTi、Mo、Vを含む炭化物が析出するような場合も有り得る。このような析出物を粒径の評価対象とすることは不適切であるので、粒径100nmを超える析出物は除外して、平均粒径を測定するものとする。   In some cases, carbides containing Ti, Mo, and V are precipitated on coarse precipitates that hardly affect the strength. Since it is inappropriate to use such a precipitate as an object of particle size evaluation, the average particle size is measured by excluding precipitates having a particle size exceeding 100 nm.

引張強度(TS)が980MPaである本発明鋼板において、前記の平均粒径10nm未満の複合炭化物は、従来のTS780MPaクラスの鋼板より多数観察される。本発明鋼におけるこの複合炭化物は、特許文献6のデータを基にした概算により、1μm当たり約5×10個以上が分散析出していると考えられる。なお、TS800MPaを超える領域でのデータは上記特許文献6には開示されていないので、単純にTSの対数と微細炭化物密度の対数の間に直線関係が成り立つとしてTS980MPa(の対数)に外挿した。 In the steel sheet of the present invention having a tensile strength (TS) of 980 MPa, a larger number of the composite carbides having an average particle size of less than 10 nm are observed than a conventional TS780 MPa class steel sheet. It is considered that about 5 × 10 5 or more of this composite carbide in the steel of the present invention is dispersed and precipitated per 1 μm 3 based on the estimation based on the data of Patent Document 6. Since the data in the region exceeding TS800 MPa is not disclosed in the above-mentioned Patent Document 6, it is extrapolated to TS980 MPa (logarithm) assuming that a linear relationship is simply established between the logarithm of TS and the logarithm of fine carbide density. .

[化学成分]
以下、これら各成分について説明する。なお、以下、特に説明のない限り、“%”は“質量%”を表す。
・C:0.06超〜0.24%
Cは炭化物を形成し、鋼を強化するのに有効である。しかし、0.06%以下では、鋼の強化が不十分であり、0.24%を超えて添加するとスポット溶接が困難となるため、C含有量は0.06超〜0.24%が好ましい。より好ましくは、0.07%以上であり、特に1100MPa以上の引張強度を得るためには0.1%以上であることが望ましい。より好ましいC含有量範囲は、0.11〜0.2%である。
[Chemical composition]
Hereinafter, each of these components will be described. Hereinafter, “%” represents “% by mass” unless otherwise specified.
・ C: more than 0.06 to 0.24%
C forms carbides and is effective for strengthening steel. However, if it is 0.06% or less, the steel is not sufficiently strengthened, and if it exceeds 0.24%, spot welding becomes difficult, so the C content is preferably more than 0.06 to 0.24%. . More preferably, it is 0.07% or more, and in particular, in order to obtain a tensile strength of 1100 MPa or more, 0.1% or more is desirable. A more preferable C content range is 0.11 to 0.2%.

・Si:0.3%以下
Siは固溶強化に有効な元素として、従来は積極的に用いられており、高張力鋼に約0.4%以上添加されることも多いが、本発明ではSiの含有量を0.3%以下とする。これは、0.3%を超えて添加すると、フェライトからのC析出が促進されて粒界に粗大な鉄炭化物が析出しやすくなり、伸びフランジ性が低下するためである。また、本発明においては、Siを低減することによりオースナイトの圧延荷重を低減し、薄物の製造が容易となる。すなわち0.3%を超えて添加すると、2.5mm以下の材料の圧延が不安定となり板形状も悪くなる。これらの理由により、Si含有量は0.3%以下が好ましい。さらに好ましくは0.15%以下であり、望ましくは0.05%以下である。なお、Siを極端に低減することは、製造コストを悪化させるため、その大きなコストアップを伴わない実用的な下限値は0.001%程度である。
-Si: 0.3% or less Si has been actively used as an element effective for solid solution strengthening in the past, and is often added to high-strength steel by about 0.4% or more. The Si content is 0.3% or less. This is because if added over 0.3%, C precipitation from the ferrite is promoted, and coarse iron carbide tends to precipitate at the grain boundaries, and the stretch flangeability is lowered. Further, in the present invention, by reducing Si, the rolling load of austenite is reduced, and the manufacture of thin objects is facilitated. That is, if added over 0.3%, rolling of a material of 2.5 mm or less becomes unstable and the plate shape is also deteriorated. For these reasons, the Si content is preferably 0.3% or less. More preferably, it is 0.15% or less, and desirably 0.05% or less. In addition, since extremely reducing Si worsens the manufacturing cost, the practical lower limit without significant cost increase is about 0.001%.

・Mn:0.5〜2.0%
Mnは固溶強化により鋼を強化する観点からは0.5%以上が好ましいが、2.0%を超えて添加すると偏析し、かつ硬質相が形成され、伸びフランジ性が低下する。このため、Mn含有量は0.5〜2.0%が好ましい。より好ましくは1.0〜2.0%である。
・ Mn: 0.5-2.0%
Mn is preferably 0.5% or more from the viewpoint of strengthening the steel by solid solution strengthening, but if added over 2.0%, segregation occurs, a hard phase is formed, and stretch flangeability deteriorates. For this reason, the Mn content is preferably 0.5 to 2.0%. More preferably, it is 1.0 to 2.0%.

・P:0.06%以下
Pは固溶強化に有効であるが、0.06%を超えて含有すると偏析して伸びフランジ性を低下させるため、0.06%以下とすることが好ましい。なお、Pを極端に低減することは、製造コストを悪化させる。そのため、製造コストを大きく上昇させない実用的な下限値は0.001%程度となる。
P: 0.06% or less P is effective for solid solution strengthening, but if it exceeds 0.06%, it segregates and deteriorates stretch flangeability, so it is preferable to make it 0.06% or less. Note that extremely reducing P worsens the manufacturing cost. Therefore, a practical lower limit value that does not significantly increase the manufacturing cost is about 0.001%.

・S:0.005%以下
Sは少ないほど好ましく、0.005%を超えると伸びフランジ性が低下するため、0.005%以下が好ましい。なお、Sを極端に低減することは、製造コストを悪化させる。そのため、製造コストを大きく上昇させない実用的な下限は0.0005%程度である。
S: 0.005% or less S is preferably as small as possible, and if it exceeds 0.005%, the stretch flangeability deteriorates, so 0.005% or less is preferable. In addition, extremely reducing S worsens manufacturing cost. Therefore, a practical lower limit that does not significantly increase the manufacturing cost is about 0.0005%.

・Al:0.06%以下
Alは脱酸剤として添加してよい。しかし、鋼中のAl量が0.06%を超えると伸びおよび伸びフランジ性が低下するため、0.06%以下が好ましい。下限は特にないが、脱酸剤としての効果を十分に得るためにはAl量を0.01%以上とすることが好ましい。
-Al: 0.06% or less Al may be added as a deoxidizer. However, if the amount of Al in the steel exceeds 0.06%, elongation and stretch flangeability deteriorate, so 0.06% or less is preferable. There is no particular lower limit, but in order to sufficiently obtain the effect as a deoxidizer, the Al content is preferably 0.01% or more.

・N:0.006%以下
Nは少ないほど好ましく、0.006%を超えると粗大な窒化物が増え、伸びフランジ性が低下するため、0.006%以下が好ましい。なお、Nを極端に低減することは、製造コストを悪化させる。そのため、製造コストを大きく上昇させない実用的な下限は0.0005%程度となる。
N: 0.006% or less N is preferably as small as possible, and if it exceeds 0.006%, coarse nitrides increase and stretch flangeability deteriorates, so 0.006% or less is preferable. In addition, extremely reducing N worsens manufacturing cost. Therefore, a practical lower limit that does not greatly increase the manufacturing cost is about 0.0005%.

・Mo:0.05〜0.5%
Moは本発明において重要な元素であり、0.05%以上添加することでパーライト変態を抑制する効果がある。さらにTi、Vと微細な析出物(複合炭化物)を形成し、優れた伸びおよび伸びフランジ性を確保しつつ鋼を強化することができる。しかし、0.5%を超えて添加すると硬質相が形成され伸びフランジ性が低下するため、Mo含有量は0.05〜0.5%が好ましい。なお、より好ましい下限は0.15%、より好ましい上限は0.4%である。
Mo: 0.05-0.5%
Mo is an important element in the present invention, and has an effect of suppressing pearlite transformation by adding 0.05% or more. Furthermore, Ti, V and fine precipitates (composite carbides) can be formed, and the steel can be strengthened while ensuring excellent elongation and stretch flangeability. However, if added over 0.5%, a hard phase is formed and stretch flangeability is lowered, so the Mo content is preferably 0.05 to 0.5%. A more preferred lower limit is 0.15%, and a more preferred upper limit is 0.4%.

・Ti:0.03〜0.2%
Tiは本発明において重要な元素である。Mo、Vと複合炭化物を形成することで、優れた伸びおよび伸びフランジ性を確保しつつ、鋼を強化することができる。しかし、0.03%未満では、鋼を強化する効果が不十分であり、0.2%を超えると伸びフランジ性が低下するとともに、熱延前のスラブ加熱温度を1300℃以上という高温にしなければ炭化物が溶解しないため、これ以上添加しても微細析出物として有効に析出させることができない。したがって、Ti含有量は0.03〜0.2%が好ましい。より好ましくは0.08〜0.2%である。
Ti: 0.03-0.2%
Ti is an important element in the present invention. By forming composite carbide with Mo and V, steel can be strengthened while ensuring excellent elongation and stretch flangeability. However, if it is less than 0.03%, the effect of strengthening the steel is insufficient. If it exceeds 0.2%, the stretch flangeability deteriorates, and the slab heating temperature before hot rolling must be 1300 ° C or higher. Since the carbide does not dissolve, it cannot be effectively precipitated as a fine precipitate even if it is added more than this. Therefore, the Ti content is preferably 0.03 to 0.2%. More preferably, it is 0.08 to 0.2%.

・V:0.15超〜1.2%
Vは本発明において重要な元素である。前述のように、炭化物が安定して微細に存在できるためには炭化物の組成が影響する。具体的には、炭化物の平均組成が原子%で表されるTi、Mo、Vで、V/(Ti+Mo+V)≧0.3を満たすようになると、析出物の粗大化を抑制する効果が高くなり、所望の微細析出物を得ることができる。この点、本発明者らが詳細に検討した結果、Cを0.06%超えて多量に添加するとともに、Vを多量に添加することでVの析出効率が上昇し、V/(Ti+Mo+V)≧0.3を満たす析出物を得られるようになることが判った。また、所望の析出物を得るためには、上述のように、炭化物の平均組成が原子%で表されるTi:Mo:Vで、V/(Ti+Mo+V)≧0.3を満たすことに加えて、炭化物の平均組成においてTi:Mo:Vの原子比が、Ti=0.6〜1.4、Mo=0.6〜1.4、V=1.4〜2.8、ただしTi+Mo+V=4を満たすことが好ましい。この場合にも、上述したようにCを0.06%超えて多量に添加するとともに、Vを多量に添加することで、炭化物の平均組成においてTi:Mo:Vの原子比が、Ti=0.6〜1.4、Mo=0.6〜1.4、V=1.4〜2.8、ただしTi+Mo+V=4を満たす析出物を得られるようになることが判った。
・ V: Over 0.15 to 1.2%
V is an important element in the present invention. As described above, the composition of the carbide has an influence on the fact that the carbide can exist stably and finely. Specifically, when Ti, Mo, and V, in which the average composition of carbides is expressed in atomic%, satisfy V / (Ti + Mo + V) ≧ 0.3, the effect of suppressing the coarsening of precipitates is enhanced. A desired fine precipitate can be obtained. In this regard, as a result of detailed studies by the present inventors, addition of a large amount of C exceeding 0.06% and addition of a large amount of V increase the precipitation efficiency of V, and V / (Ti + Mo + V) ≧ It was found that a precipitate satisfying 0.3 could be obtained. Further, in order to obtain a desired precipitate, as described above, in addition to satisfying V / (Ti + Mo + V) ≧ 0.3 with Ti: Mo: V in which the average composition of the carbide is expressed in atomic%. In the average composition of carbides, the atomic ratio of Ti: Mo: V is Ti = 0.6 to 1.4, Mo = 0.6 to 1.4, V = 1.4 to 2.8, where Ti + Mo + V = 4 It is preferable to satisfy. Also in this case, as described above, C is added in a large amount exceeding 0.06%, and by adding a large amount of V, the atomic ratio of Ti: Mo: V becomes Ti = 0 in the average composition of carbides. 6 to 1.4, Mo = 0.6 to 1.4, V = 1.4 to 2.8, but it was found that a precipitate satisfying Ti + Mo + V = 4 can be obtained.

図1に、鋼へのVの添加量と、Vの析出率の関係を示す。ここで、Vの析出率は、添加されたVに対して析出物を実際に形成したVの比率を意味し、Vの析出効率を示す。なお、この結果は、C:0.11〜0.15%、Si:0.02%、Mn:1.34%、P:0.01%、S:0.001%、Al:0.04%、N:0.002%、Ta:0.0021%、Mo:0.33%、Ti:0.15%とし、V:0.1〜0.3%で変化させた鋼を素材とし、仕上圧延終了温度920℃、巻取温度620℃として熱間圧延を行って得た熱延鋼板を用いて得たものである。ここで、C量とV量は、Cと(Ti+Mo+V)の原子数比がほぼ一定(約1.0〜1.1)となるよう、(C量,V量)=(0.11%,0.1%)、(0.13%,0.2%)、(0.15%,0.3%)として変化させた。また、熱延鋼板の析出V量は抽出残渣の定量分析により測定し、
Vの析出率(%)=(析出V量(mass%)/V添加量(mass%))×100
として求めた。
FIG. 1 shows the relationship between the amount of V added to steel and the precipitation rate of V. Here, the precipitation rate of V means the ratio of V that actually formed precipitates to the added V, and indicates the deposition efficiency of V. The results are as follows: C: 0.11 to 0.15%, Si: 0.02%, Mn: 1.34%, P: 0.01%, S: 0.001%, Al: 0.04 %, N: 0.002%, Ta: 0.0021%, Mo: 0.33%, Ti: 0.15%, V: 0.1% to 0.3% steel, It is obtained using a hot-rolled steel sheet obtained by hot rolling at a finish rolling finish temperature of 920 ° C and a winding temperature of 620 ° C. Here, the amount of C and the amount of V are (C amount, V amount) = (0.11%, so that the atomic ratio of C and (Ti + Mo + V) is substantially constant (about 1.0 to 1.1). 0.1%), (0.13%, 0.2%), and (0.15%, 0.3%). Moreover, the amount of precipitation V of the hot rolled steel sheet is measured by quantitative analysis of the extraction residue,
V precipitation rate (%) = (precipitation V amount (mass%) / V addition amount (mass%)) × 100
As sought.

図1に示すように、V添加量が増加するに従い、Vの析出率、すなわち添加されたVの中で析出物を実際に形成するVの比率が大きくなり、V>0.15%でVの析出率>50%と、非常に良好な析出効率となる。なお、これら鋼板の組織は、フェライト単相組織であることを確認した。また、このように良好な析出効率を得たときの析出物の一例を図2に示す。図2の左側は、析出物を示す透過型電子顕微鏡(TEM)写真である。また、図2の右側は、析出物中のTi、Mo、Vのエネルギー分散型X線分光装置(EDX)による計測結果を示す図である。なおこれらの析出物が炭化物を主体とすることはX線回折ピークの位置等から確認した。この結果は、C:0.15%、Si:0.02%、Mn:1.34%、P:0.01%、S:0.001%、Al:0.04%、N:0.002%、Ta:0.0021%、Mo:0.33%、Ti:0.15%、V:0.3%とした鋼を素材とし、仕上圧延終了温度920℃、巻取温度620℃として熱間圧延を行って製造された熱延鋼板を用いて得たものである。また、析出物の観察は、得られた熱延鋼板を酸洗後、鋼板から薄膜を作製し、TEMによって観察したものであり、析出物中のTi、Mo、Vの組成はTEMに装備されたEDXによる分析から決定した。図2の分析結果では、Ti:Mo:Vは原子比で1.1:0.9:2.0であり、したがって、V/(Ti+Mo+V)は0.50であった。   As shown in FIG. 1, as the V addition amount increases, the precipitation rate of V, that is, the ratio of V that actually forms precipitates in the added V increases, and V> 0.15% The deposition rate is> 50%, resulting in very good deposition efficiency. In addition, it confirmed that the structure | tissue of these steel plates was a ferrite single phase structure. Moreover, an example of a precipitate when such a good precipitation efficiency is obtained is shown in FIG. The left side of FIG. 2 is a transmission electron microscope (TEM) photograph showing the precipitate. Moreover, the right side of FIG. 2 is a figure which shows the measurement result by the energy dispersive X-ray-spectrometer (EDX) of Ti, Mo, and V in a precipitate. It was confirmed from the position of the X-ray diffraction peak that these precipitates were mainly composed of carbides. The results are as follows: C: 0.15%, Si: 0.02%, Mn: 1.34%, P: 0.01%, S: 0.001%, Al: 0.04%, N: 0.00. 002%, Ta: 0.0021%, Mo: 0.33%, Ti: 0.15%, V: 0.3% steel, and finish rolling finish temperature 920 ° C, coiling temperature 620 ° C It is obtained using a hot-rolled steel sheet produced by hot rolling. In addition, the precipitates are observed by pickling the obtained hot-rolled steel sheet, producing a thin film from the steel sheet, and observing by TEM. The composition of Ti, Mo, and V in the precipitate is equipped in the TEM. Determined from analysis by EDX. In the analysis result of FIG. 2, Ti: Mo: V was 1.1: 0.9: 2.0 by atomic ratio, and thus V / (Ti + Mo + V) was 0.50.

このような実験結果を基に、発明者らがさらに検討した結果、鋼中にVを0.15%を超えて含有させて非常に良好な析出効率とすることにより、前述のように、炭化物の平均組成が原子%で表されるTi、Mo、VがV/(Ti+Mo+V)≧0.3を満たすようになり、Ti、Moと微細な複合炭化物を形成し、優れた伸びや伸びフランジ性を確保しつつ鋼を強化することができることが判明した。また、鋼中にVを0.2%以上含有させることにより、炭化物の平均組成においてTi:Mo:Vの原子比がTi=0.6〜1.4、Mo=0.6〜1.4、V=1.4〜2.8ただしTi+Mo+V=4となる条件を安定して満たすようになり、より効率よく高張力化することができることも判明した。したがって、Vの含有量は0.15超が好ましく、0.20%以上がより好ましい。しかし、Vの含有量が1.2%を超えると中心偏析が強く現れるようになり、伸びや靭性の低下を招くため、1.2%以下が好ましい。より好ましくは0.8%以下である。したがってV含有量は0.15超〜1.2%が好ましく、0.2〜0.8%がよりこのましい。一層好ましい下限値は0.3%である。なお、Vを1.2%含有させた場合でもスラブ加熱温度は1200℃程度の通常温度とすれば炭化物が完全に溶解する。   As a result of further investigation by the inventors based on such experimental results, it was found that carbide was included in the steel in an amount exceeding 0.15% to obtain a very good precipitation efficiency. Ti, Mo, V, whose average composition is expressed in atomic%, satisfies V / (Ti + Mo + V) ≧ 0.3, forms fine composite carbide with Ti, Mo, and has excellent elongation and stretch flangeability It was found that the steel can be strengthened while securing the above. Further, by containing 0.2% or more of V in the steel, the atomic ratio of Ti: Mo: V is Ti = 0.6 to 1.4 and Mo = 0.6 to 1.4 in the average composition of carbides. V = 1.4 to 2.8 However, it has also been found that the condition of Ti + Mo + V = 4 can be stably satisfied, and the tension can be increased more efficiently. Therefore, the content of V is preferably more than 0.15, and more preferably 0.20% or more. However, if the content of V exceeds 1.2%, center segregation appears strongly, leading to a decrease in elongation and toughness, so 1.2% or less is preferable. More preferably, it is 0.8% or less. Accordingly, the V content is preferably more than 0.15 to 1.2%, more preferably 0.2 to 0.8%. A more preferred lower limit is 0.3%. Even when 1.2% of V is contained, if the slab heating temperature is a normal temperature of about 1200 ° C., the carbide is completely dissolved.

なお、Ti、Mo、Vの好適な添加量の範囲は上記の通りであるが、目標とする炭化物の平均組成における好ましいTi:Mo:Vの原子比であるTi=0.6〜1.4、Mo=0.6〜1.4、V=1.4〜2.8、ただしTi+Mo+V=4に対応する添加量比で添加することがより好ましい。   In addition, although the range of the suitable addition amount of Ti, Mo, V is as above-mentioned, Ti = 0.6-1.4 which is the atomic ratio of preferable Ti: Mo: V in the average composition of the target carbide | carbonized_material. , Mo = 0.6 to 1.4, V = 1.4 to 2.8, but it is more preferable to add at an addition amount ratio corresponding to Ti + Mo + V = 4.

また、重量%を原子比に換算するには、Ti、Mo、Vをそれぞれ原子量(48,96,51)で除算して比率をとればよい。ただし鋼組成で上記比を満足しなくても、直ちに微細炭化物中の原子比が好適範囲を外れるわけではない。   In order to convert the weight% into the atomic ratio, Ti, Mo, and V may be divided by the atomic weight (48, 96, 51), respectively, to obtain the ratio. However, even if the steel composition does not satisfy the above ratio, the atomic ratio in the fine carbide does not immediately deviate from the preferred range.

0.8≦(C/12)/{(Ti/48)+(Mo/96)+(V/51)}≦1.5
(ただし、式中のC、Ti、Mo、Vは各成分の質量%を表す)
本発明においてC、Ti、Mo、Vの添加バランスは非常に重要である。理論的には、鋼中のCと(Ti、Mo、V)との原子数比が1、すなわち(C/12)/{(Ti/48)+(Mo/96)+(V/51)}=1の場合、炭素が過不足なく複合炭化物として析出することが期待されるが、本発明者らの調査によれば、上記した所定範囲のC、Ti、Mo、V含有量とした上で、(C/12)/{(Ti/48)+(Mo/96)+(V/51)}を0.8〜1.5とすることにより、Ti、Mo、VがV/(Ti+Mo+V)≧0.3を満たす組成を有する多量の炭化物を、フェライト中に微細に、すなわち、平均粒径10nm未満として微細に分散析出しやすくすることができることが判明した。(C/12)/{(Ti/48)+(Mo/96)+(V/51)}が0.8未満では、析出物が粗大となって980MPa以上の強度が安定して得られなくなり、(C/12)/{(Ti/48)+(Mo/96)+(V/51)}が1.5超えでは、Cが過剰となってパーライトを生じるため成形性が低下する。より好ましい範囲は0.8〜1.3である。なお、C含有量が過剰な場合も炭化物は粗大化する傾向にある。
0.8 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} ≦ 1.5
(However, C, Ti, Mo, and V in the formula represent mass% of each component)
In the present invention, the balance of addition of C, Ti, Mo and V is very important. Theoretically, the atomic ratio between C and (Ti, Mo, V) in the steel is 1, that is, (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51). } = 1, it is expected that carbon is precipitated as a composite carbide without excess or deficiency. However, according to the investigation by the present inventors, the content of C, Ti, Mo, V in the above predetermined range is set. Thus, by setting (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} to 0.8 to 1.5, Ti, Mo, and V become V / (Ti + Mo + V ) It was found that a large amount of carbide having a composition satisfying ≧ 0.3 can be finely dispersed and precipitated in ferrite finely, that is, with an average particle size of less than 10 nm. If (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} is less than 0.8, the precipitate becomes coarse and a strength of 980 MPa or more cannot be obtained stably. , (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} is more than 1.5, C is excessive and pearlite is generated, so that the moldability is lowered. A more preferable range is 0.8 to 1.3. Even when the C content is excessive, the carbide tends to become coarse.

・Ta:0.0010〜0.0050%
Taは本発明において、加工後のさらなる加工性を確保する上で重要な元素である。ここでは加工性の評価として伸びフランジ性の指標である穴広げ率λについて、10%冷間加工後の穴広げ率λに及ぼすTa量の影響を図3に示す。冷間加工率を10%としたのは、自動車用部材の製造工程において、10%程度の冷間加工に相当するひずみが加えられたのちに、さらなる加工が行われる場合を想定してのものである。図3から穴広げ率λはTa含有量が0.0010%以上で急激に向上し、0.0050%程度で飽和していることが分かる。したがって、上記効果を得るため、Ta含有量の下限は0.0010%とし、また、0.0050%を超えて添加しても効果が飽和してコストアップとなるだけであるため、Ta含有量の上限は0.0050%とした。好ましくは、0.0015〜0.0040%である。
・ Ta: 0.0010 to 0.0050%
In the present invention, Ta is an important element for ensuring further workability after processing. Here, FIG. 3 shows the influence of the amount of Ta on the hole expansion ratio λ after 10% cold working with respect to the hole expansion ratio λ, which is an index of stretch flangeability, as an evaluation of workability. The reason why the cold working rate is set to 10% is based on the assumption that further processing is performed after a strain corresponding to about 10% cold working is applied in the manufacturing process of automotive parts. It is. From FIG. 3, it can be seen that the hole expansion ratio λ increases rapidly when the Ta content is 0.0010% or more, and is saturated at about 0.0050%. Therefore, in order to obtain the above effect, the lower limit of the Ta content is 0.0010%, and adding more than 0.0050% only saturates the effect and increases the cost. The upper limit of was made 0.0050%. Preferably, it is 0.0015 to 0.0040%.

・その他の成分
高張力鋼板においては、他の炭化物形成元素、例えばNb、W等を添加することがある。しかし本発明の場合は炭化物中の最適なTi、Mo、Vバランスを崩す可能性があるので、これらの添加は避け、その含有量は不純物として許容される範囲とすることが好ましい。特にNbは熱間圧延荷重を増大させて薄物の製造を困難にするほか、本発明の鋼組成においては炭化物の粗大化を促進して強度を低下させる可能性がある。したがって、Nbは0.02%以下とすることが好ましく、さらに好ましくは0.003%以下とする。Wも0.02%以下とすることが好ましく、0.005%以下とすることがさらに好ましい。
-Other components In a high-tensile steel plate, other carbide forming elements, such as Nb and W, may be added. However, in the case of the present invention, there is a possibility that the optimum balance of Ti, Mo, and V in the carbide may be lost. Therefore, addition of these is avoided, and the content thereof is preferably within a range acceptable as an impurity. In particular, Nb increases the hot rolling load and makes it difficult to produce thin materials, and in the steel composition of the present invention, it may promote the coarsening of carbides and reduce the strength. Therefore, Nb is preferably 0.02% or less, and more preferably 0.003% or less. W is also preferably 0.02% or less, and more preferably 0.005% or less.

本発明の鋼板の化学組成における残部は鉄及び不可避的不純物である。不可避的不純物としては、上記の他、Cr、Cu、Sn、Ni、Ca、Zn、Co、B、As、Sb、Pb、Se等が挙げられる。Crは1%以下の含有が許容されるが、好ましくは0.6%以下、より好ましくは0.1%以下である。他の各元素は0.1%以下の含有が許容されるが、より好ましくは0.03%以下である。   The balance in the chemical composition of the steel sheet of the present invention is iron and inevitable impurities. In addition to the above, unavoidable impurities include Cr, Cu, Sn, Ni, Ca, Zn, Co, B, As, Sb, Pb, Se, and the like. Cr is allowed to be contained in an amount of 1% or less, preferably 0.6% or less, more preferably 0.1% or less. The other elements are allowed to contain 0.1% or less, but more preferably 0.03% or less.

[製造方法]
本発明では、上記成分組成を有する鋼を溶製して、鋼片(インゴット、スラブ、薄スラブを含む)とし、仕上圧延終了温度880℃以上、巻取温度570℃以上の条件で熱間圧延を行う。
[Production method]
In the present invention, a steel having the above composition is melted to form a steel slab (including ingot, slab, and thin slab), which is hot-rolled at a finish rolling end temperature of 880 ° C. or higher and a winding temperature of 570 ° C. or higher. I do.

本発明の鋼板の板厚、すなわち熱間圧延後の板厚は、1.4〜5.0mm程度が好適であるが、とくに従来困難であった板厚2.5mm以下の薄物の製造についても、本発明の鋼板は問題なく適用できる。また、980MPa以上の引張強度を有する2.5mm以下の薄物熱延鋼板を製造するに当たって、本願は強度を担う析出物を圧延後に析出させる。このため、圧延中は鋼が軟質であり、圧延に関する設備負担を特に増大させることなく、製造することができる。   The plate thickness of the steel plate of the present invention, that is, the plate thickness after hot rolling is preferably about 1.4 to 5.0 mm, but particularly for the production of thin materials with a plate thickness of 2.5 mm or less, which has been difficult in the past. The steel plate of the present invention can be applied without problems. Moreover, in manufacturing a thin hot-rolled steel sheet having a tensile strength of 980 MPa or more and a thickness of 2.5 mm or less, the present application deposits a precipitate bearing the strength after rolling. For this reason, steel is soft during rolling, and can be manufactured without particularly increasing the equipment burden related to rolling.

・鋼片加熱条件
鋼スラブなどの鋼片は一旦冷却後、所定の温度(いわゆるスラブ加熱温度)に再加熱してから熱間圧延を施してもよいし、また、鋼片が前記所定の温度より低温となる前に直ちに熱間圧延を行ってもよい。さらに、鋼片が冷め切る前に前記所定の温度まで短時間の加熱を行い、熱間圧延を施してもよい。
Steel slab heating conditions Steel slabs such as steel slabs may be cooled once and then reheated to a predetermined temperature (so-called slab heating temperature) before hot rolling. Hot rolling may be performed immediately before the temperature becomes lower. Furthermore, before the steel slab is completely cooled, it may be heated to the predetermined temperature for a short time and hot rolled.

スラブ加熱温度は炭化物を再固溶させるため(あるいは析出させないため)、1150〜1280℃程度が好適である。なお、本発明の鋼組成の場合、類似成分の従来鋼(Ti炭化物系、Ti−Mo炭化物系)よりは低いスラブ加熱温度温で再固溶を達成できる。   The slab heating temperature is preferably about 1150 to 1280 ° C. in order to re-dissolve the carbide (or not to precipitate it). In the case of the steel composition of the present invention, re-dissolution can be achieved at a slab heating temperature lower than that of conventional steels of similar components (Ti carbide type, Ti-Mo carbide type).

・仕上圧延終了温度:880℃以上
仕上圧延終了温度は伸びおよび伸びフランジ性の確保と圧延荷重の低減に重要である。880℃未満では表層が粗大粒となり伸びおよび伸びフランジ性が損なわれる。また、未再結晶で圧延が進行するために起こる歪みの蓄積量が増大し、圧延荷重が著しく増大することで薄物の熱間圧延が困難となる。このため仕上圧延終了温度は、880℃以上とする。
Finish finish rolling temperature: 880 ° C. or higher Finish finish rolling temperature is important for securing elongation and stretch flangeability and reducing rolling load. If it is less than 880 degreeC, a surface layer will become a coarse grain and elongation and stretch flangeability will be impaired. Further, the amount of strain accumulated due to the progress of rolling due to non-recrystallization increases, and the rolling load significantly increases, making it difficult to hot-roll thin materials. For this reason, finishing rolling finish temperature shall be 880 degreeC or more.

なお、本発明の鋼組成の場合、類似成分の従来鋼(Ti炭化物系、Ti−Mo炭化物系)よりは低い仕上圧延終了温度で強度を確保することができる。また、このため、これらの従来鋼で困難な薄物の製造が容易である。仕上圧延終了温度の上限は特に定める必要はない。ただし、高温で仕上げると結晶粒が粗大化するので、結晶組織の強度が低下し、微細炭化物等による強化が余分に必要となる。この観点から、圧延終了温度は1000℃以下とすることが好ましい。   In addition, in the case of the steel composition of this invention, intensity | strength can be ensured with the finish rolling completion temperature lower than the conventional steel (Ti carbide type | system | group, Ti-Mo carbide type | system | group) of a similar component. In addition, for this reason, it is easy to produce a thin object that is difficult with these conventional steels. The upper limit of the finish rolling finish temperature does not need to be specifically determined. However, since the crystal grains become coarse when finished at a high temperature, the strength of the crystal structure is lowered, and extra strengthening with fine carbides or the like is required. From this viewpoint, the rolling end temperature is preferably set to 1000 ° C. or less.

・巻取温度570℃以上
フェライト組織を得るため、また十分な炭化物の析出を確保するため、さらに仕上圧延機から巻取装置までの間に設置されているランナウトテーブル上での注水量を抑えて薄物を安定通板させるため、巻取温度は570℃以上とする。ランナウトテーブル上の鋼板の走行安定性を確保するには600℃以上が好ましい。なお、パーライトの生成を抑制するためには、巻取温度は700℃以下とするのが望ましい。
-Winding temperature of 570 ° C or higher In order to obtain a ferrite structure and to ensure sufficient carbide precipitation, the amount of water injection on the run-out table installed between the finishing mill and the winding device is further suppressed. The winding temperature is set to 570 ° C. or higher in order to allow the thin material to pass through stably. In order to ensure the running stability of the steel sheet on the run-out table, 600 ° C. or higher is preferable. In addition, in order to suppress the production | generation of pearlite, it is desirable for the coiling temperature to be 700 degrees C or less.

所定の組成の鋼について、以上の熱延条件を満足することにより、析出した炭化物の平均組成において、V/(Ti+Mo+V)≧0.3や炭化物の平均組成においてTi:Mo:Vの原子比がTi=0.6〜1.4、Mo=0.6〜1.4、V=1.4〜2.8、ただしTi+Mo+V=4を満足させ、また平均粒径10nm未満が達成される。   By satisfying the above hot rolling conditions for a steel having a predetermined composition, in the average composition of the precipitated carbide, the atomic ratio of Ti: Mo: V is V / (Ti + Mo + V) ≧ 0.3 or the average composition of the carbide. Ti = 0.6 to 1.4, Mo = 0.6 to 1.4, V = 1.4 to 2.8, where Ti + Mo + V = 4 is satisfied and an average particle size of less than 10 nm is achieved.

本発明の高張力鋼板には、表面に表面処理や表面被覆処理を施したものを含む。特に、本発明の鋼板は溶融亜鉛系めっき皮膜を形成し、溶融亜鉛めっき系鋼板としたものに好適に適用できる。すなわち、本発明の高張力鋼板は良好な加工性を有することから、溶融亜鉛系めっき皮膜を形成しても良好な加工性を維持できる。ここで、溶融亜鉛系めっきとは、亜鉛および亜鉛を主体とした(すなわち約80質量%以上含有する)溶融めっきであり、亜鉛のほかにAl、Crなどの合金元素を含んだものも含む。また、溶融亜鉛系めっきを施したままでも、めっき後に合金化処理を行ってもかまわない。   The high-tensile steel sheet according to the present invention includes those having a surface subjected to surface treatment or surface coating treatment. In particular, the steel sheet of the present invention can be suitably applied to a hot-dip galvanized steel sheet that forms a hot-dip galvanized film. That is, since the high-tensile steel sheet of the present invention has good workability, good workability can be maintained even when a hot dip galvanized film is formed. Here, the hot dip galvanizing is hot dip plating mainly composed of zinc and zinc (that is, containing about 80% by mass or more), and includes those containing alloy elements such as Al and Cr in addition to zinc. Moreover, even if hot dip galvanizing is performed, alloying treatment may be performed after plating.

(実施例1)
表1に示す化学成分を有する鋼片を1250℃に加熱し、通常の熱間圧延工程によって仕上げ圧延終了温度880〜930℃で、板厚3.5mmに仕上げた。この後、600℃を超える巻取温度で、冷却速度と巻取温度を変化させて、種々の組織の鋼板を製造した。なお、表1中、A値は、上記(I)式の(C/12)/{(Ti/48)+(Mo/96)+(V/51)}の値を示す。
Example 1
A steel slab having the chemical composition shown in Table 1 was heated to 1250 ° C., and finished to a plate thickness of 3.5 mm at a finish rolling end temperature of 880 to 930 ° C. by a normal hot rolling process. Thereafter, steel sheets having various structures were manufactured by changing the cooling rate and the coiling temperature at a coiling temperature exceeding 600 ° C. In Table 1, the A value represents the value of (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} in the above formula (I).

Figure 0004905147
Figure 0004905147

得られた鋼板を酸洗後、鋼板の板厚の1/8、1/4、3/8、1/2位置から採取して作製した薄膜を透過型電子顕微鏡(TEM)によって組織観察を行うとともに、析出物のサイズを測定した。なお、組織観察は主に倍率5000〜10000倍、析出物観察は主に260000〜340000倍にて行った。析出物中のTi、Mo、Vの組成は340000倍での観察においてTEMに装備されたエネルギー分散型X線分光装置(EDX)による分析から決定し、析出物のV比率(原子比)=V/(Ti+Mo+V)(式中、Ti,Mo,Vは原子%)およびTi:Mo:Vの原子比を求めた。また、得られた鋼板の板厚方向断面について走査型電子顕微鏡(SEM)でもTEM観察を行った板厚位置について組織観察を1000〜5000倍で行い、TEMでの組織観察結果を確認した。   The obtained steel sheet is pickled, and the thin film prepared by sampling from 1/8, 1/4, 3/8, and 1/2 positions of the thickness of the steel sheet is observed with a transmission electron microscope (TEM). At the same time, the size of the precipitate was measured. Note that the structure observation was mainly performed at a magnification of 5000 to 10,000 times, and the precipitate observation was mainly performed at 260000 to 340000 times. The composition of Ti, Mo, and V in the precipitate was determined from the analysis by an energy dispersive X-ray spectrometer (EDX) equipped in the TEM in the observation at 340000 times, and the V ratio (atomic ratio) of the precipitate = V / (Ti + Mo + V) (wherein Ti, Mo, V are atomic%) and the atomic ratio of Ti: Mo: V were determined. Moreover, about the plate | board thickness direction cross-section of the obtained steel plate, structure | tissue observation was performed 1000-5000 times about the plate | board thickness position which performed TEM observation also with the scanning electron microscope (SEM), and the structure | tissue observation result in TEM was confirmed.

ここで、析出物は、粒径が100nm以下のものをランダムに30個選択し、各々について粒径およびTi、Mo、Vの含有量を測定した。粒径は340000倍の観察結果をもとに円近似を用いた画像処理で求め、上記30個の算術平均を平均粒径とした。V比率およびTi:Mo:Vの値については、Ti、Mo、Vの含有量を上記30個の算術平均により求めて平均組成とし、これを元に算出した。このように粒径が100nm以下の析出物について得た平均粒径、平均組成を、Ti、MoおよびVを含む炭化物の平均粒径、平均組成とした。   Here, 30 precipitates having a particle size of 100 nm or less were selected at random, and the particle size and the contents of Ti, Mo, and V were measured for each. The particle diameter was determined by image processing using circle approximation based on the observation result of 340000 times, and the arithmetic average of the 30 was used as the average particle diameter. About the value of V ratio and Ti: Mo: V, content of Ti, Mo, and V was calculated | required by said 30 arithmetic average, and it was set as the average composition, and it computed based on this. The average particle size and average composition obtained for the precipitate having a particle size of 100 nm or less were used as the average particle size and average composition of carbides containing Ti, Mo and V.

得られた鋼板の圧延垂直方向からJIS5号引張試験片を採取し、また、得られた鋼板の酸洗板に圧下率10%の冷間圧延を施し、冷間加工後の鋼板から穴広げ試験片を採取した。穴広げ試験は130mm角の鋼板の中央に10mmφのポンチにより、クリアランス(片側)を板厚の12.5%として打ち抜いた穴を有する試験片を準備し、60°円錐ポンチにより打ち抜き穴のバリ側の反対方向から押し上げ、割れが鋼板を貫通した時点での穴径d(mm)を測定し、穴広げ率λを次式より算出した。
λ(%)={(d−10)/10}×100
表2に、組織、析出物平均粒径、析出物の組成(V比率)、Ti:Mo:Vの原子比、引張強度(TS)、伸び(El)、加工後の穴広げ率(λ)を示す。
JIS No. 5 tensile test specimens were collected from the vertical direction of rolling of the obtained steel sheet, and the pickled steel sheet was cold-rolled at a reduction ratio of 10%, and a hole expansion test was performed on the steel sheet after cold working. Pieces were collected. In the hole expansion test, a test piece having a hole punched with a clearance (one side) of 12.5% of the plate thickness is prepared in the center of a 130 mm square steel plate with a punch of 10 mmφ. The hole diameter d (mm) at the time when the crack penetrated the steel sheet was measured, and the hole expansion ratio λ was calculated from the following equation.
λ (%) = {(d−10) / 10} × 100
Table 2 shows the structure, the average particle size of precipitates, the composition of precipitates (V ratio), the atomic ratio of Ti: Mo: V, the tensile strength (TS), the elongation (El), and the hole expansion ratio after processing (λ). Indicates.

Figure 0004905147
Figure 0004905147

表2に示す通り、本発明鋼のNo.1〜5はいずれもフェライト組織からなり、析出物の平均粒径は10nm未満で、析出物のV比率(原子比)は0.3以上となっており、引張強度(TS)が980MPa以上で優れた伸びを有していることが確認された。それと同時に10%冷間加工後の伸びフランジ性も良好であった。   As shown in Table 2, No. of the steel of the present invention. 1 to 5 are all composed of a ferrite structure, the average particle size of the precipitate is less than 10 nm, the V ratio (atomic ratio) of the precipitate is 0.3 or more, and the tensile strength (TS) is 980 MPa or more. It was confirmed to have excellent elongation. At the same time, the stretch flangeability after 10% cold working was also good.

これに対して、比較例であるNo.6は、C量ならびにV量が少ないため、鋼の強化に必要な析出物の量が少なく、引張強度(TS)が980MPa未満となっている。No.7は、C量が多すぎ、またMo量が少ないため、面積比率で5%を超えるパーライトが生成してフェライト−パーライト組織となっており、かつ析出物が粗大化しており、伸びが低い。また、No.8は、V量が多く、析出物が粗大化しており、かつ面積比率で5%を超えるマルテンサイトが生成してフェライト−マルテンサイト組織となっているため、伸びが低い。No.9は、Ti量、V量が少ないため、鋼の強化に必要な析出物が不足して引張強度(TS)が980MPa未満となっている。No.10はTa量が少ないため、加工後の伸びフランジ性が低いことが分かる。   On the other hand, No. which is a comparative example. In No. 6, since the amount of C and V is small, the amount of precipitates necessary for strengthening the steel is small, and the tensile strength (TS) is less than 980 MPa. No. In No. 7, since the amount of C is too large and the amount of Mo is small, pearlite exceeding 5% in area ratio is generated to form a ferrite-pearlite structure, the precipitate is coarsened, and the elongation is low. No. No. 8 has a large amount of V, precipitates are coarse, and martensite with an area ratio exceeding 5% is generated to form a ferrite-martensite structure, so that the elongation is low. No. No. 9 has a small amount of Ti and V, so that precipitates necessary for strengthening the steel are insufficient and the tensile strength (TS) is less than 980 MPa. No. It can be seen that No. 10 has a low amount of Ta and therefore has a low stretch flangeability after processing.

(実施例2)
化学成分が質量%で、C:0.15%、Si:0.02%、Mn:1.34%、P:0.01%、S:0.001%、Al:0.04%、N:0.002%、Ta:0.0022%、Mo:0.33%、Ti:0.15%、V:0.3%である鋼(A値:(C/12)/{(Ti/48)+(Mo/96)+(V/51)}=0.96)を溶製し鋼スラブとした。次いで、オーステナイト域に加熱後、熱間圧延を行った。圧延終了後、巻取温度まで冷却し、該巻取温度で巻き取った。表3に、仕上圧延終了温度、巻取温度、板厚を示す。なお、表3に示す鋼No.11〜17は全て同一の化学成分とした。得られたコイルの幅方向中央部からサンプルを採取し、引張方向が圧延方向と垂直になるようにJIS5号引張試験片を採取し、引張試験を行った。また、同じ位置から採取したサンプルから、実施例1と同様の方法で析出物の調査を行い、鋼組織も観察した。さらに、得られた鋼板の酸洗板に圧下率10%の冷間圧延を施し、冷間加工後の鋼板から穴広げ試験片を採取し、穴広げ試験を行った。また、圧延後の板形状を目視で判定した。その結果も表3に示す。なお、圧延後の板形状の評価基準は、目視でフラットな場合を○、波うちが顕著な場合を×とした。さらにまた析出物の組成(V比率)、Ti:Mo:Vの原子比を表3に示す。
(Example 2)
Chemical component in mass%, C: 0.15%, Si: 0.02%, Mn: 1.34%, P: 0.01%, S: 0.001%, Al: 0.04%, N : 0.002%, Ta: 0.0022%, Mo: 0.33%, Ti: 0.15%, V: 0.3% steel (A value: (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} = 0.96) was made into a steel slab. Next, hot rolling was performed after heating to the austenite region. After rolling, the product was cooled to the coiling temperature and wound at the coiling temperature. Table 3 shows finish rolling finishing temperature, winding temperature, and plate thickness. In addition, steel No. shown in Table 3 11 to 17 are all the same chemical components. A sample was taken from the widthwise center of the obtained coil, and a JIS No. 5 tensile test piece was taken so that the tensile direction was perpendicular to the rolling direction, and a tensile test was performed. Moreover, the deposit was investigated from the sample extract | collected from the same position by the method similar to Example 1, and the steel structure was also observed. Furthermore, the pickling plate of the obtained steel plate was cold-rolled at a reduction rate of 10%, and a hole-expansion specimen was taken from the steel plate after cold working, and a hole-expansion test was performed. Moreover, the plate shape after rolling was determined visually. The results are also shown in Table 3. In addition, as for the evaluation criteria of the plate shape after rolling, the case where it was visually flat was marked as ◯, and the case where the wave was remarkable was marked as x. Furthermore, the composition of precipitates (V ratio) and the atomic ratio of Ti: Mo: V are shown in Table 3.

Figure 0004905147
Figure 0004905147

すなわち表3は、同一化学成分の1180MPa級鋼板において、板厚と、仕上圧延終了温度および巻取温度を変化させた例を示すものである。仕上圧延終了温度880℃以上、巻取り温度570℃以上を確保している鋼No.11〜15では、板厚に関わらず、平均粒径10nm未満の析出物が生成しており、目標の引張強度(TS)と伸びが達成された。また、加工後の伸びフランジ性も良好で、さらに板形状も良好であった。なお、これらの鋼板は、組織観察の結果、フェライト単相組織であることを確認した。一方、比較鋼のNo.16は仕上圧延終了温度が低かったため表層部で結晶粒が粗大化し、さらに析出物も粗大化したため、目標の強度を満たさず、伸びも低かった。板形状も波打ちが顕著であった。No.17は巻取温度が低かったため、鋼の強化に必要な析出物が不足して引張強度(TS)が目標に達せず、また波打ちが顕著であった。なお、鋼No.11〜15では析出物の個数は1μm当たり約1×10個程度であり、No.16および17では約2.5〜4×10個程度と概算される。 That is, Table 3 shows an example in which the thickness, finish rolling finish temperature, and winding temperature are changed in a 1180 MPa class steel plate having the same chemical composition. Steel No. having a finish rolling finish temperature of 880 ° C. or higher and a winding temperature of 570 ° C. or higher is secured. In Nos. 11 to 15, precipitates having an average particle size of less than 10 nm were formed regardless of the plate thickness, and the target tensile strength (TS) and elongation were achieved. Moreover, the stretch flangeability after processing was also good, and the plate shape was also good. These steel sheets were confirmed to have a ferrite single phase structure as a result of structural observation. On the other hand, no. In No. 16, the finish rolling finish temperature was low, so the crystal grains were coarsened in the surface layer portion, and the precipitates were also coarsened, so the target strength was not satisfied and the elongation was low. The plate shape was also wavy. No. Since No. 17 had a low coiling temperature, precipitates necessary for strengthening the steel were insufficient, the tensile strength (TS) did not reach the target, and waving was remarkable. Steel No. In Nos. 11 to 15, the number of precipitates is about 1 × 10 6 per 1 μm 3 . 16 and 17 are estimated to be about 2.5 to 4 × 10 5 .

(実施例3)
表4に化学成分を示す鋼を仕上圧延終了温度920℃以上、巻取温度620℃で熱間圧延を行い、板厚1.6mmの熱延鋼板を製造した。なお、鋼片の加熱温度は1250℃とした。これら熱延鋼板を酸洗後、亜鉛をめっき浴とする溶融亜鉛めっきを施した後、合金化処理を施し、合金化溶融亜鉛めっき鋼板とした。実施例1と同様に、得られた鋼板から作製した薄膜について、透過型電子顕微鏡(TEM)によって組織観察を行うとともに、析出物のサイズを測定し、さらに析出物中のTi、Mo、Vの組成をTEMに装備されたエネルギー分散型X線分光装置(EDX)による分析から決定した。また、これらめっき鋼板からJIS5号引張試験片および穴広げ試験片を採取し、引張試験を行った。さらに得られた合金化溶融亜鉛めっき鋼板に、冷間圧延にて圧下率10%の冷間加工を施し、冷間加工後の鋼板から、穴広げ試験片を採取し、穴広げ試験を行った。なお、表4中のA値も表1と同様、(I)式の(C/12)/{(Ti/48)+(Mo/96)+(V/51)}の値を示す。表5に、組織、析出物平均粒径、析出物の組成(V比率)、Ti:Mo:Vの原子比、引張強度(TS)、伸び(El)、加工後の穴広げ率(λ)を示す。
Example 3
Steels having chemical components shown in Table 4 were hot-rolled at a finish rolling end temperature of 920 ° C. or higher and a winding temperature of 620 ° C. to produce a hot-rolled steel plate having a thickness of 1.6 mm. The heating temperature of the steel slab was 1250 ° C. These hot-rolled steel sheets were pickled, hot-dip galvanized using zinc as a plating bath, and then alloyed to obtain alloyed hot-dip galvanized steel sheets. As in Example 1, the thin film prepared from the obtained steel sheet was observed with a transmission electron microscope (TEM), the size of the precipitate was measured, and Ti, Mo, and V of the precipitate were further measured. The composition was determined from analysis by an energy dispersive X-ray spectrometer (EDX) equipped with a TEM. Moreover, a JIS No. 5 tensile test piece and a hole expansion test piece were collected from these plated steel sheets and subjected to a tensile test. Further, the obtained alloyed hot-dip galvanized steel sheet was subjected to cold working with a cold reduction of 10% by cold rolling, and a hole-expanding test piece was collected from the cold-worked steel sheet and subjected to a hole-expanding test. . In addition, the A value in Table 4 shows the value of (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} of the formula (I) as in Table 1. Table 5 shows the structure, the average particle size of the precipitate, the composition of the precipitate (V ratio), the atomic ratio of Ti: Mo: V, the tensile strength (TS), the elongation (El), and the hole expansion ratio after processing (λ). Indicates.

Figure 0004905147
Figure 0004905147

Figure 0004905147
Figure 0004905147

表5に示すように、本発明例であるNo.18は溶融亜鉛めっきを行っても伸び、加工後の伸びフランジ性ともに良好な値を示すのに対し、比較例No.19は析出物が粗大化し、また析出物にVがほとんど含まれていないため、伸びが低かった。また比較鋼No.20はTaの含有量が少ないため、加工後の伸びフランジ性が劣った。   As shown in Table 5, No. 1 as an example of the present invention. No. 18 stretches even when hot dip galvanizing is performed, and the stretch flangeability after processing shows a good value. In No. 19, the precipitate was coarsened, and V was not included in the precipitate, so that the elongation was low. Comparative steel No. Since No. 20 has a small Ta content, stretch flangeability after processing was inferior.

本発明によれば、Ti、Moに加えてVを適正なバランスで添加して、Ti、MoおよびVを含む微細な炭化物を分散析出させること、および微量のTaを添加することにより、圧下率10%程度の冷間加工に相当する加工後の伸びフランジ性に優れた、引張強度980MPa以上の鋼板が得られる。本発明の鋼板は、高い引張強度と良好な加工性が要求される自動車用部材などに最適であり、本発明の鋼板を用いることにより、自動車部品製造に関して、生産性の向上や品質向上に寄与できる。   According to the present invention, by adding V in an appropriate balance in addition to Ti and Mo, fine carbides containing Ti, Mo and V are dispersed and precipitated, and a small amount of Ta is added, thereby reducing the rolling reduction rate. A steel plate having a tensile strength of 980 MPa or more and excellent in stretch flangeability after processing corresponding to cold processing of about 10% is obtained. The steel sheet of the present invention is optimal for automotive parts and the like that require high tensile strength and good workability, and by using the steel sheet of the present invention, it contributes to improvement in productivity and quality improvement in the production of automobile parts. it can.

Vの添加量と析出効率の関係を示すグラフ。The graph which shows the relationship between the addition amount of V, and precipitation efficiency. 本発明で得られたTi、Mo、Vを含む微細な炭化物の一例(透過型電子顕微鏡による観察結果)。An example of the fine carbide | carbonized_material containing Ti, Mo, and V obtained by this invention (Observation result by a transmission electron microscope). 引張強度980MPa以上の高張力鋼板に、10%冷間加工を施した後の伸びフランジ性に及ぼすTa量の影響を示すグラフ。The graph which shows the influence of the amount of Ta exerted on the stretch flangeability after performing a 10% cold work on the high-tensile steel plate having a tensile strength of 980 MPa or more.

Claims (4)

質量%で、C:0.06超〜0.24%、Si≦0.3%、Mn:0.5〜2.0%、P≦0.06%、S≦0.005%、Al≦0.06%、N≦0.006%、Mo:0.05〜0.5%、Ti:0.03〜0.2%、V:0.15超〜1.2%、Ta:0.0010〜0.0050%を含み、残部がFeおよび不可避的不純物からなり、C、Ti、Mo、V含有量が以下の(I)式を満足する成分組成を有し、面積比率で95%以上がフェライトであり、平均粒径10nm未満のTi、MoおよびVを含む炭化物が分散析出するとともに、該Ti、MoおよびVを含む炭化物は、原子%で表されるTi、Mo、Vが、V/(Ti+Mo+V)≧0.3を満たす平均組成を有することを特徴とする引張強度が980MPa以上で板厚2.5mm以下の薄物高張力熱延鋼板。
0.8≦(C/12)/{(Ti/48)+(Mo/96)+(V/51)}≦1.5 ・・・(I)
(ただし、C、Ti、Mo、Vは各成分の質量%を表す)
In mass%, C: more than 0.06 to 0.24%, Si ≦ 0.3%, Mn: 0.5 to 2.0%, P ≦ 0.06%, S ≦ 0.005%, Al ≦ 0.06%, N ≦ 0.006%, Mo: 0.05 to 0.5%, Ti: 0.03 to 0.2%, V: more than 0.15 to 1.2%, Ta: 0.00. 0010-0.0050%, the balance is Fe and inevitable impurities, the C, Ti, Mo, V content has a component composition that satisfies the following formula (I), 95% or more by area ratio Is a ferrite, and carbides containing Ti, Mo, and V having an average particle size of less than 10 nm are dispersed and precipitated, and the carbides containing Ti, Mo, and V are Ti, Mo, and V expressed in atomic%. thickness 2 in tensile strength than 980MPa characterized by having an average composition satisfying the /(TitasuMotasuV)≧0.3. mm or less of thin high-strength hot-rolled steel sheet.
0.8 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} ≦ 1.5 (I)
(However, C, Ti, Mo, and V represent mass% of each component)
表面に溶融亜鉛系めっき皮膜を有することを特徴とする請求項に記載の薄物高張力熱延鋼板。 The thin high-tensile hot-rolled steel sheet according to claim 1 , which has a hot-dip galvanized film on the surface. 質量%で、C:0.06超〜0.24%、Si≦0.3%、Mn:0.5〜2.0%、P≦0.06%、S≦0.005%、Al≦0.06%、N≦0.006%、Mo:0.05〜0.5%、Ti:0.03〜0.2%、V:0.15超〜1.2%、Ta:0.0010〜0.0050%を含み、残部がFeおよび不可避的不純物からなるとともに、C、Ti、Mo、V含有量が以下の(I)式を満足する成分組成を有する鋼片に、仕上圧延終了温度880℃以上、巻取温度570℃以上の条件で熱間圧延を施し、面積比率で95%以上がフェライトであり平均粒径10nm未満のTi、MoおよびVを含む炭化物が分散析出するとともに、該Ti、MoおよびVを含む炭化物は、原子%で表されるTi、Mo、Vが、V/(Ti+Mo+V)≧0.3を満たす平均組成を有する、引張強度が980MPa以上で板厚2.5mm以下の薄物高張力熱延鋼板を得ることを特徴とする薄物高張力熱延鋼板の製造方法。
0.8≦(C/12)/{(Ti/48)+(Mo/96)+(V/51)}≦1.5 ・・・(I)
(ただし、C、Ti、Mo、Vは各成分の質量%を表す)
In mass%, C: more than 0.06 to 0.24%, Si ≦ 0.3%, Mn: 0.5 to 2.0%, P ≦ 0.06%, S ≦ 0.005%, Al ≦ 0.06%, N ≦ 0.006%, Mo: 0.05 to 0.5%, Ti: 0.03 to 0.2%, V: more than 0.15 to 1.2%, Ta: 0.00. Finishing rolling into a steel slab containing 0010 to 0.0050%, with the balance being Fe and inevitable impurities, and having a component composition in which the C, Ti, Mo, and V contents satisfy the following formula (I) When hot rolling is performed at a temperature of 880 ° C. or higher and a coiling temperature of 570 ° C. or higher , 95% or more of ferrite is an area ratio, and carbides containing Ti, Mo, and V having an average particle size of less than 10 nm are dispersed and precipitated. The carbide containing Ti, Mo, and V has Ti / Mo / V expressed in atomic% as V / (Ti + Mo Has an average composition satisfying V) ≧ 0.3, a tensile strength thin high-strength hot rolled steel sheet manufacturing method, characterized in that to obtain the following thin high strength hot-rolled steel sheet thickness 2.5mm above 980 MPa.
0.8 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} ≦ 1.5 (I)
(However, C, Ti, Mo, and V represent mass% of each component)
前記熱間圧延後の鋼板の表面に溶融亜鉛系めっき皮膜を有することを特徴とする請求項に記載の薄物高張力熱延鋼板の製造方法。 The method for producing a thin, high-tensile hot-rolled steel sheet according to claim 3 , comprising a hot-dip galvanized coating on the surface of the steel sheet after the hot rolling.
JP2007010845A 2007-01-19 2007-01-19 Thin high tensile hot-rolled steel sheet and manufacturing method thereof Expired - Fee Related JP4905147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007010845A JP4905147B2 (en) 2007-01-19 2007-01-19 Thin high tensile hot-rolled steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007010845A JP4905147B2 (en) 2007-01-19 2007-01-19 Thin high tensile hot-rolled steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008174813A JP2008174813A (en) 2008-07-31
JP4905147B2 true JP4905147B2 (en) 2012-03-28

Family

ID=39702036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007010845A Expired - Fee Related JP4905147B2 (en) 2007-01-19 2007-01-19 Thin high tensile hot-rolled steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4905147B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5903883B2 (en) * 2011-12-27 2016-04-13 Jfeスチール株式会社 High-strength hot-rolled steel sheet for plating with excellent corrosion resistance and its manufacturing method
JP6001883B2 (en) * 2012-03-09 2016-10-05 株式会社神戸製鋼所 Manufacturing method of press-molded product and press-molded product
JP6001884B2 (en) * 2012-03-09 2016-10-05 株式会社神戸製鋼所 Manufacturing method of press-molded product and press-molded product
JP6052503B2 (en) * 2013-03-29 2016-12-27 Jfeスチール株式会社 High-strength hot-rolled steel sheet and its manufacturing method
WO2017050790A1 (en) * 2015-09-22 2017-03-30 Tata Steel Ijmuiden B.V. A hot-rolled high-strength roll-formable steel sheet with excellent stretch-flange formability and a method of producing said steel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4007051B2 (en) * 2002-04-30 2007-11-14 Jfeスチール株式会社 High strength thin steel plate with excellent thermal stability
JP4341363B2 (en) * 2003-10-16 2009-10-07 Jfeスチール株式会社 Method for designing precipitation strengthening type high strength steel sheet and method for producing precipitation strengthening type high strength steel sheet using the same
KR100968013B1 (en) * 2005-08-05 2010-07-07 제이에프이 스틸 가부시키가이샤 High strength steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JP2008174813A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP5076394B2 (en) High-tensile steel plate and manufacturing method thereof
KR100968013B1 (en) High strength steel sheet and method for manufacturing the same
US10435762B2 (en) High-yield-ratio high-strength cold-rolled steel sheet and method of producing the same
JP5423191B2 (en) High strength steel plate and manufacturing method thereof
US20130087252A1 (en) High-strength hot-rolled steel sheet having excellent formability and method for manufacturing the same
KR20120128721A (en) Hot-dip galvanized steel sheet with high tensile strength and superior processability and method for producing same
TWI468530B (en) Cold rolled steel plate, plated steel plate, and method of manufacturing the same
JP5915412B2 (en) High strength hot-rolled steel sheet excellent in bendability and manufacturing method thereof
CN113366134B (en) High-strength steel sheet and method for producing same
CN113710823B (en) Steel sheet and method for producing same
JP5533146B2 (en) Cold rolled steel sheet and method for producing the same
JP4924052B2 (en) High yield ratio high tensile cold-rolled steel sheet and method for producing the same
JP5978614B2 (en) High-strength hot-rolled steel sheet excellent in punchability and manufacturing method thereof
JP4905147B2 (en) Thin high tensile hot-rolled steel sheet and manufacturing method thereof
JP4710558B2 (en) High-tensile steel plate with excellent workability and method for producing the same
JP5533143B2 (en) Cold rolled steel sheet and method for producing the same
JP3760888B2 (en) High-tensile cold-rolled steel sheet with excellent workability, manufacturing method and processing method thereof
JP5533145B2 (en) Cold rolled steel sheet and method for producing the same
JP7136335B2 (en) High-strength steel plate and its manufacturing method
WO2015118864A1 (en) High-strength hot-rolled steel sheet and production method therefor
JP2002322543A5 (en)
JP4899881B2 (en) High yield strength hot-rolled steel sheet and manufacturing method thereof
JP6724320B2 (en) High-strength hot-dip galvanized steel sheet excellent in elongation and hole expandability and method for producing the same
JP5776761B2 (en) Cold rolled steel sheet and method for producing the same
JP6123551B2 (en) High-strength hot-rolled steel sheet excellent in fatigue resistance and shape freezing property after slit processing and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees