JP3775337B2 - High formability, high-tensile hot-rolled steel sheet with excellent material uniformity, manufacturing method and processing method thereof - Google Patents

High formability, high-tensile hot-rolled steel sheet with excellent material uniformity, manufacturing method and processing method thereof Download PDF

Info

Publication number
JP3775337B2
JP3775337B2 JP2002126687A JP2002126687A JP3775337B2 JP 3775337 B2 JP3775337 B2 JP 3775337B2 JP 2002126687 A JP2002126687 A JP 2002126687A JP 2002126687 A JP2002126687 A JP 2002126687A JP 3775337 B2 JP3775337 B2 JP 3775337B2
Authority
JP
Japan
Prior art keywords
steel sheet
hot
rolled steel
heat treatment
formability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002126687A
Other languages
Japanese (ja)
Other versions
JP2003321734A (en
Inventor
毅 塩崎
義正 船川
邦和 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002126687A priority Critical patent/JP3775337B2/en
Publication of JP2003321734A publication Critical patent/JP2003321734A/en
Application granted granted Critical
Publication of JP3775337B2 publication Critical patent/JP3775337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車等の輸送機に使用される部材に適した、材質均一性に優れた高成形性高張力熱延鋼板ならびにその製造方法および加工方法に関する。
【0002】
【従来の技術】
近年、自動車を代表する輸送機分野において、燃費向上を目的に車体の軽量化が検討されている。この車体軽量化の検討の一つとして、使用鋼板の高強度化が推進されている。また、自動車用部材は難加工であるため、加工性も要求されている。
【0003】
特開平6−200351号公報および特開平6−287685号公報には、フェライトを主体とする組織で、析出強化した高強度熱延鋼板に関する技術が提案されている。前者では、組織の大部分をポリゴナルフェライトにして所要の加工性を確保し、TiCを中心とした析出強化と固溶強化により高強度化を実現している。また、後者では、組織の大部分をフェライトにして所要の加工性を確保し、TiとCuとの添加量を制御することによってTiCおよびCuを中心とした析出強化と固溶強化によって高強度化している。
【0004】
しかしながら、これらの鋼板では、TiCの析出温度が狭範囲であり、かつTiCは熱的に不安定で粗大化しやすいため、熱延ランナウトテーブルからコイラにかけての幅方向中央部と端部の冷却履歴の違いによる幅方向の材質変化や圧延速度の変化で生じるランナウトテーブル状のストリップの冷却速度変化等によって、鋼板幅方向中央部と端部とで降伏強度の不均一が生じるという問題があった。
【0005】
【発明が解決しようとする課題】
このように、従来技術では、比較的良好な加工性を有する高張力熱延鋼板が得られているものの、コイル内の引張特性の変動が大きくなるため、鋼板をプレス成形する際の形状凍結性や最終製品の強度特性に支障をきたしている。
【0006】
本発明はかかる事情に鑑みてなされたものであって、コイル内材質変動、特に幅方向の降伏強度の変動が小さく、工業的に実用可能な材質均一性に優れた高成形性高張力熱延鋼板ならびにその製造方法および加工方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、コイル内の降伏強度の変動を小さくするために鋭意研究を重ねた結果、フェライト単相組織を、所定の原子比を満たす微細析出物で強化することにより、所望の範囲内の変動に低減可能であることを見出した。
【0008】
本発明はこのような知見に基づいてなされたものであって、以下の(1)〜(10)を提供する。
【0011】
質量%で、C≦0.1%、Si≦0.5%、Mn≦2%、P≦0.06%、S≦0.01%、Al≦0.1%、N≦0.006%、Cr≦0.5%、Ti:0.02〜0.2%を含み、さらにMo:0.05〜0.6%、W:0.01〜1.5%から選ばれる1種以上を含み、残部がFeおよび不可避不純物からなり、鋳造後、熱間圧延してコイルに巻き取った後に、575〜750℃で熱処理する工程を経ることによって、体積%で98%以上(ただし、98%は除く)のフェライト組織に、以下の(1)式を満たす範囲で、Tiと、MoおよびWのうち1種以上とを含む炭化物が分散析出され、鋼板幅方向の中央部と端部の降伏応力の差が30MPa以下であることを特徴とする材質均一性に優れた高成形性高張力熱延鋼板。
0.1≦Ti/[48{(Mo/96)+(W/184)}]≦3.5 …(1)
ただし、上記(1)式中、Ti、Mo、Wは各成分の質量%を表す。
【0012】
質量%で、C≦0.1%、Si≦0.5%、Mn≦2%、P≦0.06%、S≦0.01%、Al≦0.1%、N≦0.006%、Cr≦0.5%、Ti:0.02〜0.2%、を含み、さらにMo:0.05〜0.6%、W:0.01〜1.5%から選ばれる1種以上を含み、かつNb:0.005〜0.1%、V:0.01〜0.1%から選ばれる1種以上を含み、残部がFeおよび不可避不純物からなり、鋳造後、熱間圧延してコイルに巻き取った後に、575〜750℃で熱処理する工程を経ることによって、体積%で98%以上(ただし、98%は除く)のフェライト組織に、以下の(1)式を満たす範囲でMoおよびWのうち1種以上とTiとを含む炭化物が分散析出され、鋼板幅方向の中央部と端部の降伏応力の差が30MPa以下であることを特徴とする材質均一性に優れた高成形性高張力熱延鋼板。
0.1≦Ti/[48{(Mo/96)+(W/184)}]≦3.5 …(1)
ただし、上記(1)式中、Ti、Mo、Wは各成分の質量%を表す。
【0013】
)上記(1)において、Cと、Tiと、MoおよびWのうち1種以上とを以下の(2)式を満足するように含有することを特徴とする材質均一性に優れた高成形性高張力熱延鋼板。
0.5≦(C/12)/{(Ti/48)+(Mo/96)+(W/184)}≦1.5 …(2)
ただし、上記(2)式中、C、Ti、Mo、Wは各成分の質量%を表す。
【0014】
)上記(2)において、Cと、Tiと、MoおよびWのうち1種以上と、NbおよびVのうち1種以上を以下の(3)式を満足するように含有することを特徴とする材質均一性に優れた高成形性高張力熱延鋼板。
0.5≦(C/12)/{(Ti/48)+(Mo/96)+(W/184)+(Nb/93)+(V/51)}≦1.5 …(3)
ただし、上記(3)式中、C、Ti、Mo、W、Nb、Vは各成分の質量%を表す。
【0015】
)上記(1)〜()のいずれかにおいて、表面に溶融亜鉛系めっき皮膜を有することを特徴とする材質均一性に優れた高成形性高張力熱延鋼板。
【0016】
)上記(1)〜()のいずれかの成分組成を有する鋳片をオーステナイト単相域の温度に加熱後、熱間圧延を行うにあたり、800℃以上で仕上圧延を完了し、675℃以下で巻取った後、575〜750℃で熱処理することを特徴とする材質均一性に優れた高成形性高張力熱延鋼板の製造方法。
【0017】
)上記()において、巻取後の熱処理を以下の(4)式を満たすように行うことを特徴とする材質均一性に優れた高成形性高張力熱延鋼板の製造方法。
16500≦(T+273){log(t)+16}≦19500 …(4)
ただし、T:熱処理温度(℃)、t:熱処理時間(秒)
【0018】
)上記(1)〜()のいずれかの鋼板からなる部材を準備する第1の工程と、前記部材にプレス成形を施して所望の形状のプレス成形品に加工する第2の工程とを有する高成形性高張力熱延鋼板の加工方法。
【0019】
)上記()において、プレス成形品は、自動車用部品、特に自動車用足廻り部材である高成形性高張力熱延鋼板の加工方法。
【0020】
10)上記(1)から()のいずれかの鋼板により製造された自動車用部品。
【0021】
このような構成の本発明によれば、(1)フェライト組織が形成され、セメンタイト等の製造熱履歴で形態が変化する粗大Fe炭化物の析出がないか、もしくは最小限に抑制されること、および(2)広い温度域で安定である炭化物が鋼板全域に均一微細に析出することにより、降伏強度の均一性に優れた鋼板が得られる。また、実質的にフェライト組織に上述のような微細な炭化物が分散析出するため、高成形性でかつ高強度が実現される。
【0022】
【発明の実施の形態】
以下、本発明について具体的に説明する。
