JP3821043B2 - Hot-dip galvanized high-strength hot-rolled steel sheet with excellent weldability, manufacturing method and processing method thereof - Google Patents

Hot-dip galvanized high-strength hot-rolled steel sheet with excellent weldability, manufacturing method and processing method thereof Download PDF

Info

Publication number
JP3821043B2
JP3821043B2 JP2002129252A JP2002129252A JP3821043B2 JP 3821043 B2 JP3821043 B2 JP 3821043B2 JP 2002129252 A JP2002129252 A JP 2002129252A JP 2002129252 A JP2002129252 A JP 2002129252A JP 3821043 B2 JP3821043 B2 JP 3821043B2
Authority
JP
Japan
Prior art keywords
hot
steel sheet
rolled steel
tensile
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002129252A
Other languages
Japanese (ja)
Other versions
JP2003321736A (en
Inventor
義正 船川
毅 塩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002129252A priority Critical patent/JP3821043B2/en
Publication of JP2003321736A publication Critical patent/JP2003321736A/en
Application granted granted Critical
Publication of JP3821043B2 publication Critical patent/JP3821043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車などの自走機用部材の素材に適した550MPa以上の引張強度を有する加工性に優れかつ溶接性に優れた溶融亜鉛系めっき高張力熱延鋼板ならびにその製造方法および加工方法に関する。
【0002】
【従来技術】
環境保全につながる燃費向上の観点から、自動車用鋼板の高強度薄肉化が強く求められている。自動車用部材はプレス成形により得られる複雑な形状のものが多く、高強度でありながら加工性の指標である伸びと伸びフランジ性がともに優れた材料が必要である。また、鋼板をより軽量化する観点からさらなる薄肉化が指向されており、腐食しろ低減のため溶融亜鉛系めっき高張力熱延鋼板のニーズも高い。
【0003】
しかしながら、過去、高加工性高張力熱延鋼板は種々提案されているが、溶融亜鉛系めっき材で加工性の優れたものは開発されていないのが現状であり、また溶融亜鉛系めっきが可能でも、薄鋼板で多用されているスポット溶接では溶接時に亜鉛が蒸発し、溶接部に大きなブローホールを形成するため、溶接継ぎ手の強度が低く、実用に耐えるものではない。
【0004】
例えば、特開平6−172924号公報には、転位密度の高いベイニティック・フェライト組織が生成した伸びフランジ性に優れる鋼板が提案されている。しかし、この鋼板は、転位密度の高いベイニティック・フェライト組織を含むため伸びが乏しいという欠点がある。また、ベイニティック・フェライトで強度を維持しているため、溶融亜鉛系めっきを行うと強度低下が著しい。
【0005】
特開平6−200351号公報には、組織の大部分をポリゴナルフェライトとし、TiCを中心として析出強化および固溶強化した伸びフランジ性に優れる鋼板が提案されている。しかし、この鋼板に用いられている一般的によく知られた析出物であるTiC高張力化するには多量のTi添加を必要とし、寸法の大きいTiCが生成しやすく、また、溶融亜鉛系めっきの熱履歴でTiCが容易に粗大化し、溶融亜鉛系めっき材ではやはり強度低下が著しい。また、この鋼は、特性向上のために圧延荷重を増大させるSiを積極的に用いるため、めっき密着性はきわめて劣っている。
【0006】
特開平7−11382号公報には、微細なTiCおよび/またはNbCが析出したアシキュラーフェライト組織を有した伸びフランジ性に優れる鋼板が提案されている。しかし、この鋼板も、先に述べた特開平6−172924号公報に提案された鋼板同様、アシキュラーフェライトという転位密度の高い組織であるため、溶融亜鉛系めっき工程の熱履歴で強度低下が著しいとともに、特開平6−200351号公報に開示された鋼と同様に、Siを多量に添加するためめっきの密着性は極めて悪い。
【0007】
本発明はかかる事情に鑑みてなされたものであって、自動車部品のようにプレス時の断面形状が複雑な用途に適し、かつ、溶接性に優れた溶融亜鉛系めっき高張力熱延鋼板ならびにその製造方法および加工方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意検討を行った結果、以下の知見を得た。
(i)転位密度が低いフェライト単相組織を微細析出物で強化すると、強度−伸びバランスが向上する。
(ii)単相組織を微細析出物で強化すると、強度−伸びフランジ性バランスが向上する。
(iii)Tiと、WおよびMoのうち1種以上とを含む炭化物は微細に析出する。この炭化物中のTi、Mo、Wを原子比で(Mo+W)/(Ti+Mo+W)≧0.2とすることで、この炭化物は加熱に対して粗大化しにくくなる。
(iv)フェライト単相組織を上記微細析出物で強化すると、Siを添加することなく高加工性を得ることができるので、溶融亜鉛系めっきのメッキ密着性が向上する。
(v)鋼の成分を、質量%で、4.8C+4.2Si+0.4Mn+2Ti≦2.5とすることで、オーステナイト域での変形抵抗が減少する。
(vi)以上の熱に強い析出物とオーステナイトの変形抵抗低減とを組み合わせることでスポット溶接時の溶接金属のブローホールが低減する。これは、溶接の昇温時、亜鉛系めっきが溶融する中温域では鋼板強度が維持され、鋼板の変形抵抗が大きいため加圧力がめっきに伝わり、溶融した亜鉛めっきを板−板間から効率的に押し出すとともに、鋼板が溶融して亜鉛系めっきが蒸発したときには、変形抵抗が減じて鋼板が変形し得、亜鉛の蒸気を板−板間より効率的に排出するのを促進することができるためである。
【0009】
本発明はこれらの知見に基づいて完成されたものであり、以下の(1)〜(7)を提供する。
【0010】
(1)質量%で、C:0.01〜0.1%、Si≦0.3%、Mn:0.2〜2.0%、P≦0.04%、S≦0.02%、Al≦0.1%、N≦0.006%、Ti:0.03〜0.2%を含み、かつMo≦0.5%およびW≦1.0%のうち1種以上を含み、残部がFeおよび不可避不純物からなり
質量%で、4.8C+4.2Si+0.4Mn+2Ti≦2.5
を満たし、組織が面積比率で98%以上のフェライト(ただし、98%を除く)であり、
原子比で、(Mo+W)/(Ti+Mo+W)≧0.2
を満たす範囲で、Tiと、MoおよびWのうち1種以上とを含む10nm未満の析出物が分散していることを特徴とする溶接性に優れた溶融亜鉛系めっき高張力熱延鋼板。
【0011】
(2)質量%で、C:0.01〜0.1%、Si≦0.3%、Mn:0.2〜2.0%、P≦0.04%、S≦0.02%、Al≦0.1%、N≦0.006%、Ti:0.03〜0.2%を含み、かつMo≦0.5%およびW≦1.0%のうち1種以上を含み、さらにV≦0.15%、Nb≦0.08%のうち1種以上を含み、残部がFeおよび不可避不純物からなり
質量%で、4.8C+4.2Si+0.4Mn+2Ti+3.5Nb≦2.5
を満たし、組織が面積比率で98%以上のフェライト(ただし、98%を除く)であり、
原子比で、(Mo+W)/(Ti+Mo+W+V+Nb)≧0.2
を満たす範囲で、Tiと、VおよびNbのうち1種以上と、MoおよびWのうち1種以上とを含む10nm未満の析出物が分散していることを特徴とする溶接性に優れた溶融亜鉛系めっき高張力熱延鋼板。
【0012】
(3)上記(1)または(2)において、質量%で、さらに、B≦0.001%、Cr≦0.5%、Cu≦0.5%、Ni≦0.5、Ca≦0.01%、REMの合計≦0.1%を含むことを特徴とする溶接性に優れた溶融亜鉛系めっき高張力熱延鋼板。
【0013】
(4)上記(1)から(3)のいずれかの成分組成を有する鋼を、オーステナイト単相域で熱間圧延し、550℃以上で巻取り、フェライト単相の熱延鋼板を製造後、さらにスケール除去し、または、そのまま溶融亜鉛系めっきを施すことを特徴とする溶接性に優れた溶融亜鉛系めっき高張力熱延鋼板の製造方法。
【0014】
(5)上記(1)から(3)のいずれかの高張力熱延鋼板からなる部材を準備する第1の工程と、前記部材にプレス成形を施して所望の形状のプレス成形品に加工する第2の工程とを有する高張力熱延鋼板の加工方法。
【0015】
(6)上記(5)において、プレス成形品は、自動車用部品である高張力熱延鋼板の加工方法。
【0016】
(7)上記(1)から(3)のいずれかに記載の高張力熱延鋼板により製造された自動車用部品。
【0017】
【発明の実施の形態】
以下、本発明について、金属組織、化学成分組成、製造方法に分けて具体的に説明する。
【0018】
[金属組織]
本発明に係る溶融亜鉛系めっき高張力熱延鋼板は、組織が面積比率で98%以上のフェライトであり、その中に原子比で(Mo+W)/(Ti+Mo+W)≧0.2を満たす範囲で、Tiと、MoおよびWのうち1種以上とを含む炭化物が分散している。この炭化物の大きさは10nm未満である。この炭化物はこれらに加え、NbおよびVの1種以上を含んでいてもよい。以下、これらについて説明する。
【0019】
組織が面積比率で98%以上のフェライト
マトリックスを面積比率で98%以上のフェライトと、実質的にフェライト単相組織としたのは、伸びの向上には転位密度の低いフェライトが有効であり、また、伸びフランジ性の向上には単相組織とすることが有効であり、特に延性に富むフェライト単相組織でその効果が顕著であるためである。
【0020】
・原子比で(Mo+W)/(Ti+Mo+W)≧0.2を満たすTiと、MoおよびWのうちの1種以上とを含む析出物:
析出物としての炭化物にTiと、MoおよびWのうちの1種以上とを含ませることは、本発明の重要な要件である。熱延板組織をフェライト単相にし、粒内に微細析出物を分散させ、粒界の1μmを超える粗大な炭化物形成を抑制するには、WまたはMoが必要であり、これらを含む炭化物を形成させなければならない。従来の技術におけるTiCやNbCの析出をともなう鋼では、マトリックスをフェライト単相にすると不可避的に粗大な炭化物が生成する。また、TiCやNbCは粗大化しやすく、高強度を得るのが困難である。そのため、これらは高強度化には不向きであり、必要な強度を得るには加工性の劣化をともなうまでの添加が必要である。これに対し、Tiと、MoおよびWのうち1種以上とを含有し、原子比で(Mo+W)/(Ti+Mo+W)≧0.2を満たす炭化物は微細に析出し、安定であるため、強度への寄与も大きく、加工性を良好に維持することができる析出物量で十分な強度を得ることができる。さらに、その大きさを10nm未満とすることで良好な強度を得ることができる。析出物の大きさは好ましくは5nm以下である。これらの微細な析出物は、スポット溶接初期の中温域で鋼の強度を高く維持し、亜鉛めっきの板−板間からの排出を促進する。
【0021】
・Tiと、MoおよびWのうち1種以上とに加え、VおよびNbのうち1種以上を含む析出物:
析出物としての炭化物がTiと、MoおよびWのうち1種以上とに加え、VおよびNbのうち1種以上を含んでいても、原子比で(Mo+W)/(Ti+Mo+W+V+Nb)≧0.2を満たしていれば、その炭化物はTiと、MoおよびWのうち1種以上とを含む炭化物と同様に、安定的に微細に存在することができる。このため、炭化物としては、Tiと、MoおよびWのうち1種以上との他、NbおよびVの1種以上が含まれても構わない。ただし、Nb、V量はTi量の半分以下が好ましい。
【0022】
[化学成分組成]
本発明では、上記金属組織を実現するために、その成分組成を、質量%で、C:0.01〜0.1%、Si≦0.3%、Mn:0.2〜2.0%、P≦0.04%、S≦0.02%、Al≦0.1%、N≦0.006%、Ti:0.03〜0.2%を含み、かつMo≦0.5%およびW≦1.0%のうち1種以上を含み、残部がFeおよび不可避不純物からなり、質量%で、4.8C+4.2Si+0.4Mn+2Ti≦2.5を満たし、残部が実質的にFeからなるものとする。さらに、上述のように複合析出物にNbおよびVの1種以上を含有させる場合には、上記成分に加えNb≦0.08%、V≦0.15%のうち1種以上を含有し、4.8C+4.2Si+0.4Mn+2Ti+3.5Nb≦2.5を満たし、残部がFeおよび不可避不純物からなるものとする。以下、これら各成分について説明する。
【0023】
C:0.01〜0.1%
Cは炭化物を形成し、鋼を強化するのに有効である。しかし、0.01%未満では、鋼の強化が不十分であり、0.1%を超えて添加するとパーライトが形成されやすくなることから伸びフランジ性が劣化する。このため、C含有量を0.01〜0.1%とした。
【0024】
Si:0.3%以下
Siは固溶強化には有効な元素であるが、0.3%を超えて添加すると、亜鉛めっきのめっき密着性が劣化する。また、γ→α変態時にCをαからγへ排出することから、添加量が多いと組織がフェライト単相になりにくくなるとともに、本発明に重要な役割を果たす析出物の粗大化を招き、強度低下の原因となる。これらの理由により、Si含有量を0.3%以下とした。
【0025】
Mn:0.2〜2.0%
Mnは固溶強化により鋼を強化する観点からは0.2%以上必要であるが、2.0%を超えて添加すると偏析し、パーライトが生成しやすくなる。このため、Mnの含有量を0.2〜2.0%とした。鋼を強化する観点から0.5%以上が好ましく、強度の安定性を重視する場合には1.5%未満が好ましい。
【0026】
P:0.04%以下
Pは固溶強化に有効であるが、0.04%を超えて添加すると粒界に偏析して伸びが劣化するため、0.04%以下とした。
【0027】
S:0.02%以下
Sは少ないほど好ましく、フェライト単相組織では0.02%を超えると伸びフランジ性を低下させるため、0.02%以下とした。好ましくは0.01%以下であり、さらに好ましくは0.005%以下であり、望ましくは0.003%以下である。
【0028】
Al:0.1%以下
Alは脱酸剤として添加される。しかし、0.1%を超えると伸びフランジ性と伸びがともに低下する傾向にあることから、0.1%以下とした。
【0029】
N:0.006%以下
Nは少ないほど好ましく、0.006%を超えると粗大な窒化物が増え、伸びフランジ性を低下させるため、0.006%以下とした。
【0030】
Mo:0.5%以下
Moは本発明において重要な元素であり、パーライト変態を抑制しつつTiとの微細な炭化物、または、NbおよびVの1種以上を含む場合にはTiに加えNbおよびVの1種以上を含む微細な炭化物を形成し、熱延板をフェライト単相化することで優れた伸びおよび伸びフランジ性を確保し、かつ鋼を強化することができる。しかし、0.5%を超えると硬質相が形成され伸びフランジ性が低下する傾向にある。このため、Mo含有量を0.5%以下とした。Wを添加しない場合には、このような効果を得るためにはMoが0.05%以上必要であることから、Mo含有量を0.05%以上とする。
【0031】
W:1.0%以下
WもMoと同様、本発明において重要な元素であり、パーライト変態を抑制しつつTiとの微細な複合析出物、または、NbおよびVの1種以上を含む場合にはTiに加えNbおよびVの1種以上を含む微細な炭化物を形成し、優れた伸びおよび伸びフランジ性を確保し、かつ鋼を強化することができる。しかし、1.0%を超えて添加すると硬質相が形成され伸びフランジ性が低下する傾向にある。このため、Wの含有量を1.0%以下とした。Moを添加しない場合には、このような効果を得るためにはWが0.1%以上必要であることから、W含有量を0.1%以上とする。
【0032】
Ti:0.03〜0.2%
Tiは本発明において重要な元素である。MoやWと微細炭化物を形成することで、組織をフェライト単相化し、さらに高強度化する。しかし、0.03%未満では、鋼を強化する効果が不十分であり、0.2%を超えると熱延板中にベイナイトやベイニティックフェライトが生成する傾向がある。したがって、Tiの含有量を0.03〜0.2%とした。
【0033】
Nb:0.08%以下
Nbは組織の細粒化に有効であり、かつTiとMoおよび/またはWとともに微細炭化物を形成することから、必要に応じて添加する。しかし、Nb量が0.08%を超えると結晶粒が一方向に伸び、伸びフランジ性に好ましくない組織が発達するため、Nbを含有させる場合には0.08%以下とする。Nbの組織微細化効果を得る観点からは0.005%以上が好ましい。
【0034】
V:0.15%以下
Vの析出は遅いため、析出物である炭化物の析出タイミングを調整するために必要に応じて添加する。しかし、V含有量が0.15%を超えると、熱延板中に硬質相が形成され、延びフランジ性が劣化するため、Vを含有させる場合には0.15%以下とする。
【0035】
以上の規定の他、質量%で、4.8C+4.2Si+0.4Mn+2Ti≦2.5を満たす必要がある。Nbを含有させる場合には、4.8C+4.2Si+0.4Mn+2Ti+3.5Nb≦2.5を満たす必要がある。本発明では、高強度でありながら、スポット溶接時、フェライト域温度で変形抵抗が高く、オーステナイト域では変形抵抗が低くなければならない。このフェライトで硬くオーステナイトで柔らかい特性で溶接時の亜鉛めっきの排除や亜鉛蒸気の排除を促進する。オーステナイトの強度は鋼の組成に影響されるため、変形抵抗に影響する成分によって上記式のように規定してオーステナイトの変形抵抗を低くなるようにする。上記4.8C+4.2Si+0.4Mn+2Tiの値が2.5を超えるとオーステナイトの変形抵抗が高くなり、スムーズに亜鉛蒸気が排出されず、結果として溶接部にブローホールが発生する。従来の鋼板は、この4.8C+4.2Si+0.4Mn+2Tiの値が高いため、ブローホールの発生を十分に防止することができなかった。このように、4.8C+4.2Si+0.4Mn+2Tiの値が2.5以下で亜鉛蒸気を排出する効果が得られるが、好ましくは2.0以下であり、さらに好ましくは1.5以下である。同様に、Nbを含有する場合には、4.8C+4.2Si+0.4Mn+2Ti+3.5Nbの値は2.5以下であるが、好ましくは2.0以下であり、さらに好ましくは1.5以下である。
【0036】
ここで、問題となるブローホールは、継ぎ手強度を著しく低下させるものであって、強度に大きな影響を及ぼさない微小なブローホールは存在しても問題はない。
【0037】
このような亜鉛蒸気の排出は板厚が小さいほうがスムーズに進行するから、このような観点から、鋼板の板厚は3mm以下が好ましい。板厚が2mm以下でこのような効果が顕著になることから、望ましくは2mm以下である。
【0038】
なお、本発明においては、耐二次加工脆性、耐食性向上などの目的に応じて、B≦0.001%、Cr≦0.5、Cu≦0.5%、Ni≦0.5%、Ca≦0.01%、REM(合計)≦0.1%の1種類以上を含んでいても特性上問題はない。
【0039】
[製造方法]
本発明では、上記溶融亜鉛系めっき高張力熱延鋼板を製造するに際し、オーステナイト単相域で熱間圧延し、550℃以上で巻取り、フェライト単相の熱延鋼板を製造後、さらにスケール除去し、または、そのまま溶融亜鉛系めっきを施す。
以下、これら条件について説明する。
【0040】
・仕上圧延終了温度
仕上圧延終了温度は伸びおよび伸びフランジ性に重要である。オーステナイト単相域を維持することができない温度で圧延を行うと粗大粒が発生して伸びフランジ性が損なわれるので、仕上げ圧延終了までオーステナイト単相域を維持する。
【0041】
・巻取温度550℃以上
組織をフェライトとし、Tiと、MoおよびWのうち1種以上とを含む微細な炭化物をフェライト中に析出させるために、巻取温度を550℃以上とする。望ましくは600℃以上である。また、675℃を超えるとパーライトが生成しやすくなることから、675℃以下が望ましい。さらに好ましくは650℃以下である。
【0042】
・溶融亜鉛系めっき
本発明では高張力熱延鋼板の表面に溶融亜鉛系めっき皮膜を形成し、溶融亜鉛系めっき鋼板とする。溶融亜鉛系めっきを行った後に、合金化反応を続けて行った合金化溶融亜鉛系めっき鋼板も含む。本発明における溶融亜鉛系めっきとは、めっき皮膜が実質的にZnからなる溶融めっき、またはZnを主体する溶融めっきであり、亜鉛の他にCr、Mn等の合金元素が含まれていてもよい。
【0043】
本発明の溶融亜鉛系めっき高張力熱延鋼板は、加工性に優れ、特に伸びフランジ性に優れているのでこれをプレス成形した場合、その特質が活かされ、自動車用部材、特にサスペンションアーム等の足廻り部材やリーンフォースメントのようなプレス時の断面形状が複雑な部材を良好な品質で製造することができ、特に、プレス成形品の軽量化に資することができる。以下に具体的に、本発明に係る高張力鋼板の加工方法、換言すればプレス成形品の製造方法について説明する。
【0044】
図1は、本発明に係る高張力鋼板の加工方法の作業フローの一例を示すフローチャートである。この作業フローは、通常、本発明に係る鋼板を製造することまたはその製造された鋼板を例えばコイルにして目的場所に搬送することを前工程としており、まず、本発明に係る高張力鋼板を準備することから始まる(S0、S1)。この鋼板に対してプレス加工を施す前に、鋼板に対して前処理的な加工を施すこともあれば(S2)、裁断機により所定の寸法や形状に加工することもある(S3)。前者のS2の工程では、例えば鋼板の幅方向の所定箇所に切り込みや穿孔を行い、引き続くプレス加工を終えた段階またはそのプレス加工の過程で、所定の寸法および形状のプレス成形品または被プレス加工部材として切り離すことができるようにしておく。後者のS3の工程では、最終的なプレス成形品の寸法、形状等を予め考慮して、所定の寸法および形状の鋼板部材に加工(したがって裁断)するようにしておく。その後、S2およびS3の工程を経由した部材には、プレス加工が施され、最終的に目的とする寸法・形状の所望のプレス成形品が製造される(S4)。このプレス加工は、通常は多段階で行われ、3段階以上7段階以下であることが多い。
【0045】
S4の工程は、S2およびS3の工程を経由した部材に対してさらに所定の寸法や形状に裁断する工程を含む場合もある。この場合の「裁断」という作業は、例えば、少なくともプレス加工の過程で、S2およびS3の工程を経由した部材の端部のような最終的なプレス成形品には不要部分を切り離す作業であっても構わないし、また、S2の工程で設けられた鋼板の幅方向の切り込みや穿孔に沿って被プレス加工部材を切り離す作業であっても構わない。
【0046】
なお、図1中、N1ないしN3は、鋼板、部材、プレス成形品を、機械的にあるいは作業員による搬送作業である場合がある。
【0047】
こうして製造されるプレス成形品は、必要に応じて次工程に送られる。次工程としては、例えば、プレス成形品にさらに機械加工を施し、寸法や形状を調整する工程、プレス成形品を所定場所に搬送し、格納する工程、プレス成形品に表面処理を施す工程、プレス成形品を用いて自動車のような目的物を組み立てる組立工程がある。
【0048】
図2は、図1に示した作業を実際に行う装置と鋼板、部材、プレス成形品の流れとの関係を示すブロック図である。この図においては、本発明に係る高張力鋼板はコイル状で準備されており、プレス加工機によりプレス成形品が製造される。プレス加工機は多段プレスを行う機種のものであるが、本件発明はこれに限定されない。
【0049】
プレス加工機の前段に、裁断機その他の前処理機械を設置する場合(図2の(a))もあれば、設置しない場合(図2の(b))もある。裁断機が設置される場合には、コイルから供給される長尺の本発明に係る鋼板から、必要な寸法または形状の部材を裁断し、この部材がプレス加工機においてプレス加工され、所定のプレス成形品となる。鋼板の幅方向に切り欠きや穿孔を施す前処理機械が設置される場合には、プレス加工機においてその切り欠きや穿孔に沿って裁断が行われても構わない。前処理機械を設置しない場合には、プレス加工機において鋼板がプレス加工される過程で、裁断が行われ、最終的に所定の寸法、形状を有するプレス成形品が製造される。なお、図2における「裁断」の意味は、図1における裁断と同じである。
【0050】
こうして製造されるプレス成形品は、その原材料として加工性に優れ、特に伸びフランジ性に優れている本発明に係る高張力鋼板を使用しているので、プレス時の断面形状が複雑であっても、良好な品質で製造することができ、軽量なものとなる。このような特長は、プレス成形品が自動車用部材、特にサスペンションアーム等の足廻り部材やリーンフォースメント・メンバーのような補強部品である場合に特に有用である。
【0051】
【実施例】
表1に示す化学成分を有する鋼を1250℃に加熱し、仕上げ温度920℃、巻取温度600〜650℃(表1参照)で熱間圧延を行った。得られた鋼板を酸洗後、溶融亜鉛めっきを行った。めっき後は合金化処理を行った。得られた鋼板から作製した薄膜を透過型電子顕微鏡(TEM)によって観察し、析出した炭化物寸法を測定した。また、エネルギー分散型X線分光装置(EDX)を用いて炭化物を構成する元素分析を行った。さらに、ピーク値より各元素の濃度を算出した。
【0052】
また、めっき板からJIS5号引張試験片および穴広げ試験片を採取した。引張試験片は圧延垂直方向から採取し、引張試験を行った。穴広げ試験は、日本鉄鋼連盟規格に沿って行った。次いで、WES規格に準じて抵抗スポット溶接を行い、溶接継手の引張せん断強さを測定した。また、溶接部断面の組織観察を行い、ブローホールの発生状況を把握した。
【0053】
表1に、巻取温度、組織、析出物の大きさ、機械的性質、継手強さを併せて示す。
表1中、No.1〜7が本発明例であり、No.8〜10が比較例である。本発明例のうちNo.1,3,5,6,7は780MPa級熱延鋼板の例である。これらはいずれもフェライト単相組織を有しており、その中に、No.1はTi、Moを含む炭化物、No.3はTi、Mo、Wを含む炭化物、No.5はTi、Mo、W、Nbを含む炭化物、No.6はTi、Mo、W、Vを含む炭化物、No.7はTi、Moを含む炭化物が析出しており、いずれの炭化物も粒径が10nm未満であり、(Mo+W)/(Ti+Mo+W)≧0.2または(Mo+W)/(Ti+Mo+W+V+Nb)≧0.2を満たしており、いずれも優れた伸びおよび伸びフランジ性を有していた。No.7は耐二次加工脆性のためにB、伸びフランジ性向上のためにCaを添加した例であるが、本発明の効果が得られている。No.2,4は980MPa級熱延鋼板の例であり、いずれもフェライト単相組織であり、その中にNo.2はTi、Moを含む炭化物、No.4はTi、Mo、Wを含む炭化物がフェライト中に析出しており、いずれの炭化物も粒径が10nm未満であり、(Mo+W)/(Ti+Mo+W)≧0.2を満たしており、いずれも優れた伸びおよび伸びフランジ性を有していた。No.1〜7の溶接継手強度はいずれも20kNを超えており、良好な継手強度を示した。また、溶接部には継ぎ手強度に影響を及ぼすようなブローホールは認められなかった。
【0054】
これに対して、比較例であるNo.8は、Si量が多くめっき密着性が悪いとともにオーステナイトの変形抵抗を決める4.8C+4.2Si+0.4Mn+2Ti+3.5Nbの値が3.68と高く、析出物も粗大であり、溶接強度が20kNを下回る低い値となった。溶接部に粗大なブローホールが発生しており、これが継手強度を低下させていた。強度も同等のC量のNo.5と比べて極めて低いものとなった。No.9はSiを添加し、組織をアシキュラーフェライトとしたものであるが、析出物の大きさは粗大であり、強度も低い値であった。めっき密着性も悪く、溶接継手強度も低かった。No.10もSiが多いため、めっき鋼板の組織がフェライト+パーライトとなるとともに析出物が粗大化した。めっき密着性も悪く、溶接部には顕著なブローホールが発生しており、継手強度も低下していた。このように、本発明を採用することにより良好な溶接継ぎ手を得ることができることが確認された。
【0055】
【表1】

Figure 0003821043
【0056】
【発明の効果】
以上説明したように、本発明によれば、溶接性に優れた溶融亜鉛系めっき高張力熱延鋼板を提供することができ、自動車部材の軽量化に寄与する効果が顕著である。
【図面の簡単な説明】
【図1】本発明に係る高張力鋼板の加工方法の作業フローの一例を示すフローチャート。
【図2】図1に示した作業を実際に行う装置と鋼板、部材、プレス成形品の流れとの関係を示すブロック図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot-dip galvanized high-tensile-strength hot-rolled steel sheet having excellent workability and excellent weldability having a tensile strength of 550 MPa or more suitable for a material for a self-propelled machine such as an automobile, and a manufacturing method and a processing method thereof. About.
[0002]
[Prior art]
From the viewpoint of improving fuel efficiency leading to environmental conservation, there is a strong demand for reducing the strength and thickness of automotive steel sheets. Many automotive members have complicated shapes obtained by press molding, and materials that have both high strength and excellent elongation and stretch flangeability, which are indexes of workability, are required. Further, from the viewpoint of further reducing the weight of the steel sheet, further thinning is directed, and there is a high need for a hot dip galvanized high-tensile hot-rolled steel sheet to reduce the corrosion margin.
[0003]
However, in the past, various high-workability, high-tensile hot-rolled steel sheets have been proposed, but no hot-dip galvanized material with excellent workability has been developed, and hot-dip galvanized plating is possible. However, spot welding, which is frequently used for thin steel plates, evaporates zinc during welding and forms a large blow hole in the welded portion, so that the strength of the welded joint is low and is not practical.
[0004]
For example, Japanese Patent Laid-Open No. 6-172924 proposes a steel plate having excellent stretch flangeability formed by a bainitic ferrite structure having a high dislocation density. However, this steel sheet has a drawback that it has poor elongation because it contains a bainitic ferrite structure with a high dislocation density. Further, since the strength is maintained by bainitic ferrite, the strength is significantly reduced when hot dip galvanizing is performed.
[0005]
Japanese Patent Laid-Open No. 6-200351 proposes a steel plate having excellent stretch flangeability, in which most of the structure is polygonal ferrite and precipitation strengthening and solid solution strengthening are performed centering on TiC. However, to increase the tensile strength of TiC, which is a well-known precipitate used in this steel sheet, a large amount of Ti is required, TiC having a large size is easily generated, and hot dip galvanizing With this heat history, TiC is easily coarsened, and the strength reduction is remarkable in the hot dip galvanized material. Moreover, since this steel positively uses Si that increases the rolling load for improving the properties, the plating adhesion is extremely poor.
[0006]
Japanese Patent Application Laid-Open No. 7-11382 proposes a steel plate having an acicular ferrite structure in which fine TiC and / or NbC is precipitated and having excellent stretch flangeability. However, since this steel sheet is also a structure having a high dislocation density called acicular ferrite, like the steel sheet proposed in Japanese Patent Laid-Open No. 6-172924 described above, the strength reduction is remarkable due to the thermal history of the hot dip galvanizing process. At the same time, like the steel disclosed in Japanese Patent Laid-Open No. 6-200351, the adhesion of the plating is extremely poor because a large amount of Si is added.
[0007]
The present invention has been made in view of such circumstances, and is suitable for an application having a complicated cross-sectional shape at the time of pressing, such as an automobile part, and a hot-dip galvanized high-tensile hot-rolled steel sheet excellent in weldability and its It aims at providing a manufacturing method and a processing method.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have obtained the following knowledge.
(I) When a ferrite single phase structure having a low dislocation density is reinforced with fine precipitates, the strength-elongation balance is improved.
(Ii) Strengthening the single-phase structure with fine precipitates improves the strength-stretch flangeability balance.
(Iii) A carbide containing Ti and one or more of W and Mo precipitates finely. By making Ti, Mo, and W in this carbide into an atomic ratio of (Mo + W) / (Ti + Mo + W) ≧ 0.2, this carbide is less likely to be coarsened by heating.
(Iv) When the ferrite single-phase structure is strengthened with the fine precipitates, high workability can be obtained without adding Si, thereby improving the plating adhesion of hot dip galvanizing.
(V) Deformation resistance in the austenite region is reduced by setting the component of the steel to 4.8C + 4.2Si + 0.4Mn + 2Ti ≦ 2.5 in mass %.
(Vi) The blowhole of the weld metal at the time of spot welding is reduced by combining the above heat-resistant precipitate and the deformation resistance reduction of austenite. This is because the steel plate strength is maintained in the intermediate temperature range where the zinc-based plating melts when the temperature of the welding is increased, and because the deformation resistance of the steel plate is large, the applied pressure is transferred to the plating, and the molten galvanizing is efficiently performed between the plates. When the steel sheet is melted and the zinc-based plating is evaporated, the deformation resistance is reduced and the steel sheet can be deformed, and it is possible to promote efficient discharge of zinc vapor between the plates. It is.
[0009]
The present invention has been completed based on these findings and provides the following (1) to (7).
[0010]
(1) In mass %, C: 0.01 to 0.1%, Si ≦ 0.3%, Mn: 0.2 to 2.0%, P ≦ 0.04%, S ≦ 0.02%, Al ≦ 0.1%, N ≦ 0.006%, Ti: 0.03 to 0.2%, and one or more of Mo ≦ 0.5% and W ≦ 1.0%, the balance Consists of Fe and inevitable impurities ,
4.8C + 4.2Si + 0.4Mn + 2Ti ≦ 2.5% by mass
And the structure is ferrite with an area ratio of 98% or more (excluding 98%) ,
Atomic ratio, (Mo + W) / (Ti + Mo + W) ≧ 0.2
A hot dip galvanized high-tensile hot-rolled steel sheet excellent in weldability, characterized in that precipitates of less than 10 nm containing Ti and one or more of Mo and W are dispersed within a range satisfying the above.
[0011]
(2) By mass %, C: 0.01 to 0.1%, Si ≦ 0.3%, Mn: 0.2 to 2.0%, P ≦ 0.04%, S ≦ 0.02%, Al ≦ 0.1%, N ≦ 0.006%, Ti: 0.03 to 0.2%, and one or more of Mo ≦ 0.5% and W ≦ 1.0%, One or more of V ≦ 0.15% and Nb ≦ 0.08%, with the balance being Fe and inevitable impurities ,
4.8C + 4.2Si + 0.4Mn + 2Ti + 3.5Nb ≦ 2.5 by mass %
And the structure is ferrite with an area ratio of 98% or more (excluding 98%) ,
At atomic ratio, (Mo + W) / (Ti + Mo + W + V + Nb) ≧ 0.2
In the range satisfying the above, melting with excellent weldability, characterized in that precipitates of less than 10 nm including Ti, one or more of V and Nb, and one or more of Mo and W are dispersed. Zinc-based high-strength hot-rolled steel sheet.
[0012]
(3) In the above (1) or (2), in mass %, B ≦ 0.001%, Cr ≦ 0.5%, Cu ≦ 0.5%, Ni ≦ 0.5 % , Ca ≦ 0 Hot-dip galvanized high-tensile hot-rolled steel sheet excellent in weldability, characterized by containing 0.01% and a total of REM ≦ 0.1%.
[0013]
(4) Hot-rolling the steel having the composition of any one of (1) to (3) above in an austenite single-phase region, winding it at 550 ° C. or more, and producing a ferrite single-phase hot-rolled steel sheet, Further, a method for producing a hot-dip galvanized high-tensile hot-rolled steel sheet excellent in weldability, characterized in that scale removal or hot-dip galvanizing is performed as it is.
[0014]
(5) A first step of preparing a member made of the high-tensile hot-rolled steel sheet according to any one of (1) to (3) above, and press-molding the member to process a press-formed product having a desired shape. A processing method of a high-tensile hot-rolled steel sheet having the second step.
[0015]
(6) In the above (5), the press-formed product is a processing method for a high-tensile hot-rolled steel sheet which is an automotive part.
[0016]
(7) An automotive part manufactured from the high-tensile hot-rolled steel sheet according to any one of (1) to (3).
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described by dividing it into a metal structure, a chemical component composition, and a production method.
[0018]
[Metal structure]
The hot-dip galvanized high-strength hot-rolled steel sheet according to the present invention is a ferrite whose structure has an area ratio of 98% or more , and in the range that satisfies (Mo + W) / (Ti + Mo + W) ≧ 0.2 by atomic ratio therein, A carbide containing Ti and one or more of Mo and W is dispersed. The size of this carbide is less than 10 nm. In addition to these, the carbide may contain one or more of Nb and V. Hereinafter, these will be described.
[0019]
Ferrite with an area ratio of 98% or more :
The reason why the matrix is made of ferrite with an area ratio of 98% or more and a ferrite single phase structure is that ferrite with a low dislocation density is effective for improving elongation, and single phase for improving stretch flangeability. This is because it is effective to form a structure, and the effect is particularly remarkable in a ferrite single-phase structure rich in ductility.
[0020]
A precipitate containing Ti satisfying (Mo + W) / (Ti + Mo + W) ≧ 0.2 in atomic ratio and one or more of Mo and W:
Inclusion of Ti and one or more of Mo and W in the carbide as a precipitate is an important requirement of the present invention. To make the hot-rolled sheet structure a single phase of ferrite, disperse fine precipitates in the grains, and suppress the formation of coarse carbides exceeding 1 μm at the grain boundaries, W or Mo is required, and carbides containing these are formed. I have to let it. In steels with precipitation of TiC and NbC in the prior art, coarse carbides are inevitably produced when the matrix is a ferrite single phase. Moreover, TiC and NbC are easily coarsened and it is difficult to obtain high strength. For this reason, they are unsuitable for increasing the strength, and in order to obtain the required strength, it is necessary to add them up to the deterioration of workability. On the other hand, carbides containing Ti and one or more of Mo and W and satisfying (Mo + W) / (Ti + Mo + W) ≧ 0.2 in atomic ratio are finely precipitated and stable, so that the strength is improved. Therefore, sufficient strength can be obtained with the amount of precipitates that can maintain good workability. Furthermore, favorable intensity | strength can be obtained by the magnitude | size being less than 10 nm. The size of the precipitate is preferably 5 nm or less. These fine precipitates maintain high strength of the steel in the middle temperature range at the initial stage of spot welding and promote discharge from the galvanized plate to plate.
[0021]
-A precipitate containing one or more of V and Nb in addition to Ti and one or more of Mo and W:
Even if the carbide as a precipitate contains at least one of Ti and Mo and W, and at least one of V and Nb, the atomic ratio of (Mo + W) / (Ti + Mo + W + V + Nb) ≧ 0.2 is satisfied. If it is satisfied, the carbide can exist stably and finely like the carbide containing Ti and one or more of Mo and W. For this reason, as a carbide | carbonized_material, in addition to Ti and 1 or more types of Mo and W, 1 or more types of Nb and V may be contained. However, the Nb and V amounts are preferably less than half of the Ti amount.
[0022]
[Chemical composition]
In this invention, in order to implement | achieve the said metal structure, the component composition is the mass %, C: 0.01-0.1%, Si <= 0.3%, Mn: 0.2-2.0% P ≦ 0.04%, S ≦ 0.02%, Al ≦ 0.1%, N ≦ 0.006%, Ti: 0.03 to 0.2%, and Mo ≦ 0.5% One or more of W ≦ 1.0%, the balance being made of Fe and inevitable impurities , satisfying 4.8C + 4.2Si + 0.4Mn + 2Ti ≦ 2.5 by mass %, and the balance being substantially made of Fe And Furthermore, in the case where one or more of Nb and V are contained in the composite precipitate as described above, in addition to the above components, one or more of Nb ≦ 0.08% and V ≦ 0.15% are contained, 4.8C + 4.2Si + 0.4Mn + 2Ti + 3.5Nb ≦ 2.5 is satisfied, and the balance is made of Fe and inevitable impurities . Hereinafter, each of these components will be described.
[0023]
C: 0.01 to 0.1%
C forms carbides and is effective for strengthening steel. However, if the content is less than 0.01%, the steel is not sufficiently strengthened. If the content exceeds 0.1%, pearlite tends to be formed, and the stretch flangeability deteriorates. For this reason, C content was made into 0.01 to 0.1%.
[0024]
Si: 0.3% or less Si is an effective element for solid solution strengthening, but if added over 0.3%, the plating adhesion of galvanizing deteriorates. Further, since C is discharged from α to γ during the γ → α transformation, the structure becomes difficult to become a ferrite single phase when the addition amount is large, and the coarsening of precipitates that play an important role in the present invention is caused. It causes a decrease in strength. For these reasons, the Si content is set to 0.3% or less.
[0025]
Mn: 0.2 to 2.0%
Mn is required to be 0.2% or more from the viewpoint of strengthening the steel by solid solution strengthening, but if added over 2.0%, segregation occurs and pearlite is easily generated. For this reason, the Mn content is set to 0.2 to 2.0%. From the viewpoint of strengthening steel, 0.5% or more is preferable, and when importance is placed on stability of strength, less than 1.5% is preferable.
[0026]
P: 0.04% or less P is effective for solid solution strengthening, but if added over 0.04%, it segregates at the grain boundaries and deteriorates the elongation, so 0.04% or less.
[0027]
S: 0.02% or less S is preferably as small as possible. In a ferrite single phase structure, if it exceeds 0.02%, the stretch flangeability is deteriorated. Preferably it is 0.01% or less, More preferably, it is 0.005% or less, Desirably 0.003% or less.
[0028]
Al: 0.1% or less Al is added as a deoxidizer. However, if it exceeds 0.1%, both stretch flangeability and elongation tend to decrease.
[0029]
N: 0.006% or less N is preferably as small as possible. If it exceeds 0.006%, coarse nitrides increase and stretch flangeability is deteriorated, so the content is made 0.006% or less.
[0030]
Mo: 0.5% or less Mo is an important element in the present invention, and suppresses pearlite transformation while containing fine carbides with Ti or one or more of Nb and V, in addition to Ti, Nb and By forming a fine carbide containing one or more of V and making the hot-rolled sheet into a ferrite single phase, excellent elongation and stretch flangeability can be secured, and the steel can be strengthened. However, if it exceeds 0.5%, a hard phase is formed and the stretch flangeability tends to be lowered. For this reason, Mo content was 0.5% or less. When W is not added, Mo is required to be 0.05% or more in order to obtain such an effect, so the Mo content is set to 0.05% or more.
[0031]
W: 1.0% or less W, like Mo, is an important element in the present invention, and contains fine composite precipitates with Ti or one or more of Nb and V while suppressing pearlite transformation. Can form fine carbides containing at least one of Nb and V in addition to Ti, ensuring excellent elongation and stretch flangeability, and strengthening the steel. However, if added over 1.0%, a hard phase is formed and the stretch flangeability tends to be lowered. For this reason, the W content is set to 1.0% or less. When Mo is not added, in order to obtain such an effect, W is required to be 0.1% or more, so the W content is set to 0.1% or more.
[0032]
Ti: 0.03-0.2%
Ti is an important element in the present invention. By forming fine carbides with Mo and W, the structure becomes a ferrite single phase and further strengthened. However, if it is less than 0.03%, the effect of strengthening steel is insufficient, and if it exceeds 0.2%, bainite and bainitic ferrite tend to be generated in the hot-rolled sheet. Therefore, the Ti content is set to 0.03 to 0.2%.
[0033]
Nb: 0.08% or less Nb is effective for refining the structure and forms fine carbides with Ti, Mo and / or W, and is added as necessary. However, if the amount of Nb exceeds 0.08%, the crystal grains extend in one direction and a structure unfavorable for stretch flangeability develops. Therefore, when Nb is contained, the content is made 0.08% or less. From the viewpoint of obtaining the Nb microstructure refinement effect, 0.005% or more is preferable.
[0034]
V: 0.15% or less Since precipitation of V is slow, V is added as necessary to adjust the precipitation timing of the carbide, which is a precipitate. However, if the V content exceeds 0.15%, a hard phase is formed in the hot-rolled sheet and the stretch flangeability deteriorates. Therefore, when V is contained, the content is made 0.15% or less.
[0035]
In addition to the above definition, it is necessary to satisfy 4.8C + 4.2Si + 0.4Mn + 2Ti ≦ 2.5 by mass %. When Nb is contained, it is necessary to satisfy 4.8C + 4.2Si + 0.4Mn + 2Ti + 3.5Nb ≦ 2.5. In the present invention, at the time of spot welding, the deformation resistance must be high at the ferrite region temperature and the deformation resistance must be low at the austenite region, while being high strength. This ferrite, hard, austenitic, and soft property promotes the elimination of zinc plating and zinc vapor during welding. Since the strength of austenite is affected by the composition of the steel, the deformation resistance of austenite is made low by defining it according to the above formula depending on the component that affects the deformation resistance. If the value of 4.8C + 4.2Si + 0.4Mn + 2Ti exceeds 2.5, the deformation resistance of austenite increases and zinc vapor is not smoothly discharged, resulting in blowholes in the weld. Since the conventional steel sheet has a high value of 4.8C + 4.2Si + 0.4Mn + 2Ti, the generation of blow holes could not be sufficiently prevented. Thus, although the value of 4.8C + 4.2Si + 0.4Mn + 2Ti is 2.5 or less, the effect of discharging zinc vapor can be obtained, but it is preferably 2.0 or less, and more preferably 1.5 or less. Similarly, when Nb is contained, the value of 4.8C + 4.2Si + 0.4Mn + 2Ti + 3.5Nb is 2.5 or less, preferably 2.0 or less, and more preferably 1.5 or less.
[0036]
Here, the blowhole in question significantly reduces the joint strength, and there is no problem even if there is a minute blowhole that does not greatly affect the strength.
[0037]
Since discharge of such zinc vapor proceeds more smoothly when the plate thickness is small, the plate thickness of the steel plate is preferably 3 mm or less from such a viewpoint. Since such an effect becomes remarkable when the plate thickness is 2 mm or less, the thickness is desirably 2 mm or less.
[0038]
In the present invention, B ≦ 0.001%, Cr ≦ 0.5 % , Cu ≦ 0.5%, Ni ≦ 0.5%, depending on purposes such as secondary work brittleness resistance and corrosion resistance improvement. Even if one or more of Ca ≦ 0.01% and REM (total) ≦ 0.1% are included, there is no problem in characteristics.
[0039]
[Production method]
In the present invention, when producing the above hot-dip galvanized high-tensile hot-rolled steel sheet, it is hot-rolled in an austenite single-phase region, wound at 550 ° C. or more, and after producing a ferrite single-phase hot-rolled steel sheet, the scale is further removed. Alternatively, hot dip galvanizing is applied as it is.
Hereinafter, these conditions will be described.
[0040]
-Finish rolling end temperature Finish rolling end temperature is important for elongation and stretch flangeability. When rolling is performed at a temperature at which the austenite single phase region cannot be maintained, coarse grains are generated and stretch flangeability is impaired. Therefore, the austenite single phase region is maintained until the end of finish rolling.
[0041]
The coiling temperature is 550 ° C. or higher so that the microstructure is ferrite and fine carbides containing Ti and one or more of Mo and W are precipitated in the ferrite. Desirably, it is 600 degreeC or more. Moreover, since it becomes easy to produce | generate pearlite when it exceeds 675 degreeC, 675 degreeC or less is desirable. More preferably, it is 650 degrees C or less.
[0042]
-Hot-dip galvanized plating In the present invention, a hot-dip galvanized coating film is formed on the surface of a high-tensile hot-rolled steel plate to obtain a hot-dip galvanized steel plate. An alloyed hot dip galvanized steel sheet that has been subjected to an alloying reaction after hot dip galvanizing is also included. The hot dip galvanizing in the present invention is hot dip plating in which the plating film is substantially made of Zn or hot dip plating mainly composed of Zn, and may contain alloy elements such as Cr and Mn in addition to zinc. .
[0043]
The hot dip galvanized high-tensile hot-rolled steel sheet of the present invention is excellent in workability, particularly in stretch flangeability, so when it is press-molded, its characteristics are utilized, such as automotive parts, particularly suspension arms. A member having a complicated cross-sectional shape at the time of pressing, such as a suspension member or a reinforcement, can be manufactured with good quality, and in particular, can contribute to weight reduction of a press-formed product. The processing method of the high-tensile steel plate according to the present invention, in other words, the manufacturing method of the press-formed product will be described below specifically.
[0044]
FIG. 1 is a flowchart showing an example of a work flow of a method for processing a high-strength steel sheet according to the present invention. This work flow usually has a pre-process of manufacturing a steel plate according to the present invention or transporting the manufactured steel plate to a destination place as a coil, for example. First, a high-tensile steel plate according to the present invention is prepared. (S0, S1). Before pressing the steel sheet, the steel sheet may be pre-processed (S2), or may be processed into a predetermined size or shape by a cutting machine (S3). In the former step S2, for example, cutting or drilling is performed at a predetermined position in the width direction of the steel sheet, and a press-formed product having a predetermined size and shape or pressed processing is performed at the stage where the subsequent press processing is completed or in the process of the press processing. It can be separated as a member. In the latter step of S3, the final press-molded product is processed (and thus cut) into a steel plate member having a predetermined size and shape in consideration of the size and shape of the final press-formed product in advance. Thereafter, the member that has undergone the steps S2 and S3 is subjected to press working, and finally a desired press-formed product having a desired size and shape is manufactured (S4). This press working is usually performed in multiple stages, and often has 3 stages or more and 7 stages or less.
[0045]
The step S4 may include a step of further cutting the member that has passed through the steps S2 and S3 into a predetermined size and shape. The operation of “cutting” in this case is, for example, an operation of cutting an unnecessary portion in a final press-formed product such as an end portion of a member that has passed through steps S2 and S3 at least in the process of pressing. Alternatively, it may be an operation of cutting the member to be pressed along the cutting or perforation in the width direction of the steel plate provided in the step S2.
[0046]
In FIG. 1, N1 to N3 may be a work of conveying a steel plate, a member, or a press-formed product mechanically or by an operator.
[0047]
The press-formed product manufactured in this way is sent to the next step as necessary. As the next process, for example, a further process is performed on the press-molded product to adjust dimensions and shape, a process of transporting and storing the press-molded product to a predetermined place, a process of subjecting the press-molded product to surface treatment, a press There is an assembly process for assembling an object such as an automobile using a molded product.
[0048]
FIG. 2 is a block diagram showing the relationship between the apparatus that actually performs the operation shown in FIG. 1 and the flow of steel plates, members, and press-formed products. In this figure, the high-tensile steel plate according to the present invention is prepared in a coil shape, and a press-formed product is manufactured by a press machine. The press machine is of a type that performs multi-stage pressing, but the present invention is not limited to this.
[0049]
In some cases, a cutting machine or other pre-processing machine is installed in the front stage of the press machine (FIG. 2A), and in some cases, it is not installed (FIG. 2B). When a cutting machine is installed, a member having a required size or shape is cut from a long steel sheet according to the present invention supplied from a coil, and this member is pressed by a press machine, and a predetermined press It becomes a molded product. In the case where a pre-processing machine that performs notches and perforations in the width direction of the steel sheet is installed, the press machine may cut along the notches and perforations. When the pretreatment machine is not installed, cutting is performed in the process of pressing the steel plate in the press machine, and finally a press-formed product having a predetermined size and shape is manufactured. The meaning of “cutting” in FIG. 2 is the same as the cutting in FIG.
[0050]
The press-formed product produced in this way uses the high-tensile steel plate according to the present invention that is excellent in workability as a raw material, particularly excellent in stretch flangeability, so even if the cross-sectional shape at the time of pressing is complicated Can be manufactured with good quality and light weight. Such a feature is particularly useful when the press-formed product is a member for automobiles, in particular, a suspension member such as a suspension arm or a reinforcement component such as a reinforcement member.
[0051]
【Example】
Steel having the chemical components shown in Table 1 was heated to 1250 ° C., and hot-rolled at a finishing temperature of 920 ° C. and a coiling temperature of 600 to 650 ° C. (see Table 1). The obtained steel sheet was pickled and then hot dip galvanized. After plating, alloying treatment was performed. The thin film produced from the obtained steel plate was observed with a transmission electron microscope (TEM), and the precipitated carbide dimensions were measured. Moreover, the elemental analysis which comprises a carbide | carbonized_material was performed using the energy dispersive X-ray spectrometer (EDX). Furthermore, the concentration of each element was calculated from the peak value.
[0052]
Further, a JIS No. 5 tensile test piece and a hole expansion test piece were collected from the plated plate. Tensile test pieces were taken from the vertical direction of rolling and subjected to a tensile test. The hole expansion test was conducted in accordance with the Japan Iron and Steel Federation standard. Subsequently, resistance spot welding was performed according to the WES standard, and the tensile shear strength of the welded joint was measured. In addition, the cross-sectional structure of the weld was observed and the occurrence of blowholes was ascertained.
[0053]
Table 1 also shows the coiling temperature, structure, size of precipitates, mechanical properties, and joint strength.
In Table 1, No. 1 to 7 are examples of the present invention. 8 to 10 are comparative examples. Among the examples of the present invention, No. 1, 3, 5, 6, and 7 are examples of hot-rolled steel sheets of 780 MPa class. All of these have a ferrite single phase structure. 1 is a carbide containing Ti and Mo; 3 is a carbide containing Ti, Mo, W, No. 3; No. 5 is a carbide containing Ti, Mo, W, Nb, No. 5; No. 6 is a carbide containing Ti, Mo, W, V, No. 6; In No. 7, carbides containing Ti and Mo are precipitated, and each carbide has a particle size of less than 10 nm, and (Mo + W) / (Ti + Mo + W) ≧ 0.2 or (Mo + W) / (Ti + Mo + W + V + Nb) ≧ 0.2. All of them had excellent elongation and stretch flangeability. No. 7 is an example in which B is added for resistance to secondary work brittleness and Ca is added for improving stretch flangeability, but the effect of the present invention is obtained. No. Nos. 2 and 4 are examples of 980 MPa class hot-rolled steel sheets, both of which have a ferrite single phase structure. 2 is a carbide containing Ti and Mo; In No. 4, carbides containing Ti, Mo, and W are precipitated in the ferrite, and all the carbides have a particle size of less than 10 nm and satisfy (Mo + W) / (Ti + Mo + W) ≧ 0.2. And stretch flangeability. No. The weld joint strengths of 1 to 7 all exceeded 20 kN, indicating good joint strength. Also, no blowholes that could affect the joint strength were found in the weld.
[0054]
On the other hand, the comparative example No. No. 8 has a large amount of Si and poor plating adhesion, and the value of 4.8C + 4.2Si + 0.4Mn + 2Ti + 3.5Nb which determines the deformation resistance of austenite is as high as 3.68, the precipitates are coarse, and the welding strength is below 20 kN. The value was low. Coarse blowholes were generated in the weld, which reduced the joint strength. The strength of the C No. Compared to 5, it was extremely low. No. No. 9 was obtained by adding Si and making the structure an acicular ferrite, but the size of the precipitate was coarse and the strength was low. The plating adhesion was poor and the weld joint strength was low. No. Since 10 also has a large amount of Si, the structure of the plated steel sheet became ferrite + pearlite and the precipitates became coarse. The plating adhesion was poor, remarkable blowholes were generated in the weld, and the joint strength was also reduced. Thus, it was confirmed that a good weld joint can be obtained by employing the present invention.
[0055]
[Table 1]
Figure 0003821043
[0056]
【The invention's effect】
As described above, according to the present invention, a hot-dip galvanized high-tensile hot-rolled steel sheet excellent in weldability can be provided, and the effect of contributing to weight reduction of automobile members is remarkable.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an example of a work flow of a method for processing a high-tensile steel plate according to the present invention.
FIG. 2 is a block diagram showing the relationship between an apparatus that actually performs the work shown in FIG. 1 and the flow of steel plates, members, and press-formed products.

Claims (7)

質量%で、C:0.01〜0.1%、Si≦0.3%、Mn:0.2〜2.0%、P≦0.04%、S≦0.02%、Al≦0.1%、N≦0.006%、Ti:0.03〜0.2%を含み、かつMo≦0.5%およびW≦1.0%のうち1種以上を含み、残部がFeおよび不可避不純物からなり
質量%で、4.8C+4.2Si+0.4Mn+2Ti≦2.5
を満たし、組織が面積比率で98%以上のフェライト(ただし、98%を除く)であり、
原子比で、(Mo+W)/(Ti+Mo+W)≧0.2
を満たす範囲で、Tiと、MoおよびWのうち1種以上とを含む10nm未満の析出物が分散していることを特徴とする溶接性に優れた溶融亜鉛系めっき高張力熱延鋼板。
In mass %, C: 0.01 to 0.1%, Si ≦ 0.3%, Mn: 0.2 to 2.0%, P ≦ 0.04%, S ≦ 0.02%, Al ≦ 0 0.1%, N ≦ 0.006%, Ti: 0.03 to 0.2%, and one or more of Mo ≦ 0.5% and W ≦ 1.0%, with the balance being Fe and Consisting of inevitable impurities ,
4.8C + 4.2Si + 0.4Mn + 2Ti ≦ 2.5% by mass
And the structure is ferrite with an area ratio of 98% or more (excluding 98%) ,
Atomic ratio, (Mo + W) / (Ti + Mo + W) ≧ 0.2
A hot dip galvanized high-tensile hot-rolled steel sheet excellent in weldability, characterized in that precipitates of less than 10 nm containing Ti and one or more of Mo and W are dispersed within a range satisfying the above.
質量%で、C:0.01〜0.1%、Si≦0.3%、Mn:0.2〜2.0%、P≦0.04%、S≦0.02%、Al≦0.1%、N≦0.006%、Ti:0.03〜0.2%を含み、かつMo≦0.5%およびW≦1.0%のうち1種以上を含み、さらにV≦0.15%、Nb≦0.08%のうち1種以上を含み、残部がFeおよび不可避不純物からなり
質量%で、4.8C+4.2Si+0.4Mn+2Ti+3.5Nb≦2.5
を満たし、組織が面積比率で98%以上のフェライト(ただし、98%を除く)であり、
原子比で、(Mo+W)/(Ti+Mo+W+V+Nb)≧0.2
を満たす範囲で、Tiと、VおよびNbのうち1種以上と、MoおよびWのうち1種以上とを含む10nm未満の析出物が分散していることを特徴とする溶接性に優れた溶融亜鉛系めっき高張力熱延鋼板。
In mass %, C: 0.01 to 0.1%, Si ≦ 0.3%, Mn: 0.2 to 2.0%, P ≦ 0.04%, S ≦ 0.02%, Al ≦ 0 0.1%, N ≦ 0.006%, Ti: 0.03 to 0.2%, and one or more of Mo ≦ 0.5% and W ≦ 1.0%, and further V ≦ 0 .15%, including one or more of Nb ≦ 0.08%, the balance being Fe and inevitable impurities ,
4.8C + 4.2Si + 0.4Mn + 2Ti + 3.5Nb ≦ 2.5 by mass %
And the structure is ferrite with an area ratio of 98% or more (excluding 98%) ,
At atomic ratio, (Mo + W) / (Ti + Mo + W + V + Nb) ≧ 0.2
In the range satisfying the above, melting with excellent weldability, characterized in that precipitates of less than 10 nm including Ti, one or more of V and Nb, and one or more of Mo and W are dispersed. Zinc-based high-strength hot-rolled steel sheet.
質量%で、さらに、B≦0.001%、Cr≦0.5%、Cu≦0.5%、Ni≦0.5、Ca≦0.01%、REMの合計≦0.1%を含むことを特徴とする請求項1または請求項2に記載の溶接性に優れた溶融亜鉛系めっき高張力熱延鋼板。 In addition, B ≦ 0.001%, Cr ≦ 0.5%, Cu ≦ 0.5%, Ni ≦ 0.5 % , Ca ≦ 0.01%, and the total of REM ≦ 0.1%. The hot-dip galvanized high-tensile hot-rolled steel sheet having excellent weldability according to claim 1 or 2. 請求項1から請求項3のいずれかの成分組成を有する鋼を、オーステナイト単相域で熱間圧延し、550℃以上で巻取り、フェライト単相の熱延鋼板を製造後、さらにスケール除去し、または、そのまま溶融亜鉛系めっきを施すことを特徴とする溶接性に優れた溶融亜鉛系めっき高張力熱延鋼板の製造方法。  The steel having the composition according to any one of claims 1 to 3 is hot-rolled in an austenite single-phase region, wound at 550 ° C or higher, and a ferritic single-phase hot-rolled steel sheet is manufactured, and further scale-removed. Or the manufacturing method of the hot dip galvanized high-tensile-strength hot-rolled steel plate excellent in the weldability characterized by performing hot dip galvanizing as it is. 請求項1から請求項3のいずれかに記載の高張力熱延鋼板からなる部材を準備する第1の工程と、前記部材にプレス成形を施して所望の形状のプレス成形品に加工する第2の工程とを有する高張力熱延鋼板の加工方法。  A first step of preparing a member made of the high-tensile hot-rolled steel sheet according to any one of claims 1 to 3, and a second step of subjecting the member to press forming and processing into a press-formed product having a desired shape. A method for processing a high-tensile hot-rolled steel sheet comprising the steps of: 前記プレス成形品は、自動車用部品である請求項5に記載の高張力熱延鋼板の加工方法。  The method for processing a high-tensile hot-rolled steel sheet according to claim 5, wherein the press-formed product is an automotive part. 請求項1から請求項3のいずれかに記載の高張力熱延鋼板により製造された自動車用部品。  An automotive part manufactured from the high-tensile hot-rolled steel sheet according to any one of claims 1 to 3.
JP2002129252A 2002-04-30 2002-04-30 Hot-dip galvanized high-strength hot-rolled steel sheet with excellent weldability, manufacturing method and processing method thereof Expired - Fee Related JP3821043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002129252A JP3821043B2 (en) 2002-04-30 2002-04-30 Hot-dip galvanized high-strength hot-rolled steel sheet with excellent weldability, manufacturing method and processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002129252A JP3821043B2 (en) 2002-04-30 2002-04-30 Hot-dip galvanized high-strength hot-rolled steel sheet with excellent weldability, manufacturing method and processing method thereof

Publications (2)

Publication Number Publication Date
JP2003321736A JP2003321736A (en) 2003-11-14
JP3821043B2 true JP3821043B2 (en) 2006-09-13

Family

ID=29542737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002129252A Expired - Fee Related JP3821043B2 (en) 2002-04-30 2002-04-30 Hot-dip galvanized high-strength hot-rolled steel sheet with excellent weldability, manufacturing method and processing method thereof

Country Status (1)

Country Link
JP (1) JP3821043B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5047649B2 (en) * 2006-04-11 2012-10-10 新日本製鐵株式会社 High-strength hot-rolled steel sheet and galvanized steel sheet excellent in stretch flangeability and their production method
JP5906753B2 (en) 2011-02-24 2016-04-20 Jfeスチール株式会社 Alloy hot-dip galvanized steel sheet
AU2012224032B2 (en) * 2011-02-28 2017-03-16 Nisshin Steel Co., Ltd. Steel sheet hot-dip-coated with Zn-Al-Mg-based system, and process of manufacturing same
JP5754279B2 (en) * 2011-07-20 2015-07-29 Jfeスチール株式会社 High strength steel sheet for warm forming and manufacturing method thereof
JP5838796B2 (en) 2011-12-27 2016-01-06 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
JP5903883B2 (en) * 2011-12-27 2016-04-13 Jfeスチール株式会社 High-strength hot-rolled steel sheet for plating with excellent corrosion resistance and its manufacturing method
WO2013103117A1 (en) 2012-01-05 2013-07-11 Jfeスチール株式会社 Hot-dip galvannealed steel sheet
JP6111522B2 (en) 2012-03-02 2017-04-12 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
US10351942B2 (en) 2012-04-06 2019-07-16 Nippon Steel & Sumitomo Metal Corporation Hot-dip galvannealed hot-rolled steel sheet and process for producing same
JP5870825B2 (en) * 2012-04-06 2016-03-01 新日鐵住金株式会社 Alloyed hot-dip galvanized steel sheet and method for producing the same
JP5630588B2 (en) 2012-04-18 2014-11-26 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
CN105154769B (en) * 2015-09-18 2017-06-23 宝山钢铁股份有限公司 A kind of 780MPa grades of hot-rolled high-strength reaming steel high and its manufacture method

Also Published As

Publication number Publication date
JP2003321736A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
JP3888128B2 (en) High formability, high-tensile hot-rolled steel sheet with excellent material uniformity, manufacturing method and processing method thereof
JP5076394B2 (en) High-tensile steel plate and manufacturing method thereof
JP5541263B2 (en) High-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof
JP3882577B2 (en) High-tensile hot-rolled steel sheet excellent in elongation and stretch flangeability, and manufacturing method and processing method thereof
JP3219820B2 (en) Low yield ratio high strength hot rolled steel sheet and method for producing the same
KR101445465B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same
WO2013099712A1 (en) Hot-dip plated high-strength steel sheet for press working with excellent low-temperature toughness and corrosion resistance, and process for producing same
JP3637885B2 (en) Ultra-high-strength steel sheet excellent in workability, manufacturing method and processing method thereof
JP2003089848A5 (en)
JP3821043B2 (en) Hot-dip galvanized high-strength hot-rolled steel sheet with excellent weldability, manufacturing method and processing method thereof
JP4924052B2 (en) High yield ratio high tensile cold-rolled steel sheet and method for producing the same
WO2022044510A1 (en) Hot-pressed member and manufacturing method therefor
JP4006974B2 (en) High formability, high-tensile hot-rolled steel sheet with excellent material uniformity, manufacturing method and processing method thereof
JP3591502B2 (en) High-tensile steel sheet excellent in workability, and its manufacturing method and processing method
JP3760888B2 (en) High-tensile cold-rolled steel sheet with excellent workability, manufacturing method and processing method thereof
JP4710558B2 (en) High-tensile steel plate with excellent workability and method for producing the same
JP2002322543A5 (en)
JP3775337B2 (en) High formability, high-tensile hot-rolled steel sheet with excellent material uniformity, manufacturing method and processing method thereof
JP3775341B2 (en) High-tensile hot-rolled steel sheet with excellent workability, manufacturing method and processing method thereof
JP3775340B2 (en) High-tensile hot-rolled steel sheet with excellent workability and processing method
EP2192205B1 (en) High-strength steel sheets excellent in hole-expandability and ductility and a method for producing the same
JP3280692B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
JP3637888B2 (en) High tensile hot-rolled steel sheet with excellent peel strength and processing method thereof
JP3821042B2 (en) High-formability high-tensile steel sheet with excellent strength stability and method for producing and processing the same
JP3775339B2 (en) High-tensile hot-rolled steel sheet with excellent workability, manufacturing method and processing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140630

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees