JP2002322543A5 - - Google Patents

Download PDF

Info

Publication number
JP2002322543A5
JP2002322543A5 JP2001334464A JP2001334464A JP2002322543A5 JP 2002322543 A5 JP2002322543 A5 JP 2002322543A5 JP 2001334464 A JP2001334464 A JP 2001334464A JP 2001334464 A JP2001334464 A JP 2001334464A JP 2002322543 A5 JP2002322543 A5 JP 2002322543A5
Authority
JP
Japan
Prior art keywords
steel sheet
less
workability
press
stretch flangeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001334464A
Other languages
Japanese (ja)
Other versions
JP2002322543A (en
JP3591502B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2001334464A priority Critical patent/JP3591502B2/en
Priority claimed from JP2001334464A external-priority patent/JP3591502B2/en
Publication of JP2002322543A publication Critical patent/JP2002322543A/en
Publication of JP2002322543A5 publication Critical patent/JP2002322543A5/ja
Application granted granted Critical
Publication of JP3591502B2 publication Critical patent/JP3591502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の名称】加工性に優れた高張力鋼板ならびにその製造方法および加工方法
【特許請求の範囲】
【請求項1】実質的にフェライト単相組織であり、原子%で表されるTi、Moが、Mo/(Ti+Mo)≧0.25を満たす範囲でTiおよびMoを含む炭化物が分散析出していることを特徴とする加工性に優れた高張力鋼板。
【請求項2】実質的にフェライト単相組織であり、平均粒径10nm未満のTiおよびMoを含む炭化物が分散析出していることを特徴とする加工性に優れた高張力鋼板。
【請求項3】実質的にフェライト単相組織でかつ鋼中のCと(Ti+Mo)との原子数比が0.8から1.5であり、TiおよびMoを含む炭化物が分散析出していることを特徴とする加工性に優れた高張力鋼板。
【請求項4】重量%で、C:0.02〜0.06%、Si≦0.3%、Mn:0.5〜2.0%、P≦0.06%、S≦0.005%、Al≦0.06%、N≦0.006%、Mo:0.05〜0.5%、Ti:0.03〜0.14%を含み、残部が実質的にFeであることを特徴とする請求項1から請求項3のいずれか1項に記載の加工性に優れた高張力鋼板。
【請求項5】前記炭化物はTi、Moに加え、NbおよびVの1種以上を含み、原子%で表されるTi、Moが、前記Mo/(Ti+Mo)≧0.25を満たすことに代えて、原子%で表されるTi、Mo、Nb、VがMo/(Ti+Nb+V+Mo)≧0.25を満たすことを特徴とする請求項1に記載の加工性に優れた高張力鋼板。
【請求項6】前記炭化物はTi、Moに加え、NbおよびVの1種以上を含むことを特徴とする請求項2に記載の加工性に優れた高張力鋼板。
【請求項7】鋼中のCと(Ti+Nb+V+Mo)との原子数比が0.8から1.5であることを特徴とする請求項5または請求項6に記載の加工性に優れた高張力鋼板。
【請求項8】鋼中のCと(Ti+Mo)との原子数比に代えて、Cと(Ti+Nb+V+Mo)との原子数比が0.8から1.5であり、前記炭化物はTi、Moに加え、NbおよびVの1種以上を含むことを特徴とする請求項3に記載の加工性に優れた高張力鋼板。
【請求項9】前記炭化物は、原子%で表されるTi、Mo、Nb、VがMo/(Ti+Nb+V+Mo)≧0.25を満たすことを特徴とする請求項6から請求項8のいずれか1項に記載の加工性に優れた高張力鋼板。
【請求項10】重量%で、C:0.02〜0.06%、Si≦0.3%、Mn:0.5〜2.0%、P≦0.06%、S≦0.005%、Al≦0.06%、N≦0.006%、Mo:0.05〜0.5%、Ti:0.03〜0.14%を含み、Nb≦0.08%、V≦0.15%のうち1種以上を含有し、残部が実質的にFeであることを特徴とする請求項5から請求項9のいずれか1項に記載の加工性に優れた高張力鋼板。
【請求項11】引張強度が590MPa以上であることを特徴とする請求項1から請求項10のいずれか1項に記載の加工性に優れた高張力鋼板。
【請求項12】板厚2.5mm以下の薄物熱延鋼板であることを特徴とする請求項1から請求項11のいずれか1項に記載の加工性に優れた高張力鋼板。
【請求項13】表面に溶融亜鉛系めっき皮膜を有することを特徴とする請求項1から請求項12のいずれか1項に記載の加工性に優れた高張力鋼板。
【請求項14】請求項1から請求項13のいずれかの高張力鋼板を製造するに際し、熱間圧延を、仕上圧延終了温度880℃以上、巻取温度570℃以上の条件で行うことを特徴とする加工性に優れた高張力鋼板の製造方法。
【請求項15】請求項1から請求項13のいずれかに記載の高張力鋼板からなる部材を準備する第1の工程と、前記部材にプレス成形を施して所望の形状のプレス成形品に加工する第2の工程とを有する高張力鋼板の加工方法。
【請求項16】前記プレス成形品は、自動車用部品である請求項15に記載の高張力鋼板の加工方法。
【請求項17】請求項1から請求項13のいずれかに記載の高張力鋼板により製造される自動車用部品。
【発明の詳細な説明】
【0001】
【発明の属する技術分野】
本発明は、自動車用部材の素材に適した加工性に優れた高張力鋼板ならびにその製造方法および加工方法に関する。
【0002】
【従来技術】
環境保全につながる燃費向上の観点から、自動車用鋼板の高強度薄肉化が強く求められている。自動車用部材はプレス成形により得られる複雑な形状のものが多く、高強度でありながら加工性の指標である伸びと伸びフランジ性がともに優れた材料が必要である。また、鋼板をより軽量化する観点からさらなる薄肉化が指向されており、板厚2.5mm以下の薄物に対する要望も強くなってきている。
【0003】
従来、この種の鋼板は種々提案されており、例えば、特開平6−172924号公報には、転位密度の高いベイニティック・フェライト組織が生成した伸びフランジ性に優れる鋼板が提案されている。しかし、この鋼板は、転位密度の高いベイニティック・フェライト組織を含むため伸びが乏しいという欠点がある。また、ベイニティック・フェライト生成のためにランナウトテーブル上での強冷却が不可避であり薄物製造時にはランナウトテーブルでのストリップの走行性に問題が生じるため、板厚2.5mm以下といった薄物を生産するには不向きである。
【0004】
特開平6−200351号公報には、組織の大部分をポリゴナルフェライトとし、TiCを中心として析出強化および固溶強化した伸びフランジ性に優れる鋼板が提案されている。しかし、この鋼板に用いられている一般的によく知られた析出物で高張力化するには多量のTi添加が必要とし、寸法の大きい析出物が生成しやすく、特性が不安定になりやすいという欠点がある。また、この鋼は特性向上のために圧延荷重を増大させるSiを積極的に用いているため、薄物の製造において圧延荷重が増大し、鋼板形状確保が難しい。
【0005】
特開平7−11382号公報には、微細なTiCおよび/またはNbCが析出したアシキュラー・フェライト組織を有した伸びフランジ性に優れる鋼板が提案されている。しかし、この鋼板も、先に述べた特開平6−172924号公報に提案された鋼板同様、アシキュラー・フェライトという転位密度の高い組織であるため十分な伸びが得られていない。また、この鋼は特開平6−200351号公報に開示された鋼と同様に、特性向上のために圧延荷重を増大させるSiを積極的に用いているため、薄物の製造において圧延荷重が増大し、鋼板形状確保が難しい。
【0006】
【発明が解決しようとする課題】
本発明はかかる事情に鑑みてなされたものであって、自動車用部材のようにプレス時の断面形状が複雑な用途に適した、加工性の指標である伸びと伸びフランジ性がともに優れた高張力鋼板ならびにその製造方法および加工方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意検討を行った結果、以下の知見を得た。
(1)転位密度が低い組織とし、微細析出物で強化すると、強度−伸びバランスが向上する。
(2)実質的に単相組織とし、微細析出物で強化すると、強度−伸びフランジ性バランスが向上する。
(3)Moを含む複合析出物とすると、析出物が微細に析出する。
(4)複合析出物中のMoの割合が低くなると、析出物が粗大化するため、伸びと伸びフランジ性がともに低下する。
【0008】
本発明はこれらの知見に基づいて完成されたものであり、以下の(1)〜(17)を提供する。
【0009】
(1)実質的にフェライト単相組織であり、原子%で表されるTi、Moが、Mo/(Ti+Mo)≧0.25を満たす範囲でTiおよびMoを含む炭化物が分散析出していることを特徴とする加工性に優れた高張力鋼板。
【0010】
(2)実質的にフェライト単相組織であり、平均粒径10nm未満のTiおよびMoを含む炭化物が分散析出していることを特徴とする加工性に優れた高張力鋼板。
【0011】
(3)実質的にフェライト単相組織でかつ鋼中のCと(Ti+Mo)との原子数比が0.8から1.5であり、TiおよびMoを含む炭化物が分散析出していることを特徴とする加工性に優れた高張力鋼板。
【0012】
(4)上記(1)〜(3)のいずれかにおいて、重量%で、C:0.02〜0.06%、Si≦0.3%、Mn:0.5〜2.0%、P≦0.06%、S≦0.005%、Al≦0.06%、N≦0.006%、Mo:0.05〜0.5%、Ti:0.03〜0.14%を含み、残部が実質的にFeであることを特徴とする加工性に優れた高張力鋼板。
【0013】
(5)上記()において、前記炭化物はTi、Moに加え、NbおよびVの1種以上を含み、原子%で表されるTi、Moが、前記Mo/(Ti+Mo)≧0.25を満たすことに代えて、原子%で表されるTi、Mo、Nb、VがMo/(Ti+Nb+V+Mo)≧0.25を満たすことを特徴とする加工性に優れた高張力鋼板。
【0014】
(6)上記(2)において、前記炭化物はTi、Moに加え、NbおよびVの1種以上を含むことを特徴とする加工性に優れた高張力鋼板。
【0015】
(7)上記(5)または(6)において、鋼中のCと(Ti+Nb+V+Mo)との原子数比が0.8から1.5であることを特徴とする加工性に優れた高張力鋼板。
【0016】
(8)上記(3)において、鋼中のCと(Ti+Mo)との原子数比に代えて、Cと(Ti+Nb+V+Mo)との原子数比が0.8から1.5であり、前記炭化物はTi、Moに加え、NbおよびVの1種以上を含むことを特徴とする加工性に優れた高張力鋼板。
【0017】
(9)上記()〜(8)のいずれかにおいて、前記炭化物は、原子%で表されるTi、Mo、Nb、VがMo/(Ti+Nb+V+Mo)≧0.25を満たすことを特徴とする加工性に優れた高張力鋼板。
【0018】
(10)上記(5)〜(9)のいずれかにおいて、重量%で、C:0.02〜0.06%、Si≦0.3%、Mn:0.5〜2.0%、P≦0.06%、S≦0.005%、Al≦0.06%、N≦0.006%、Mo:0.05〜0.5%、Ti:0.03〜0.14%を含み、Nb≦0.08%、V≦0.15%のうち1種以上を含有し、残部が実質的にFeであることを特徴とする加工性に優れた高張力鋼板。
【0019】
(11)上記(1)〜(10)のいずれかにおいて、引張強度が590MPa以上であることを特徴とする加工性に優れた高張力鋼板。
0020
12)上記(1)〜(11)のいずれかにおいて、板厚2.5mm以下の薄物熱延鋼板であることを特徴とする加工性に優れた高張力鋼板。
0021
13)上記(1)〜(12)のいずれかにおいて、表面に溶融亜鉛系めっき皮膜を有することを特徴とする加工性に優れた高張力鋼板。
0022
14)上記(1)〜(13)のいずれかの高張力鋼板を製造するに際し、熱間圧延を、仕上圧延終了温度880℃以上、巻取温度570℃以上の条件で行うことを特徴とする加工性に優れた高張力鋼板の製造方法。
0023
15)上記(1)〜(13)のいずれかの高張力鋼板からなる部材を準備する第1の工程と、前記部材にプレス成形を施して所望の形状のプレス成形品に加工する第2の工程とを有する高張力鋼板の加工方法。
0024
16)上記(15)において、前記プレス成形品は、自動車用部品、特に自動車用足廻り部材である高張力鋼板の加工方法。
0025
17)上記(1)〜(13)のいずれかの高張力鋼板により製造される自動車用部品。
0026
なお、本発明において実質的にフェライト単相組織とは、本発明の析出物以外に、微量の他の相ないしは析出物を許容することをいい、好ましくはフェライトの面積比率が95%以上である。
0027
【発明の実施の形態】
以下、本発明について、金属組織、化学成分、および製造方法に分けて具体的に説明する。
0028
[金属組織]
本発明に係る高張力鋼板は、実質的にフェライト単相組織であり、TiおよびMoを含む炭化物が分散析出している。
0029
・実質的にフェライト単相組織:
マトリックスを実質的にフェライト単相組織としたのは、伸びの向上には転位密度の低いフェライトが有効であり、また、伸びフランジ性の向上には単相組織とすることが有効であり、特に延性に富むフェライト単相組織でその効果が顕著であるためである。ただし、マトリックスは必ずしも完全にフェライト単相組織でなくともよく、実質的にフェライト単相組織、好ましくは面積比率で95%以上フェライトであればよい。
0030
・TiおよびMoを含む炭化物
TiとMoとを含む炭化物は微細となるため鋼を強化するのに有効である。従来は、析出物としてTiCを用いることが主流であったが、Tiは析出物形成傾向が強いためMoを含まない場合、粗大化しやすく、強化に対する効果が低くなることから、必要な強化量を得るには加工性を劣化させるまでの析出物が必要となる。これに対し、TiとMoとを含む複合炭化物は微細に析出して加工性を劣化させずに鋼を強化することができる。これは、Moの析出物形成傾向がTiと比べて弱いため、安定的に微細に存在できることで強化に対する効果が高く、加工性を良好に維持できる析出物量で必要な強化量が得られるためと考えられる。
【0031】
炭化物が安定的に微細に存在できるためには、炭化物の組成が影響し、炭化物の組成が、原子%で表されるMo、Tiが、Mo/(Ti+Mo)≧0.25を満たすようになると、析出物の粗大化を抑制する効果が高くなり、所望の微細析出物を得ることができる。したがって、本発明の第1の観点では、原子%で表されるTi、Moが、Mo/(Ti+Mo)≧0.25を満たす範囲でTiおよびMoを含む炭化物が分散析出していることを要件とする。
【0032】
また、この複合炭化物の平均粒径を10nm未満とすることで、析出物周囲の歪みが転位の移動の抵抗にとってより効果的となり、良好な鋼の強化が得られる。このため、本発明の第2の観点では、平均粒径10nm未満のTiおよびMoを含む炭化物が分散析出していることを要件とする。さらに好ましくは、平均粒径5nm以下である。
【0033】
さらに、鋼中のCと(Ti+Mo)との原子数比が0.8〜1.5となるように、C、Ti、Moの含有量を調整することにより、TiとMoとを含む炭化物が微細に析出しやすくなり、10nm未満の微細析出物の形成が容易となることから、本発明の第3の観点では、鋼中のCと(Ti+Mo)との原子数比が0.8から1.5であり、TiおよびMoを含む炭化物が分散析出していることを要件とする。上記原子数比は0.8〜1.3がより好ましい。なお、上記Cと(Ti+Mo)との原子数比0.8〜1.5を重量%換算すると、以下の(1)式を満たすこととなる。
0.8≦(C/12)/{(Ti/48)+(Mo/96)}≦1.5 …(1)
ただし、上記(1)式中、C、Ti、Moは各成分の重量%を表す。
0034
炭化物がTiとMoに加え、NbおよびVの1種以上が複合して析出したものであっても、Moの析出物形成傾向はNb、Vと比べて弱いため、その複合析出物はTiとMoの複合炭化物と同様に、安定的に微細に存在できる。このため、炭化物としては、TiとMoの他にNbおよびVの1種以上が複合析出したものであってもかまわない。
0035
複合炭化物が、Ti、Moに加え、NbおよびVの1種以上を含むものである場合、上記第1の観点では、その組成が、原子%で表されるTi、Moが、前記Mo/(Ti+Mo)≧0.25を満たすことに代えて、原子%で表されるTi、Mo、Nb、VがMo/(Ti+Nb+V+Mo)≧0.25を満たすことが好ましい。この範囲であれば、複合析出物の粗大化を抑制する効果が高く、加工性を良好に維持することができる析出物量で必要な強化量を得ることができる。上記第2および第3の観点においても、Mo/(Ti+Nb+V+Mo)≧0.25を満たすことが好ましい。
0036
このように、TiとMoに加え、NbおよびVの1種以上が複合して析出した複合炭化物を微細に分散析出させやすくさせるためには、上記第3の観点における、鋼中のCと(Ti+Mo)との原子数比に代えて、Cと(Ti+Nb+V+Mo)との原子数比が0.8〜1.5となるようにすることが好ましい。上記第1および第2の観点においても、Cと(Ti+Nb+V+Mo)との原子数比が0.8〜1.5となるようにすることが好ましい。上記原子数比は0.8〜1.3がより好ましい。なお、上記Cと(Ti+Nb+V+Mo)との原子数比0.8〜1.5を重量%換算すると、以下の(2)式を満たすこととなる。
0.8≦(C/12)/{(Ti/48)+(Nb/93)+(V/51)+(Mo/96)}≦1.5 …(2)
ただし、上記(2)式中、C、Ti、Nb、V、Moは各成分の重量%を表す。
0037
[化学成分]
本発明では、上記金属組織さえ満たしていれば所望の伸びおよび伸びフランジ性および590MPa以上の強度が得られ、化学成分は特に限定されないが、重量%で、C:0.02〜0.06%、Si≦0.3%、Mn:0.5〜2.0%、P≦0.06%、S≦0.005%、Al≦0.06%、N≦0.006%、Mo:0.05〜0.5%、Ti:0.03〜0.14%を含み、残部が実質的にFeであることが好ましい。また、上述のように複合炭化物にNbおよびVの1種以上を含有させる場合には、上記成分に加えNb≦0.08%、V≦0.15%のうち1種以上を含有し、残部が実質的にFeであることが好ましい。以下、これら各成分について説明する。
0038
C:0.02〜0.06%
Cは炭化物を形成し、鋼を強化するのに有効である。しかし、0.02%未満では、鋼の強化が不十分であり、0.06%を超えて添加するとパーライトが形成されることと析出物が粗大化することから伸びと伸びフランジ性を損なうおそれがある。このため、C含有量は0.02〜0.06%が好ましい。
0039
Si:0.3%以下
Siは固溶強化には有効な元素であるが、0.3%を超えて添加すると、フェライトからのC析出が促進されて粒界に粗大な鉄炭化物が析出しやすくなり、伸びフランジ性が低下する傾向となる。また、本発明においては、従来積極的に用いられてきたSiを低減することによりオーステナイトの圧延荷重を低減し、薄物の製造を容易化することができ、0.3%を超えて添加すると2.5mm以下の材料の圧延が不安定となる。また、Si添加で圧延負荷が増大し、圧延材の形状が悪くなる。これらの理由により、Si含有量は0.3%以下が好ましい。さらに好ましくは0.15%以下であり、望ましくは0.05%以下である。
0040
Mn:0.5〜2.0%
Mnは固溶強化により鋼を強化する観点からは0.5%以上が好ましいが、2.0%を超えて添加すると偏析し、かつ硬質相が形成され、伸びフランジ性が低下する。このため、Mn含有量は0.5〜2.0%が好ましい。
0041
P:0.06%以下
Pは固溶強化に有効であるが、0.06%を超えて添加すると偏析して伸びフランジ性が低下するおそれがあるため、0.06%以下とすることが好ましい。
0042
S:0.005%以下
Sは少ないほど好ましく、0.005%を超えると伸びフランジ性を低下させるおそれがあるため、0.005%以下が好ましい。
0043
Al:0.06%以下
Alは脱酸剤として添加される。しかし、0.06%を超えると伸びおよび伸びフランジ性がともに低下する傾向にあるため0.06%以下が好ましい。
0044
N:0.006%以下
Nは少ないほど好ましく、0.006%を超えると粗大な窒化物が増え、伸びフランジ性が低下する傾向にあるため0.006%以下が好ましい。
0045
Mo:0.05〜0.5%
Moは本発明において重要な元素であり、0.05%以上含有させることで、パーライト変態を抑制しつつ、Tiとの微細な複合析出物、または、Tiに加えNbおよびVのうち1種以上を含む微細な複合析出物を形成し、優れた伸びおよび伸びフランジ性を確保し、かつ鋼を強化することができる。しかし、0.5%を超えて添加すると硬質相が形成され伸びフランジ性が低する傾向にある。このため、Mo含有量は0.05〜0.5%が好ましい。
0046
Ti:0.03〜0.14%
Tiは本発明において重要な元素である。Moと複合析出物を形成することで、優れた伸びおよび伸びフランジ性を確保しつつ、鋼を強化することができる。しかし、0.03%未満では、鋼を強化する効果が不十分であり、0.14%を超えると伸びフランジ性が劣化する傾向にある。したがって、Ti含有量は0.03〜0.14%が好ましい。
0047
Nb:0.08%以下
Nbは組織の細粒化に有効であり、かつTiおよびMoとともに複合析出して複合析出物を形成し、優れた伸びと伸びフランジ性を得ることに寄与するため、必要に応じて添加する。しかし、Nb量が0.08%を超えると伸びが劣化する傾向にあるため、Nbを含有させる場合には0.08%以下が好ましい。なお、Nbの組織の細粒化効果を得る観点からは0.005%以上が好ましい。
0048
V:0.15%以下
Vは組織の微細化に有効であり、かつTiおよびMoとともに複合析出して複合析出物を形成し、優れた伸びと伸びフランジ性を得ることに寄与するため、必要に応じて添加する。しかし、V量が0.15%を超えると伸びが劣化する傾向にあるため、Vを含有させる場合には0.15%以下が好ましい。なお、Vの組織の細粒化効果を得る観点からは0.001%以上が好ましい。
0049
なお、Cr:0.15%以下、Cu:0.15%以下、Ni:0.15%以下の1種類以上を含んでいても特性上問題はない。
0050
[製造方法]
本発明では、上記高張力鋼を製造するに際し、熱間圧延を、仕上圧延終了温度880℃以上、巻取温度570℃以上の条件で行う。以下、これら条件について説明する。
0051
・仕上圧延終了温度880℃以上
仕上圧延終了温度は伸びおよび伸びフランジ性と圧延荷重を低減するのに重要である。880℃未満では、表層が粗大粒となり伸びおよび伸びフランジ性が損なわれ、かつ未再結晶で圧延が進行するために起こる歪みの累積量が増大し、圧延荷重が著しく増大することで薄物の熱間圧延が困難となるため、880℃以上とする。
0052
・巻取温度570℃以上
フェライト組織を得るため、およびランナウトテーブル上での注水量を抑えて薄物を安定的に通板させるため、巻取温度を570℃以上とする。これらに加えさらにランナウトテーブル上の鋼板の走行安定性を確保するには600℃以上が好ましい。なお、パーライトの生成を抑制するためには巻取温度は700℃以下とするのが望ましい。
0053
本発明の高張力鋼板には、表面に溶融亜鉛系めっき皮膜を形成し、溶融亜鉛系めっき鋼板としたものも含む。本発明の高張力鋼板は良好な加工性を有することから、溶融亜鉛系めっき皮膜を形成しても良好な加工性を維持することができる。ここで、溶融亜鉛系めっきとは、亜鉛および亜鉛を主体とした溶融めっきであり、亜鉛の他にAl、Cr等の合金元素を含んだものを含む。このような溶融亜鉛系めっきを施した本発明の高張力鋼板は、めっきままでもめっき後合金化処理を行ってもかまわない。めっき前焼鈍温度については、450℃未満ではめっきがつかず、750℃超えでは強度低下が生じやすい。そのため、焼鈍温度は450℃以上、750℃以下が好ましい。
0054
なお、本発明の鋼板は、黒皮ままでも酸洗材でもその特性に差違はない。調質圧延についても通常行われているものであれば特に規定はない。また、上記溶融亜鉛めっきは酸洗後でも黒皮ままでも問題はない。亜鉛めっきについては電気めっきも可能である。化成処理についても特に問題はない。鋳造後直ちにもしくは補熱を目的とした加熱を施した後にそのまま熱間圧延を行う直送圧延を行っても本発明の効果に影響はない。さらに、粗圧延後に仕上圧延前で、圧延材を加熱しても、粗圧延後、圧延材を接合して行う連続圧延を行っても、さらには圧延材の加熱と連続圧延を同時に行っても本発明の効果は損なわれない。
0055
本発明の高張力鋼板は、加工性に優れ、特に伸びフランジ性に優れているのでこれをプレス成形した場合、その特質が活かされ、自動車用部材、特にサスペンションアーム等の足廻り部材のようなプレス時の断面形状が複雑な部材を良好な品質で製造することができ、特に、プレス成形品の軽量化に資することができる。以下に具体的に、本発明に係る高張力鋼板の加工方法、換言すればプレス成形品の製造方法について説明する。
0056
図2は、本発明に係る高張力鋼板の加工方法の作業フローの一例を示すフローチャートである。この作業フローは、通常、本発明に係る鋼板を製造することまたはその製造された鋼板を例えばコイルにして目的場所に搬送することを前工程としており、まず、本発明に係る高張力鋼板を準備することから始まる(S0、S1)。この鋼板に対してプレス加工を施す前に、鋼板に対して前処理的な加工を施すこともあれば(S2)、裁断機により所定の寸法や形状に加工することもある(S3)。前者のS2の工程では、例えば鋼板の幅方向の所定箇所に切り込みや穿孔を行い、引き続くプレス加工を終えた段階またはそのプレス加工の過程で、所定の寸法および形状のプレス成形品または被プレス加工部材として切り離すことができるようにしておく。後者のS3の工程では、最終的なプレス成形品の寸法、形状等を予め考慮して、所定の寸法および形状の鋼板部材に加工(したがって裁断)するようにしておく。その後、S2およびS3の工程を経由した部材には、プレス加工が施され、最終的に目的とする寸法・形状の所望のプレス成形品が製造される(S4)。このプレス加工は、通常は多段階で行われ、3段階以上7段階以下であることが多い。
0057
S4の工程は、S2およびS3の工程を経由した部材に対してさらに所定の寸法や形状に裁断する工程を含む場合もある。この場合の「裁断」という作業は、例えば、少なくともプレス加工の過程で、S2およびS3の工程を経由した部材の端部のような最終的なプレス成形品には不要部分を切り離す作業であっても構わないし、また、S2の工程で設けられた鋼板の幅方向の切り込みや穿孔に沿って被プレス加工部材を切り離す作業であっても構わない。
0058
なお、図2中、N1ないしN3は、鋼板、部材、プレス成形品を、機械的にあるいは作業員による搬送作業である場合がある。
0059
こうして製造されるプレス成形品は、必要に応じて次工程に送られる。次工程としては、例えば、プレス成形品にさらに機械加工を施し、寸法や形状を調整する工程、プレス成形品を所定場所に搬送し、格納する工程、プレス成形品に表面処理を施す工程、プレス成形品を用いて自動車のような目的物を組み立てる組立工程がある。
0060
図3は、図2に示した作業を実際に行う装置と鋼板、部材、プレス成形品の流れとの関係を示すブロック図である。この図においては、本発明に係る高張力鋼板はコイル状で準備されており、プレス加工機によりプレス成形品が製造される。プレス加工機は多段プレスを行う機種のものであるが、本件発明はこれに限定されない。
0061
プレス加工機の前段に、裁断機その他の前処理機械を設置する場合(図3の(a))もあれば、設置しない場合(図3の(b))もある。裁断機が設置される場合には、コイルから供給される長尺の本発明に係る鋼板から、必要な寸法または形状の部材を裁断し、この部材がプレス加工機においてプレス加工され、所定のプレス成形品となる。鋼板の幅方向に切り欠きや穿孔を施す前処理機械が設置される場合には、プレス加工機においてその切り欠きや穿孔に沿って裁断が行われても構わない。前処理機械を設置しない場合には、プレス加工機において鋼板がプレス加工される過程で、裁断が行われ、最終的に所定の寸法、形状を有するプレス成形品が製造される。なお、図3における「裁断」の意味は、図2における裁断と同じである。
0062
こうして製造されるプレス成形品は、その原材料として加工性に優れ、特に伸びフランジ性に優れている本発明に係る高張力鋼板を使用しているので、プレス時の断面形状が複雑であっても、良好な品質で製造することができ、軽量なものとなる。このような特長は、プレス成形品が自動車用部材、特にサスペンションアーム等の足廻り部材である場合に特に有用である。
0063
【実施例】
(実施例1)
表1に示す化学成分を有する鋼片を、1250℃に加熱し、通常の熱間圧延工程によって仕上温度880〜930℃で、板厚3.2mmに仕上げた。この後、600℃を超える巻取温度で、冷却速度と巻取温度を変化させて、種々の組織の鋼板を製造した。
0064
得られた鋼板を酸洗後、鋼板から作製した薄膜を透過型電子顕微鏡(TEM)によって組織観察を行うとともに析出物寸法を測定した。析出物中のTi、Nb、V、Moの組成は、TEMに装備されたエネルギー分散型X線分光装置(EDX)による分析から決定した。
0065
また、得られた鋼板からJIS5号引張試験片および穴広げ試験片を採取した。引張試験片は圧延垂直方向から採取し、穴広げ試験は、130mm角の鋼板の中央に10mmφのポンチによりクリアランス12.5%で打ち抜いた穴を有する試験片を準備し、60°円錐ポンチにより打抜き穴のバリ側の反対方向から押し上げ、割れが鋼板を貫通した時点での穴径dを測定し、穴広げ率λを次式より算出した。
λ(%)=[(d−10)/10]×100
0066
表1に、組織、析出物平均粒径、析出物の組成(Mo比率)、引張強度(TS)、伸び(El)、穴広げ率(λ)を併記する。なお、表1中、A値は、上記(1)式の(C/12)/{(Ti/48)+(Mo/96)}の値、または上記(2)式の(C/12)/{(Ti/48)+(Nb/93)+(V/51)+(Mo/96)}の値を示す。
0067
表1に示す通り、本発明鋼のNo.1〜10はいずれもフェライト組織からなり、析出物の平均粒径は10nm未満で、Mo/(Ti+Nb+V+Mo)で表されるMo比率(原子比)が0.25以上となっているため、引張強度(TS)が590MPa以上で優れた伸びと伸びフランジ性を有している。なお、図1に、No.2の鋼板の透過型電子顕微鏡写真を示す。この写真から、微細析出物がフェライト単相組織中に均一に分散していることがわかる。
0068
これに対し、比較鋼のNo.11はC量が多すぎることとMo無添加のため、パーライトが生成し、かつ析出物が粗大化しており、伸びおよび伸びフランジ性がともに低く、特に伸びフランジ性が低い。また、No.12はMo無添加のため、析出物が粗大化しており、伸びおよび伸びフランジ性がともに低く、特に伸びフランジ性が低い。No.13はC量が低いため、鋼の強化に必要な析出物量が少ないことから引張強度(TS)が590MPa未満となっている。No.14はMn量が多すぎるため偏析が顕著であり、かつ組織内にマルテンサイトが形成されているため、伸びおよび伸びフランジ性がともに低い。No.15はTi量が少ないため、鋼の強化に必要な析出物が不足して引張強度(TS)が590MPa未満となっている。No.16はTi量が多すぎるため、TiとMoの複合析出物は存在するものの、複合析出物中のMo比率が低く、またSi量が多すぎるため、析出物が粗大化する傾向にあり、伸びと伸びフランジ性がともに低い。
0069
【表1】

Figure 2002322543
0070
(実施例2)
表2に示す成分の鋼を溶製しスラブとした。次いで、オーステナイト域に加熱後、熱間圧延を行い、880℃以上で圧延を完了した。圧延後は巻取温度まで冷却し、表2に示す巻取温度で巻き取った。表2には板厚も同時に記載した。得られたコイル幅方向中央部からサンプルを採取し、引張方向が圧延方向と垂直になるようにJIS5号引張試験片を採取し、引張試験を行った。また、圧延後の板形状を目視で判定した。その結果も表2に示す。なお、圧延後の板形状の評価基準は、目視でフラットな板の場合を○、波うちが顕著な板を×とした。また、表2中のA値も表1と同様、(C/12)/{(Ti/48)+(Nb/93)+(V/51)+(Mo/96)}の値を示す。
0071
表2のうち、No.17〜No.23は780MPa級鋼板において板厚を変化させた例と巻取温度を変化させてMo/(Ti+Nb+Mo)比を変化させた例を示す。板厚2.0mmであるNo.17、No.21〜23に注目すると巻取温度の変化にともないMo/(Ti+Nb+Mo)比が変化しており、その値が0.25未満のNo.22、23では、急冷により強度は維持されたものの、低温変態相の増大により伸び(El)は低下した。また、形状も波打ちが顕著であった。Mo/(Ti+Nb+Mo)比が0.25以上のNo.17〜21では、緩冷却、高温巻取を行ってもNo.22、23と比べて強度が維持された。また、板形状についても良好であった。
0072
No.24〜No.29は590MPa級鋼板において板厚を変化させた例と巻取温度を変化させてMo/(Ti+Nb+Mo)比を変化させた例を示す。板厚1.4mmであるNo.26、28、29に注目すると巻取温度の変化にともないMo/(Ti+Nb+Mo)比が変化しており、その値が0.25未満のNo.28、29では、急冷により強度は維持されたものの、低温変態相の増大により伸び(El)は低下した。また、形状も波うちが顕著であった。Mo/(Ti+Nb+Mo)比が0.25以上のNo.24〜27では、緩冷却、高温巻取を行ってもNo.28、29とくらべて強度が維持された。また、板形状については、良好であった。
0073
【表2】
Figure 2002322543
0074
(実施例3)
表3に示す鋼を仕上げ温度910℃、巻き取り温度630℃で熱間圧延を行い、板厚約1.6mmの熱延鋼板を作製した。これら熱延鋼板を酸洗後、合金化溶融亜鉛めっきを行った。得られた鋼板から作製した薄膜について透過型電子顕微鏡(TEM)によって組織観察を行うとともに析出物の寸法を測定し、さらに析出物中のTi、Nb、V、Moの組成をTEMに装備されたEDXによる分析から決定した。また、これらめっき鋼板からJIS5号引張試験片および穴広げ試験片を採取し、引張試験および穴広げ試験を行った。表3に、組織、析出物平均粒径、析出物の組成(Mo比率)、引張強度(TS)、伸び(El)、穴広げ率(λ)を併記する。なお、表3中のA値も表1と同様、(C/12)/{(Ti/48)+(Nb/93)+(V/51)+(Mo/96)}の値を示す。
0075
表3に示すように、本発明例であるNo.30は、溶融亜鉛系めっきを行ってもElおよびλとも良好な値を示すのに対し、比較例のNo.31は析出物にMoが含まれていないためλが低い値となった。
0076
【表3】
Figure 2002322543
0077
【発明の効果】
以上説明したように、本発明によれば、加工性の指標である伸びおよび伸びフランジ性に優れた高張力鋼板を提供することができ、自動車部材の軽量化に寄与する効果が顕著である。
【図面の簡単な説明】
【図1】本発明に係る高張力鋼板の金属組織を示す透過型電子顕微鏡写真。
【図2】本発明に係る高張力鋼板の加工方法の作業フローの一例を示すフローチャート。
【図3】図2に示した作業を実際に行う装置と鋼板、部材、プレス成形品の流れとの関係を示すブロック図。[Title of the Invention] High-tensile steel sheet excellent in workability, method of manufacturing the same and method of manufacturing the same
[Claim of claim]
1. A ferrite single phase structure substantially in atomic percentTi, Mo representedTi and Mo are included in the range satisfying Mo / (Ti + Mo) ≧ 0.25carbideA high-tensile steel sheet excellent in workability, characterized in that dispersive precipitation occurs.
[Claim 2]A high-tensile steel sheet excellent in formability characterized by having a ferrite single-phase structure and dispersed and precipitated carbides containing Ti and Mo having an average particle diameter of less than 10 nm.
[Claim 3]A substantially ferrite single phase structure and an atomic ratio of C to (Ti + Mo) in the steel is 0.8 to 1.5, and carbides containing Ti and Mo are dispersed and precipitated. High tensile steel sheet with excellent workability.
C: 0.02-0.06%, Si ≦ 0.3%, Mn: 0.5-2.0%, P ≦ 0.06%, S ≦ 0.005 in weight% %, Al ≦ 0.06%, N ≦ 0.006%, Mo: 0.05 to 0.5%, Ti: 0.03 to 0.14%,The balance is substantially Fe.To any one of claims 3 toHigh tensile steel sheet with excellent workability as described in.
5. The abovecarbideContains one or more of Nb and V in addition to Ti and Mo.And Ti and Mo represented by atomic% instead of satisfying Mo / (Ti + Mo) ≧ 0.25, and Ti, Mo, Nb and V represented by atomic% are Mo / (Ti + Nb + V + Mo) ≧ Meet 0.25The high-tensile steel sheet excellent in workability according to claim 1, characterized in that
[6]The high tensile strength steel sheet having excellent workability according to claim 2, wherein the carbide contains one or more of Nb and V in addition to Ti and Mo.
[7]7. The high tensile strength steel sheet with excellent workability according to claim 5, wherein an atomic ratio of C to (Ti + Nb + V + Mo) in the steel is 0.8 to 1.5.
[Claim 8]Instead of the atomic ratio of C to (Ti + Mo) in the steel, the atomic ratio of C to (Ti + Nb + V + Mo) is 0.8 to 1.5, and the carbide is added to Ti, Mo, Nb and V The high-tensile steel sheet excellent in workability according to claim 3, comprising one or more of the following.
[9]The said carbide | carbonized_material satisfy | fills Mo / (Ti + Nb + V + Mo)> = 0.25 that Ti, Mo, Nb, and V represented by atomic% are characterized by the above-mentioned, The processing of any one of Claim 6 to 8 characterized by the above-mentioned. High tensile steel sheet with excellent elasticity.
C: 0.02 to 0.06%, Si ≦ 0.3%, Mn: 0.5 to 2.0%, P ≦ 0.06%, S ≦ 0.005, as% by weight %, Al ≦ 0.06%, N ≦ 0.006%, Mo: 0.05 to 0.5%, Ti: 0.03 to 0.14%, Nb ≦ 0.08%, V ≦ 0 .15% containing one or more and the balance being substantially FeAny one of claims 5 to 9High tensile steel sheet with excellent workability as described in.
11.The high tensile steel sheet excellent in workability according to any one of claims 1 to 10, which has a tensile strength of 590 MPa or more.
12. A thin hot-rolled steel sheet having a thickness of 2.5 mm or less.11The high-tensile steel sheet excellent in workability according to any one of the above.
13. A hot-dip zinc-based plating film is provided on the surface of the sheet.12The high-tensile steel sheet excellent in workability according to any one of the above.
14. A method according to claim 113When manufacturing any high tensile steel sheet, hot rolling is performed under conditions of finish rolling finish temperature 880 ° C. or higher and coiling temperature 570 ° C. or higher. Production of high tensile steel sheet excellent in workability. Method.
15. A method according to claim 113A high tension steel plate comprising a first step of preparing a member consisting of the high tension steel plate according to any one of the above, and a second step of subjecting the member to press forming and processing it into a press-formed product of a desired shape. Processing method.
16. The press-formed product is an automobile part.15The processing method of the high tension steel plate as described in 4.
17. A method according to claim 113The parts for motor vehicles manufactured by the high tension steel plate in any one of-.
Detailed Description of the Invention
[0001]
Field of the Invention
The present invention relates to a high-tensile steel sheet excellent in workability, which is suitable for a material of a member for an automobile, and a method of manufacturing and processing the same.
[0002]
[Prior Art]
From the viewpoint of fuel efficiency improvement leading to environmental protection, there is a strong demand for high-strength thin steel sheets for automobiles. Many automobile members have complicated shapes obtained by press molding, and materials having high strength and excellent in stretchability and stretch flangeability, which are indicators of workability, are required. Further, from the viewpoint of further reducing the weight of the steel plate, further thinning is directed, and the demand for a thin material having a plate thickness of 2.5 mm or less is also becoming stronger.
[0003]
Conventionally, various steel sheets of this type have been proposed. For example, Japanese Patent Application Laid-Open No. 6-172924 proposes a steel sheet excellent in stretch flangeability, in which a bainitic ferrite structure having a high dislocation density is formed. However, this steel sheet has the disadvantage of having a low elongation because it contains a bainitic ferrite structure with a high dislocation density. In addition, strong cooling on the runout table is inevitable for bainitic ferrite formation, and problems occur in strip travelability on the runout table at the time of thin product production, so a thin product with a plate thickness of 2.5 mm or less is produced Is not suitable for
[0004]
Japanese Patent Application Laid-Open No. 6-200351 proposes a steel sheet excellent in stretch flangeability, in which most of the structure is polygonal ferrite and precipitation strengthening and solid solution strengthening centering on TiC. However, with a generally well-known precipitate used in this steel sheet, a large amount of Ti addition is required to achieve high tension, a precipitate with a large size is likely to be formed, and the property tends to be unstable. There is a drawback of that. Further, since this steel positively uses Si, which increases the rolling load, to improve the characteristics, the rolling load increases in the production of a thin product, and it is difficult to secure the shape of the steel sheet.
[0005]
Japanese Patent Application Laid-Open No. 7-11382 proposes a steel plate having an acicular ferrite structure in which fine TiC and / or NbC is precipitated and which is excellent in stretch flangeability. However, since this steel sheet also has a high dislocation density called acicular ferrite as in the steel sheet proposed in the above-mentioned Japanese Patent Application Laid-Open No. 6-172924, sufficient elongation can not be obtained. In addition, since this steel actively uses Si, which increases the rolling load to improve the characteristics, as in the steel disclosed in Japanese Patent Laid-Open No. 6-200351, the rolling load increases in the production of thin articles. , It is difficult to secure the shape of the steel plate.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned circumstances, and is excellent in both elongation and stretch flangeability, which are indicators of processability, suitable for applications where the cross-sectional shape at the time of pressing is complicated like automobile parts. An object of the present invention is to provide a tensile steel sheet and a method of manufacturing and processing the same.
[0007]
[Means for Solving the Problems]
The present inventors earnestly studied to achieve the above object, and as a result, obtained the following findings.
(1) If the structure has a low dislocation density and is reinforced with fine precipitates, the strength-elongation balance is improved.
(2) A substantially single-phase structure and strengthening with fine precipitates improve the strength-stretch flangeability balance.
(3) In the case of a composite precipitate containing Mo, the precipitate precipitates finely.
(4) If the proportion of Mo in the composite precipitates is low, the precipitates become coarse, and thus both elongation and stretch flangeability decrease.
[0008]
The present invention has been completed based on these findings, and the following (1) to (6)17)I will provide a.
[0009]
(1) A ferrite single phase structure substantially, in atomic%Ti, Mo representedTi and Mo are included in the range satisfying Mo / (Ti + Mo) ≧ 0.25carbideA high-tensile steel sheet excellent in workability, characterized in that dispersive precipitation occurs.
[0010]
(2)A high-tensile steel sheet excellent in formability characterized by having a ferrite single-phase structure and dispersed and precipitated carbides containing Ti and Mo having an average particle diameter of less than 10 nm.
[0011]
(3)A substantially ferrite single phase structure and an atomic ratio of C to (Ti + Mo) in the steel is 0.8 to 1.5, and carbides containing Ti and Mo are dispersed and precipitated. High tensile steel sheet with excellent workability.
[0012]
(4) above (1)Any of (3)C: 0.02-0.06%, Si ≦ 0.3%, Mn: 0.5-2.0%, P ≦ 0.06%, S ≦ 0.005% by weight% Characterized by containing ≦ 0.06%, N ≦ 0.006%, Mo: 0.05 to 0.5%, Ti: 0.03 to 0.14%, and the balance being substantially Fe High tensile steel sheet with excellent workability.
[0013]
(5) above (1In),The carbide contains at least one of Nb and V in addition to Ti and Mo, and the Ti and Mo represented by atomic% are in atomic% instead of satisfying Mo / (Ti + Mo) ≧ 0.25 Ti, Mo, Nb, V represented satisfy Mo / (Ti + Nb + V + Mo) ≧ 0.25High tensile steel sheet excellent in workability characterized by
[0014]
(6) In the above (2),A high-tensile steel sheet excellent in workability characterized in that the carbide contains one or more of Nb and V in addition to Ti and Mo.
[0015]
(7) above(5) orIn (6),A high-tensile steel sheet excellent in workability characterized in that the atomic ratio of C to (Ti + Nb + V + Mo) in the steel is 0.8 to 1.5.
[0016]
(8) above(3)InInstead of the atomic ratio of C to (Ti + Mo) in the steel, the atomic ratio of C to (Ti + Nb + V + Mo) is 0.8 to 1.5, and the carbide is added to Ti, Mo, Nb and V A high-tensile steel sheet excellent in workability comprising one or more of
[0017]
(9) above (6) In any of (8),A high-tensile steel sheet excellent in workability characterized in that the carbides, represented by atomic%, Ti, Mo, Nb, and V satisfy Mo / (Ti + Nb + V + Mo) ≧ 0.25.
[0018]
(10) Above(5)Any of (9)C: 0.02-0.06%, Si ≦ 0.3%, Mn: 0.5-2.0%, P ≦ 0.06%, S ≦ 0.005% by weight% ≦ 0.06%, N ≦ 0.006%, Mo: 0.05 to 0.5%, Ti: 0.03 to 0.14%, Nb ≦ 0.08%, V ≦ 0.15% What is claimed is: 1. A high-tensile steel sheet excellent in workability comprising at least one of the foregoing and the balance being substantially Fe.
[0019]
(11) The above (1) to (10Any of)A high tensile steel sheet excellent in workability, characterized in that the tensile strength is 590 MPa or more.
[0020]
(12) (1) to (above)11A high-tensile steel sheet excellent in workability, characterized in that it is a thin hot-rolled steel sheet having a thickness of 2.5 mm or less.
[0021]
(13) (1) to (above)12In any of the above, a high-tensile steel sheet excellent in workability characterized by having a hot-dip zinc-based plated film on the surface.
[0022]
(14) (1) to (above)13The hot-rolling is performed under the conditions of finish rolling finish temperature 880 ° C. or more and winding temperature 570 ° C. or more when manufacturing any high tensile steel plate of Production method.
[0023]
(15) (1) to (above)13Processing of a high tensile steel plate having a first step of preparing a member made of any high tensile steel plate, and a second step of subjecting the member to press forming to form a press-formed product of a desired shape Method.
[0024]
(16)the above(15The method of processing a high-tensile steel sheet, wherein the press-formed product is an automobile part, in particular an automobile foot member.
[0025]
(17) (1) to (above)13Parts for motor vehicles manufactured by any high tensile steel sheet).
[0026]
In the present invention, substantially the single-phase ferrite structure means that a small amount of other phases or precipitates is accepted in addition to the precipitates of the present invention, and the area ratio of ferrite is preferably 95% or more. .
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be specifically described below by dividing it into metal structures, chemical components, and manufacturing methods.
[0028]
[Metal structure]
The high-tensile steel sheet according to the present invention is substantially a ferrite single phase structure, and contains Ti and Mo.carbideIs dispersed and precipitated.
[0029]
· Substantially ferrite single phase structure:
It is effective to use ferrite with a low dislocation density to improve elongation, and to use a single-phase structure to improve stretch flangeability, in order to substantially increase the matrix to a ferrite single phase structure. This is because the effect is remarkable in a ductile ferrite single phase structure. However, the matrix does not necessarily have to be completely a ferrite single phase structure, and may be substantially a ferrite single phase structure, preferably ferrite having an area ratio of 95% or more.
[0030]
・ Including Ti and Mocarbide:
Including Ti and MocarbideIs effective to strengthen the steel because it becomes fine. In the past, it was mainstream to use TiC as precipitates, but since Ti has a strong tendency to form precipitates, when it does not contain Mo, it is easily coarsened and its effect on strengthening becomes low, so the necessary strengthening amount is In order to obtain it, it is necessary to have precipitates which deteriorate the processability. On the other hand, a composite containing Ti and MocarbideIs fine precipitated and can strengthen the steel without deteriorating the workability. This is because the tendency to form precipitates of Mo is weaker than that of Ti, so that it can be stably and finely present, so the effect on strengthening is high, and the necessary strengthening amount can be obtained with the amount of precipitates that can maintain processability well. Conceivable.
[0031]
In order for carbides to exist stably and finely, the composition of carbides affects the composition of carbides such that Mo and Ti expressed by atomic% satisfy Mo / (Ti + Mo) ≧ 0.25. The effect of suppressing coarsening of precipitates is enhanced, and desired fine precipitates can be obtained. Therefore, according to the first aspect of the present invention, it is required that Ti and Mo represented by atomic% disperse and precipitate carbides containing Ti and Mo in a range satisfying Mo / (Ti + Mo) ≧ 0.25. I assume.
[0032]
Further, by setting the average grain size of the composite carbide to less than 10 nm, the strain around the precipitate becomes more effective for the resistance to dislocation migration, and a good steel reinforcement can be obtained. Therefore, in the second aspect of the present invention, it is required that carbides containing Ti and Mo having an average particle diameter of less than 10 nm are dispersed and precipitated. More preferably, the average particle size is 5 nm or less.
[0033]
Furthermore, by adjusting the contents of C, Ti and Mo so that the atomic ratio of C to (Ti + Mo) in the steel is 0.8 to 1.5, carbides containing Ti and Mo can be obtained. According to the third aspect of the present invention, the atomic ratio of C to (Ti + Mo) in the steel is 0.8 to 1 since fine precipitates are easily precipitated and fine precipitates of less than 10 nm are easily formed. It is required that the carbide containing Ti and Mo be dispersed and precipitated. The atomic ratio is more preferably 0.8 to 1.3. In addition, when atomic number ratio 0.8-1.5 of said C and (Ti + Mo) is weight% converted, it will satisfy | fill following (1) Formula.
0.8 ≦ (C / 12) / {(Ti / 48) + (Mo / 96)} ≦ 1.5 (1)
However, in said Formula (1), C, Ti, Mo represents the weight% of each component.
[0034]
carbideEven if Ti is added to Ti and Mo, and one or more of Nb and V are precipitated in combination, the precipitate formation tendency of Mo is weaker than Nb and V, so that the composite precipitate is Ti and Mo Composite ofcarbideSimilarly, it can be present finely and stably. For this reason,carbideAs Ti, Mo and / or one or more of Nb and V may be complex-precipitated.
[0035]
compositecarbideIn the case of containing one or more of Nb and V in addition to Ti and Mo,In the above first aspect,Its composition isTi, Mo represented by atomic% instead of satisfying Mo / (Ti + Mo) ≧ 0.25, Ti, Mo, Nb, V represented by atomic%Mo / (Ti + Nb + V + Mo) ≧ 0.25MeetIs preferred. Within this range, the effect of suppressing the coarsening of the composite precipitates is high, and the necessary strengthening amount can be obtained with the amount of precipitates that can maintain the processability well.Also in the second and third aspects, it is preferable to satisfy Mo / (Ti + Nb + V + Mo) ≧ 0.25.
[0036]
Thus, in order to facilitate fine dispersion and precipitation of composite carbides precipitated by combining one or more of Nb and V in addition to Ti and Mo, C and C in steel in the third aspect described above It is preferable to make it the atomic number ratio of C and (Ti + Nb + V + Mo) be 0.8 to 1.5 instead of the atomic ratio of Ti + Mo). Also in the first and second aspects, the atomic ratio of C to (Ti + Nb + V + Mo) is preferably 0.8 to 1.5. The atomic ratio is more preferably 0.8 to 1.3. When the atomic ratio 0.8 to 1.5 of C and (Ti + Nb + V + Mo) is converted to weight%, the following formula (2) is satisfied.
0.8 ≦ (C / 12) / {(Ti / 48) + (Nb / 93) + (V / 51) + (Mo / 96)} ≦ 1.5 (2)
However, in said Formula (2), C, Ti, Nb, V, Mo represents the weight% of each component.
[0037]
[Chemical composition]
In the present invention, as long as the above metal structure is satisfied, desired elongation and stretch flangeability and strength of 590 MPa or more can be obtained, and the chemical composition is not particularly limited, but C: 0.02 to 0.06% by weight , Si ≦ 0.3%, Mn: 0.5 to 2.0%, P ≦ 0.06%, S ≦ 0.005%, Al ≦ 0.06%, N ≦ 0.006%, Mo: 0 It is preferable that it contains .05 to 0.5%, Ti: 0.03 to 0.14%, and the balance is substantially Fe. Also, as mentioned abovecarbideIn the case where one or more of Nb and V are to be contained, in addition to the above components, one or more of Nb ≦ 0.08% and V ≦ 0.15% is contained, and the balance is substantially Fe. Is preferred. Hereinafter, each of these components will be described.
[0038]
C: 0.02 to 0.06%
C forms carbides and is effective in strengthening steel. However, if it is less than 0.02%, strengthening of the steel is insufficient, and if it is added more than 0.06%, pearlite may be formed and precipitates may be coarsened, which may impair elongation and stretch flangeability. There is. Therefore, the C content is preferably 0.02 to 0.06%.
[0039]
Si: 0.3% or less
Si is an element effective for solid solution strengthening, but when it is added in excess of 0.3%, C precipitation from ferrite is promoted and coarse iron carbide is easily precipitated at grain boundaries, and stretch flangeability is improved. It tends to decrease. Further, in the present invention, the rolling load of austenite can be reduced by reducing Si which has been actively used in the past, and the production of thin materials can be facilitated. Rolling of materials less than .5 mm becomes unstable. In addition, the addition of Si increases the rolling load and the shape of the rolled material becomes worse. For these reasons, the Si content is preferably 0.3% or less. More preferably, it is 0.15% or less, desirably 0.05% or less.
[0040]
Mn: 0.5 to 2.0%
Mn is preferably 0.5% or more from the viewpoint of strengthening the steel by solid solution strengthening, but if it exceeds 2.0%, it segregates and a hard phase is formed, and the stretch flangeability is lowered. For this reason, 0.5 to 2.0% of Mn content is preferable.
[0041]
P: 0.06% or less
P is effective for solid solution strengthening, but if it is added in excess of 0.06%, it may segregate and the stretch flangeability may be reduced, so it is preferable to set it to 0.06% or less.
[0042]
S: 0.005% or less
The smaller the amount of S, the better. When it exceeds 0.005%, the stretch flangeability may be reduced. Therefore, the amount of S is preferably 0.005% or less.
[0043]
Al: 0.06% or less
Al is added as a deoxidizer. However, if it exceeds 0.06%, the elongation and stretch flangeability both tend to be reduced, and therefore it is preferably 0.06% or less.
[0044]
N: 0.006% or less
The smaller the N content, the better. When it exceeds 0.006%, coarse nitrides increase and the stretch flangeability tends to decrease, so 0.006% or less is preferable.
[0045]
Mo: 0.05 to 0.5%
Mo is an important element in the present invention, and by containing 0.05% or more, while suppressing pearlite transformation, at least one of Nb and V in addition to fine composite precipitate with Ti, or Ti Can form fine complex precipitates, ensure excellent elongation and stretch flangeability, and strengthen the steel. However, if it is added in excess of 0.5%, a hard phase is formed and the stretch flangeability tends to be low. For this reason, 0.05 to 0.5% of Mo content is preferable.
[0046]
Ti: 0.03 to 0.14%
Ti is an important element in the present invention. By forming a composite precipitate with Mo, the steel can be strengthened while securing excellent elongation and stretch flangeability. However, if it is less than 0.03%, the effect of strengthening the steel is insufficient, and if it exceeds 0.14%, the stretch flangeability tends to deteriorate. Therefore, the Ti content is preferably 0.03 to 0.14%.
[0047]
Nb: 0.08% or less
Nb is added as necessary because it is effective for refining the structure, and is complex precipitated together with Ti and Mo to form a composite precipitate and contributes to obtaining excellent elongation and stretch flangeability. However, if the amount of Nb exceeds 0.08%, the elongation tends to be deteriorated, so in the case of containing Nb, 0.08% or less is preferable. In addition, 0.005% or more is preferable from a viewpoint of acquiring the grain-refining effect of the structure | tissue of Nb.
[0048]
V: 0.15% or less
V is effective for the refinement of the structure and forms a composite precipitate together with Ti and Mo to form a composite precipitate and contributes to obtaining excellent elongation and stretch flangeability, so it is added as necessary. However, if the amount of V exceeds 0.15%, the elongation tends to be deteriorated, and therefore, in the case of containing V, the amount of 0.15% or less is preferable. In addition, from a viewpoint of acquiring the granulation effect of the structure | tissue of V, 0.001% or more is preferable.
[0049]
In addition, there is no problem in characteristics even if it contains one or more of Cr: 0.15% or less, Cu: 0.15% or less, Ni: 0.15% or less.
[0050]
[Production method]
In the present invention, when producing the high-tensile steel, hot rolling is performed under conditions of a finish rolling finish temperature of 880 ° C. or more and a winding temperature of 570 ° C. or more. Hereinafter, these conditions will be described.
[0051]
・ Finish rolling finish temperature 880 ° C or more
Finishing finish temperature is important to reduce elongation and stretch flangeability and rolling load. If the temperature is less than 880 ° C., the surface layer becomes coarse grains and the elongation and stretch flangeability are impaired, and the accumulated amount of strain caused by rolling progressing in non-recrystallization increases, and the rolling load significantly increases. Since the inter-rolling becomes difficult, 880 ° C or more.
[0052]
· Winding temperature 570 ° C or higher
The coiling temperature is set to 570 ° C. or more in order to obtain a ferrite structure and to stably feed a thin material by suppressing the amount of water injection on the run-out table. In addition to these, in order to ensure the running stability of the steel plate on the runout table, 600 ° C. or more is preferable. In addition, in order to suppress the production | generation of pearlite, it is desirable for winding temperature to be 700 degrees C or less.
[0053]
The high-tensile steel sheet of the present invention includes a hot-dip galvanized steel sheet which has a hot-dip galvanized coating formed on the surface thereof. Since the high tensile steel sheet of the present invention has good workability, it can maintain good workability even when a hot-dip galvanized coating is formed. Here, the hot-dip zinc plating is hot-dip plating mainly composed of zinc and zinc, and includes those containing alloy elements such as Al and Cr in addition to zinc. The high tensile steel sheet of the present invention which has been subjected to such hot-dip galvanizing may be subjected to an alloying treatment as it is or after plating. With respect to the annealing temperature before plating, plating can not be achieved below 450 ° C., and strength reduction tends to occur above 750 ° C. Therefore, the annealing temperature is preferably 450 ° C. or more and 750 ° C. or less.
[0054]
In the steel sheet of the present invention, there is no difference in the characteristics whether it is black skin or pickling material. There is no particular limitation on temper rolling as long as it is usually performed. Moreover, the said hot dip galvanization does not have a problem even after pickling and black skin. Electroplating is also possible for zinc plating. There is no particular problem with the chemical conversion treatment. The effect of the present invention is not affected even if direct rolling is carried out, in which hot rolling is carried out immediately after casting or after heating for the purpose of supplementary heat. Furthermore, after rough rolling and before finish rolling, the rolled material is heated, and after rough rolling and continuous rolling in which the rolled material is joined are performed, and further, heating and continuous rolling of the rolled material are simultaneously performed. The effects of the present invention are not impaired.
[0055]
The high-tensile steel sheet of the present invention is excellent in workability, and particularly excellent in stretch flangeability. Therefore, when it is press-formed, its characteristics are made use of and its features such as automotive members, especially suspension members such as suspension arms. A member having a complicated cross-sectional shape at the time of pressing can be manufactured with good quality, and in particular, it can contribute to weight reduction of a press-formed product. The method for processing a high tensile steel sheet according to the present invention, specifically, the method for manufacturing a press-formed product according to the present invention will be described below.
[0056]
FIG. 2 is a flow chart showing an example of the operation flow of the method for processing a high tensile steel sheet according to the present invention. This work flow usually presupposes manufacturing the steel plate according to the present invention or transporting the manufactured steel plate into, for example, a coil to a target location. First, the high tensile steel plate according to the present invention is prepared It starts from doing (S0, S1). Before subjecting the steel plate to pressing, the steel plate may be subjected to pre-treatment processing (S2) or may be processed to a predetermined size or shape by a cutting machine (S3). In the former step S2, for example, a predetermined position in the width direction of the steel plate is cut or perforated, and a press-formed product or a pressed material having a predetermined size and shape in the stage of completing the subsequent pressing or in the process of the pressing Make it possible to separate as a member. In the latter step S3, the size, shape, and the like of the final press-formed product are considered in advance, and processing (that is, cutting) is performed on a steel plate member of a predetermined size and shape. Thereafter, the members subjected to the steps S2 and S3 are subjected to press processing, and finally, a desired press-formed product having a desired size and shape is produced (S4). This press working is usually performed in multiple stages, often in three to seven stages.
[0057]
The process of S4 may include the process of cutting into a predetermined | prescribed dimension and shape with respect to the member which passed through the process of S2 and S3. In this case, the operation of “cutting” is, for example, an operation of separating an unnecessary portion in a final press-formed product such as an end portion of a member having passed through steps S2 and S3 at least in the process of pressing. It may be an operation of separating the member to be pressed along the cuts or perforations in the width direction of the steel plate provided in the step of S2.
[0058]
In addition, in FIG. 2, N1 to N3 may be conveyance operation by a steel plate, a member, and a press-formed product mechanically or by a worker.
[0059]
The press-formed product thus produced is sent to the next step as required. As the next step, for example, the press-formed product is further machined to adjust the dimensions and shape, the press-formed product is transported to a predetermined place and stored, the surface treatment is applied to the press-formed product, the press There is an assembly process that assembles objects such as automobiles using molded articles.
[0060]
FIG. 3 is a block diagram showing the relationship between the apparatus for actually performing the operation shown in FIG. 2 and the flow of the steel plate, the members, and the press-formed product. In this figure, the high tensile steel sheet according to the present invention is prepared in a coil shape, and a press-formed product is manufactured by a press machine. The pressing machine is of a type that performs multistage pressing, but the present invention is not limited thereto.
[0061]
If a cutting machine or other pretreatment machine is installed at the front stage of the press machine (FIG. 3 (a)), it may not be installed (FIG. 3 (b)). When a cutting machine is installed, a member of the necessary size or shape is cut from a long steel plate according to the present invention supplied from a coil, and this member is pressed in a press machine and a predetermined press It becomes a molded article. When a pretreatment machine for providing notches or perforations in the width direction of the steel plate is installed, cutting may be performed along the notches or perforations in the press machine. When the pretreatment machine is not installed, cutting is performed in the process of pressing the steel plate in the press machine, and finally a press-formed product having a predetermined size and shape is manufactured. The meaning of “cutting” in FIG. 3 is the same as the cutting in FIG.
[0062]
The press-formed product thus manufactured uses the high-tensile steel sheet according to the present invention which is excellent in workability as the raw material and particularly excellent in stretch flangeability, so that the cross-sectional shape at the time of pressing is complicated. It can be manufactured with good quality and will be lightweight. Such a feature is particularly useful when the press-formed product is an automobile member, particularly a suspension member such as a suspension arm.
[0063]
【Example】
Example 1
A billet having the chemical composition shown in Table 1 was heated to 1250 ° C. and finished to a plate thickness of 3.2 mm at a finishing temperature of 880 to 930 ° C. by a normal hot rolling process. After this, at a coiling temperature exceeding 600 ° C., the cooling rate and the coiling temperature were changed to produce steel plates of various structures.
[0064]
After pickling the obtained steel plate, the structure of the thin film prepared from the steel plate was observed by a transmission electron microscope (TEM), and the size of the precipitate was measured. The compositions of Ti, Nb, V and Mo in the precipitate were determined from analysis by an energy dispersive X-ray spectrometer (EDX) equipped with a TEM.
[0065]
In addition, JIS No. 5 tensile test specimens and puncture test specimens were collected from the obtained steel plates. The tensile test specimen is taken from the vertical direction of rolling, and in the hole spreading test, a test specimen having a hole punched with a 10 mmφ punch at a clearance of 12.5% in the center of a 130 mm square steel plate is prepared, and a 60 ° conical punch is punched. The hole diameter d was measured by pushing up from the opposite direction of the burr side of the hole and the crack penetrating the steel plate, and the hole expansion ratio λ was calculated by the following equation.
λ (%) = [(d−10) / 10] × 100
[0066]
Table 1 also shows the structure, average particle size of precipitate, composition of precipitate (Mo ratio), tensile strength (TS), elongation (El) and hole expansion ratio (λ). In Table 1, the A value is the value of (C / 12) / {(Ti / 48) + (Mo / 96)} of the above formula (1), or (C / 12) of the above formula (2) The value of / {(Ti / 48) + (Nb / 93) + (V / 51) + (Mo / 96)} is shown.
[0067]
As shown in Table 1, No. 1 steel of the present invention. Each of 1-10 has a ferrite structure, and the average grain size of the precipitate is less than 10 nm, and the Mo ratio (atomic ratio) represented by Mo / (Ti + Nb + V + Mo) is 0.25 or more, so the tensile strength (TS) has excellent elongation and stretch flangeability at 590 MPa or more. In FIG. The transmission electron micrograph of the steel plate of 2 is shown. From this photograph, it can be seen that the fine precipitates are uniformly dispersed in the ferrite single phase structure.
[0068]
On the other hand, the comparative steel No. 11 has too much C and no addition of Mo, so pearlite is formed and precipitates are coarsened, and both elongation and stretch flangeability are low, particularly stretch flangeability is low. Also, no. Since No. 12 does not contain Mo, precipitates are coarsened, and both elongation and stretch flangeability are low, and in particular, stretch flangeability is low. No. Since No. 13 has a low amount of C, the tensile strength (TS) is less than 590 MPa because the amount of precipitates necessary for strengthening the steel is small. No. In No. 14, segregation is remarkable because the amount of Mn is too large, and since martensite is formed in the structure, both elongation and stretch flangeability are low. No. Since No. 15 has a small amount of Ti, it lacks precipitates necessary for strengthening the steel and the tensile strength (TS) is less than 590 MPa. No. Since the amount of Ti is too large, a composite precipitate of Ti and Mo is present, but the Mo ratio in the composite precipitate is low, and the amount of Si is too large, so the precipitate tends to be coarsened, and the elongation And stretch flangeability are both low.
[0069]
[Table 1]
Figure 2002322543
[0070]
(Example 2)
The steels of the components shown in Table 2 were melted and used as a slab. Next, after heating to the austenite region, hot rolling was performed, and rolling was completed at 880 ° C. or higher. After rolling, it was cooled to the winding temperature and wound up at the winding temperature shown in Table 2. The plate thickness is also described in Table 2 simultaneously. A sample was taken from the center of the obtained coil in the width direction, a JIS No. 5 tensile test specimen was taken so that the tensile direction was perpendicular to the rolling direction, and a tensile test was performed. Moreover, the plate shape after rolling was determined visually. The results are also shown in Table 2. In addition, the evaluation criteria of the plate shape after rolling made the case of a flat plate visually the (circle), and made the plate with a remarkable waviness x. Moreover, A value in Table 2 also shows the value of (C / 12) / {(Ti / 48) + (Nb / 93) + (V / 51) + (Mo / 96)} similarly to Table 1.
[0071]
Of Table 2, No. 17 to No. 23 shows an example in which the plate thickness is changed in a 780 MPa grade steel plate and an example in which the Mo / (Ti + Nb + Mo) ratio is changed by changing the winding temperature. No. 1 with a board thickness of 2.0 mm. 17, no. Focusing on Nos. 21 to 23, the Mo / (Ti + Nb + Mo) ratio changes with the change of the winding temperature, and the value of No. 1 or less is less than 0.25. At 22 and 23, although the strength was maintained by quenching, the elongation (El) decreased due to the increase of the low temperature transformation phase. The shape was also wavy. No. 1 where the Mo / (Ti + Nb + Mo) ratio is 0.25 or more. In No. 17 to 21, even if slow cooling and high temperature winding were performed, No. The strength was maintained as compared with 22 and 23. The plate shape was also good.
[0072]
No. 24 to No. 29 shows an example in which the plate thickness is changed in a 590 MPa grade steel plate and an example in which the Mo / (Ti + Nb + Mo) ratio is changed by changing the winding temperature. No. 1 having a thickness of 1.4 mm. Focusing on Nos. 26, 28 and 29, the Mo / (Ti + Nb + Mo) ratio changes with the change of the winding temperature, and the value of No. At 28, 29, although the strength was maintained by quenching, the elongation (El) decreased due to the increase of the low temperature transformation phase. In addition, the wave shape was also remarkable. No. 1 where the Mo / (Ti + Nb + Mo) ratio is 0.25 or more. In No.24 to No.27, even if slow cooling and high-temperature winding are performed, no. The strength was maintained compared to 28, 29. Moreover, it was favorable about plate shape.
[0073]
【Table 2】
Figure 2002322543
[0074]
(Example 3)
The steels shown in Table 3 were hot-rolled at a finishing temperature of 910 ° C. and a winding temperature of 630 ° C. to produce a hot-rolled steel plate having a thickness of about 1.6 mm. After pickling these hot rolled steel sheets, alloying galvanization was performed. The structure of the thin film prepared from the obtained steel plate was observed by a transmission electron microscope (TEM), the size of the precipitate was measured, and the composition of Ti, Nb, V, and Mo in the precipitate was equipped in the TEM Determined from analysis by EDX. In addition, JIS No. 5 tensile test specimens and hole expansion test specimens were collected from these plated steel plates, and tensile tests and hole expansion tests were conducted. Table 3 also shows the structure, average particle size of precipitate, composition of precipitate (Mo ratio), tensile strength (TS), elongation (El) and hole expansion ratio (λ). In addition, A value in Table 3 also shows the value of (C / 12) / {(Ti / 48) + (Nb / 93) + (V / 51) + (Mo / 96)} similarly to Table 1.
[0075]
As shown in Table 3, No. 1 which is an example of the present invention. No. 30 shows good values for both E1 and λ even when hot-dip galvanizing is performed, while No. 30 of the comparative example. In the case of No. 31, λ had a low value because Mo was not contained in the precipitate.
[0076]
[Table 3]
Figure 2002322543
[0077]
【Effect of the invention】
As described above, according to the present invention, it is possible to provide a high tensile steel sheet excellent in elongation and stretch flangeability which is an index of workability, and the effect of contributing to weight reduction of automobile members is remarkable.
Brief Description of the Drawings
FIG. 1 is a transmission electron micrograph showing the metallographic structure of a high-tensile steel sheet according to the present invention.
FIG. 2 is a flow chart showing an example of a work flow of the method for processing a high tensile steel sheet according to the present invention.
3 is a block diagram showing the relationship between the apparatus actually performing the operation shown in FIG. 2 and the flow of steel plates, members, and a press-formed product.

JP2001334464A 2001-02-20 2001-10-31 High-tensile steel sheet excellent in workability, and its manufacturing method and processing method Expired - Fee Related JP3591502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001334464A JP3591502B2 (en) 2001-02-20 2001-10-31 High-tensile steel sheet excellent in workability, and its manufacturing method and processing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001044352 2001-02-20
JP2001-44352 2001-02-20
JP2001334464A JP3591502B2 (en) 2001-02-20 2001-10-31 High-tensile steel sheet excellent in workability, and its manufacturing method and processing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003324865A Division JP2004043978A (en) 2001-02-20 2003-09-17 High tensile strength steel sheet having excellent workability, and production method and working method therefor

Publications (3)

Publication Number Publication Date
JP2002322543A JP2002322543A (en) 2002-11-08
JP2002322543A5 true JP2002322543A5 (en) 2004-09-30
JP3591502B2 JP3591502B2 (en) 2004-11-24

Family

ID=26609771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001334464A Expired - Fee Related JP3591502B2 (en) 2001-02-20 2001-10-31 High-tensile steel sheet excellent in workability, and its manufacturing method and processing method

Country Status (1)

Country Link
JP (1) JP3591502B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4819489B2 (en) * 2005-11-25 2011-11-24 Jfeスチール株式会社 High strength steel plate with excellent uniform elongation characteristics and method for producing the same
JP4557080B2 (en) * 2009-01-16 2010-10-06 Jfeスチール株式会社 Method for producing precipitation strengthened high strength steel sheet, and precipitation strengthened high strength steel sheet
JP2009138276A (en) * 2009-01-16 2009-06-25 Jfe Steel Corp Design method for precipitation-strengthened high-strength steel sheet, production method therefor, and precipitation-strengthened high-strength steel sheet
JP5041084B2 (en) 2010-03-31 2012-10-03 Jfeスチール株式会社 High-tensile hot-rolled steel sheet excellent in workability and manufacturing method thereof
JP5041083B2 (en) 2010-03-31 2012-10-03 Jfeスチール株式会社 High-tensile hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5906753B2 (en) 2011-02-24 2016-04-20 Jfeスチール株式会社 Alloy hot-dip galvanized steel sheet
KR101668638B1 (en) 2012-01-05 2016-10-24 제이에프이 스틸 가부시키가이샤 Hot-dip galvannealed steel sheet
WO2013115205A1 (en) 2012-01-31 2013-08-08 Jfeスチール株式会社 Hot-rolled steel for power generator rim and method for manufacturing same
JP6111522B2 (en) * 2012-03-02 2017-04-12 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
CN104245999B (en) 2012-04-18 2016-06-22 杰富意钢铁株式会社 High-strength hot-dip zinc-coated steel sheet and manufacture method thereof
CN105940131A (en) 2013-12-19 2016-09-14 日新制钢株式会社 Steel sheet hot-dip-coated with Zn-Al-Mg-based system having excellent workability and method for manufacturing same
JP6597715B2 (en) * 2016-10-04 2019-10-30 Jfeスチール株式会社 Continuously cast slab, method for producing continuous cast slab, and method for producing high-tensile steel plate

Similar Documents

Publication Publication Date Title
KR100968013B1 (en) High strength steel sheet and method for manufacturing the same
JP5076394B2 (en) High-tensile steel plate and manufacturing method thereof
JP5447741B1 (en) Steel plate, plated steel plate, and manufacturing method thereof
KR101716727B1 (en) High strength cold rolled steel sheet with low yield ratio and method for manufacturing the same
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
JP3882577B2 (en) High-tensile hot-rolled steel sheet excellent in elongation and stretch flangeability, and manufacturing method and processing method thereof
JP2002322541A (en) High formability high tensile hot rolled steel sheet having excellent material uniformity, production method therefor and working method therefor
JP3637885B2 (en) Ultra-high-strength steel sheet excellent in workability, manufacturing method and processing method thereof
JP2003089848A5 (en)
KR20220033519A (en) High-strength steel sheet and manufacturing method thereof
WO2016157258A1 (en) High-strength steel sheet and production method therefor
JP4924052B2 (en) High yield ratio high tensile cold-rolled steel sheet and method for producing the same
JP3591502B2 (en) High-tensile steel sheet excellent in workability, and its manufacturing method and processing method
JP2002322543A5 (en)
JP3821043B2 (en) Hot-dip galvanized high-strength hot-rolled steel sheet with excellent weldability, manufacturing method and processing method thereof
JP4006974B2 (en) High formability, high-tensile hot-rolled steel sheet with excellent material uniformity, manufacturing method and processing method thereof
JP3760888B2 (en) High-tensile cold-rolled steel sheet with excellent workability, manufacturing method and processing method thereof
JP4710558B2 (en) High-tensile steel plate with excellent workability and method for producing the same
JP4905147B2 (en) Thin high tensile hot-rolled steel sheet and manufacturing method thereof
JP3775337B2 (en) High formability, high-tensile hot-rolled steel sheet with excellent material uniformity, manufacturing method and processing method thereof
JP3775340B2 (en) High-tensile hot-rolled steel sheet with excellent workability and processing method
JP2003321739A (en) High tensile strength hot rolled steel sheet having excellent workability, production method therefor and working method therefor
JP4747473B2 (en) Hot-rolled steel sheet and hot-dip galvanized steel sheet excellent in stretch flangeability and methods for producing them
JP3821042B2 (en) High-formability high-tensile steel sheet with excellent strength stability and method for producing and processing the same
JP3775339B2 (en) High-tensile hot-rolled steel sheet with excellent workability, manufacturing method and processing method thereof