本発明に係る熱延鋼板は、質量%で、C≦0.1%、Si≦0.5%、Mn≦2%、P≦0.06%、S≦0.01%、Al≦0.1%、N≦0.006%、Cr≦0.5%、Ti:0.02〜0.2%を含み、さらにMo:0.05〜0.6%、W:0.01〜1.5%から選ばれる1種以上を含み、残部がFeおよび不可避不純物からなり、鋳造後、熱間圧延してコイルに巻き取った後に、575〜750℃で熱処理する工程を経ることによって、体積%で98%以上(ただし、98%は除く)のフェライト組織に、以下の(1)を満たす範囲で、Tiと、MoおよびWのうち1種以上とを含む炭化物が分散析出されたものであり、鋼板幅方向の中央部と端部の降伏応力の差が30MPa以下である。また、さらに、Nb:0.005〜0.1%、V:0.01〜0.1%から選ばれる1種以上を含んでもよい。
0.1≦Ti/[48{(Mo/96)+(W/184)}]≦3.5 …(1)
(ただし、上記(1)式中、Ti、Mo、Wは各成分の重量%を表す。)
【0023】
熱間圧延してコイルに巻き取った後に、熱処理する工程を経るのは、熱間圧延ままでは中央部と端部で差異の生じやすい微細炭化物の析出および組織をより均一化するためである。
【0024】
マトリックスを体積%で98%以上のフェライト組織と、実質的にフェライト組織としたのは、複合組織では2種以上の組織形成を制御しなければならず、材質均一性を実現するのが困難であるのに対し、フェライト単相では複数の組織を同時に制御する困難性を解消することができるからである。たとえば、Fe炭化物はストリップやコイルの熱履歴により形態が変化し、これが多量に含まれていると材質変動の原因となる。
【0025】
本発明では、具体的には断面組織観察などによる体積%で98%以上となっていればよい。また、微細析出物以外の粗大なFe炭化物は体積%で1%未満であれば本発明の効果を損なうことがない。
【0026】
マトリックスが実質的にフェライトからなる本発明の熱延鋼板では、微細析出物により強度を担保する。Tiと、MoおよびWの1種以上とを含む炭化物からなる微細析出物において、これら元素が適正比率となっていない場合には、ストリップやコイルの熱履歴により析出物の形態が変化しやすく、加熱による粗大化の進行が速い。このため、熱間圧延ままコイルでみられる幅方向中央部と端部で生じる冷却速度差やコイル外周部と中央部で生じる冷却速度差に起因するコイル内での強度変動は、そのコイルをさらに熱処理したとしても大きい。これは、加熱による粗大化の進行が速いため、熱延後の巻取り時に微細炭化物が析出していたところは熱処理により炭化物が粗大化し、巻取り時に未析出であったところで熱処理により微細炭化物が析出するといったようになり、やはりコイル内で強度変動が生じるためである。これに対して、Tiと、MoおよびWの1種以上とを含む炭化物であって、これら元素が適正比率である場合、加熱による粗大化の進行が遅い。このため、熱間圧延ままコイルをさらにコイル内が均質なフェライト組織になるように575〜750℃で熱処理した際に、コイル全域において均質に微細炭化物が析出し、コイル内の強度変動が低減される。そして、強度変動のうちでも降伏強度の変動に対する効果が顕著である。
【0027】
微細炭化物中のTi、Mo、Wの質量%により計算される上記Ti/[48{(Mo/96)+(W/184)}]の値を0.1〜3.5にしたのは、0.1未満あるいは3.5超の場合には、均質に微細炭化物が析出せず、材質変動を低減することができないからである。望ましくは0.7〜1.5である。
【0028】
次に、上記組成について説明する。
C:
CはTi、Mo、Wを含む炭化物として固定され、鋼の強度を担うのに必要不可欠な元素である。しかし、その含有量が0.1%を超えると粗大なFe炭化物の生成や、島状マルテンサイトの生成により延性が劣化する。そのため、C量の上限を0.1%とした。Fe炭化物の生成量を低減する観点からは0.08%以下が望ましい。一方、540MPa以上の強度を維持するためには0.01%以上含有させることが望ましい。
【0029】
Ti:
TiはMo、Wとともに微細炭化物を形成し、鋼板の強度を担う。しかし、その含有量が0.02%未満では必要な強度を確保するためには不十分であり、一方、0.2%を超えると変態点の著しい上昇を招き、仕上圧延をオーステナイト域で終了させることが困難となり加工性が低下する。したがって、Ti含有量を0.02〜0.2%とした。
【0030】
Mo、W:
Mo、Wは、ともに微細炭化物の熱による粗大化を遅延し、熱間圧延後の熱処理工程を経ることでコイル内の強度変動を低減するのに有効であるため、少なくとも1種を添加する。Moが0.05%未満では十分に炭化物として析出することができず、一方0.6%を超えると熱間強度が高くなり、熱間圧延が困難となる。したがって、Mo含有量を0.05〜0.6%とした。望ましくは0.5%以下である。また、Wが0.01%未満では十分に炭化物として析出することができず、一方1.5%を超えると熱間強度が高くなり、熱間圧延が困難となる。したがって、W含有量を0.01〜1.5%とした。
【0031】
Nb、V:
Nb、Vはともに炭化物を形成し、鋼板の強度を担うのに有効であり、これらの少なくとも1種を添加することができる。しかし、Nbが0.005%未満ではNb炭化物析出の効果を得ることができず、0.1%を超えると熱間強度が高くなって熱間圧延が困難となる。また、Vが0.01%未満ではV炭化物析出の効果を得ることができず、0.1%を超えてもその効果が飽和する。したがって、Nbを添加する場合には、その含有量を0.005〜0.1%とし、Vを添加する場合には、その含有量を0.01〜0.1%とする。
【0032】
次に、上記C、Ti、Mo、W、Nb、V以外のSi、Mn、P、S、Al、N、Crについて説明する。
【0033】
Si:
Siは固溶強化元素としてよく用いられてきた。しかしながら、Siは赤スケールを生成し、表面性状を劣化させてしまう。したがって、Si量は0.5%以下が好ましい。さらには、0.2%以下が望ましい。
【0034】
Mn:
Mnは固溶強化元素として使用される。しかし、2%を超えると鋳造時の偏析が生じやすくなる。したがって、Mn含有量は2%以下が好ましい。
【0035】
P:
Pは固溶強化元素であるが、0.06%を超えて添加されると粒界への著しい偏析を招き延性が劣化するので、0.06%以下が好ましい。
【0036】
S:
SはMnS、TiSとして固定される。このためSは材質特性に有効に作用するMn、Ti量を低減させ、また延性も低下させることから、0.01%以下が好ましい。さらに好ましくは0.005%以下である
【0037】
Al:
鋼中Alは脱酸材として使用される。しかし、その含有量が0.1%を超えると鋼の延性低下を招くことから、0.1%以下が好ましい。
【0038】
N:
Nは鋼中の不純物である。その含有量が0.006%を超えると延性を低下させる粗大な窒化物形成の原因となることから、0.006%以下が好ましい。
【0039】
Cr:
Crはフェライト変態抑制効果がある。仕上圧延後ランナウトテーブル上で750℃以上でフェライト変態が進行した場合、粗大なTi、Mo、Wを含む炭化物が形成されてしまい、一度生成した粗大炭化物は、その後の熱履歴により再び微細化することはないため鋼を効果的に強化できなくなるが、Crを添加することにより、そのようなことを抑制することができる。しかし、Crが0.5%を超えると表面性状を劣化させることから、0.5%以下が好ましい。このような効果を有効に発揮させるためには0.04%以上が好ましい。
【0040】
また、本発明では、上記組成に加えて、以下の(2)式を満たすことが好ましい。
0.5≦(C/12)/{(Ti/48)+(Mo/96)+(W/184)}≦1.5 …(2)
(ただし、上記(2)式中、C、Ti、Mo、Wは各成分の質量%を表す。)
これは、鋼中のCと(Ti+Mo+W)との原子数比、すなわち、(C/12)/{(Ti/48)+(Mo/96)+(W/184)}の値が0.5〜1.5となるように、C、Ti、Mo、Wの含有量を調整することにより、強度確保に対して効果的にTi、Mo、Wを含む炭化物が均質微細に分散析出しやすくなるからである。上記(2)式の値が0.5未満ではコイル全域での強度の均一化が図られず、1.5を超えると炭化物が粗大化するとともに伸びフランジ性を損ねるパーライトが形成され、強度および加工性を劣化させる。
【0041】
また、C、Ti、Mo、Wに加え、Nb、Vの1種以上を添加する場合には、以下の(3)式を満たすことが好ましい。
0.5≦(C/12)/{(Ti/48)+(Mo/96)+(W/184)+(Nb/93)+(V/51)}≦1.5 …(3)
(ただし、上記(3)式中、C、Ti、Mo、W、Nb、Vは各成分の質量%を表す。)
この場合も上記の場合と同様で、鋼中のCと(Ti+Mo+W+Nb+V)との原子数比、すなわち(C/12)/{(Ti/48)+(Mo/96)+(W/184)+(Nb/93)+(V/51)}の値が0.5〜1.5となるように、C、Ti、Mo、W、Nb、Vの含有量を調整することにより、炭化物が均質微細に分散析出しやすくなるからである。上記(3)式の値が0.5未満ではコイル全域での強度の均一化が図られず、1.5を超えると炭化物が粗大化するとともに伸びフランジ性を損ねるパーライトが形成され、強度および加工性を劣化させる。
【0042】
上記(C/12)/{(Ti/48)+(Mo/96)+(W/184)}の値、および(C/12)/{(Ti/48)+(Mo/96)+(W/184)+(Nb/93)+(V/51)}の値は0.8〜1.3がより望ましい。
【0043】
なお、本発明の効果が維持される範囲で上記以外の元素を微量に添加してもよく、また他の不可避的な不純物元素が含有されていてもよい。
【0044】
次に、以上のような本発明の熱延鋼板の好ましい製造条件について述べる。
ここでは、上記成分組成を有する鋼をオーステナイト単相域の温度に加熱後、熱間圧延するにあたり、800℃以上で仕上圧延を完了し、675℃以下で巻取った後、575〜750℃で熱処理する。
【0045】
鋳片をオーステナイト単相域の温度にする:
熱間圧延する前に、Ti、Nb、V、Mo、Wの炭化物を固溶させるために鋳片をオーステナイト単相域の温度にする。望ましくは、1200℃以上とする。
【0046】
仕上圧延温度を800℃以上:
仕上圧延温度は材質均一化のために重要である。800℃未満では圧延中に炭化物の歪誘起析出が生じるが、この析出は高温で起こるため、炭化物が粗大化してしまい、その後の熱履歴において再び微細化することがなく、そのため、炭化物が強度上昇に有効に作用しない。よって、仕上圧延温度を800℃以上とした。
【0047】
巻取り温度を675℃以下:
本発明鋼では、熱延巻取り後、炭化物を析出させないか、あるいは炭化物を微細に析出させた状態とする必要がある。巻取温度が675℃を超えると、熱延巻取り後の炭化物が粗大化してしまい、その後の熱履歴により再び微細化することはないため、鋼を効果的に強化することができなくなる。このため、巻取温度を675℃以下とした。
【0048】
575〜750℃で熱処理:
本発明では、熱間圧延して巻取ったコイルをさらに熱処理する。これにより、コイル全域での材質均一性を高める。熱処理温度が575℃未満では、コイル全域でフェライト組織および炭化物の析出の均質化が達成できず、750℃を超えると、炭化物が粗大化して強度が低下してしまう。
【0049】
より好ましい熱延コイル巻取り後の熱処理条件は、以下の(4)式に示すものである。
16500≦(T+273){log(t)+16}≦19500 …(4)
(ただし、T:熱処理温度(℃)、t:熱処理時間(秒))
このように、(T+273){log(t)+16}の値が16500以上になることにより、降伏強度の均一性がさらに高まる。ただし、その値が19500を超えると炭化物の粗大化が進み、本発明の特徴である炭化物による強化効果を有効に発揮させることが困難となる。
【0050】
本発明の高張力熱延鋼板には、表面に溶融亜鉛系めっき皮膜を形成し、溶融亜鉛系めっき鋼板としたものも含む。本発明の高張力熱延鋼板は良好な加工性を有することから、溶融亜鉛系めっき皮膜を形成しても良好な加工性を維持することができる。ここで、溶融亜鉛系めっきとは、亜鉛および亜鉛を主体とした溶融めっきであり、亜鉛の他にAl、Cr等の合金元素を含んだものを含む。このような溶融亜鉛系めっきを施した本発明の高張力熱延鋼板は、めっきままでもめっき後合金化処理を行ってもかまわない。めっき前焼鈍温度については、450℃未満ではめっきがつかず、750℃超えでは強度低下が生じやすい。そのため、焼鈍温度は450℃以上、750℃以下が好ましい。
【0051】
なお、本発明の熱延鋼板は、黒皮ままでも酸洗材でもその特性に差違はない。調質圧延についても通常行われているものであれば特に規定はない。また、上記溶融亜鉛めっきは酸洗後でも黒皮ままでも問題はない。亜鉛めっきについては電気めっきも可能である。化成処理についても特に問題はない。鋳造後直ちにもしくは補熱を目的とした加熱を施した後にそのまま熱間圧延を行う直送圧延を行っても本発明の効果に影響はない。さらに、粗圧延後に仕上圧延前で、圧延材を加熱しても、粗圧延後、圧延材を接合して行う連続圧延を行っても、さらには圧延材の加熱と連続圧延を同時に行っても本発明の効果は損なわれない。
【0052】
本発明の熱延鋼板は、成形性に優れ、コイル内材質変動も少ないのでこれをプレス成形した場合、その特質が活かされ、自動車用部材、特にサスペンションアーム等の足廻り部材のようなプレス時の断面形状が複雑な部材を良好な品質で製造することができ、特に、プレス成形品の軽量化に資することができる。以下に具体的に、本発明に係る熱延鋼板の加工方法、換言すればプレス成形品の製造方法について説明する。
【0053】
図1は、本発明に係る熱延鋼板の加工方法の作業フローの一例を示すフローチャートである。この作業フローは、通常、本発明に係る鋼板を製造することまたはその製造された鋼板を例えばコイルにして目的場所に搬送することを前工程としており、まず、本発明に係る熱延鋼板を準備することから始まる(S0、S1)。この鋼板に対してプレス加工を施す前に、鋼板に対して前処理的な加工を施すこともあれば(S2)、裁断機により所定の寸法や形状に加工することもある(S3)。前者のS2の工程では、例えば鋼板の幅方向の所定箇所に切り込みや穿孔を行い、引き続くプレス加工を終えた段階またはそのプレス加工の過程で、所定の寸法および形状のプレス成形品または被プレス加工部材として切り離すことができるようにしておく。後者のS3の工程では、最終的なプレス成形品の寸法、形状等を予め考慮して、所定の寸法および形状の鋼板部材に加工(したがって裁断)するようにしておく。その後、S2およびS3の工程を経由した部材には、プレス加工が施され、最終的に目的とする寸法・形状の所望のプレス成形品が製造される(S4)。このプレス加工は、通常は多段階で行われ、3段階以上7段階以下であることが多い。
【0054】
S4の工程は、S2およびS3の工程を経由した部材に対してさらに所定の寸法や形状に裁断する工程を含む場合もある。この場合の「裁断」という作業は、例えば、少なくともプレス加工の過程で、S2およびS3の工程を経由した部材の端部のような最終的なプレス成形品には不要部分を切り離す作業であっても構わないし、また、S2の工程で設けられた鋼板の幅方向の切り込みや穿孔に沿って被プレス加工部材を切り離す作業であっても構わない。
【0055】
なお、図1中、N1ないしN3は、鋼板、部材、プレス成形品を、機械的にあるいは作業員による搬送作業である場合がある。
【0056】
こうして製造されるプレス成形品は、必要に応じて次工程に送られる。次工程としては、例えば、プレス成形品にさらに機械加工を施し、寸法や形状を調整する工程、プレス成形品を所定場所に搬送し、格納する工程、プレス成形品に表面処理を施す工程、プレス成形品を用いて自動車のような目的物を組み立てる組立工程がある。
【0057】
図2は、図1に示した作業を実際に行う装置と鋼板、部材、プレス成形品の流れとの関係を示すブロック図である。この図においては、本発明に係る熱延鋼板はコイル状で準備されており、プレス加工機によりプレス成形品が製造される。プレス加工機は多段プレスを行う機種のものであるが、本件発明はこれに限定されない。
【0058】
プレス加工機の前段に、裁断機その他の前処理機械を設置する場合(図2の(a))もあれば、設置しない場合(図2の(b))もある。裁断機が設置される場合には、コイルから供給される長尺の本発明に係る鋼板から、必要な寸法又は形状の部材を裁断し、この部材がプレス加工機においてプレス加工され、所定のプレス成形品となる。鋼板の幅方向に切り欠きや穿孔を施す前処理機械が設置される場合には、プレス加工機においてその切り欠きや穿孔に沿って裁断が行われても構わない。前処理機械を設置しない場合には、プレス加工機において鋼板がプレス加工される過程で、裁断が行われ、最終的に所定の寸法、形状を有するプレス成形品が製造される。なお、図2における「裁断」の意味は、図1における裁断と同じである。
【0059】
こうして製造されるプレス成形品は、その原材料として表面性状と延性に優れ、コイル内材質変動も少ない本発明に係る鋼板を使用しているので、良好で均一な品質を有するに至り、かかるプレス成型品の製造歩留も高い。このような特長は、プレス成形品が自動車用部材、特にサスペンションアーム等の足廻り部材である場合に特に有用である。
【0060】
【実施例】
(実施例1)
表1に示す化学成分を有する鋼を溶製し、加熱温度1250℃、仕上圧延温度約900℃、巻取温度約610℃で熱間圧延を行い、板厚が2.3mmの鋼板を作製した。そのコイルから引張試験用サンプルと穴広げ試験用サンプルを採取した後、前記熱延コイルを連続焼鈍設備で熱処理した。このとき、連続焼鈍設備内で加熱される条件は、700℃、2分間であった。得られた最終熱処理鋼板から引張試験用サンプルと穴広げ試験用サンプルを採取するとともに、薄膜を採取し、透過型電子顕微鏡(TEM)による析出物の観察と析出物中のTi、Mo、W、Nb、Vの組成をTEMに装備されたエネルギー分散型X線分光装置(EDX)で分析した。また、マトリックスの組織観察を走査型電子顕微鏡(SEM)により行った。これらの結果を表1に併記する。なお、表1中、A値は、Ti/[48{(Mo/96)+(W/184)}]の値を示し、B値は、(C/12)/{(Ti/48)+(Mo/96)+(W/184)}または(C/12)/{(Ti/48)+(Mo/96)+(W/184)+(Nb/93)+(V/51)}の値を示す。
【0061】
引張試験は、幅方向中央部と最端部よりコイル長手方向にJIS5号試験片を採取して行った。幅方向での降伏応力の比較は、強度差の絶対値で行った。また、鋼板の伸びフランジ性(λ)を評価する穴広げ試験は、日本鉄鋼連盟規格に従って行った。これら特性を表2に示す。
【0062】
表1に示すように、No.1〜13は、化学成分組成が本発明の範囲内であり、マトリックス組織がフェライトであり、析出物のA値が0.1以上3.5以下であって、本発明例であり、表2に示すように、良好な材質特性および材質均一性を得ることができた。
【0063】
一方、Cが多量に含まれているNo.14では、パーライトが生成し、伸びフランジ性が低下しているとともに熱処理後の幅方向中央部と端部の降伏強度も不均一である。パーライトが形成され、A値が0.1未満であるNo.15では、伸びフランジ性が特に低く、熱処理後の幅方向中央部と端部の降伏強度も不均一である。A値が0.1未満で、B値が0.5未満であるNo.16でも、熱処理後に幅方向中央部と端部の降伏強度不均一が解消されていない。A値が0.1未満で、B値が1.5を超えるNo.17では、パーライトが生成するため伸びフランジ性が低く、熱処理後に幅方向中央部の強度低下が大きくかつ幅方向中央部と端部の降伏強度不均一が解消されていない。A値が3.5を超えるNo.18では、熱処理後の幅方向での降伏強度不均一が解消されていない。
【0064】
【表1】

Figure 0003775337
【0065】
【表2】
Figure 0003775337
【0066】
(実施例2)
表1に示した鋼No.6の鋳造片を用いて、加熱温度1250℃、仕上げ圧延温度約900℃、巻取温度約600℃で熱間圧延を行い、板厚2.3mmの熱延コイルを作製した。そのコイルから、幅方向中央部と端部から引張試験用サンプルを採取し、種々の条件で熱処理を行った。図3にその際の熱処理温度および熱処理時間における、幅方向中央部と端部の降伏強度の応力差ΔYSを示す。この図に示すように、熱処理温度が550℃ではΔYSが熱延ままからあまり低下していないが、600〜800℃ではΔYSが30MPa以下となった。この結果から熱処理温度が575℃以上で低いΔYSが得られることが把握される。また、図4にその際の熱処理温度および熱処理時間における、幅方向中央部の引張強度TSを示す。この図に示すように、熱処理温度が750℃を超えるとTSが大幅に低下し、炭化物による強化効果が消滅していることが把握される。
【0067】
図3で得られた熱処理温度および時間とΔYSの値とから、(T+273){log(t)+16}とΔYSとの関係を求めた。その結果を図5に示す。図5に示すように、(T+273){log(t)+16}が16500以上で特にΔYSが低減されることが確認された。また、図4で得られた熱処理温度および時間と幅方向中央部の引張強度TSの値とから、(T+273){log(t)+16}と幅方向中央部の引張強度TSとの関係を求めた。その結果を図6に示す。図6に示すように、(T+273){log(t)+16}が19500以下で特にTSの低下が小さくなることが確認された。
【0068】
【発明の効果】
以上説明したように、本発明によれば、鋼の成分組成を適切に制御し、鋳造後、熱間圧延してコイルに巻き取った後に、熱処理する工程を経ることによって、実質的にフェライト組織に、特定組成のTiと、MoおよびWのうち1種以上とを含む炭化物が分散析出させた構成としたので、セメンタイト等の製造熱履歴で形態が変化する粗大Fe炭化物の析出を最小限に抑えることができ、広い温度域で安定である炭化物が鋼板全域に均一微細に析出することにより、降伏強度の均一性に優れた鋼板が得られる。また、実質的にフェライト組織に上述のような微細な炭化物が分散析出するため、高成形性でかつ高強度が実現される。
【図面の簡単な説明】
【図1】本発明に係る熱延鋼板の加工方法の作業フローの一例を示すフローチャート。
【図2】図1に示した作業を実際に行う装置と鋼板、部材、プレス成形品の流れとの関係を示すブロック図。
【図3】種々の熱処理温度および熱処理時間における、幅方向中央部と端部の降伏強度の応力差ΔYSを示すグラフ。
【図4】種々の熱処理温度および熱処理時間における、幅方向中央部の引張強度TSを示すグラフ。
【図5】図3で得られた熱処理温度および時間とΔYSの値とから求めた、(T+273){log(t)+16}とΔYSとの関係を示すグラフ。
【図6】図4で得られた熱処理温度および時間と幅方向中央部の引張強度TSの値とから求めた、(T+273){log(t)+16}と幅方向中央部の引張強度TSとの関係を示すグラフ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-formability, high-tensile hot-rolled steel sheet excellent in material uniformity, suitable for a member used in a transport device such as an automobile, and a manufacturing method and a processing method thereof.
[0002]
[Prior art]
In recent years, in the field of transport aircraft, which is representative of automobiles, weight reduction of vehicle bodies has been studied for the purpose of improving fuel efficiency. As one of the examinations for reducing the weight of the vehicle body, increasing the strength of the steel sheet used is being promoted. In addition, since automotive members are difficult to process, workability is also required.
[0003]
Japanese Patent Application Laid-Open Nos. Hei 6-200351 and Hei 6-28785 propose a technique relating to a precipitation strengthened high strength hot-rolled steel sheet having a structure mainly composed of ferrite. In the former, most of the structure is made of polygonal ferrite to ensure the required workability, and high strength is achieved by precipitation strengthening and solid solution strengthening centering on TiC. In the latter case, the majority of the structure is made of ferrite to ensure the required workability, and by controlling the addition amount of Ti and Cu, the strength is increased by precipitation strengthening and solid solution strengthening centering on TiC and Cu. ing.
[0004]
However, in these steel sheets, the precipitation temperature of TiC is in a narrow range, and TiC is thermally unstable and easily coarsened. Therefore, the cooling history of the center portion and the end portion in the width direction from the hot rolled runout table to the coiler is reduced. There was a problem that the yield strength was uneven at the center and the end in the width direction of the steel sheet due to the change in the cooling rate of the run-out table-like strip caused by the change in the material in the width direction and the change in the rolling speed due to the difference.
[0005]
[Problems to be solved by the invention]
As described above, in the prior art, although a high-tensile hot-rolled steel sheet having relatively good workability has been obtained, since the fluctuation of the tensile properties in the coil becomes large, the shape freezing property when the steel sheet is press-formed is increased. Or the strength characteristics of the final product.
[0006]
The present invention has been made in view of such circumstances, and has high formability and high tension hot rolling with excellent material uniformity that is practically industrially practical, with little variation in the material in the coil, particularly in the yield strength in the width direction. It aims at providing a steel plate and its manufacturing method and processing method.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to reduce the fluctuation of the yield strength in the coil, the present inventors have strengthened the ferrite single-phase structure with fine precipitates satisfying a predetermined atomic ratio, and thus within a desired range. It was found that the fluctuation can be reduced.
[0008]
  The present invention has been made based on such findings, and the following (1) to (10)I will provide a.
[0011]
  (1)mass%, C ≦ 0.1%, Si ≦ 0.5%, Mn ≦ 2%, P ≦ 0.06%, S ≦ 0.01%, Al ≦ 0.1%, N ≦ 0.006%, Including Cr ≦ 0.5%, Ti: 0.02 to 0.2%, and further including one or more selected from Mo: 0.05 to 0.6% and W: 0.01 to 1.5% The restFe and inevitable impuritiesAfter casting, after hot rolling and winding into a coil,At 575-750 ° C.By going through the heat treatment process,98% or more by volume (excluding 98%)In the ferrite structure, carbide containing Ti and one or more of Mo and W is dispersed and precipitated in a range satisfying the following formula (1), and the difference in yield stress between the central portion and the end portion in the steel plate width direction is A high-formability, high-tensile hot-rolled steel sheet excellent in material uniformity, characterized by being 30 MPa or less.
  0.1 ≦ Ti / [48 {(Mo / 96) + (W / 184)}] ≦ 3.5 (1)
  However, in the above formula (1), Ti, Mo, and W are the respective components.mass%.
[0012]
  (2)mass%, C ≦ 0.1%, Si ≦ 0.5%, Mn ≦ 2%, P ≦ 0.06%, S ≦ 0.01%, Al ≦ 0.1%, N ≦ 0.006%, Including Cr ≦ 0.5%, Ti: 0.02 to 0.2%, Mo: 0.05 to 0.6%, W: 0.01 to 1.5% And at least one selected from Nb: 0.005 to 0.1% and V: 0.01 to 0.1%, with the remainder beingFe and inevitable impuritiesAfter casting, after hot rolling and winding into a coil,At 575-750 ° C.By going through the heat treatment process,98% or more by volume (excluding 98%)A carbide containing one or more of Mo and W and Ti is dispersed and precipitated in the ferrite structure within a range satisfying the following expression (1), and the difference in yield stress between the central portion and the end portion in the width direction of the steel sheet is 30 MPa or less. A high-formability, high-tensile hot-rolled steel sheet with excellent material uniformity.
  0.1 ≦ Ti / [48 {(Mo / 96) + (W / 184)}] ≦ 3.5 (1)
  However, in the above formula (1), Ti, Mo, and W are the respective components.mass%.
[0013]
  (3) In the above (1), C, Ti, and one or more of Mo and W are contained so as to satisfy the following formula (2). High formability with excellent material uniformity High tensile hot rolled steel sheet.
  0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (W / 184)} ≦ 1.5 (2)
  However, in the above formula (2), C, Ti, Mo, W are the respective components.mass%.
[0014]
  (4) In the above (2), one or more of C, Ti, Mo and W and one or more of Nb and V are contained so as to satisfy the following expression (3): High formability, high tensile hot-rolled steel sheet with excellent material uniformity.
  0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (W / 184) + (Nb / 93) + (V / 51)} ≦ 1.5 (3)
  However, in the above formula (3), C, Ti, Mo, W, Nb, V are the respective components.mass%.
[0015]
  (5) Above (1)-(4), A high-formability, high-tensile hot-rolled steel sheet with excellent material uniformity, characterized by having a hot-dip galvanized coating on the surface.
[0016]
  (6) Above (1)-(4) After heating the slab having a composition of any of the above to the temperature of the austenite single-phase region and performing hot rolling, finish rolling is completed at 800 ° C. or higher, and winding at 675 ° C. or lower is performed. A method for producing a high-formability, high-tensile hot-rolled steel sheet excellent in material uniformity, characterized by heat treatment at 750 ° C.
[0017]
  (7)the above(6), The heat treatment after winding is performed so as to satisfy the following formula (4): A method for producing a high formability high tension hot rolled steel sheet having excellent material uniformity.
  16500 ≦ (T + 273) {log (t) +16} ≦ 19500 (4)
  T: heat treatment temperature (° C.), t: heat treatment time (seconds)
[0018]
  (8) Above (1)-(5) High formability high tension hot rolling comprising: a first step of preparing a member made of any of the steel plates; and a second step of pressing the member into a press-formed product having a desired shape. Steel plate processing method.
[0019]
  (9)the above(8), The press-formed product is a method of processing a high-formability high-tensile hot-rolled steel sheet, which is an automotive part, particularly an automobile suspension member.
[0020]
  (10) From (1) to (5) Automotive parts manufactured with any steel plate.
[0021]
According to the present invention having such a configuration, (1) a ferrite structure is formed, and there is no or minimal precipitation of coarse Fe carbide whose shape changes with the production heat history such as cementite, and (2) A carbide that is stable in a wide temperature range precipitates uniformly and finely throughout the steel plate, thereby obtaining a steel plate with excellent yield strength uniformity. In addition, since the fine carbide as described above is substantially dispersed and precipitated in the ferrite structure, high formability and high strength are realized.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, the present invention will be specifically described.
  The hot-rolled steel sheet according to the present invention ismass%, C ≦ 0.1%,Si ≦ 0.5%, Mn ≦ 2%, P ≦ 0.06%, S ≦ 0.01%, Al ≦ 0.1%, N ≦ 0.006%, Cr ≦ 0.5%,Including Ti: 0.02 to 0.2%, further including one or more selected from Mo: 0.05 to 0.6%, W: 0.01 to 1.5%,The balance consists of Fe and inevitable impurities,After casting, after hot rolling and winding into a coil,At 575-750 ° C.By going through the heat treatment process,98% or more by volume (excluding 98%)In the ferrite structure, carbide containing Ti and one or more of Mo and W is dispersed and precipitated within the range satisfying the following (1), and the yield stress at the center and end in the width direction of the steel sheet The difference is 30 MPa or less. Furthermore, 1 or more types chosen from Nb: 0.005-0.1% and V: 0.01-0.1% may be included.
  0.1 ≦ Ti / [48 {(Mo / 96) + (W / 184)}] ≦ 3.5 (1)
  (However, in the above formula (1), Ti, Mo, and W represent the weight% of each component.)
[0023]
The reason for performing the heat treatment after hot rolling and winding in a coil is to make the precipitation and structure of fine carbides, which are likely to be different between the central portion and the end portion in the hot rolling state, more uniform.
[0024]
  MatrixA ferrite structure of 98% or more by volume,In the case of a ferrite structure, the composite structure must control the formation of two or more kinds of structures, and it is difficult to achieve material uniformity. On the other hand, a single structure of ferrite has multiple structures. This is because the difficulty of controlling at the same time can be eliminated. For example, Fe carbides change in shape due to the thermal history of strips and coils, and if they are contained in a large amount, they cause material fluctuations.
[0025]
  In the present invention, specifically, volume% by cross-sectional structure observation etc.98% Or more. Further, if the coarse Fe carbide other than fine precipitates is less than 1% by volume, the effect of the present invention is not impaired.
[0026]
  In the hot-rolled steel sheet of the present invention in which the matrix is substantially made of ferrite, the strength is ensured by fine precipitates. In fine precipitates composed of carbides containing Ti and one or more of Mo and W, if these elements are not in the proper ratio, the form of the precipitate is likely to change due to the thermal history of the strip or coil, The progress of coarsening by heating is fast. For this reason, strength fluctuations in the coil due to the difference in cooling rate that occurs between the center and the end in the width direction seen in the coil as it is hot-rolled or the difference in cooling rate that occurs between the outer periphery and the center of the coil Even if heat-treated, it is large. This is because the progress of coarsening due to heating is fast, so fine carbides were precipitated by the heat treatment when the fine carbides were precipitated at the time of winding after hot rolling, and fine carbides were formed by the heat treatment when they were not precipitated at the time of winding. This is because the strength changes in the coil. On the other hand, when it is a carbide containing Ti and one or more of Mo and W and these elements are in an appropriate ratio, the progress of coarsening by heating is slow. For this reason, keep the coil in the hot rolled state so that the inside of the coil has a homogeneous ferrite structure.At 575-750 ° C.When the heat treatment is performed, fine carbides are uniformly deposited throughout the coil, and the strength fluctuation in the coil is reduced. And the effect with respect to the fluctuation | variation of yield strength is remarkable among intensity fluctuations.
[0027]
  Of Ti, Mo, W in fine carbidemassThe value of Ti / [48 {(Mo / 96) + (W / 184)}] calculated by% is 0.1 to 3.5 when less than 0.1 or more than 3.5 This is because the fine carbides are not homogeneously precipitated and the material fluctuation cannot be reduced. Desirably, it is 0.7-1.5.
[0028]
Next, the composition will be described.
C:
C is fixed as a carbide containing Ti, Mo, and W, and is an indispensable element to bear the strength of steel. However, if its content exceeds 0.1%, the ductility deteriorates due to the formation of coarse Fe carbides and the formation of island martensite. Therefore, the upper limit of the C amount is set to 0.1%. From the viewpoint of reducing the amount of Fe carbide produced, 0.08% or less is desirable. On the other hand, in order to maintain the strength of 540 MPa or more, it is desirable to contain 0.01% or more.
[0029]
Ti:
Ti forms fine carbide together with Mo and W, and bears the strength of the steel sheet. However, if its content is less than 0.02%, it is insufficient to ensure the required strength. On the other hand, if it exceeds 0.2%, the transformation point is significantly increased and finish rolling is finished in the austenite region. It becomes difficult to make it difficult to process. Therefore, the Ti content is set to 0.02 to 0.2%.
[0030]
Mo, W:
Since both Mo and W are effective in delaying the coarsening of fine carbide due to heat and reducing the strength fluctuation in the coil through a heat treatment step after hot rolling, at least one kind is added. If Mo is less than 0.05%, it cannot be sufficiently precipitated as carbide. On the other hand, if it exceeds 0.6%, the hot strength becomes high and hot rolling becomes difficult. Therefore, the Mo content is set to 0.05 to 0.6%. Desirably, it is 0.5% or less. On the other hand, if W is less than 0.01%, it cannot be sufficiently precipitated as carbide, while if it exceeds 1.5%, the hot strength becomes high and hot rolling becomes difficult. Therefore, the W content is set to 0.01 to 1.5%.
[0031]
Nb, V:
Nb and V both form carbides and are effective in bearing the strength of the steel sheet, and at least one of these can be added. However, if Nb is less than 0.005%, the effect of Nb carbide precipitation cannot be obtained, and if it exceeds 0.1%, the hot strength becomes high and hot rolling becomes difficult. Further, if V is less than 0.01%, the effect of V carbide precipitation cannot be obtained, and if it exceeds 0.1%, the effect is saturated. Accordingly, when Nb is added, the content is 0.005 to 0.1%, and when V is added, the content is 0.01 to 0.1%.
[0032]
  Next, Si, Mn, P, S, Al, N, and Cr other than C, Ti, Mo, W, Nb, and V will be described.
[0033]
Si:
Si has often been used as a solid solution strengthening element. However, Si produces a red scale and deteriorates the surface properties. Accordingly, the Si content is preferably 0.5% or less. Furthermore, 0.2% or less is desirable.
[0034]
Mn:
Mn is used as a solid solution strengthening element. However, if it exceeds 2%, segregation during casting tends to occur. Therefore, the Mn content is preferably 2% or less.
[0035]
P:
P is a solid solution strengthening element, but if added over 0.06%, it causes significant segregation to the grain boundary and deteriorates ductility, so 0.06% or less is preferable.
[0036]
S:
S is fixed as MnS and TiS. For this reason, S is preferably 0.01% or less because it reduces the amount of Mn and Ti that effectively act on the material properties and lowers the ductility. More preferably, it is 0.005% or less.
[0037]
Al:
Al in steel is used as a deoxidizer. However, if its content exceeds 0.1%, the ductility of the steel is reduced, so 0.1% or less is preferable.
[0038]
N:
N is an impurity in the steel. If its content exceeds 0.006%, coarse nitride formation that lowers ductility is caused, so 0.006% or less is preferable.
[0039]
Cr:
Cr has an effect of suppressing ferrite transformation. When ferrite transformation proceeds at 750 ° C. or higher on the run-out table after finish rolling, coarse carbides containing Ti, Mo, W are formed, and once produced coarse carbides are refined again by the subsequent thermal history. However, the steel cannot be effectively strengthened, but this can be suppressed by adding Cr. However, if Cr exceeds 0.5%, the surface properties deteriorate, so 0.5% or less is preferable. In order to exhibit such an effect effectively, 0.04% or more is preferable.
[0040]
  In the present invention, in addition to the above composition, the following formula (2) is preferably satisfied.
0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (W / 184)} ≦ 1.5 (2)
  (However, in the above formula (2), C, Ti, Mo and W aremass%. )
  This is because the atomic ratio between C and (Ti + Mo + W) in the steel, that is, (C / 12) / {(Ti / 48) + (Mo / 96) + (W / 184)} is 0.5. By adjusting the contents of C, Ti, Mo, and W so as to be ~ 1.5, carbides containing Ti, Mo, and W are easily and finely dispersed and precipitated effectively for ensuring the strength. Because. If the value of the above formula (2) is less than 0.5, the strength of the entire coil cannot be made uniform, and if it exceeds 1.5, carbite is coarsened and a pearlite that impairs stretch flangeability is formed. Degradation of workability.
[0041]
  Moreover, when adding 1 or more types of Nb and V in addition to C, Ti, Mo, and W, it is preferable to satisfy | fill the following (3) Formula.
  0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (W / 184) + (Nb / 93) + (V / 51)} ≦ 1.5 (3)
(However, in the above formula (3), C, Ti, Mo, W, Nb, V aremass%. )
  In this case as well, the atomic ratio between C and (Ti + Mo + W + Nb + V) in the steel, that is, (C / 12) / {(Ti / 48) + (Mo / 96) + (W / 184) + By adjusting the contents of C, Ti, Mo, W, Nb, and V so that the value of (Nb / 93) + (V / 51)} is 0.5 to 1.5, the carbide is homogeneous. This is because it becomes easy to finely disperse and precipitate. If the value of the above formula (3) is less than 0.5, the strength of the entire coil cannot be made uniform, and if it exceeds 1.5, pearlite is formed which coarsens carbides and impairs stretch flangeability. Degradation of workability.
[0042]
The value of (C / 12) / {(Ti / 48) + (Mo / 96) + (W / 184)} and (C / 12) / {(Ti / 48) + (Mo / 96) + ( The value of (W / 184) + (Nb / 93) + (V / 51)} is more preferably 0.8 to 1.3.
[0043]
In addition, elements other than those described above may be added in minute amounts within the range in which the effects of the present invention are maintained, and other inevitable impurity elements may be contained.
[0044]
Next, preferable production conditions for the hot-rolled steel sheet of the present invention as described above will be described.
Here, in hot rolling after heating the steel having the above composition to the temperature of the austenite single phase region, finish rolling is completed at 800 ° C. or higher, and after winding at 675 ° C. or lower, the temperature is 575 to 750 ° C. Heat treatment.
[0045]
Bring the slab to austenite single phase temperature:
Before hot rolling, the slab is brought to the temperature of the austenite single phase region in order to dissolve the carbides of Ti, Nb, V, Mo, and W. Desirably, the temperature is 1200 ° C. or higher.
[0046]
Finish rolling temperature of 800 ° C or higher:
The finishing rolling temperature is important for making the material uniform. Below 800 ° C, strain-induced precipitation of carbide occurs during rolling, but since this precipitation occurs at a high temperature, the carbide is coarsened and is not refined again in the subsequent thermal history, so that the strength of the carbide increases. Does not work effectively. Therefore, the finish rolling temperature is set to 800 ° C. or higher.
[0047]
The winding temperature is 675 ° C. or lower:
In the steel of the present invention, it is necessary that the carbide is not precipitated after the hot rolling or the carbide is finely precipitated. When the coiling temperature exceeds 675 ° C., the carbide after the hot rolling is coarsened and is not refined again by the subsequent thermal history, and therefore the steel cannot be effectively strengthened. For this reason, the coiling temperature was set to 675 ° C. or less.
[0048]
Heat treatment at 575-750 ° C .:
In the present invention, the coil wound by hot rolling is further heat-treated. This improves the material uniformity across the entire coil. If the heat treatment temperature is less than 575 ° C., homogenization of the ferrite structure and carbide precipitation cannot be achieved throughout the coil, and if it exceeds 750 ° C., the carbide becomes coarse and the strength decreases.
[0049]
More preferable heat treatment conditions after winding the hot-rolled coil are shown in the following formula (4).
16500 ≦ (T + 273) {log (t) +16} ≦ 19500 (4)
(Where T: heat treatment temperature (° C.), t: heat treatment time (seconds))
Thus, when the value of (T + 273) {log (t) +16} is 16500 or more, the uniformity of the yield strength is further enhanced. However, if the value exceeds 19500, the coarsening of the carbide proceeds, and it becomes difficult to effectively exert the strengthening effect by the carbide that is the feature of the present invention.
[0050]
The high-tensile hot-rolled steel sheet of the present invention includes a hot-dip galvanized steel sheet that has a hot-dip galvanized film formed on the surface. Since the high-tensile hot-rolled steel sheet of the present invention has good workability, good workability can be maintained even when a hot-dip galvanized film is formed. Here, the hot dip galvanizing is hot dip plating mainly composed of zinc and zinc, and includes those containing alloy elements such as Al and Cr in addition to zinc. The high-tensile hot-rolled steel sheet of the present invention subjected to such hot-dip galvanizing may be subjected to an alloying treatment after plating or as it is plated. As for the pre-plating annealing temperature, if the temperature is lower than 450 ° C., the plating cannot be applied, and if it exceeds 750 ° C., the strength tends to decrease. Therefore, the annealing temperature is preferably 450 ° C. or higher and 750 ° C. or lower.
[0051]
In addition, the hot-rolled steel sheet of the present invention has no difference in its characteristics whether it is black or pickled. There is no particular restriction on temper rolling as long as it is usually performed. Moreover, the hot dip galvanization has no problem even after pickling or as it is black. For galvanization, electroplating is also possible. There is no particular problem with chemical conversion treatment. The effect of the present invention is not affected even if direct feed rolling, in which hot rolling is performed directly after casting or after heating for the purpose of supplementary heating, is performed. Furthermore, even if the rolled material is heated after the rough rolling and before the finish rolling, the continuous rolling performed by joining the rolled material after the rough rolling may be performed, or the heating and continuous rolling of the rolled material may be performed simultaneously. The effect of the present invention is not impaired.
[0052]
The hot-rolled steel sheet of the present invention is excellent in formability and has little variation in the material in the coil. Therefore, when it is press-molded, its characteristics are utilized, and when it is pressed like an automobile member, particularly a suspension member such as a suspension arm. A member having a complicated cross-sectional shape can be manufactured with good quality, and in particular, it can contribute to weight reduction of a press-formed product. Hereinafter, a method for processing a hot-rolled steel sheet according to the present invention, in other words, a method for manufacturing a press-formed product will be described.
[0053]
FIG. 1 is a flowchart showing an example of a work flow of a method for processing a hot-rolled steel sheet according to the present invention. This work flow usually has a pre-process of manufacturing a steel plate according to the present invention or transporting the manufactured steel plate to a destination place as a coil, for example. First, a hot-rolled steel plate according to the present invention is prepared. (S0, S1). Before pressing the steel sheet, the steel sheet may be pre-processed (S2), or may be processed into a predetermined size or shape by a cutting machine (S3). In the former step S2, for example, cutting or drilling is performed at a predetermined position in the width direction of the steel sheet, and a press-formed product having a predetermined size and shape or pressed processing is performed at the stage where the subsequent press processing is completed or in the process of the press processing. It can be separated as a member. In the latter step of S3, the final press-molded product is processed (and thus cut) into a steel plate member having a predetermined size and shape in consideration of the size and shape of the final press-formed product in advance. Thereafter, the member that has undergone the steps S2 and S3 is subjected to press working, and finally a desired press-formed product having a desired size and shape is manufactured (S4). This press working is usually performed in multiple stages, and often has 3 stages or more and 7 stages or less.
[0054]
The step S4 may include a step of further cutting the member that has passed through the steps S2 and S3 into a predetermined size and shape. The operation of “cutting” in this case is, for example, an operation of cutting an unnecessary portion in a final press-formed product such as an end portion of a member that has passed through steps S2 and S3 at least in the process of pressing. Alternatively, it may be an operation of cutting the member to be pressed along the cutting or perforation in the width direction of the steel plate provided in the step S2.
[0055]
In FIG. 1, N1 to N3 may be a work of conveying a steel plate, a member, or a press-formed product mechanically or by an operator.
[0056]
The press-formed product manufactured in this way is sent to the next step as necessary. As the next process, for example, a further process is performed on the press-molded product to adjust dimensions and shape, a process of transporting and storing the press-molded product to a predetermined place, a process of subjecting the press-molded product to surface treatment, a press There is an assembly process for assembling an object such as an automobile using a molded product.
[0057]
FIG. 2 is a block diagram showing the relationship between the apparatus that actually performs the operation shown in FIG. 1 and the flow of steel plates, members, and press-formed products. In this figure, the hot-rolled steel sheet according to the present invention is prepared in a coil shape, and a press-formed product is manufactured by a press machine. The press machine is of a type that performs multi-stage pressing, but the present invention is not limited to this.
[0058]
In some cases, a cutting machine or other pre-processing machine is installed in the front stage of the press machine (FIG. 2A), and in some cases, it is not installed (FIG. 2B). When a cutting machine is installed, a member having a required size or shape is cut from a long steel sheet according to the present invention supplied from a coil, and this member is pressed by a press machine, and a predetermined press It becomes a molded product. In the case where a pre-processing machine that performs notches and perforations in the width direction of the steel sheet is installed, the press machine may cut along the notches and perforations. When the pretreatment machine is not installed, cutting is performed in the process of pressing the steel plate in the press machine, and finally a press-formed product having a predetermined size and shape is manufactured. The meaning of “cutting” in FIG. 2 is the same as the cutting in FIG.
[0059]
The press-molded product manufactured in this way uses the steel sheet according to the present invention, which has excellent surface properties and ductility as the raw material, and has little fluctuation in the material in the coil, so that it has good and uniform quality. The production yield of goods is also high. Such a feature is particularly useful when the press-formed product is a member for an automobile, particularly a suspension member such as a suspension arm.
[0060]
【Example】
(Example 1)
Steels having the chemical components shown in Table 1 were melted and hot-rolled at a heating temperature of 1250 ° C., a finish rolling temperature of about 900 ° C. and a winding temperature of about 610 ° C. to produce a steel plate having a thickness of 2.3 mm. . A sample for tensile test and a sample for hole expansion test were collected from the coil, and then the hot-rolled coil was heat-treated with a continuous annealing facility. At this time, the conditions for heating in the continuous annealing facility were 700 ° C. and 2 minutes. A sample for tensile test and a sample for hole expansion test are collected from the obtained final heat-treated steel sheet, and a thin film is collected. Observation of precipitates with a transmission electron microscope (TEM) and Ti, Mo, W in the precipitates, The composition of Nb and V was analyzed with an energy dispersive X-ray spectrometer (EDX) equipped with TEM. Moreover, the structure | tissue observation of the matrix was performed with the scanning electron microscope (SEM). These results are also shown in Table 1. In Table 1, A value indicates the value of Ti / [48 {(Mo / 96) + (W / 184)}], and B value is (C / 12) / {(Ti / 48) +. (Mo / 96) + (W / 184)} or (C / 12) / {(Ti / 48) + (Mo / 96) + (W / 184) + (Nb / 93) + (V / 51)} Indicates the value of.
[0061]
The tensile test was performed by collecting JIS No. 5 test pieces in the coil longitudinal direction from the center and the end in the width direction. The comparison of the yield stress in the width direction was made with the absolute value of the strength difference. Moreover, the hole expansion test for evaluating the stretch flangeability (λ) of the steel sheet was performed according to the Japan Iron and Steel Federation standard. These characteristics are shown in Table 2.
[0062]
As shown in Table 1, no. In Nos. 1 to 13, the chemical composition is within the range of the present invention, the matrix structure is ferrite, and the A value of the precipitate is 0.1 or more and 3.5 or less. As shown in the figure, good material properties and material uniformity were obtained.
[0063]
On the other hand, No. containing a large amount of C. In No. 14, pearlite is generated, the stretch flangeability is lowered, and the yield strength at the center and end in the width direction after heat treatment is also non-uniform. A pearlite is formed and the A value is less than 0.1. No. 15, the stretch flangeability is particularly low, and the yield strength at the center and end in the width direction after heat treatment is also non-uniform. No. A value is less than 0.1 and B value is less than 0.5. 16 does not eliminate the uneven yield strength at the center and end in the width direction after heat treatment. No. A value is less than 0.1 and B value is more than 1.5. In No. 17, since pearlite is generated, the stretch flangeability is low, the strength decrease in the center portion in the width direction is large after the heat treatment, and the uneven yield strength at the center portion and the end portion in the width direction is not eliminated. No. A value exceeding 3.5. No. 18 does not eliminate the uneven yield strength in the width direction after the heat treatment.
[0064]
[Table 1]
Figure 0003775337
[0065]
[Table 2]
Figure 0003775337
[0066]
(Example 2)
Steel No. shown in Table 1 Using the cast piece No. 6, hot rolling was performed at a heating temperature of 1250 ° C., a finish rolling temperature of about 900 ° C., and a winding temperature of about 600 ° C. to produce a hot rolled coil having a plate thickness of 2.3 mm. From the coil, samples for a tensile test were collected from the center and end in the width direction, and heat-treated under various conditions. FIG. 3 shows the stress difference ΔYS of the yield strength between the central portion and the end portion in the width direction at the heat treatment temperature and heat treatment time at that time. As shown in this figure, when the heat treatment temperature is 550 ° C., ΔYS is not lowered so much as it is hot rolled, but at 600 to 800 ° C., ΔYS is 30 MPa or less. From this result, it is understood that a low ΔYS is obtained when the heat treatment temperature is 575 ° C. or higher. FIG. 4 shows the tensile strength TS at the center in the width direction at the heat treatment temperature and heat treatment time. As shown in this figure, it is understood that when the heat treatment temperature exceeds 750 ° C., TS is greatly reduced, and the strengthening effect due to the carbide disappears.
[0067]
From the heat treatment temperature and time obtained in FIG. 3 and the value of ΔYS, the relationship between (T + 273) {log (t) +16} and ΔYS was determined. The result is shown in FIG. As shown in FIG. 5, it was confirmed that (Y + S) is particularly reduced when (T + 273) {log (t) +16} is 16500 or more. Further, the relationship between (T + 273) {log (t) +16} and the tensile strength TS at the center in the width direction is obtained from the heat treatment temperature and time obtained in FIG. 4 and the value of the tensile strength TS at the center in the width direction. It was. The result is shown in FIG. As shown in FIG. 6, it was confirmed that when (T + 273) {log (t) +16} is 19500 or less, the decrease in TS is particularly small.
[0068]
【The invention's effect】
As described above, according to the present invention, the composition of steel is appropriately controlled, and after casting, it is hot-rolled and wound into a coil, and then undergoes a heat treatment step, thereby substantially forming a ferrite structure. In addition, since a carbide containing Ti having a specific composition and one or more of Mo and W is dispersed and precipitated, the precipitation of coarse Fe carbide whose form changes with the production heat history of cementite and the like is minimized. The carbide that can be suppressed and is stable in a wide temperature range is uniformly and finely precipitated throughout the steel plate, thereby obtaining a steel plate having excellent yield strength uniformity. In addition, since the fine carbide as described above is substantially dispersed and precipitated in the ferrite structure, high formability and high strength are realized.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an example of a work flow of a method for processing a hot-rolled steel sheet according to the present invention.
FIG. 2 is a block diagram showing the relationship between an apparatus that actually performs the work shown in FIG. 1 and the flow of steel plates, members, and press-formed products.
FIG. 3 is a graph showing the stress difference ΔYS of the yield strength between the central portion and the end portion in the width direction at various heat treatment temperatures and heat treatment times.
FIG. 4 is a graph showing the tensile strength TS at the center in the width direction at various heat treatment temperatures and heat treatment times.
5 is a graph showing the relationship between (T + 273) {log (t) +16} and ΔYS, obtained from the heat treatment temperature and time obtained in FIG. 3 and the value of ΔYS.
6 shows (T + 273) {log (t) +16} and the tensile strength TS at the center in the width direction, obtained from the heat treatment temperature and time obtained in FIG. 4 and the value of the tensile strength TS at the center in the width direction. The graph which shows the relationship.

Claims (10)

質量%で、
C≦0.1%、
Si≦0.5%、
Mn≦2%、
P≦0.06%、
S≦0.01%、
Al≦0.1%、
N≦0.006%、
Cr≦0.5%、
Ti:0.02〜0.2%
を含み、さらに
Mo:0.05〜0.6%、
W:0.01〜1.5%
から選ばれる1種以上を含み、残部がFeおよび不可避不純物からなり、
鋳造後、熱間圧延してコイルに巻き取った後に、575〜750℃で熱処理する工程を経ることによって、体積%で98%以上(ただし、98%は除く)のフェライト組織に、以下の(1)式を満たす範囲で、Tiと、MoおよびWのうち1種以上とを含む炭化物が分散析出され、
鋼板幅方向の中央部と端部の降伏応力の差が30MPa以下であることを特徴とする材質均一性に優れた高成形性高張力熱延鋼板。
0.1≦Ti/[48{(Mo/96)+(W/184)}]≦3.5 …(1)
ただし、上記(1)式中、Ti、Mo、Wは各成分の質量%を表す。
% By mass
C ≦ 0.1%,
Si ≦ 0.5%,
Mn ≦ 2%,
P ≦ 0.06%,
S ≦ 0.01%,
Al ≦ 0.1%,
N ≦ 0.006%,
Cr ≦ 0.5%,
Ti: 0.02 to 0.2%
In addition, Mo: 0.05-0.6%,
W: 0.01 to 1.5%
Including at least one selected from the group consisting of Fe and inevitable impurities ,
After casting, after hot rolling and winding in a coil, by passing through a step of heat treatment at 575 to 750 ° C., a ferrite structure having a volume% of 98% or more (however, excluding 98%) has the following ( 1) In a range satisfying the formula, carbide containing Ti and one or more of Mo and W is dispersed and precipitated.
A high formability high tensile hot-rolled steel sheet excellent in material uniformity, characterized in that the difference in yield stress between the center and the end in the width direction of the steel sheet is 30 MPa or less.
0.1 ≦ Ti / [48 {(Mo / 96) + (W / 184)}] ≦ 3.5 (1)
However, in said Formula (1), Ti, Mo, and W represent the mass % of each component.
質量%で、
C≦0.1%、
Si≦0.5%、
Mn≦2%、
P≦0.06%、
S≦0.01%、
Al≦0.1%、
N≦0.006%、
Cr≦0.5%、
Ti:0.02〜0.2%、
を含み、さらに
Mo:0.05〜0.6%、
W:0.01〜1.5%
から選ばれる1種以上を含み、かつ
Nb:0.005〜0.1%、
V:0.01〜0.1%
から選ばれる1種以上を含み、残部がFeおよび不可避不純物からなり、
鋳造後、熱間圧延してコイルに巻き取った後に、575〜750℃で熱処理する工程を経ることによって、体積%で98%以上(ただし、98%は除く)のフェライト組織に、以下の(1)式を満たす範囲でMoおよびWのうち1種以上とTiとを含む炭化物が分散析出され、
鋼板幅方向の中央部と端部の降伏応力の差が30MPa以下であることを特徴とする材質均一性に優れた高成形性高張力熱延鋼板。
0.1≦Ti/[48{(Mo/96)+(W/184)}]≦3.5 …(1)
ただし、上記(1)式中、Ti、Mo、Wは各成分の質量%を表す。
% By mass
C ≦ 0.1%,
Si ≦ 0.5%,
Mn ≦ 2%,
P ≦ 0.06%,
S ≦ 0.01%,
Al ≦ 0.1%,
N ≦ 0.006%,
Cr ≦ 0.5%,
Ti: 0.02 to 0.2%,
In addition, Mo: 0.05-0.6%,
W: 0.01 to 1.5%
Including one or more selected from Nb: 0.005 to 0.1%,
V: 0.01 to 0.1%
Including at least one selected from the group consisting of Fe and inevitable impurities ,
After casting, after hot rolling and winding in a coil, by passing through a step of heat treatment at 575 to 750 ° C., a ferrite structure having a volume% of 98% or more (however, excluding 98%) has the following ( 1) A carbide containing one or more of Mo and W and Ti is dispersed and precipitated within a range satisfying the formula,
A high formability high tensile hot-rolled steel sheet excellent in material uniformity, characterized in that the difference in yield stress between the center and the end in the width direction of the steel sheet is 30 MPa or less.
0.1 ≦ Ti / [48 {(Mo / 96) + (W / 184)}] ≦ 3.5 (1)
However, in said Formula (1), Ti, Mo, and W represent the mass % of each component.
Cと、Tiと、MoおよびWのうち1種以上とを以下の(2)式を満足するように含有することを特徴とする請求項1に記載の材質均一性に優れた高成形性高張力熱延鋼板。
0.5≦(C/12)/{(Ti/48)+(Mo/96)+(W/184)}≦1.5 …(2)
ただし、上記(2)式中、C、Ti、Mo、Wは各成分の質量%を表す。
C, Ti, and one or more of Mo and W are contained so as to satisfy the following formula (2): High formability and excellent material uniformity according to claim 1 Tensile hot-rolled steel sheet.
0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (W / 184)} ≦ 1.5 (2)
However, in said Formula (2), C, Ti, Mo, and W represent the mass % of each component.
Cと、Tiと、MoおよびWのうち1種以上と、NbおよびVのうち1種以上を以下の(3)式を満足するように含有することを特徴とする請求項2に記載の材質均一性に優れた高成形性高張力熱延鋼板。
0.5≦(C/12)/{(Ti/48)+(Mo/96)+(W/184)+(Nb/93)+(V/51)}≦1.5 …(3)
ただし、上記(3)式中、C、Ti、Mo、W、Nb、Vは各成分の質量%を表す。
The material according to claim 2, comprising at least one of C, Ti, Mo and W, and at least one of Nb and V so as to satisfy the following expression (3). High formability, high-tensile hot-rolled steel sheet with excellent uniformity.
0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (W / 184) + (Nb / 93) + (V / 51)} ≦ 1.5 (3)
However, in said Formula (3), C, Ti, Mo, W, Nb, and V represent the mass % of each component.
表面に溶融亜鉛系めっき皮膜を有することを特徴とする請求項1から請求項のいずれか1項に記載の材質均一性に優れた高成形性高張力熱延鋼板。High moldability high-tensile hot-rolled steel sheet excellent in material homogeneity according to any one of claims 1 to 4, characterized in that it comprises a hot-dip galvanized coating on the surface. 請求項1から請求項のいずれかの成分組成を有する鋳片をオーステナイト単相域の温度に加熱後、熱間圧延を行うにあたり、800℃以上で仕上圧延を完了し、675℃以下で巻取った後、575〜750℃で熱処理することを特徴とする材質均一性に優れた高成形性高張力熱延鋼板の製造方法。In carrying out hot rolling after heating the slab having the component composition of any one of claims 1 to 4 to a temperature of an austenite single phase region, finish rolling is completed at 800 ° C or more and winding at 675 ° C or less. The manufacturing method of the high formability high tension hot rolled steel plate excellent in material uniformity characterized by heat-processing at 575-750 degreeC after taking. 巻取後の熱処理を以下の(4)式を満たすように行うことを特徴とする請求項に記載の材質均一性に優れた高成形性高張力熱延鋼板の製造方法。
16500≦(T+273){log(t)+16}≦19500 …(4)
ただし、T:熱処理温度(℃)、t:熱処理時間(秒)
The method for producing a high-formability, high-tensile hot-rolled steel sheet with excellent material uniformity according to claim 6 , wherein the heat treatment after winding is performed so as to satisfy the following expression (4).
16500 ≦ (T + 273) {log (t) +16} ≦ 19500 (4)
T: heat treatment temperature (° C.), t: heat treatment time (seconds)
請求項1から請求項のいずれかに記載の鋼板からなる部材を準備する第1の工程と、前記部材にプレス成形を施して所望の形状のプレス成形品に加工する第2の工程とを有する高成形性高張力熱延鋼板の加工方法。A first step of preparing a member made of the steel sheet according to any one of claims 1 to 5 , and a second step of subjecting the member to press forming and processing into a press-formed product having a desired shape. A method for processing a high formability, high-tensile hot-rolled steel sheet. 前記プレス成形品は、自動車用部品である請求項に記載の高成形性高張力熱延鋼板の加工方法。The method for processing a high-formability, high-tensile hot-rolled steel sheet according to claim 8 , wherein the press-formed product is an automotive part. 請求項1から請求項のいずれかに記載の鋼板により製造された自動車用部品。The automotive part manufactured with the steel plate in any one of Claims 1-5 .
JP2002126687A 2002-04-26 2002-04-26 High formability, high-tensile hot-rolled steel sheet with excellent material uniformity, manufacturing method and processing method thereof Expired - Fee Related JP3775337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002126687A JP3775337B2 (en) 2002-04-26 2002-04-26 High formability, high-tensile hot-rolled steel sheet with excellent material uniformity, manufacturing method and processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002126687A JP3775337B2 (en) 2002-04-26 2002-04-26 High formability, high-tensile hot-rolled steel sheet with excellent material uniformity, manufacturing method and processing method thereof

Publications (2)

Publication Number Publication Date
JP2003321734A JP2003321734A (en) 2003-11-14
JP3775337B2 true JP3775337B2 (en) 2006-05-17

Family

ID=29541027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002126687A Expired - Fee Related JP3775337B2 (en) 2002-04-26 2002-04-26 High formability, high-tensile hot-rolled steel sheet with excellent material uniformity, manufacturing method and processing method thereof

Country Status (1)

Country Link
JP (1) JP3775337B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011126154A1 (en) * 2010-04-09 2011-10-13 Jfeスチール株式会社 High-strength steel sheet having excellent hot rolling workability, and process for production thereof
KR20140026608A (en) * 2011-07-20 2014-03-05 제이에프이 스틸 가부시키가이샤 High-strength steel sheet for warm forming and process for producing same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3889767B2 (en) * 2005-03-31 2007-03-07 株式会社神戸製鋼所 High strength steel plate for hot dip galvanizing
JP5041083B2 (en) * 2010-03-31 2012-10-03 Jfeスチール株式会社 High-tensile hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5838796B2 (en) 2011-12-27 2016-01-06 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
KR101618489B1 (en) * 2012-01-13 2016-05-04 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet and manufacturing method for same
JP6191268B2 (en) * 2013-06-19 2017-09-06 新日鐵住金株式会社 High yield ratio high strength hot-rolled steel sheet with less variation in strength in the coil width direction and excellent toughness, and method for producing the same
US10202667B2 (en) 2013-06-27 2019-02-12 Jfe Steel Corporation High strength hot rolled steel sheet and method for manufacturing the same
KR20220086058A (en) * 2020-12-16 2022-06-23 주식회사 포스코 High strength cold_rolled, plated steel sheet for home applicances having excellent homogeneous material properties, and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011126154A1 (en) * 2010-04-09 2011-10-13 Jfeスチール株式会社 High-strength steel sheet having excellent hot rolling workability, and process for production thereof
TWI485261B (en) * 2010-04-09 2015-05-21 Jfe Steel Corp High strength steel sheet having excellent warm stamp formability and method for manufacturing the same
KR20140026608A (en) * 2011-07-20 2014-03-05 제이에프이 스틸 가부시키가이샤 High-strength steel sheet for warm forming and process for producing same

Also Published As

Publication number Publication date
JP2003321734A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
JP3888128B2 (en) High formability, high-tensile hot-rolled steel sheet with excellent material uniformity, manufacturing method and processing method thereof
EP3647445B1 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
EP1731627B1 (en) High-rigidity high-strength thin steel sheet and method for producing same
JP4673558B2 (en) Hot press molding method and automotive member excellent in productivity
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
EP3647449B1 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
JP3882577B2 (en) High-tensile hot-rolled steel sheet excellent in elongation and stretch flangeability, and manufacturing method and processing method thereof
KR20150127298A (en) High-strength steel sheet having excellent hot rolling workability, and process for production thereof
JP3637885B2 (en) Ultra-high-strength steel sheet excellent in workability, manufacturing method and processing method thereof
WO2016143298A1 (en) High strength steel sheet and manufacturing method therefor
JP2003089848A5 (en)
JP4006974B2 (en) High formability, high-tensile hot-rolled steel sheet with excellent material uniformity, manufacturing method and processing method thereof
KR102280093B1 (en) STEEL SHEET PLATED WITH Al-Fe FOR HOT PRESS FORMING HAVING EXCELLENT CORROSION RESISTANCE AND SPOT WELDABILITY, AND MANUFACTURING METHOD THEREOF
JP3775337B2 (en) High formability, high-tensile hot-rolled steel sheet with excellent material uniformity, manufacturing method and processing method thereof
JP3760888B2 (en) High-tensile cold-rolled steel sheet with excellent workability, manufacturing method and processing method thereof
JP3821043B2 (en) Hot-dip galvanized high-strength hot-rolled steel sheet with excellent weldability, manufacturing method and processing method thereof
JP3591502B2 (en) High-tensile steel sheet excellent in workability, and its manufacturing method and processing method
CN115461482A (en) Steel sheet, component and method for producing same
JP2002322543A5 (en)
JP3775341B2 (en) High-tensile hot-rolled steel sheet with excellent workability, manufacturing method and processing method thereof
JP3775340B2 (en) High-tensile hot-rolled steel sheet with excellent workability and processing method
JP3870868B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in stretch flangeability, strength-ductility balance and strain age hardening characteristics, and method for producing the same
JP3821042B2 (en) High-formability high-tensile steel sheet with excellent strength stability and method for producing and processing the same
JP3775339B2 (en) High-tensile hot-rolled steel sheet with excellent workability, manufacturing method and processing method thereof
JP3168665B2 (en) Hot-rolled high-strength steel sheet with excellent workability and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060213

R150 Certificate of patent or registration of utility model

Ref document number: 3775337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees