JP2012172234A - High-strength hot-rolled steel sheet having excellent bending workability, and method for producing the same - Google Patents

High-strength hot-rolled steel sheet having excellent bending workability, and method for producing the same Download PDF

Info

Publication number
JP2012172234A
JP2012172234A JP2011037933A JP2011037933A JP2012172234A JP 2012172234 A JP2012172234 A JP 2012172234A JP 2011037933 A JP2011037933 A JP 2011037933A JP 2011037933 A JP2011037933 A JP 2011037933A JP 2012172234 A JP2012172234 A JP 2012172234A
Authority
JP
Japan
Prior art keywords
less
steel sheet
bending workability
rolled steel
strength hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011037933A
Other languages
Japanese (ja)
Other versions
JP5648529B2 (en
Inventor
Yoshimasa Funakawa
義正 船川
Kazuhiro Seto
一洋 瀬戸
Tamako Ariga
珠子 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011037933A priority Critical patent/JP5648529B2/en
Publication of JP2012172234A publication Critical patent/JP2012172234A/en
Application granted granted Critical
Publication of JP5648529B2 publication Critical patent/JP5648529B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high-strength hot-rolled steel sheet that has a TS of around 1,180 MPa and stably shows an excellent bending workability, and to provide a method for producing the same.SOLUTION: The high-strength hot-rolled steel sheet excellent in bending workability has a component composition comprising, by mass, 0.16-0.25% C, ≤0.5% Si, ≤1.0% Mn, ≤0.03% P, ≤0.01% S, ≤0.07% Al, ≤0.01% N, 0.6-1.0% V and the balance being Fe and unavoidable impurities, and has a microstructure where a ferritic phase accounts for ≥95% of the area of the entire matrix. VC is dispersed and precipitated in the matrix and the volume ratio of the total volume of VC to the entire matrix is 0.01-0.02. Here, the average thickness t and the average diameter d of VC, determined based on the assumption that VC has a disk shape, satisfy the relation: (t+d)/2<10 nm.

Description

本発明は、自動車や建設機械などの構造部材に適した板厚が6mm以下の高強度熱延鋼板、特に、1180MPa級の引張強度TSを有し、曲げ加工性に優れた高強度熱延鋼板およびその製造方法に関する。   The present invention is a high-strength hot-rolled steel sheet having a thickness of 6 mm or less suitable for structural members such as automobiles and construction machines, in particular, a high-strength hot-rolled steel sheet having a tensile strength TS of 1180 MPa class and excellent bending workability. And a manufacturing method thereof.

自動車の軽量化では、高強度鋼板の使用量の増加とともに、さらなる高強度の鋼板の適用が検討されている。なかでも、TSが980MPa以上の鋼板では、高強度のメリットを生かすために、TSが980MPa未満の鋼板に適用されている張り出し加工、伸びフランジ加工、深絞り加工などによる凹凸部の多い部材ではなく、曲げ加工を主体とした平坦部の多い部材に加工される場合が多い。   In reducing the weight of automobiles, the use of high-strength steel sheets is being studied as the amount of high-strength steel sheets increases. In particular, steel sheets with a TS of 980 MPa or higher are not members with many irregularities due to overhanging, stretch flange processing, deep drawing, etc. applied to steel sheets with a TS of less than 980 MPa in order to take advantage of the high strength. In many cases, the material is processed into a member having many flat portions mainly composed of bending.

しかし、これまでTSが980MPa以上の高強度鋼板として開発されているフェライト相とマルテンサイト相からなるDP(Dual Phase)鋼板やマルテンサイト単相の鋼板では、曲げ加工により、前者では硬質なマルテンサイト相と軟質なフェライト相の界面を起点に、また、後者では粗大な旧オーステナイト粒界に析出したフィルム状のセメンタイトを起点に、亀裂が発生しやすく、曲げ加工性に劣るという問題がある。   However, DP (Dual Phase) steel sheets that have been developed as high-strength steel sheets with a TS of 980 MPa or more, and DP (Dual Phase) steel sheets composed of a martensite phase and martensite single-phase steel sheets are bent and the former is hard martensite. Starting from the interface between the soft ferrite phase and the soft phase, and the latter, starting from film-like cementite precipitated at coarse prior austenite grain boundaries, there is a problem that cracking is likely to occur and bending workability is poor.

高強度鋼板の曲げ加工性に関する技術として、例えば、特許文献1や2には、軟質なフェライト単相のマトリックス中に大きさが0.5〜50μm程度のTiCやVCなどの硬質な炭化物を分散析出させた曲げ加工性に優れた耐磨耗鋼板が提案されている。また、特許文献3には、C、Ti、Nb、V、Mo量を制御してフェライト相の体積率を70%以上とし、フェライト粒内に10nm程度以下のサイズの微細な炭化物を多量に析出させた曲げ加工性に優れた熱延鋼板が提案されている。   As technologies related to the bending workability of high-strength steel sheets, for example, in Patent Documents 1 and 2, hard carbides such as TiC and VC having a size of about 0.5 to 50 μm are dispersed and precipitated in a soft ferrite single-phase matrix. A wear-resistant steel sheet with excellent bending workability has been proposed. In Patent Document 3, the volume ratio of the ferrite phase is controlled to 70% or more by controlling the amounts of C, Ti, Nb, V, and Mo, and a large amount of fine carbides having a size of about 10 nm or less are precipitated in the ferrite grains. A hot-rolled steel sheet having excellent bending workability has been proposed.

特開2007-197813号公報JP 2007-197813 特開2007-277590号公報JP 2007-277590 A 特開2006-161111号公報JP 2006-161111 A

しかしながら、特許文献1や2に記載の耐磨耗鋼板では、1.0t未満(tは鋼板の板厚)の曲げ半径では割れが発生しやすく、曲げ加工性に十分に優れているとはいえず、また、必ずしも1180MPa級のTSが得られない。特許文献3に記載の熱延鋼板では、1180MPa級のTSが得られないうえに、必ずしも優れた曲げ加工性が得られない。   However, the wear-resistant steel sheets described in Patent Documents 1 and 2 are prone to cracking at bending radii of less than 1.0 t (t is the thickness of the steel sheet) and cannot be said to be sufficiently excellent in bending workability. In addition, 1180 MPa class TS is not always obtained. In the hot-rolled steel sheet described in Patent Document 3, 1180 MPa class TS cannot be obtained, and excellent bending workability cannot always be obtained.

本発明は、このような問題を解決するためになされたもので、1180MPa級のTS、すなわち1180MPa以上、1470MPa未満のTSを有し、安定して優れた曲げ加工性が得られる高強度熱延鋼板およびその製造方法を提供することを目的とする。   The present invention has been made to solve such problems, and has a 1180 MPa class TS, that is, a TS of 1180 MPa or more and less than 1470 MPa, and is capable of stably obtaining excellent bending workability. It aims at providing a steel plate and its manufacturing method.

本発明者らは、上記の目的とする高強度熱延鋼板について検討を重ねた結果、以下のことを見出した。   As a result of repeated studies on the above-described high strength hot-rolled steel sheet, the present inventors have found the following.

i) フェライト相を主体したマトリックスとし、マトリックスには、TiNやAlNのような粗大な析出物の生成を抑制し、微細な析出物を分散析出させることにより、高強度と優れた曲げ加工性を安定して付与できる。   i) A matrix mainly composed of a ferrite phase, which suppresses the formation of coarse precipitates such as TiN and AlN, and disperses and precipitates fine precipitates, thereby providing high strength and excellent bending workability. Can be applied stably.

ii) それには、析出物として微細化しやすいVCを用い、その大きさを10nm未満にし、かつマトリックス全体に占めるVCの合計の体積比を0.01〜0.02とすることが効果的である。ここで、VCの大きさとは、VCを円盤と仮定して平均厚みtと平均直径dより計算されるVCの(t+d)/2のことである。   ii) For that purpose, it is effective to use VC which is easy to be refined as a precipitate, to make the size less than 10 nm and to set the total volume ratio of VC in the whole matrix to 0.01 to 0.02. Here, the size of VC means (t + d) / 2 of VC calculated from average thickness t and average diameter d assuming VC is a disk.

本発明は、このような知見に基づいてなされたもので、質量%で、C:0.16〜0.25%、Si:0.5%以下、Mn:1.0%以下、P:0.03%以下、S:0.01%以下、Al:0.07%以下、N:0.01%以下、V:0.6〜1.0%を含み、残部がFeおよび不可避的不純物からなる成分組成を有し、マトリックス全体に占めるフェライト相の面積率が95%以上であり、前記マトリックスにはVCが分散析出しているミクロ組織を有し、かつ前記マトリックス全体に占める前記VCの合計の体積比が0.01〜0.02であり、前記VCを円盤と仮定して求めた平均厚みtと平均直径dの間には、(t+d)/2<10nmの関係が満足されることを特徴とする曲げ加工性に優れた高強度熱延鋼板を提供する。   The present invention has been made based on such knowledge, in mass%, C: 0.16-0.25%, Si: 0.5% or less, Mn: 1.0% or less, P: 0.03% or less, S: 0.01% or less Al: 0.07% or less, N: 0.01% or less, V: 0.6 to 1.0%, the balance is composed of Fe and inevitable impurities, and the area ratio of the ferrite phase in the entire matrix is 95% or more The matrix has a microstructure in which VC is dispersed and precipitated, and the total volume ratio of the VC in the entire matrix is 0.01 to 0.02, and the VC was obtained on the assumption of a disk. Provided is a high-strength hot-rolled steel sheet excellent in bending workability, characterized in that a relationship of (t + d) / 2 <10 nm is satisfied between the average thickness t and the average diameter d.

本発明の高強度熱延鋼板には、さらに、質量%で、Ti:0.015%以下や、Cr:1%以下、B:0.0030%以下、Mo:0.5%以下、およびW:1%以下のうちから選ばれた少なくとも1種の元素が、個別にあるいは同時に含有されることが好ましい。   The high-strength hot-rolled steel sheet of the present invention further includes, in mass%, Ti: 0.015% or less, Cr: 1% or less, B: 0.0030% or less, Mo: 0.5% or less, and W: 1% or less. It is preferable that at least one element selected from is contained individually or simultaneously.

また、本発明の高強度熱延鋼板は、鋼板表面にめっき層を有する鋼板とすることもできる。   Moreover, the high-strength hot-rolled steel sheet of the present invention can be a steel sheet having a plating layer on the steel sheet surface.

本発明の高強度熱延鋼板は、上記の成分組成を有する鋼を、900℃以上の仕上温度で熱間圧延後、20℃/s以上の平均冷却速度で700℃以下まで冷却し、500〜680℃の巻取温度で巻取る方法によって製造できる。   The high-strength hot-rolled steel sheet of the present invention is a steel having the above component composition, after hot rolling at a finishing temperature of 900 ° C. or higher, cooled to 700 ° C. or lower at an average cooling rate of 20 ° C./s or higher, 500 to It can be manufactured by a winding method at a winding temperature of 680 ° C.

本発明により、1180MPa級のTSを有し、限界曲げ半径(割れの生じない最小の曲げ半径と鋼板の板厚との比)が1.0未満で、安定して優れた曲げ加工性の得られる高強度熱延鋼板が製造可能になった。本発明の高強度熱延鋼板は、自動車などの構造部材に好適である。   According to the present invention, it has a TS of 1180 MPa class, has a critical bend radius (ratio between the minimum bend radius at which cracks do not occur and the plate thickness of the steel sheet) of less than 1.0, and can stably obtain excellent bending workability. High-strength hot-rolled steel sheets can be manufactured. The high-strength hot-rolled steel sheet of the present invention is suitable for structural members such as automobiles.

以下に、本発明の詳細について説明する。なお、各成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。   Details of the present invention will be described below. Note that “%” representing the content of each component element means “% by mass” unless otherwise specified.

1) 成分組成
C:0.16〜0.25%
CはVCとして鋼中に析出し、鋼を高強度化する最も重要な元素である。C量が0.16%を下回ると1180MPa級のTSが得られない。一方、C量が0.25%を超えると粗大なパーライトやセメンタイトが生じやすくなり曲げ加工性が劣化する。そのため、C量は0.16〜0.25%とする。
1) Component composition
C: 0.16-0.25%
C precipitates in the steel as VC and is the most important element for increasing the strength of the steel. If the C content is less than 0.16%, 1180 MPa class TS cannot be obtained. On the other hand, if the C content exceeds 0.25%, coarse pearlite and cementite are likely to be produced, and the bending workability is deteriorated. Therefore, the C content is 0.16 to 0.25%.

Si:0.5%以下
Siはオーステナイト相からフェライト相への変態時にオーステナイト相からCの吐き出しを促進するため、フェライト相中での微細なVCの形成を抑制して高強度化や曲げ加工性の向上を阻害する。そのため、Si量の上限は0.5%とする。好ましくは0.1%以下である。
Si: 0.5% or less
Since Si promotes the discharge of C from the austenite phase during the transformation from the austenite phase to the ferrite phase, it suppresses the formation of fine VC in the ferrite phase and inhibits the increase in strength and bending workability. Therefore, the upper limit of Si content is 0.5%. Preferably it is 0.1% or less.

Mn:1.0%以下
Mn量が1.0%を超えるとオーステナイト−フェライト変態界面の移動速度を遅くしてフェライト中に析出するVCの粗大化を招いて1180MPa級の強度が得られにくくなり、また、偏析によるバンド状組織の形成を助長するため、曲げ加工性が劣化する。そのため、Mn量は1.0%以下、好ましくは0.8%以下とする。さらに好ましくは0.5%以下である。
Mn: 1.0% or less
If the amount of Mn exceeds 1.0%, the moving speed of the austenite-ferrite transformation interface is slowed down, resulting in coarsening of the VC precipitated in the ferrite, making it difficult to obtain a strength of 1180 MPa class. Since it facilitates formation, bending workability deteriorates. Therefore, the Mn content is 1.0% or less, preferably 0.8% or less. More preferably, it is 0.5% or less.

P:0.03%以下
Pは粒界に偏析して、加工性を著しく劣化させる。そのため、P量の上限は0.03%とする。
P: 0.03% or less
P segregates at the grain boundaries and significantly deteriorates workability. Therefore, the upper limit of P amount is 0.03%.

S:0.01%以下
SはMnSを形成し、曲げ加工時にボイドの発生を促進し、曲げ加工性を劣化させる。そのため、S量の上限は0.01%とする。さらに好ましくは0.005%以下である。
S: 0.01% or less
S forms MnS, promotes the generation of voids during bending, and degrades bending workability. Therefore, the upper limit of S content is 0.01%. More preferably, it is 0.005% or less.

Al:0.07%以下
Al量が0.07%を超えると粗大なAlNが形成され、曲げ加工性が劣化する。そのため、Al量の上限は0.07%とする。なお、Alは鋼の脱酸作用を有する元素なので、その量を0.015%以上とすることが好ましい。
Al: 0.07% or less
When the Al content exceeds 0.07%, coarse AlN is formed and bending workability deteriorates. Therefore, the upper limit of the Al content is 0.07%. Since Al is an element having a deoxidizing action of steel, its amount is preferably 0.015% or more.

N:0.01%以下
Nは粗大な窒化物を形成し、曲げ加工時にその周辺から亀裂の発生を促進し、曲げ加工性を劣化させる。そのため、N量の上限は0.01%、好ましくは0.007%、より好ましくは0.005%とする。
N: 0.01% or less
N forms coarse nitrides, promotes the generation of cracks from the periphery during bending, and degrades bending workability. Therefore, the upper limit of the N amount is 0.01%, preferably 0.007%, more preferably 0.005%.

V:0.6〜1.0%
Vは微細なVCを形成して、鋼を高強度化する最も重要な元素である。V量が0.6%を下回ると十分な量のVCが析出しないため、1180MPa級のTSが得られなくなるとともに、セメンタイトやパーライトが生成するようになり曲げ加工性が劣化する。一方、V量が1.0%を超えるとVCが粗大化しやすくなり、1180MPa級のTSが得られない。そのため、V量は0.6〜1.0%とする。
V: 0.6-1.0%
V is the most important element for forming fine VC and increasing the strength of steel. When the amount of V is less than 0.6%, a sufficient amount of VC does not precipitate, so that a 1180 MPa class TS cannot be obtained, and cementite and pearlite are generated, and bending workability deteriorates. On the other hand, if the amount of V exceeds 1.0%, VC tends to become coarse, and a 1180 MPa class TS cannot be obtained. Therefore, the V amount is set to 0.6 to 1.0%.

残部はFeおよび不可避的不純物であるが、以下の理由により、さらに、Ti:0.015%以下や、Cr:1%以下、B:0.0030%以下、Mo:0.5%以下およびW:1%以下のうちから選ばれた少なくとも1種の元素が含有されることが好ましい。   The balance is Fe and inevitable impurities, but for the following reasons, Ti: 0.015% or less, Cr: 1% or less, B: 0.0030% or less, Mo: 0.5% or less, and W: 1% or less It is preferable that at least one element selected from the group consisting of:

Ti:0.015%以下
微量のTiは、VCの微細析出を促進し、高強度を得やすくするため添加することが好ましい。この場合、0.001%以上の添加が好ましい。一方、Ti量が0.015%を超えると1μm程度を超える粗大なTiNが形成され、曲げ加工時にTiNとマトリックスの界面から亀裂の発生が促進されるため、曲げ加工性が劣化する。そのため、Ti量の上限は0.015%とする。より好ましくは0.01%以下である。
Ti: 0.015% or less It is preferable to add a small amount of Ti in order to promote fine precipitation of VC and to easily obtain high strength. In this case, addition of 0.001% or more is preferable. On the other hand, if the Ti content exceeds 0.015%, coarse TiN exceeding about 1 μm is formed, and cracking is promoted from the interface between TiN and the matrix during bending, so that bending workability deteriorates. Therefore, the upper limit of Ti amount is 0.015%. More preferably, it is 0.01% or less.

Cr:1%以下
Crは厚さ5μmを超えるようなスケール生成を抑制する効果がある。しかし、Cr量が1%を超えるとフェライト変態を遅滞させてベイナイト相やマルテンサイト相のような硬質相が形成されるため、曲げ加工性が劣化する。そのため、Cr量は1%以下とすることが好ましい。なお、上記したようなCrの効果を得るためには、Cr量は0.1%以上とすることが好ましい。
Cr: 1% or less
Cr has the effect of suppressing scale formation exceeding 5 μm in thickness. However, if the Cr content exceeds 1%, the ferrite transformation is delayed and a hard phase such as a bainite phase or a martensite phase is formed, so that bending workability deteriorates. Therefore, the Cr content is preferably 1% or less. In order to obtain the above Cr effect, the Cr content is preferably 0.1% or more.

B:0.0030%以下
Bはフェライト粒界に偏析することでフェライト粒界を強化し、曲げ加工性をさらに向上させる。しかし、B量が0.0030%を超えるとフェライト変態を遅滞させてベイナイト相やマルテンサイト相のような硬質相が形成されるため、曲げ加工性が劣化する。そのため、B量は0.0030%以下とすることが好ましい。なお、上記したようなBの効果を得るためには、B量は0.0005%以上とすることが好ましい。
B: 0.0030% or less
B segregates at the ferrite grain boundary to strengthen the ferrite grain boundary and further improve the bending workability. However, if the B content exceeds 0.0030%, the ferrite transformation is delayed and a hard phase such as a bainite phase or a martensite phase is formed, so that the bending workability deteriorates. Therefore, the B content is preferably 0.0030% or less. In order to obtain the B effect as described above, the B content is preferably 0.0005% or more.

Mo:0.5%以下
Moはパーライトの生成を抑制する効果を有する。しかし、Mo量が0.5%を超えるとフェライト変態を遅滞させてベイナイト相やマルテンサイト相のような硬質相が形成されるため、曲げ加工性が劣化する。そのため、Mo量は0.5%以下とすることが好ましい。なお、上記したようなMoの効果を得るためには、Mo量は0.03%以上とすることが好ましい。
Mo: 0.5% or less
Mo has the effect of suppressing the formation of pearlite. However, if the Mo content exceeds 0.5%, the ferrite transformation is delayed and a hard phase such as a bainite phase or a martensite phase is formed, so that the bending workability deteriorates. Therefore, the Mo content is preferably 0.5% or less. In order to obtain the effect of Mo as described above, the Mo amount is preferably 0.03% or more.

W:1%以下
Wも、Moと同様、パーライトの生成を抑制する効果を有する。しかし、W量が1%を超えるとフェライト変態を遅滞させてベイナイト相やマルテンサイト相のような硬質相が形成されるため、曲げ加工性が劣化する。そのため、W量は1%以下とすることが好ましい。なお、上記したようなWの効果を得るためには、W量は0.05%以上とすることが好ましい。
W: 1% or less
W, like Mo, has the effect of suppressing the formation of pearlite. However, if the W content exceeds 1%, the ferrite transformation is delayed and a hard phase such as a bainite phase or a martensite phase is formed, so that the bending workability deteriorates. Therefore, the W amount is preferably 1% or less. In order to obtain the above W effect, the W amount is preferably set to 0.05% or more.

本発明の高強度熱延鋼板では、スクラップ原料から不可避的不純物としてCu、Ni、Sb、Asなどの元素が混入される場合があるが、これらの元素の合計が0.2%以下であれば本発明の効果が損なわれることはない。   In the high-strength hot-rolled steel sheet of the present invention, elements such as Cu, Ni, Sb and As may be mixed as inevitable impurities from scrap raw materials, but if the total of these elements is 0.2% or less, the present invention The effect of is not impaired.

2) ミクロ組織
良好な曲げ加工性を確保するには、ベイナイト相、マルテンサイト相、センメンタイト、パーライトなどの粗大な硬質相の生成が極力回避されたフェライト相主体のマトリックスからなるミクロ組織にする必要がある。フェライト相主体とは、マトリックス全体に占めるフェライト相の面積率が95%以上のことであり、98%以上であることがより好ましい。これは、フェライト相以外のベイナイト相、マルテンサイト相、センメンタイト、パーライトなどが面積率で5%以下、好ましくは2%以下であれば存在しても本発明の効果を阻害することがないためである。
2) Microstructure In order to ensure good bending workability, it is necessary to make a microstructure composed of a matrix composed mainly of a ferrite phase in which the formation of coarse hard phases such as bainite phase, martensite phase, cementite and pearlite is avoided as much as possible. There is. The main component of the ferrite phase is that the area ratio of the ferrite phase in the entire matrix is 95% or more, and more preferably 98% or more. This is because even if bainite phase other than ferrite phase, martensite phase, cementite, pearlite, etc. are present in an area ratio of 5% or less, preferably 2% or less, they will not hinder the effects of the present invention. is there.

ここで、マトリックス全体に占めるフェライト相の面積率は、圧延方向と平行な板厚断面を研磨し、ナイタールで腐食した後、走査型電子顕微鏡(倍率:5000倍)にて観察し、画像解析装置により板厚1/4〜3/4の部位の1mm2の領域に占めるフェライト相の面積率で求めた。 Here, the area ratio of the ferrite phase occupying the entire matrix is determined by polishing the plate thickness section parallel to the rolling direction, corroding with nital, and observing with a scanning electron microscope (magnification: 5000 times). Thus, the area ratio of the ferrite phase occupying the 1 mm 2 region of the portion having a thickness of 1/4 to 3/4 was obtained.

しかし、フェライト相主体のマトリックスからなるミクロ組織にしただけでは、1180MPa級のTSが得られない。そこで、本発明では、曲げ加工性に大きな影響を与えることのない微細なVCをマトリックス中に析出させて高強度化を図っている。すなわち、大きさが10nm未満のVCのマトリックス全体に占める合計の体積比を0.01〜0.02とすることにより、優れた曲げ加工性と1180MPa級のTSが確保される。VCの大きさが10nm以上となったり、VCのマトリックス全体に占める合計の体積比が0.01未満では1180MPa級のTSが得られない。また、VCのマトリックス全体に占める合計の体積比が0.02を超えるとTSが1180MPaを大きく上回り、所望の強度水準が得られなくなる。   However, a 1180 MPa class TS cannot be obtained simply by using a microstructure composed of a matrix mainly composed of a ferrite phase. Therefore, in the present invention, high strength is achieved by precipitating fine VC in the matrix that does not greatly affect the bending workability. That is, when the total volume ratio of the entire VC matrix having a size of less than 10 nm is 0.01 to 0.02, excellent bending workability and 1180 MPa class TS are ensured. If the size of the VC is 10 nm or more, or the total volume ratio of the entire VC matrix is less than 0.01, a 1180 MPa class TS cannot be obtained. Further, if the total volume ratio of the entire VC matrix exceeds 0.02, TS greatly exceeds 1180 MPa, and a desired strength level cannot be obtained.

なお、鋼がTiを含有する場合、VC中にTiが固溶し、VCが(V、Ti)Cとなる場合があるが、本願発明のような微量のTi添加では、炭化物中のVとTiの原子濃度比(at%)はV/Ti>0.5であり、上記のVCの大きさや体積比の条件を満たせば同様な効果を有するため、本願発明ではこのような場合もVC(V炭化物)とみなし、VCと表記する。   In addition, when steel contains Ti, Ti may be dissolved in VC and VC may be (V, Ti) C, but with a small amount of Ti addition as in the present invention, V in the carbide and The atomic concentration ratio of Ti (at%) is V / Ti> 0.5, and the same effect is obtained if the above-mentioned conditions for the size and volume ratio of VC are satisfied. ) And written as VC.

ここで、VCの大きさとは、VCが円盤状をなしているため、透過電子顕微鏡によりマトリックスであるフェライト相の[001]方位から観察される正方板状のVCを円盤と仮定し、その平均厚みtと平均直径dから求めたVCの(t+d)/2のことである。なお、VCの大きさをこのように決定できるのは、NaCl型の結晶構造を有するVCがマトリックスとの間に特定の方位関係(Baker-Nutting)を有するためである。   Here, the size of VC means that since VC is in a disc shape, a square plate-like VC observed from the [001] orientation of the ferrite phase as a matrix by a transmission electron microscope is assumed to be a disc, and the average This is (t + d) / 2 of VC obtained from the thickness t and the average diameter d. The reason why the size of VC can be determined in this way is that a VC having a NaCl-type crystal structure has a specific orientation (Baker-Nutting) with the matrix.

また、VCのマトリックス全体に占める合計の体積比は、鋼板の板厚断面の板厚1/4〜1/2の部位より薄膜サンプルを作製して透過型電子顕微鏡で観察し、観察された析出物を前記電子顕微鏡に付帯したEDX(Energy Dispersive X-ray Spectroscopy)とEELS(Electron Energy-Loss Spectroscopy)でVCと確認後、VCの合計の体積を求め、観察した試料全体の体積に対する比として求めた。   In addition, the total volume ratio of the entire VC matrix was determined by preparing a thin film sample from a portion having a thickness of 1/4 to 1/2 of the plate thickness cross section of the steel plate and observing it with a transmission electron microscope. After confirming that the object is VC by EDX (Energy Dispersive X-ray Spectroscopy) and EELS (Electron Energy-Loss Spectroscopy) attached to the electron microscope, the total volume of VC is obtained and obtained as a ratio to the volume of the entire observed sample. It was.

ここで、VCの体積は、球相当体積、すなわち、前記した円盤状のVCの大きさである(t+d)/2を直径とする球を仮定し、球の体積を求めることで求めた。また、VCの体積比は、観察視野でのVCの合計の体積を求め、EELSでの測定から求めた試料厚さに基づき、厚さ100nm当りに換算して、観察した試料全体の体積に対する比として求めた。   Here, the volume of VC was obtained by calculating the volume of the sphere assuming a sphere equivalent volume, that is, a sphere having a diameter of (t + d) / 2, which is the size of the above-described disk-like VC. . In addition, the volume ratio of VC is the ratio of the total volume of the observed sample, calculated by calculating the total volume of VC in the field of view and converting it per 100 nm thickness based on the sample thickness obtained from the EELS measurement. As sought.

3) 製造条件
熱間圧延の仕上温度:900℃以上
仕上温度が900℃未満だと大きなフェライト粒と小さなフェライト粒がバンド状に層構造を形成するため、曲げ加工性が劣化する。そのため、仕上温度は900℃以上とする。
3) Manufacturing conditions Finishing temperature of hot rolling: 900 ° C or more If the finishing temperature is less than 900 ° C, large ferrite grains and small ferrite grains form a layer structure in a band shape, so that the bending workability deteriorates. Therefore, the finishing temperature is 900 ° C. or higher.

なお、仕上温度を900℃以上にするには、熱間圧延前に鋼をオーステナイト単相域まで加熱する必要があるが、VCは、TiCやNbCなどに比べ、容易にオーステナイト相に溶解するため、加熱温度は1150〜1250℃であれば十分である。TiCやNbCの場合は、980MPa以上のTSを得ようとすると1300℃以上の加熱が必要となる。また、本発明では、連続鋳造後の鋼をそのまま熱間圧延する直送圧延の技術も適用することができる。このとき、900℃以上の仕上温度を確保するために、熱間圧延前に補助的な加熱を行うこともできる。   In order to achieve a finishing temperature of 900 ° C or higher, it is necessary to heat the steel to the austenite single-phase region before hot rolling, but VC is more easily dissolved in the austenite phase than TiC, NbC, etc. It is sufficient that the heating temperature is 1150 to 1250 ° C. In the case of TiC or NbC, heating of 1300 ° C or higher is required to obtain TS of 980 MPa or higher. Further, in the present invention, direct feed rolling technology in which the steel after continuous casting is hot-rolled as it is can also be applied. At this time, in order to ensure a finishing temperature of 900 ° C. or higher, auxiliary heating can be performed before hot rolling.

熱間圧延後の冷却条件:平均冷却速度20℃/s以上で700℃以下まで冷却
熱間圧延後は、粗大なVCの析出を抑制するために、平均冷却速度20℃/s以上で700℃以下まで冷却する必要がある。平均冷却速度が20℃/sを超えたり、この冷却速度による冷却を700℃を超える温度で止めるとVCが粗大化して、高強度化が阻害される。
Cooling conditions after hot rolling: Cooling to an average cooling rate of 20 ° C / s or more to 700 ° C or less After hot rolling, in order to suppress precipitation of coarse VC, 700 ° C at an average cooling rate of 20 ° C / s or more It is necessary to cool to the following. If the average cooling rate exceeds 20 ° C / s or cooling at this cooling rate is stopped at a temperature exceeding 700 ° C, VC becomes coarse and high strength is hindered.

巻取温度:500〜680℃
巻取温度が500℃未満では大きさ10nm未満の微細なVCの析出が困難になるとともに、ベイナイト相などの硬質相が形成されやすく、曲げ加工性が低下する。また、680℃を超えるとVCが粗大化して、高強度化が阻害される。そのため、巻取温度は500〜680℃とする。
Winding temperature: 500 ~ 680 ℃
When the coiling temperature is less than 500 ° C., it becomes difficult to precipitate fine VC having a size of less than 10 nm, and a hard phase such as a bainite phase is likely to be formed, resulting in a decrease in bending workability. Moreover, when it exceeds 680 degreeC, VC will coarsen and high intensity | strength will be inhibited. Therefore, the winding temperature is set to 500 to 680 ° C.

なお、本発明の高強度熱延鋼板は、鋼板表面にZn系めっき層などのめっき層を有する鋼板とすることができる。例えば、Zn系めっき層は、通常の溶融あるいは電気めっき法により純ZnやZn合金のめっき層を形成することにより得られる。   The high-strength hot-rolled steel sheet of the present invention can be a steel sheet having a plating layer such as a Zn-based plating layer on the surface of the steel sheet. For example, the Zn-based plating layer can be obtained by forming a pure Zn or Zn alloy plating layer by a normal melting or electroplating method.

表1に示す成分組成を有する鋼1〜25を溶製し、スラブとした。これらのスラブを表2に示す熱延条件で熱間圧延し、板厚2.0mmの熱延鋼板を作製した。このとき、熱間圧延後の鋼板は、平均冷却速度25℃/sで巻取温度まで冷却した。また、鋼25には、巻取り後の鋼板を溶融Znめっきラインに通し、表面に溶融Znめっき層[付着量50g/m2(片面当り)]を形成した。Znめっきラインでは、焼鈍温度を720℃とし、470℃のZnめっき浴(0.1%Al-Zn)中に浸漬後、520℃で合金化処理を行った。そして、上記の方法によりマトリックス全体に占めるフェライト相の面積率、VCの(t+d)/2、およびVCのマトリックス全体に占める合計の体積比を求めた。また、圧延方向に平行にJIS 5号引張試験片を採取し、JIS Z 2241に準拠して、クロスヘッド速度10mm/minで引張試験を行い、TSとElを求めた。さらに、圧延方向が長さとなるように幅50mm長さ100mmの試験片を採取し、頂角90度のV曲げ試験を行い、割れの生じない最小の曲げ半径と板厚の比を限界曲げ半径として測定した。 Steels 1 to 25 having the composition shown in Table 1 were melted to form slabs. These slabs were hot rolled under the hot rolling conditions shown in Table 2 to produce hot rolled steel sheets with a thickness of 2.0 mm. At this time, the steel sheet after hot rolling was cooled to the coiling temperature at an average cooling rate of 25 ° C./s. Further, the steel plate 25 was passed through a hot-dip Zn plating line to form a hot-dip zinc plating layer [adhesion amount 50 g / m 2 (per side)] on the surface. In the Zn plating line, the annealing temperature was set to 720 ° C., and after immersing in a 470 ° C. Zn plating bath (0.1% Al—Zn), alloying was performed at 520 ° C. Then, the area ratio of the ferrite phase in the entire matrix, (t + d) / 2 of VC, and the total volume ratio of VC in the entire matrix were determined by the above method. Further, a JIS No. 5 tensile test piece was taken in parallel with the rolling direction, and a tensile test was performed at a crosshead speed of 10 mm / min in accordance with JIS Z 2241 to obtain TS and El. In addition, specimens with a width of 50 mm and a length of 100 mm were taken so that the rolling direction would be the length, and a V-bend test with a vertex angle of 90 degrees was performed. As measured.

結果を表2に示す。本発明例では、1190〜1395MPa、すなわち1180MPa級のTSが得られ、かつ限界曲げ半径が1.0未満で曲げ加工性にも優れていることがわかる。   The results are shown in Table 2. In the example of the present invention, it is understood that TS of 1190 to 1395 MPa, that is, 1180 MPa class, is obtained, the bending limit radius is less than 1.0, and the bending workability is excellent.

Figure 2012172234
Figure 2012172234

Figure 2012172234
Figure 2012172234

Claims (5)

質量%で、C:0.16〜0.25%、Si:0.5%以下、Mn:1.0%以下、P:0.03%以下、S:0.01%以下、Al:0.07%以下、N:0.01%以下、V:0.6〜1.0%を含み、残部がFeおよび不可避的不純物からなる成分組成を有し、マトリックス全体に占めるフェライト相の面積率が95%以上であり、前記マトリックスにはVCが分散析出しているミクロ組織を有し、かつ前記マトリックス全体に占める前記VCの合計の体積比が0.01〜0.02であり、前記VCを円盤と仮定して求めた平均厚みtと平均直径dの間には、(t+d)/2<10nmの関係が満足されることを特徴とする曲げ加工性に優れた高強度熱延鋼板。   In mass%, C: 0.16-0.25%, Si: 0.5% or less, Mn: 1.0% or less, P: 0.03% or less, S: 0.01% or less, Al: 0.07% or less, N: 0.01% or less, V: 0.6 Containing 1.0 to 1.0%, the balance is composed of Fe and inevitable impurities, the area ratio of the ferrite phase in the entire matrix is 95% or more, and the microstructure in which VC is dispersed and precipitated in the matrix And the total volume ratio of the VC occupying the entire matrix is 0.01 to 0.02, and the average thickness t and the average diameter d obtained by assuming the VC as a disk is (t + d ) / 2 <10nm high-strength hot-rolled steel sheet with excellent bending workability, which satisfies the relationship. さらに、質量%で、Ti:0.015%以下を含有することを特徴とする請求項1に記載の曲げ加工性に優れた高強度熱延鋼板。   2. The high-strength hot-rolled steel sheet having excellent bending workability according to claim 1, further comprising, by mass%, Ti: 0.015% or less. さらに、質量%で、Cr:1%以下、B:0.0030%以下、Mo:0.5%以下、およびW:1%以下のうちから選ばれた少なくとも1種の元素を含有することを特徴とする請求項1または2に記載の曲げ加工性に優れた高強度熱延鋼板。   Furthermore, it contains at least one element selected from Cr by mass%, Cr: 1% or less, B: 0.0030% or less, Mo: 0.5% or less, and W: 1% or less. Item 3. A high-strength hot-rolled steel sheet excellent in bending workability according to Item 1 or 2. 鋼板表面にめっき層を有することを特徴とする請求項1から3のいずれか1項に記載の曲げ加工性に優れた高強度熱延鋼板。   4. The high-strength hot-rolled steel sheet having excellent bending workability according to any one of claims 1 to 3, wherein the steel sheet surface has a plating layer. 請求項1から3のいずれか1項に記載の成分組成を有する鋼を、900℃以上の仕上温度で熱間圧延後、20℃/s以上の平均冷却速度で700℃以下まで冷却し、500〜680℃の巻取温度で巻取ることを特徴とする曲げ加工性に優れた高強度熱延鋼板の製造方法。   The steel having the component composition according to any one of claims 1 to 3, after hot rolling at a finishing temperature of 900 ° C or higher, cooled to 700 ° C or lower at an average cooling rate of 20 ° C / s or higher, 500 A method for producing a high-strength hot-rolled steel sheet excellent in bending workability, characterized by winding at a winding temperature of ˜680 ° C.
JP2011037933A 2011-02-24 2011-02-24 High-strength hot-rolled steel sheet excellent in bending workability and its manufacturing method Active JP5648529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011037933A JP5648529B2 (en) 2011-02-24 2011-02-24 High-strength hot-rolled steel sheet excellent in bending workability and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011037933A JP5648529B2 (en) 2011-02-24 2011-02-24 High-strength hot-rolled steel sheet excellent in bending workability and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2012172234A true JP2012172234A (en) 2012-09-10
JP5648529B2 JP5648529B2 (en) 2015-01-07

Family

ID=46975429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011037933A Active JP5648529B2 (en) 2011-02-24 2011-02-24 High-strength hot-rolled steel sheet excellent in bending workability and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5648529B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141919A1 (en) * 2013-03-15 2014-09-18 株式会社神戸製鋼所 Hot-rolled steel sheet having excellent drawability and post-processing surface hardness

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143518A (en) * 2002-10-23 2004-05-20 Sumitomo Metal Ind Ltd Hot rolled steel sheet
JP2006161112A (en) * 2004-12-08 2006-06-22 Sumitomo Metal Ind Ltd High-strength hot rolled steel sheet and its production method
JP2007063668A (en) * 2005-08-05 2007-03-15 Jfe Steel Kk High-tension steel sheet and process for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143518A (en) * 2002-10-23 2004-05-20 Sumitomo Metal Ind Ltd Hot rolled steel sheet
JP2006161112A (en) * 2004-12-08 2006-06-22 Sumitomo Metal Ind Ltd High-strength hot rolled steel sheet and its production method
JP2007063668A (en) * 2005-08-05 2007-03-15 Jfe Steel Kk High-tension steel sheet and process for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141919A1 (en) * 2013-03-15 2014-09-18 株式会社神戸製鋼所 Hot-rolled steel sheet having excellent drawability and post-processing surface hardness
JP2014177686A (en) * 2013-03-15 2014-09-25 Kobe Steel Ltd Hot rolled steel sheet excellent in drawing processability and surface hardness after processing
CN105026596A (en) * 2013-03-15 2015-11-04 株式会社神户制钢所 Hot-rolled steel sheet having excellent drawability and post-processing surface hardness

Also Published As

Publication number Publication date
JP5648529B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5943156B1 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP5967320B2 (en) High strength steel plate and manufacturing method thereof
JP5943157B1 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP5967319B2 (en) High strength steel plate and manufacturing method thereof
JP4072090B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
TWI460286B (en) Hot rolled steel sheet and method of manufacturing the same
TWI429756B (en) High strength galvanized steel sheet having excellent fatigue resistance and stretch flangeability and method for manufacturing the same
JP5590254B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
TWI433961B (en) High strength galvanized steel sheet having excellent formability and stability of mechanical properties and method for manufacturing the same
WO2013161231A1 (en) High-strength steel sheet and process for producing same
JP2015200012A (en) High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, and high-strength alloy galvanized steel sheet having excellent ductility, stretch-flangeability, and weldability
WO2015151826A1 (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet having excellent ductility, stretch-flangeability, and weldability
JPWO2017131053A1 (en) High-strength steel sheet for warm working and manufacturing method thereof
WO2011090184A1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same
JP2013100574A (en) High-tensile-strength hot-rolled steel sheet superior in material uniformity and method for producing the same
JP4441417B2 (en) High-tensile cold-rolled steel sheet with excellent formability and weldability and method for producing the same
JPWO2017131054A1 (en) High-strength galvanized steel sheet, high-strength member, and method for producing high-strength galvanized steel sheet
JP2014037594A (en) Hot rolled steel sheet
JP6052503B2 (en) High-strength hot-rolled steel sheet and its manufacturing method
WO2017131052A1 (en) High-strength steel sheet for warm working, and method for producing same
JP6344454B2 (en) High-strength steel sheet, method for producing the same, and high-strength galvanized steel sheet
JP5648529B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and its manufacturing method
JP5648530B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and its manufacturing method
JP5652248B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and its manufacturing method
JP5652249B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141027

R150 Certificate of patent or registration of utility model

Ref document number: 5648529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250