WO2014141919A1 - Hot-rolled steel sheet having excellent drawability and post-processing surface hardness - Google Patents

Hot-rolled steel sheet having excellent drawability and post-processing surface hardness Download PDF

Info

Publication number
WO2014141919A1
WO2014141919A1 PCT/JP2014/055296 JP2014055296W WO2014141919A1 WO 2014141919 A1 WO2014141919 A1 WO 2014141919A1 JP 2014055296 W JP2014055296 W JP 2014055296W WO 2014141919 A1 WO2014141919 A1 WO 2014141919A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
crystal grains
steel sheet
hot
steel
Prior art date
Application number
PCT/JP2014/055296
Other languages
French (fr)
Japanese (ja)
Inventor
梶原 桂
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201480011947.0A priority Critical patent/CN105026596B/en
Priority to US14/769,910 priority patent/US20160002745A1/en
Publication of WO2014141919A1 publication Critical patent/WO2014141919A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to a hot-rolled steel sheet that exhibits good drawing workability during processing and exhibits a predetermined surface hardness after processing.
  • cold working (cold forging) has advantages of higher productivity than hot working and warm working and good dimensional accuracy and yield of steel materials.
  • the problem in manufacturing parts by such cold working is that in order to ensure the strength of the cold-worked parts to be higher than the expected value, the strength, ie deformation, is inevitably required. It is necessary to use a steel material with high resistance.
  • the higher the deformation resistance of the steel material used the shorter the life of the cold working die, and the more difficult it is to crack during cold working.
  • This steel material realizes both cold workability and high hardness (high strength) after processing, and is a hot forging material, similar to the wire and bar steel described in Patent Document 1 above.
  • the manufacturing cost is high. Therefore, in order to further reduce the manufacturing cost, it has been studied to produce automobile parts by cold working using hot-rolled steel sheets instead of the conventional hot forging materials.
  • Patent Document 3 For example, a hot-rolled steel sheet for nitriding that has a high surface hardness and a sufficient hardening depth after nitriding has been proposed (see Patent Document 3).
  • N is limited to a very low content as a harmful element, and the technical idea is completely different from the hot-rolled steel sheet according to the present invention that actively uses N. It is.
  • the deep drawing workability of a thin steel sheet used for a car body outer plate of an automobile is determined by the plastic anisotropy of the material (r value (Rankford value): tensile
  • r value Rankford value
  • tensile The greater the ratio between the plate width strain and the plate thickness strain in the test), the higher the workability, and the stronger the ⁇ 111 ⁇ plane parallel to the plane orientation in the recrystallized texture, the ⁇ 100 ⁇ plane orientation
  • C more than 0.0005% and less than 0.10%, Si: 1.5% or less, Mn: 0.1% or more and 3.0% or less, P: 0.080% or less, S: 0 0.03% or less, sol. Al: 0.01% or more and 0.50% or less and N: 0.005% or less, and Nb: 0.20% or less and Ti: 0.20% or less
  • the balance is composed of Fe and inevitable impurities, and the steel structure has a volume fraction of 60% or more as a ferrite phase, and is a three-dimensional crystal orientation density function (ODF) ⁇ 1, ⁇ , ⁇ 2 ⁇ , ⁇ Is 0 °, ⁇ 1 is 0 °, ⁇ 2 is 45 °, the intensity of ODF ⁇ 0 °, 0 °, 45 ° ⁇ is 3.0 or less, ⁇ is 35 °, ⁇ 1 is 0 °, ⁇ 2
  • ODF crystal orientation density function
  • steel bar forging parts (hot forging, cold forging, etc.) are being studied for the production of steel parts with the aim of reducing the weight and cost of parts. Is required.
  • the present invention has been made paying attention to the above circumstances, and an object of the present invention is to provide a hot-rolled steel sheet having a predetermined surface hardness after processing while exhibiting good drawability during processing. .
  • the invention described in claim 1 The plate thickness is 2-15mm, Ingredient composition % By mass (hereinafter the same for chemical components) C: 0.3% or less (excluding 0%), Si: 0.5% or less (excluding 0%), Mn: 0.2 to 1% P: 0.05% or less (excluding 0%), S: 0.05% or less (excluding 0%), Al: 0.01 to 0.1%, N: 0.008 to 0.025%, The balance consists of iron and inevitable impurities, Solid solution N: 0.007% or more, Regarding ferrite crystal grains existing at a position of depth t / 4 (t: plate thickness, the same shall apply hereinafter), The area ratio of ferrite crystal grains whose plate plane orientation is within 10 ° from the (123) plane is 20% or more, The area ratio of ferrite crystal grains whose plate plane orientation is within 10 ° from the (111) plane is 5% or more, The area ratio of ferrite crystal grains whose plate plane orientation is within 10 ° from the (001) plane is 20% or less, A hot-rolled steel sheet having
  • Ingredient composition further Ti: 0.2% or less (excluding 0%), Nb: 0.2% or less (excluding 0%),
  • the hot-rolled steel sheet according to claim 1 or 2 comprising at least one selected from the group consisting of V: 0.2% or less (excluding 0%).
  • composition further B: 0.005% or less (excluding 0%)
  • Ingredient composition further Cu: 5% or less (excluding 0%), Ni: 5% or less (excluding 0%),
  • Ingredient composition further Ca: 0.05% or less (excluding 0%), REM: 0.05% or less (excluding 0%), Mg: 0.02% or less (excluding 0%), Li: 0.02% or less (excluding 0%), Pb: 0.5% or less (excluding 0%),
  • the amount of solute N is ensured and the texture of the hot-rolled steel sheet is controlled to a predetermined structure form, thereby obtaining drawing workability.
  • the hot-rolled steel sheet that prolongs the life of the mold by increasing the deformability during processing, is less prone to cracking in the steel sheet, and the parts obtained after processing can ensure a predetermined surface hardness Can now be provided.
  • the hot-rolled steel sheet according to the present invention (hereinafter also referred to as “the steel sheet of the present invention” or simply “the steel sheet”) will be described in more detail.
  • the steel sheet of the present invention is common to the hot forging material described in Patent Document 2 above in that the amount of N solid solution is ensured, but the C content is allowed to a higher range, and the texture structure of the steel sheet is changed. The difference is that the ferrite grains are refined while being controlled.
  • the steel sheet of the present invention has a thickness of 2 to 15 mm. If the plate thickness is less than 2 mm, rigidity as a structure cannot be secured. On the other hand, if the plate thickness exceeds 15 mm, it is difficult to achieve the texture form defined in the present invention, and the desired drawing workability improvement effect cannot be obtained.
  • a preferred plate thickness is 3 to 14 mm.
  • Component composition of the steel sheet of the present invention ⁇ C: 0.3% or less (excluding 0%)>
  • C is an element having a great influence on the formation of the structure of the steel sheet, and the structure is a ferrite main structure or a ferrite-pearlite multiphase structure, but the content is to make the ferrite main structure with as little pearlite as possible. It is an element that needs to be restricted.
  • the C content in the steel sheet is limited to 0.3% or less, preferably 0.25% or less, more preferably 0.2% or less, and particularly preferably 0.15% or less.
  • the content of C is too small, deoxidation during melting of steel becomes difficult, and it becomes difficult to satisfy the strength and surface hardness after deep drawing, so 0.0005% or more, Preferably it is 0.0008% or more, particularly preferably 0.001% or more.
  • Si 0.5% or less (excluding 0%)>
  • Si is an element that needs to be reduced as much as possible in order to increase the deformation resistance of the steel sheet by dissolving in steel. Therefore, the Si content in the steel sheet is 0.5% or less, preferably 0.45% or less, more preferably 0.4% or less, and particularly preferably 0.3% or less in order to suppress an increase in deformation resistance. Restrict to. However, if the Si content is extremely small, deoxidation during melting becomes difficult, and it becomes difficult to satisfy the strength and surface hardness after deep drawing, so 0.005% or more, more preferably Is 0.008% or more, particularly preferably 0.01% or more.
  • Mn is an element having a deoxidizing and desulfurizing action in the steel making process. Furthermore, when the content of N in the steel material is increased, cracks are likely to occur due to dynamic strain aging due to heat generation during processing. On the other hand, Mn improves the workability at that time and has the effect of suppressing cracks. . In order to effectively exhibit these actions, the Mn content in the steel material is 0.2% or more, preferably 0.22% or more, and more preferably 0.25% or more. However, when the Mn content is excessive, the deformation resistance becomes excessive and the structure is not uniform due to segregation. Therefore, the content is set to 1% or less, preferably 0.98% or less, and more preferably 0.95% or less.
  • P 0.05% or less (excluding 0%)>
  • P is an impurity element inevitably contained in the steel, but if it is contained in ferrite, it segregates at the ferrite grain boundaries and degrades the cold workability. It is an element that causes an increase. Therefore, it is desirable to reduce the P content as much as possible from the viewpoint of cold workability. However, since extreme reduction leads to an increase in steelmaking costs, it is 0.05% or less, preferably in consideration of process capability. 0.03% or less.
  • S 0.05% or less (excluding 0%)>
  • S is an unavoidable impurity and is an element that precipitates in the form of a film at the grain boundary as FeS and degrades workability. It also has the effect of causing hot brittleness. Therefore, from the viewpoint of improving the deformability, in the present invention, the S content is set to 0.05% or less, preferably 0.03% or less. However, it is industrially difficult to reduce the S content to zero. In addition, since S has an effect of improving machinability, it is recommended to contain 0.002% or more, more preferably 0.006% or more from the viewpoint of improving machinability.
  • Al is an element effective for deoxidation in the steelmaking process.
  • the Al content in the steel material is set to 0.01% or more, preferably 0.015% or more, and more preferably 0.02% or more.
  • the Al content is 0.1% or less, preferably 0.09% or less, and more preferably 0.08% or less.
  • N is an important element for obtaining a predetermined strength by static strain aging after processing. Therefore, the N content in the steel material is 0.008% or more, preferably 0.0085% or more, and more preferably 0.009% or more. However, if the N content is excessive, in addition to static strain aging, the influence of dynamic strain aging during processing becomes significant, and deformation resistance increases, which is unsuitable. Therefore, 0.025% or less, preferably 0 0.02% or less, more preferably 0.02% or less.
  • Solid solution N amount a predetermined amount of solid solution N in the steel sheet
  • the amount of solute N needs to be 0.007% or more.
  • the content is preferably 0.03% or less.
  • content of N in steel materials is 0.025% or less, the amount of solute N does not become 0.025% or more substantially.
  • the solid solution N amount in the present invention is an amount obtained by subtracting the amount of all N compounds from the total N amount in the steel material in accordance with JIS G 1228.
  • a practical method for measuring the amount of dissolved N will be exemplified below.
  • the sample material is dissolved in this 10% AA-based electrolyte, and the resulting insoluble residue (N compound) is filtered through a polycarbonate filter having a hole size of 0.1 ⁇ m.
  • the obtained insoluble residue is decomposed by heating in a chip made of sulfuric acid, potassium sulfate and pure copper, and the decomposition product is combined with the filtrate.
  • steam distillation is performed, and the distilled ammonia is absorbed in dilute sulfuric acid.
  • phenol, sodium hypochlorite and sodium pentacyanonitrosyl iron (III) are added to form a blue complex, and the absorbance is measured using an absorptiometer to determine the total N compound amount.
  • the amount of solid solution N can be calculated
  • the steel of the present invention basically contains the above components, and the balance is iron and inevitable impurities, but the following permissible components can be added as long as the effects of the present invention are not impaired.
  • Cr is an element that has the effect of improving the deformability of steel by increasing the strength of the grain boundaries.
  • Cr is preferably contained in an amount of 0.2% or more. .
  • the content is recommended to be 2% or less, more preferably 1.5% or less, especially 1% or less. Is done.
  • Mo is an element having an action of increasing the hardness and deformability of the steel material after processing. In order to effectively exhibit such action, Mo is 0.04% or more, more preferably 0. It is preferable to contain 0.08% or more. However, if Mo is excessively contained, the cold workability may be deteriorated. Therefore, the content is recommended to be 2% or less, further 1.5% or less, particularly 1% or less.
  • ⁇ Ti 0.2% or less (excluding 0%), Nb: 0.2% or less (excluding 0%), V: at least one selected from the group consisting of 0.2% or less (excluding 0%)>
  • Nb 0.2% or less (excluding 0%)
  • V at least one selected from the group consisting of 0.2% or less (excluding 0%)>
  • These elements have a strong affinity for N, coexist with N to form N compounds, refine steel grains, improve the toughness of processed products obtained after cold working, and improve crack resistance. It is an element that has a role to improve. However, even if each element is contained exceeding the upper limit value, the effect of improving the characteristics cannot be obtained. It is recommended that the content of each element is 0.2% or less, further 0.001 to 0.15%, particularly 0.002 to 0.1%.
  • ⁇ B 0.005% or less (excluding 0%)>
  • B like Ti, Nb, and V, has a strong affinity with N, and coexists with N to form an N compound, refines the grain of steel, and improves the toughness of the workpiece obtained after cold working And an element having a role of improving crack resistance. Therefore, when the steel sheet of the present invention contains B, the required solid solution N amount can be secured and the strength after cold working can be improved, so the content is 0.005% or less, and further 0 0.0001 to 0.0035%, especially 0.0002 to 0.002% is recommended.
  • ⁇ Cu 5% or less (excluding 0%), Ni: 5% or less (excluding 0%), Co: at least one selected from the group consisting of 5% or less (excluding 0%)>
  • All of these elements have the effect of strain aging and hardening the steel material, and are effective in improving the strength after processing. In order to effectively exhibit such an action, these elements are preferably contained in an amount of 0.1% or more, and more preferably 0.3% or more. However, if the content of these elements is excessive, the effects of strain aging and hardening of the steel material, and the effect of improving the strength after processing are saturated, and there is a possibility of promoting cracking. In the following, 4% or less, particularly 3% or less is recommended.
  • Ca is an element that spheroidizes sulfide compound inclusions such as MnS, improves the deformability of steel, and contributes to improvement of machinability.
  • Ca is preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more. However, even if contained excessively, the effect is saturated and an effect commensurate with the content cannot be expected. Therefore, 0.05% or less, further 0.03% or less, particularly 0.01% or less is recommended.
  • REM is an element that, like Ca, spheroidizes compound inclusions such as MnS to increase the deformability of steel and contribute to the improvement of machinability.
  • REM is preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more.
  • REM means a lanthanoid element (15 elements from La to Ln), Sc (scandium) and Y (yttrium).
  • it is preferable to contain at least one element selected from the group consisting of La, Ce and Y, more preferably La and / or Ce.
  • Mg is an element that spheroidizes sulfide compound inclusions such as MnS to enhance the deformability of steel and contribute to the improvement of machinability.
  • Mg is preferably contained in an amount of 0.0002% or more, more preferably 0.0005% or more.
  • 0.02% or less is an element that spheroidizes sulfide compound inclusions such as MnS to enhance the deformability of steel and contribute to the improvement of machinability.
  • Mg is preferably contained in an amount of 0.0002% or more, more preferably 0.0005% or more.
  • 0.02% or less, further 0.015% or less, and particularly 0.01% or less is recommended.
  • Li can spheroidize sulfide compound inclusions such as MnS and increase the deformability of steel like Ca, and lower the melting point of Al-based oxides to make them harmless and improve machinability. It is a contributing element.
  • Li is preferably contained in an amount of 0.0002% or more, and more preferably 0.0005% or more. However, even if contained excessively, the effect is saturated and an effect commensurate with the content cannot be expected, so 0.02% or less, further 0.015% or less, and particularly 0.01% or less is recommended.
  • Pb is an effective element for improving machinability.
  • Pb is preferably contained in an amount of 0.005% or more, and more preferably 0.01% or more. However, if it is contained excessively, production problems such as generation of rolling defects occur, so 0.5% or less, further 0.4% or less, particularly 0.3% or less is recommended.
  • Bi is an element effective for improving the machinability like Pb.
  • Bi is preferably contained in an amount of 0.005% or more, and more preferably 0.01% or more.
  • the effect of improving the machinability is saturated even if contained excessively, 0.5% or less, further 0.4% or less, and particularly 0.3% or less are recommended.
  • the steel sheet of the present invention is based on ferrite-based or ferrite-pearlite double phase steel, and is particularly characterized by controlling the plane direction of ferrite crystal grains and the size thereof within a specific range.
  • the texture of the steel sheet of the present invention is composed of a multiphase structure of ferrite and pearlite. If excessive pearlite is present, the formability of the steel sheet is deteriorated. Therefore, the pearlite is preferably 10% or less, more preferably 9% or less, and particularly preferably 8% or less in terms of area ratio. The balance is ferrite.
  • the ferrite crystal grains present at the position of the depth t / 4 have an area ratio of ferrite crystal grains having a plate plane orientation within 10 ° from the (123) plane of 20% or more, and from the (111) plane to 10%.
  • the drawability of the hot rolled steel sheet is improved. be able to.
  • the (111) plane orientation parallel to the plate surface is strongly developed while the (001) plane orientation is effective for improving deep drawability.
  • the sheet surface orientation can be controlled in the cold rolling process and the annealing process, the hot rolling process has a thickness of 2 to 15 mm and the thickness of the steel sheet is 2 to 15 mm. With a steel plate, it is difficult to control the orientation of the plate surface.
  • the ferrite crystal grains having the (123) plane as the plate surface orientation have the effect of improving the formability and deep drawability. 20% or more is necessary. Preferably it is 22% or more, more preferably 24% or more, particularly preferably 26% or more.
  • the (111) plane also has an effect of improving moldability and deep drawability, and in order to effectively exhibit such an effect, the area ratio is 5% or more, preferably 6% or more, more preferably 8% or more is necessary.
  • the area ratio is limited to 20% or less, preferably 18% or less, and more preferably 15% or less.
  • tissue form of a hot-rolled steel plate has a structure distribution in the plate
  • tissue form was prescribed
  • ferrite crystal grains whose plate plane orientation is within 10 ° from each of the ideal plane orientations ((123) plane, (111) plane, (001) plane) have almost the same action.
  • Each area ratio of ferrite crystal grains having a plate surface orientation is defined.
  • the average grain size of the ferrite crystal grains constituting the ferrite structure is 3 to 35 ⁇ m in order to improve the workability (drawing workability, bending workability, press workability) of the steel sheet and satisfy the surface properties after working. It must be in range. If the ferrite crystal grains become too fine, the deformation resistance becomes too high, so the average grain size is 3 ⁇ m or more, preferably 4 ⁇ m or more, and more preferably 5 ⁇ m or more. On the other hand, if the ferrite crystal grains become too coarse, the toughness, fatigue characteristics, etc.
  • the hot rolled steel sheet has a ferrite crystal grain size distribution in the sheet thickness direction, but the average grain diameter of the ferrite crystal grain is defined with a depth position of 1/4 of the sheet thickness as a representative position.
  • each test steel plate carries out a nital corrosion, and 5 field-of-views are image
  • SEM scanning electron microscope
  • the plate surface orientation of the ferrite crystal grains is measured and analyzed by SEM-EBSP [Electron Back Scattering Pattern and EBSD (Electron Back Scattering Diffraction).
  • SEM-EBSP Electromagnetic Back Scattering Pattern and EBSD (Electron Back Scattering Diffraction).
  • SEM device for example, SEM (JEOLJSM5410) manufactured by JEOL Ltd. is used, and for example, EBSP: manufactured by TSL (OIM) is used as the EBSP measurement analysis system.
  • the measurement area of the sample is 300 to 1000 ⁇ m ⁇ 300 to 1000 ⁇ m, and the measurement step interval is, for example, 1 to 3 ⁇ m or less. From the crystal orientation of each ferrite crystal grain thus identified, the total area is obtained by summing the orientations within 10 ° from each ideal plane orientation, and divided by the area of the measurement region. The area ratio for each direction was determined.
  • the average grain size of the ferrite crystal grains is determined by measuring the maximum diameter of each ferrite crystal grain observed in a predetermined measurement region using the SEM-EBSP and measurement conditions thereof, and calculating the average value of the average grain diameters. Obtained as the diameter.
  • the steel plate of the present invention may be produced according to any method as long as the raw steel having the above composition can be formed into a desired plate thickness. For example, it can be carried out by preparing a molten steel having the above component composition in a converter under the conditions shown below, slab this by ingot casting or continuous casting, and then rolling it into a hot-rolled steel sheet having a desired thickness. .
  • the N content in the molten steel is adjusted by adding a raw material containing an N compound to the molten steel and / or controlling the converter atmosphere to an N 2 atmosphere during melting in the converter. can do.
  • Heating before hot rolling is performed at 1100 to 1300 ° C. This heating requires high-temperature heating conditions in order to dissolve as much N as possible without producing an N compound.
  • the minimum with a preferable heating temperature is 1100 degreeC, and a more preferable minimum is 1150 degreeC.
  • temperatures exceeding 1300 ° C. are difficult to operate.
  • Hot rolling is performed so that the finish rolling temperature is 870 ° C. or higher. If the finish rolling temperature is too low, ferrite transformation occurs at a high temperature, the precipitated carbides in the ferrite become coarse, and the fatigue strength deteriorates. Therefore, a certain finish rolling temperature is required.
  • the finish rolling temperature is more preferably 900 ° C. or higher in order to coarsen the austenite grains and increase the ferrite grain size to some extent.
  • the upper limit of the finish rolling temperature is set to 1000 ° C. because it is difficult to secure the temperature.
  • the thickness of the hot-rolled steel sheet of the present invention is 2 to 15 mm.
  • the final reduction ratio of tandem rolling of finish rolling needs to be 15% or more. Normally, the finish rolling is performed by tandem rolling of 5 to 7 passes, but a pass schedule is set from the viewpoint of control of sheet penetration, and the final rolling reduction is about 12 to 13%.
  • the final rolling reduction is preferably 16% or more, more preferably 17% or more. The higher the final reduction ratio is 20% or 30%, the more effective the crystal grains are refined, but the upper limit is defined to be about 30% from the viewpoint of rolling control.
  • Rolling speed of hot rolling In order to obtain a texture of ferrite crystal grains having the plate surface orientation as described above and to control the texture in the thickness direction to be as uniform as possible, it is necessary to control the rolling speed of finish rolling. For this reason, the rolling speed of the final pass is controlled to 300 to 700 m / min. If the rolling speed is too high or too low, it is difficult to obtain a desired plate surface orientation, and the texture in the plate thickness direction tends to be uneven, which is not preferable. In addition, when the rolling speed is low, the productivity also deteriorates. Preferably, it is 350 to 650 m / min, more preferably 400 to 600 m / mim.
  • the quenching stop temperature is 670 ° C. or higher, the precipitated carbide in the ferrite is coarsened, and the drawing workability and bending workability are similarly deteriorated.
  • the quenching stop temperature is preferably 600 to 650 ° C, more preferably 610 to 640 ° C.
  • the drawing workability of the hot-rolled steel sheet is a steel sheet having a thickness of about 4 to 10 mm, and was evaluated by a cylindrical forming test.
  • the punch size was 100 mm, punch shoulder R8 mm, die diameter 103 mm, and die shoulder R8 mm.
  • the maximum blank diameter at which the cylinder can be squeezed without causing breakage by one squeezing is defined as Dmax, with the ratio (D / d) of the blank diameter (D) to the cylinder diameter (d).
  • Dmax / d was defined as “limit drawing ratio” (LDR (Limiting Drawing Ratio)), and this was used as an evaluation index.
  • LDR Limit drawing ratio
  • the hardness of the surface portion of the flange portion after the drawing test was measured, and the surface hardness after processing was evaluated.
  • load 1000 g
  • measurement position D / 4 position center of test piece cross section (D: part diameter)
  • number of measurements 5 times Vickers hardness of each processed test piece
  • the thickness (Hv) was measured. And the thing more than 250Hv was set as the pass.
  • steel no. 1, 2, 7 to 14, 25 to 31 all satisfy the requirements of the structure provision of the present invention as a result of manufacturing with the recommended hot rolling conditions using the steel grade that satisfies the requirements of the compositional composition of the present invention.
  • Inventive steel, drawing workability and post-working surface hardness all meet the acceptance criteria, while exhibiting good drawing workability during working, and exhibiting a predetermined surface hardness (strength) after working It was confirmed that a rolled steel sheet was obtained.
  • Steel No. 3 to 6 and 15 to 24 are comparative steels that do not satisfy at least one of the component composition and the structure requirements specified in the present invention, and at least one of drawing workability and post-working surface hardness meets the acceptance criteria. not filled.
  • steel No. 3 although the requirements of the component composition are satisfied, the heating temperature before hot rolling, the finish rolling temperature during hot rolling, and the quenching stop temperature after hot rolling are too low outside the recommended range, and the amount of solute N is too low.
  • ferrite crystal grains with the (123) plane orientation In addition to the shortage of ferrite crystal grains with the (123) plane orientation, ferrite crystal grains with the (001) plane orientation become excessive, and both drawability and surface hardness after processing are inferior.
  • steel No. In No. 16 steel type k
  • the hot rolling conditions are in the recommended range, but the N content is too high and at least the drawability is inferior.
  • Steel No. No. 17 (steel type l) has a hot rolling condition in the recommended range, but the C content is too high, the amount of solute N is insufficient, and the surface hardness after processing is inferior.
  • steel No. 20 steel type o
  • the hot rolling conditions are in the recommended range, the Mn content is too high, and the ferrite crystal grains with (123) orientation are insufficient, while the ferrite grains with (001) orientation are excessive. Therefore, at least the drawability is inferior.
  • steel No. 24 steel type s
  • the hot rolling conditions are in the recommended range
  • the Al content is too high
  • (123) plane orientation ferrite crystal grains are insufficient
  • (001) plane orientation ferrite crystal grains are excessive. Therefore, at least the drawability is inferior.
  • the hot-rolled steel sheet of the present invention is used for transmission parts such as automobile gears, cases, and the like, and it is possible to reduce the weight and strength of these parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

A hot-rolled steel sheet having a sheet thickness of 2 to 15 mm and having a component composition, by mass, of 0.3% or less of C, 0.5% or less of Si, 0.2 to 1% of Mn, 0.05% or less of P, 0.05% or less of S, 0.01 to 0.1% of Al, and 0.008 to 0.025% of N, with the remainder made up by iron and unavoidable impurities, the solid-solution N being at least 0.007%. In ferrite crystal grains located at the position of depth t/4 (where t is the thickness of the hot-rolled steel sheet), the area ratio of crystal grains within a plane orientation of 10º from the (123) plane is at least 20%, the area ratio of crystal grains within a plane orientation of 10º from the (111) plane is at least 5%, the area ratio of crystal grains within a plane orientation of 10º from the (001) plane is no more than 20%, and the average grain diameter of ferrite crystal grains located at the position of depth t/4 is 3 to 35 μm.

Description

絞り加工性と加工後の表面硬さに優れる熱延鋼板Hot-rolled steel sheet with excellent drawability and surface hardness after processing
 本発明は、加工中は良好な絞り加工性を示しつつ、加工後は所定の表面硬さを示す熱延鋼板に関する。 The present invention relates to a hot-rolled steel sheet that exhibits good drawing workability during processing and exhibits a predetermined surface hardness after processing.
 近年、環境保護の観点から、自動車の燃費向上を目的として、自動車用の各種部品、例えばギヤなどのトランスミッション部品やケース等に用いられる鋼材の軽量化、すなわち高強度化に対する要求が益々高まっている。このような軽量化・高強度化の要請に応えるために、一般に用いられる鋼材としては、棒鋼を熱間鍛造した鋼材(熱間鍛造材)が用いられてきた。また、部品製造工程におけるCOの排出量削減のため、これまで熱間鍛造によって加工されていたギヤなどの部品の冷間鍛造化に関する要求も高まっている。 In recent years, from the viewpoint of environmental protection, for the purpose of improving the fuel efficiency of automobiles, there is an increasing demand for reducing the weight of steel materials used for various parts for automobiles, for example, transmission parts such as gears and cases, that is, increasing the strength. . In order to meet such demands for weight reduction and high strength, steel materials obtained by hot forging steel bars (hot forging materials) have been used as steel materials that are generally used. In addition, in order to reduce CO 2 emissions in the component manufacturing process, there is an increasing demand for cold forging of components such as gears that have been processed by hot forging.
 ところで、冷間加工(冷間鍛造)は、熱間加工や温間加工に比較して生産性が高く、しかも寸法精度および鋼材の歩留まりがともに良好な利点がある。しかし、このような冷間加工によって部品を製造する場合に問題となるのは、冷間加工された部品の強度を期待される所定値以上に確保するためには、必然的に強度、すなわち変形抵抗の高い鋼材を用いる必要があることである。ところが、使用する鋼材の変形抵抗が高いものほど冷間加工用金型の寿命短縮を招くばかりか、冷間加工時に割れが発生しやすい難点がある。  By the way, cold working (cold forging) has advantages of higher productivity than hot working and warm working and good dimensional accuracy and yield of steel materials. However, the problem in manufacturing parts by such cold working is that in order to ensure the strength of the cold-worked parts to be higher than the expected value, the strength, ie deformation, is inevitably required. It is necessary to use a steel material with high resistance. However, the higher the deformation resistance of the steel material used, the shorter the life of the cold working die, and the more difficult it is to crack during cold working.
 このため、従来は、鋼材を所定形状に冷間鍛造した後、焼入れ焼戻し等の熱処理を行うことで、所定の強度(硬さ)が確保された高強度部品を製造する方法が実施されることもあった。しかしながら、冷間鍛造後の熱処理は、部品寸法が必然的に変化するため、二次的に切削などの機械加工により修正する必要があり、熱処理やその後の加工が省略できるような解決策が望まれていた。  For this reason, conventionally, after cold forging a steel material into a predetermined shape, a method of manufacturing a high-strength part with a predetermined strength (hardness) is performed by performing a heat treatment such as quenching and tempering. There was also. However, since heat treatment after cold forging inevitably changes the part dimensions, it is necessary to correct by secondary machining such as cutting, and a solution that can omit heat treatment and subsequent machining is desired. It was rare.
 上記課題を解決すべく、たとえば、低炭素鋼で固溶Cを利用して常温時効の進行を抑制し、歪時効による所定の時効硬化量を確保することで、歪時効特性に優れた冷間鍛造用線材・棒鋼が得られることが開示されている(特許文献1参照)。 In order to solve the above-mentioned problem, for example, by using solute C in low carbon steel, the progress of normal temperature aging is suppressed, and a predetermined age hardening amount due to strain aging is ensured, thereby providing a cold having excellent strain aging characteristics. It is disclosed that a wire rod and steel bar for forging can be obtained (see Patent Document 1).
 しかしながら、この技術は、固溶C量のみによって歪時効を制御するものであり、十分な冷間加工性と、加工後の所要の硬さ・強度を両立する鋼材を得ることは困難であった。 However, this technique controls strain aging only by the amount of solute C, and it is difficult to obtain a steel material that has both sufficient cold workability and required hardness and strength after processing. .
 そこで、本出願人は、鋼材に含まれる固溶Cと固溶Nが変形抵抗と静的ひずみ時効に及ぼす影響の違いに着目し、種々検討した結果、これらの固溶元素の量を適正に制御することで、加工中は良好な冷間加工性を発揮しつつ、冷間加工(冷間鍛造)後は所定の表面硬さ(強度)を示す機械構造用鋼材が得られることを知見し、すでに特許出願を行った(特許文献2参照)。 Therefore, the present applicant paid attention to the difference in the effects of solute C and solute N contained in steel materials on deformation resistance and static strain aging, and as a result of various studies, the amount of these solute elements was appropriately determined. By controlling, it was found that a steel material for machine structure showing a predetermined surface hardness (strength) was obtained after cold working (cold forging) while exhibiting good cold workability during working. A patent application has already been filed (see Patent Document 2).
 この鋼材は、冷間加工性と加工後の高硬度化(高強度化)の両立を実現したものであるが、上記特許文献1に記載された線材・棒鋼と同様、熱間鍛造材であり、製造コストが高いことが難点であった。そこで、製造コストのさらなる低コスト化のために、従来の熱間鍛造材に替えて、熱延鋼板で自動車用部品を冷間加工により作製することも検討されている。 This steel material realizes both cold workability and high hardness (high strength) after processing, and is a hot forging material, similar to the wire and bar steel described in Patent Document 1 above. The manufacturing cost is high. Therefore, in order to further reduce the manufacturing cost, it has been studied to produce automobile parts by cold working using hot-rolled steel sheets instead of the conventional hot forging materials.
 たとえば、窒化処理後に高い表面硬度および十分な硬化深さが得られる窒化処理用の熱延鋼板が提案されている(特許文献3参照)。 For example, a hot-rolled steel sheet for nitriding that has a high surface hardness and a sufficient hardening depth after nitriding has been proposed (see Patent Document 3).
 しかしながら、この技術は、冷間加工後にさらに窒化処理を必要とするものであり、十分な低コスト化が実現できない問題がある。 However, this technique requires further nitriding after cold working, and there is a problem that a sufficient cost reduction cannot be realized.
 また、C:0.10%以下、Si:0.01%未満、Mn:1.5%以下およびAl:0.20%以下を含有すると共に、(Ti+Nb)/2:0.05~0.50%の範囲で含有し、S:0.005%以下、N:0.005%以下、O:0.004%以下、S,NおよびOの合計が0.0100%以下で含む組成とし、かつミクロ組織を95%以上の実質的フェライト単相組織とする熱延鋼板が提案されており、この熱延鋼板は、精密打ち抜き加工面の寸法精度に優れ、かつ加工後の打ち抜き面の表面硬度が極めて高く、さらには耐赤スケール疵性にも優れるとしている(特許文献4参照)。  Further, it contains C: 0.10% or less, Si: less than 0.01%, Mn: 1.5% or less, and Al: 0.20% or less, and (Ti + Nb) / 2: 0.05-0. 50% of the content, S: 0.005% or less, N: 0.005% or less, O: 0.004% or less, S, N and O is a total composition containing 0.0100% or less, In addition, a hot-rolled steel sheet having a microstructure of 95% or more of a substantially ferritic single-phase structure has been proposed. This hot-rolled steel sheet has excellent dimensional accuracy of a precision stamped surface and surface hardness of the stamped surface after processing. Is extremely high, and is also excellent in red scale resistance (see Patent Document 4).
 しかしながら、この熱延鋼板は、Nは有害元素として、きわめて低い含有量に制限されており、Nを積極的に利用する本願発明に係る熱延鋼板とは、技術的思想をまったく異にするものである。 However, in this hot-rolled steel sheet, N is limited to a very low content as a harmful element, and the technical idea is completely different from the hot-rolled steel sheet according to the present invention that actively uses N. It is.
 一般に、従前より鋼板の成形性向上のための集合組織制御に関しては、自動車の車体外板に用いられる薄鋼板の深絞り加工性は、材料の塑性異方性(r値(Lankford値):引張り試験における板幅ひずみと板厚ひずみの比)が大きいほど、その加工性が高くなること、さらに再結晶集合組織において板面方位に平行な{111}面を強く発達させ、{100}面方位を弱めることが深絞り性の向上に不可欠であることが実験的にも理論的にも明らかにされている(非特許文献1参照)。 In general, with regard to texture control for improving the formability of a steel sheet, the deep drawing workability of a thin steel sheet used for a car body outer plate of an automobile is determined by the plastic anisotropy of the material (r value (Rankford value): tensile The greater the ratio between the plate width strain and the plate thickness strain in the test), the higher the workability, and the stronger the {111} plane parallel to the plane orientation in the recrystallized texture, the {100} plane orientation It has been clarified experimentally and theoretically that it is indispensable to improve the deep drawability (see Non-Patent Document 1).
 このため、鋼板の集合組織制御による加工性向上の取り組みは、種々行われている。 For this reason, various efforts have been made to improve workability by controlling the texture of steel sheets.
 例えば、質量%にて、C:0.01~0.1%、Si:0.01~2%、Mn:0.05~3%、P≦0.1%、S≦0.03%、Al:0.005~2.0%、N≦0.01%、B:0.0005~0.0030を含み、さらにTi-(48/12)C-(48/14)N-(48/32)S≧-0.03%を満たす範囲でTiを含有し、残部がFe及び不可避的不純物からなる鋼板であって、その鋼板の硬さのばらつきをその平均値で除した値が0.2以下であり、かつ、圧延方向の{110}面の面強度が1.7以下である高強度薄鋼板が提案されており、打ち抜き穴広げ性に優れるとしている(特許文献5参照)。 For example, in mass%, C: 0.01 to 0.1%, Si: 0.01 to 2%, Mn: 0.05 to 3%, P ≦ 0.1%, S ≦ 0.03%, Al: 0.005 to 2.0%, N ≦ 0.01%, B: 0.0005 to 0.0030, and Ti— (48/12) C— (48/14) N— (48 / 32) A steel plate containing Ti within a range satisfying S ≧ −0.03%, with the balance being Fe and inevitable impurities, and a value obtained by dividing the variation in hardness of the steel plate by its average value is 0.00. A high-strength thin steel sheet having a surface strength of 2 or less and a {110} plane in the rolling direction of 1.7 or less has been proposed (see Patent Document 5).
 また、質量%でC:0.0005%超0.10%未満、Si:1.5%以下、Mn:0.1%以上3.0%以下、P:0.080%以下、S:0.03%以下、sol.Al:0.01%以上0.50%以下およびN:0.005%以下を含み、かつNb:0.20%以下およびTi:0.20%以下のうちから選んだ1種または2種を含有し、残部はFeおよび不可避不純物の組成からなり、鋼組織を、体積分率で60%以上がフェライト相とし、3次元結晶方位の密度関数(ODF){φ1,Φ,φ2}で、Φが0°で、φ1が0°、φ2が45°のときのODF{0°,0°,45°}の強度が3.0以下で、かつΦが35°で、φ1が0°、φ2が45°のときのODF{0°,35°,45°}の強度が2.5以上4.5以下の範囲とする高強度鋼板が提案されており、プレス成形の際に、割れ難く、かつ延性の異方性が小さい高強度鋼板が提供できるとしている(特許文献6参照)。  Further, in mass%, C: more than 0.0005% and less than 0.10%, Si: 1.5% or less, Mn: 0.1% or more and 3.0% or less, P: 0.080% or less, S: 0 0.03% or less, sol. Al: 0.01% or more and 0.50% or less and N: 0.005% or less, and Nb: 0.20% or less and Ti: 0.20% or less The balance is composed of Fe and inevitable impurities, and the steel structure has a volume fraction of 60% or more as a ferrite phase, and is a three-dimensional crystal orientation density function (ODF) {φ1, Φ, φ2}, Φ Is 0 °, φ1 is 0 °, φ2 is 45 °, the intensity of ODF {0 °, 0 °, 45 °} is 3.0 or less, Φ is 35 °, φ1 is 0 °, φ2 A high-strength steel sheet has been proposed in which the strength of ODF {0 °, 35 °, 45 °} when the angle is 45 ° is in the range of 2.5 or more and 4.5 or less. In addition, a high-strength steel sheet having low ductility anisotropy can be provided (see Patent Document 6).
 質量%で、C:0.01~0.05%、Si:0.2%以下、Mn:0.50%以下、Al:0.005~0.10%、P:0.05%以下、S:0.05%以下、N:0.01%以下、O:0.01%以下を含み、残部Feおよび不可避的不純物からなる組成と、平均結晶粒径が40~60μmであるフェライト相単相で、かつ、{118}〈110〉および{115}〈110〉のランダム強度比がそれぞれ10以上、{111}〈110〉および{111}〈121〉のランダム強度比がそれぞれ1以下である組織を有する熱延鋼板が提案されており、冷延-再結晶焼鈍後の面内異方性が小さい熱延鋼板が提供できるとしている(特許文献7参照)。 In mass%, C: 0.01 to 0.05%, Si: 0.2% or less, Mn: 0.50% or less, Al: 0.005 to 0.10%, P: 0.05% or less, S: 0.05% or less, N: 0.01% or less, O: 0.01% or less, a composition comprising the balance Fe and inevitable impurities, and a ferrite phase unit having an average crystal grain size of 40 to 60 μm And {118} <110> and {115} <110> have a random intensity ratio of 10 or more, and {111} <110> and {111} <121> each have a random intensity ratio of 1 or less. A hot-rolled steel sheet having a structure has been proposed, and a hot-rolled steel sheet having small in-plane anisotropy after cold rolling-recrystallization annealing can be provided (see Patent Document 7).
 以上の例のように集合組織制御による鋼板の成形性向上の試みは、種々なされているが、多くは自動車用の外板、ボディ骨格材、足回り部品に関するものである。本発明が対象とするギヤなどのトランスミッション部品やケース等では、求められる成形性が自動車ボディ部品とは異なり、絞り加工性やしごき加工性などが求められるだけでなく、上述のように加工後の表面硬さも求められる部品である。 As described above, various attempts have been made to improve the formability of steel sheets by texture control. Most of them are related to automotive outer panels, body frame materials, and suspension parts. In transmission parts such as gears and cases targeted by the present invention, the required formability is different from that of automobile body parts, and not only drawing workability and ironing workability are required, but also after processing as described above. It is a component that also requires surface hardness.
 また、トランスミッション部品の分野では、棒鋼の鍛造品(熱間鍛造、冷間鍛造等)から、部品の軽量化、低コスト化を狙いとして鋼板による部品製造の検討も進んでいるが、さらなる成形性が求められている。 Also, in the field of transmission parts, steel bar forging parts (hot forging, cold forging, etc.) are being studied for the production of steel parts with the aim of reducing the weight and cost of parts. Is required.
日本国特開平10-306345号公報Japanese Unexamined Patent Publication No. 10-306345 日本国特開2009-228125号公報Japanese Unexamined Patent Publication No. 2009-228125 日本国特開2007-162138号公報Japanese Unexamined Patent Publication No. 2007-162138 日本国特開2004-137607号公報Japanese Unexamined Patent Publication No. 2004-137607 日本国特開2009-24226号公報Japanese Unexamined Patent Publication No. 2009-24226 日本国特開2012-158797号公報Japanese Unexamined Patent Publication No. 2012-158797 日本国特開2007-291514号公報Japanese Unexamined Patent Publication No. 2007-291514
 本発明は上記事情に着目してなされたものであり、その目的は、加工中は良好な絞り加工性を示しつつ、加工後は所定の表面硬さを示す熱延鋼板を提供することにある。 The present invention has been made paying attention to the above circumstances, and an object of the present invention is to provide a hot-rolled steel sheet having a predetermined surface hardness after processing while exhibiting good drawability during processing. .
 請求項1に記載の発明は、 
 板厚が2~15mmであり、 
 成分組成が、 
 質量%で(以下、化学成分について同じ。)、
 C :0.3%以下(0%を含まない)、 
 Si:0.5%以下(0%を含まない)、 
 Mn:0.2~1%、 
 P :0.05%以下(0%を含まない)、 
 S :0.05%以下(0%を含まない)、 
 Al:0.01~0.1%、 
 N :0.008~0.025%、 
 残部は鉄および不可避的不純物からなり、 
 固溶N:0.007%以上であり、 
 深さt/4(t:板厚、以下同じ。)の位置に存在するフェライト結晶粒に関し、 
 板面方位が(123)面から10°以内のフェライト結晶粒の面積率が20%以上、 
 板面方位が(111)面から10°以内のフェライト結晶粒の面積率が5%以上、
 板面方位が(001)面から10°以内のフェライト結晶粒の面積率が20%以下であるとともに、 
 前記深さt/4の位置に存在するフェライト結晶粒の平均粒径が3~35μmであることを特徴とする絞り加工性と加工後の表面硬さに優れる熱延鋼板である。 
The invention described in claim 1
The plate thickness is 2-15mm,
Ingredient composition
% By mass (hereinafter the same for chemical components)
C: 0.3% or less (excluding 0%),
Si: 0.5% or less (excluding 0%),
Mn: 0.2 to 1%
P: 0.05% or less (excluding 0%),
S: 0.05% or less (excluding 0%),
Al: 0.01 to 0.1%,
N: 0.008 to 0.025%,
The balance consists of iron and inevitable impurities,
Solid solution N: 0.007% or more,
Regarding ferrite crystal grains existing at a position of depth t / 4 (t: plate thickness, the same shall apply hereinafter),
The area ratio of ferrite crystal grains whose plate plane orientation is within 10 ° from the (123) plane is 20% or more,
The area ratio of ferrite crystal grains whose plate plane orientation is within 10 ° from the (111) plane is 5% or more,
The area ratio of ferrite crystal grains whose plate plane orientation is within 10 ° from the (001) plane is 20% or less,
A hot-rolled steel sheet having excellent drawing workability and surface hardness after processing, characterized in that the average grain size of ferrite crystal grains existing at the position of the depth t / 4 is 3 to 35 μm.
 請求項2に記載の発明は、 
 成分組成が、さらに、
 Cr:2%以下(0%を含まない)および/または
 Mo:2%以下(0%を含まない) 
を含むものである請求項1に記載の熱延鋼板である。
The invention described in claim 2
Ingredient composition further
Cr: 2% or less (not including 0%) and / or Mo: 2% or less (not including 0%)
The hot-rolled steel sheet according to claim 1, comprising:
 請求項3に記載の発明は、 
 成分組成が、さらに、 
 Ti:0.2%以下(0%を含まない)、 
 Nb:0.2%以下(0%を含まない)、
 V :0.2%以下(0%を含まない)よりなる群から選ばれる少なくとも1種を含むものである請求項1または2に記載の熱延鋼板である。 
The invention according to claim 3
Ingredient composition further
Ti: 0.2% or less (excluding 0%),
Nb: 0.2% or less (excluding 0%),
The hot-rolled steel sheet according to claim 1 or 2, comprising at least one selected from the group consisting of V: 0.2% or less (excluding 0%).
 請求項4に記載の発明は、 
 成分組成が、さらに、 
 B:0.005%以下(0%を含まない) 
を含むものである請求項1~3のいずれか1項に記載の熱延鋼板である。 
The invention according to claim 4
Ingredient composition further
B: 0.005% or less (excluding 0%)
The hot-rolled steel sheet according to any one of claims 1 to 3, wherein
 請求項5に記載の発明は、 
 成分組成が、さらに、 
 Cu:5%以下(0%を含まない)、 
 Ni:5%以下(0%を含まない)、 
 Co:5%以下(0%を含まない)よりなる群から選ばれる少なくとも1種
を含むものである請求項1~4のいずれか1項に記載の熱延鋼板である。
The invention described in claim 5
Ingredient composition further
Cu: 5% or less (excluding 0%),
Ni: 5% or less (excluding 0%),
The hot-rolled steel sheet according to any one of claims 1 to 4, comprising at least one selected from the group consisting of Co: 5% or less (not including 0%).
 請求項6に記載の発明は、 
 成分組成が、さらに、 
 Ca:0.05%以下(0%を含まない)、 
 REM:0.05%以下(0%を含まない)、 
 Mg:0.02%以下(0%を含まない)、 
 Li:0.02%以下(0%を含まない)、 
 Pb:0.5%以下(0%を含まない)、 
 Bi:0.5%以下(0%を含まない)よりなる群から選ばれる少なくとも1種を含むものである請求項1~5のいずれか1項に記載の熱延鋼板である。
The invention described in claim 6
Ingredient composition further
Ca: 0.05% or less (excluding 0%),
REM: 0.05% or less (excluding 0%),
Mg: 0.02% or less (excluding 0%),
Li: 0.02% or less (excluding 0%),
Pb: 0.5% or less (excluding 0%),
The hot-rolled steel sheet according to any one of claims 1 to 5, which contains at least one selected from the group consisting of Bi: 0.5% or less (excluding 0%).
 本発明によれば、所定の平均粒径を有するフェライト主体の組織において、固溶N量を確保するとともに、熱延鋼板の集合組織を所定の組織形態に制御することで、絞り加工性が求められる部品においても、加工中の変形能を高めることにより、金型の寿命が延長されるとともに、鋼板に割れが発生しにくく、加工後に得られる部品は所定の表面硬さを確保できる熱延鋼板を提供できるようになった。 According to the present invention, in the structure mainly composed of ferrite having a predetermined average particle diameter, the amount of solute N is ensured and the texture of the hot-rolled steel sheet is controlled to a predetermined structure form, thereby obtaining drawing workability. Even in the parts to be manufactured, the hot-rolled steel sheet that prolongs the life of the mold by increasing the deformability during processing, is less prone to cracking in the steel sheet, and the parts obtained after processing can ensure a predetermined surface hardness Can now be provided.
 以下、本発明に係る熱延鋼板(以下、「本発明鋼板」、あるいは、単に「鋼板」ともいう。)について、さらに詳細に説明する。本発明鋼板は、上記特許文献2に記載された熱間鍛造材とは、N固溶量を確保する点で共通するが、C含有量を高めの範囲まで許容し、鋼板の集合組織形態を制御するとともに、フェライト粒を微細化する点で異なっている。 Hereinafter, the hot-rolled steel sheet according to the present invention (hereinafter also referred to as “the steel sheet of the present invention” or simply “the steel sheet”) will be described in more detail. The steel sheet of the present invention is common to the hot forging material described in Patent Document 2 above in that the amount of N solid solution is ensured, but the C content is allowed to a higher range, and the texture structure of the steel sheet is changed. The difference is that the ferrite grains are refined while being controlled.
〔本発明鋼板の板厚:2~15mm〕
 まず、本発明鋼板は、板厚が2~15mmのものを対象とする。板厚が2mm未満では、構造体としての剛性が確保できなくなる。一方、板厚が15mmを超えると、本発明で規定する集合組織形態を達成することが難しく、所望の絞り加工性向上効果が得られなくなる。好ましい板厚は3~14mmである。
[Thickness of the steel sheet of the present invention: 2 to 15 mm]
First, the steel sheet of the present invention has a thickness of 2 to 15 mm. If the plate thickness is less than 2 mm, rigidity as a structure cannot be secured. On the other hand, if the plate thickness exceeds 15 mm, it is difficult to achieve the texture form defined in the present invention, and the desired drawing workability improvement effect cannot be obtained. A preferred plate thickness is 3 to 14 mm.
 次に、本発明鋼板を構成する成分組成について説明する。以下、化学成分の単位はすべて質量%である。 Next, the component composition constituting the steel sheet of the present invention will be described. Hereinafter, all the units of chemical components are mass%.
〔本発明鋼板の成分組成〕
<C:0.3%以下(0%を含まない)> 
 Cは、鋼板の組織の形成に大きな影響を及ぼす元素であり、組織は、フェライト主体組織、または、フェライト-パーライト複相組織ではあるが、できるだけパーライトの少ないフェライト主体組織とするために、含有量を制限する必要がある元素である。Cを過剰に含有させると、鋼板組織中のパーライト分率が上昇し、パーライトの加工硬化によって変形抵抗が過大となるおそれがある。そこで、鋼板中のC含有量は、0.3%以下、好ましくは0.25%以下、さらに好ましくは0.2%以下、特に好ましくは0.15%以下に制限する。ただし、Cの含有量が少なすぎると、鋼の溶製中における脱酸が困難になるとともに、深絞り加工後の強度、表面硬さを満たし難くなるので、好ましくは0.0005%以上、さらに好ましくは0.0008%以上、特に好ましくは0.001%以上とする。 
[Component composition of the steel sheet of the present invention]
<C: 0.3% or less (excluding 0%)>
C is an element having a great influence on the formation of the structure of the steel sheet, and the structure is a ferrite main structure or a ferrite-pearlite multiphase structure, but the content is to make the ferrite main structure with as little pearlite as possible. It is an element that needs to be restricted. When C is contained excessively, the pearlite fraction in the steel sheet structure increases, and the deformation resistance may be excessive due to work hardening of the pearlite. Therefore, the C content in the steel sheet is limited to 0.3% or less, preferably 0.25% or less, more preferably 0.2% or less, and particularly preferably 0.15% or less. However, if the content of C is too small, deoxidation during melting of steel becomes difficult, and it becomes difficult to satisfy the strength and surface hardness after deep drawing, so 0.0005% or more, Preferably it is 0.0008% or more, particularly preferably 0.001% or more.
<Si:0.5%以下(0%を含まない)>
 Siは、鋼中に固溶することによって鋼板の変形抵抗を増加させるため、極力低減する必要がある元素である。そのため、鋼板中のSi含有量は、変形抵抗の増加を抑制するため、0.5%以下、好ましくは0.45%以下、さらに好ましくは0.4%以下、特に好ましくは0.3%以下に制限する。しかし、Siの含有量が極端に少ないと、溶製中の脱酸が困難になるとともに、深絞り加工後の強度、表面硬さを満たし難くなるので、好ましくは0.005%以上、さらに好ましくは0.008%以上、特に好ましくは0.01%以上とする。 
<Si: 0.5% or less (excluding 0%)>
Si is an element that needs to be reduced as much as possible in order to increase the deformation resistance of the steel sheet by dissolving in steel. Therefore, the Si content in the steel sheet is 0.5% or less, preferably 0.45% or less, more preferably 0.4% or less, and particularly preferably 0.3% or less in order to suppress an increase in deformation resistance. Restrict to. However, if the Si content is extremely small, deoxidation during melting becomes difficult, and it becomes difficult to satisfy the strength and surface hardness after deep drawing, so 0.005% or more, more preferably Is 0.008% or more, particularly preferably 0.01% or more.
<Mn:0.2~1%>
 Mnは、製鋼過程において脱酸および脱硫の作用を有する元素である。さらに鋼材中のNの含有量を高めた場合、加工中の発熱による動的ひずみ時効によって割れが発生しやすくなるが、いっぽうでMnはその時の加工性を向上させ、割れを抑制する効果がある。これらの作用を有効に発揮させるために、鋼材中のMn含有量は0.2%以上、好ましくは0.22%以上、さらに好ましくは0.25%以上とする。ただし、Mn含有量が過剰になると変形抵抗が過大となり、偏析による組織の不均一性が生じるので、1%以下、好ましくは0.98%以下、さらに好ましくは0.95%以下とする。 
<Mn: 0.2-1%>
Mn is an element having a deoxidizing and desulfurizing action in the steel making process. Furthermore, when the content of N in the steel material is increased, cracks are likely to occur due to dynamic strain aging due to heat generation during processing. On the other hand, Mn improves the workability at that time and has the effect of suppressing cracks. . In order to effectively exhibit these actions, the Mn content in the steel material is 0.2% or more, preferably 0.22% or more, and more preferably 0.25% or more. However, when the Mn content is excessive, the deformation resistance becomes excessive and the structure is not uniform due to segregation. Therefore, the content is set to 1% or less, preferably 0.98% or less, and more preferably 0.95% or less.
<P:0.05%以下(0%を含まない)> 
 Pは鋼に不可避的に含有される不純物元素であるが、これがフェライトに含有されるとフェライト粒界に偏析して冷間加工性を劣化させ、また、フェライトを固溶強化して変形抵抗の増大の原因となる元素である。そこで、Pの含有量は冷間加工性の観点からは極力低減することが望ましいが、極端な低減は製鋼コストの増加を招くため、工程能力を考慮して、0.05%以下、好ましくは0.03%以下とする。 
<P: 0.05% or less (excluding 0%)>
P is an impurity element inevitably contained in the steel, but if it is contained in ferrite, it segregates at the ferrite grain boundaries and degrades the cold workability. It is an element that causes an increase. Therefore, it is desirable to reduce the P content as much as possible from the viewpoint of cold workability. However, since extreme reduction leads to an increase in steelmaking costs, it is 0.05% or less, preferably in consideration of process capability. 0.03% or less.
<S:0.05%以下(0%を含まない)> 
 SもPと同様に不可避的不純物であり、FeSとして結晶粒界に膜状に析出し、加工性を劣化させる元素である。また、熱間脆性を引き起こす作用もある。そこで、変形能を向上させる観点から、本発明ではS含有量を0.05%以下、好ましくは0.03%以下とする。ただし、S含有量を0にすることは工業上困難である。なお、Sは被削性を向上させる効果を有するため、被削性向上の観点からは、好ましくは0.002%以上、より好ましくは0.006%以上含有させることが推奨される。 
<S: 0.05% or less (excluding 0%)>
S, like P, is an unavoidable impurity and is an element that precipitates in the form of a film at the grain boundary as FeS and degrades workability. It also has the effect of causing hot brittleness. Therefore, from the viewpoint of improving the deformability, in the present invention, the S content is set to 0.05% or less, preferably 0.03% or less. However, it is industrially difficult to reduce the S content to zero. In addition, since S has an effect of improving machinability, it is recommended to contain 0.002% or more, more preferably 0.006% or more from the viewpoint of improving machinability.
<Al:0.01~0.1%>
 Alは、製鋼過程において脱酸に有効な元素である。この脱酸の効果を得るために、鋼材中のAl含有量は0.01%以上、好ましくは0.015%以上、さらに好ましくは0.02%以上とする。ただし、Alの含有量が過剰になると、靭性を低下させ、割れが発生しやすくなるので、0.1%以下、好ましくは0.09%以下、さらに好ましくは0.08%以下とする。 
<Al: 0.01 to 0.1%>
Al is an element effective for deoxidation in the steelmaking process. In order to obtain this deoxidation effect, the Al content in the steel material is set to 0.01% or more, preferably 0.015% or more, and more preferably 0.02% or more. However, if the Al content is excessive, the toughness is lowered and cracking is likely to occur. Therefore, the Al content is 0.1% or less, preferably 0.09% or less, and more preferably 0.08% or less.
<N:0.008~0.025%> 
 Nは加工後の静的ひずみ時効によって所定の強度を得るために重要な元素である。そこで、鋼材中のN含有量は、0.008%以上、好ましくは0.0085%以上、さらに好ましくは0.009%以上とする。ただし、Nの含有量が過剰になると静的ひずみ時効のほか、加工中の動的ひずみ時効の影響が顕著となり、変形抵抗が増加して不適であるので、0.025%以下、好ましくは0.023%以下、さらに好ましくは0.02%以下とする。 
<N: 0.008 to 0.025%>
N is an important element for obtaining a predetermined strength by static strain aging after processing. Therefore, the N content in the steel material is 0.008% or more, preferably 0.0085% or more, and more preferably 0.009% or more. However, if the N content is excessive, in addition to static strain aging, the influence of dynamic strain aging during processing becomes significant, and deformation resistance increases, which is unsuitable. Therefore, 0.025% or less, preferably 0 0.02% or less, more preferably 0.02% or less.
<固溶N:0.007%以上>
 そして、鋼板中に固溶Nを所定量(以下、「固溶N量」という。)確保することで、変形抵抗をあまり上げず、静的ひずみ時効を促進させることができる。冷間加工後に所要の強度を確保するためには、固溶N量が0.007%以上必要である。ただし、固溶N量が過剰になると、冷間加工性が劣化するため、好ましくは0.03%以下とする。なお、鋼材中のNの含有量は0.025%以下であるので、実質的に固溶N量は0.025%以上になることはない。 
<Solution N: 0.007% or more>
By securing a predetermined amount of solid solution N in the steel sheet (hereinafter referred to as “solid solution N amount”), the static strain aging can be promoted without significantly increasing the deformation resistance. In order to ensure the required strength after cold working, the amount of solute N needs to be 0.007% or more. However, if the amount of solute N is excessive, the cold workability deteriorates, so the content is preferably 0.03% or less. In addition, since content of N in steel materials is 0.025% or less, the amount of solute N does not become 0.025% or more substantially.
 ここで、本発明における固溶N量は、JIS G 1228に準拠して、鋼材中の全N量から全N化合物の量を差し引いて求められる量である。この固溶N量の実用的な測定法を以下に例示する。  Here, the solid solution N amount in the present invention is an amount obtained by subtracting the amount of all N compounds from the total N amount in the steel material in accordance with JIS G 1228. A practical method for measuring the amount of dissolved N will be exemplified below.
(a)不活性ガス融解法-熱伝導度法(全N量の測定) 
 供試材から切り出したサンプルをルツボに入れ、不活性ガス気流中で融解してNを抽出し、抽出物を熱伝導度セルに搬送して熱伝導度の変化を測定して全N量を求める。
(b)アンモニア蒸留分離インドフェノール青吸光光度法(全N化合物量の測定) 
 供試材から切り出したサンプルを、10%AA系電解液に溶解し、定電流電解を行って、鋼中の全N化合物量を測定する。用いる10%AA系電解液は、10%アセトン、10%塩化テトラメチルアンモニウム、残部メタノールからなる非水溶媒系の電解液であり、鋼表面に不働態皮膜を生成させない溶液である。 
(A) Inert gas melting method-thermal conductivity method (measurement of total N content)
A sample cut from the test material is put in a crucible, extracted in an inert gas stream to extract N, the extract is transported to a thermal conductivity cell, and the change in thermal conductivity is measured to determine the total N amount. Ask.
(B) Ammonia distillation separation indophenol blue spectrophotometry (measurement of total N compound amount)
A sample cut out from the test material is dissolved in a 10% AA-based electrolytic solution, subjected to constant current electrolysis, and the total amount of N compounds in the steel is measured. The 10% AA electrolyte used is a non-aqueous solvent electrolyte consisting of 10% acetone, 10% tetramethylammonium chloride, and the remainder methanol, and does not generate a passive film on the steel surface.
 供試材のサンプル約0.5gを、この10%AA系電解液に溶解させ、生成する不溶解残渣(N化合物)を、穴サイズが0.1μmのポリカーボネート製のフィルタでろ過する。得られた不溶解残渣を、硫酸、硫酸カリウムおよび純銅製チップ中で加熱して分解し、分解物をろ液に合わせる。この溶液を、水酸化ナトリウムでアルカリ性にした後、水蒸気蒸留を行い、留出したアンモニアを希硫酸に吸収させる。さらに、フェノール、次亜塩素酸ナトリウムおよびペンタシアノニトロシル鉄(III)酸ナトリウムを加えて青色錯体を生成させ、吸光光度計を用いて吸光度を測定して全N化合物量を求める。
 そして、上記(a)の方法によって求められた全N量から、上記(b)の方法によって求められた全N化合物量を差し引いて固溶N量を求めることができる。 
About 0.5 g of the sample material is dissolved in this 10% AA-based electrolyte, and the resulting insoluble residue (N compound) is filtered through a polycarbonate filter having a hole size of 0.1 μm. The obtained insoluble residue is decomposed by heating in a chip made of sulfuric acid, potassium sulfate and pure copper, and the decomposition product is combined with the filtrate. After making this solution alkaline with sodium hydroxide, steam distillation is performed, and the distilled ammonia is absorbed in dilute sulfuric acid. Further, phenol, sodium hypochlorite and sodium pentacyanonitrosyl iron (III) are added to form a blue complex, and the absorbance is measured using an absorptiometer to determine the total N compound amount.
And the amount of solid solution N can be calculated | required by subtracting the total N compound amount calculated | required by the method of said (b) from the total N amount calculated | required by the method of said (a).
 本発明の鋼は上記成分を基本的に含有し、残部が鉄および不可避的不純物であるが、その他、本発明の作用を損なわない範囲で、以下の許容成分を添加することができる。 The steel of the present invention basically contains the above components, and the balance is iron and inevitable impurities, but the following permissible components can be added as long as the effects of the present invention are not impaired.
<Cr:2%以下(0%を含まない)および/または
 Mo:2%以下(0%を含まない)>
 Crは結晶粒界の強度を高めることで鋼の変形能を向上させる作用を有する元素であり、このような作用を有効に発揮させるためには、Crは0.2%以上含有させることが好ましい。しかし、Crを過剰に含有させると、変形抵抗が増大し、冷間加工性が低下するおそれがあるため、その含有量は2%以下、さらには1.5%以下、特に1%以下が推奨される。
<Cr: 2% or less (not including 0%) and / or Mo: 2% or less (not including 0%)>
Cr is an element that has the effect of improving the deformability of steel by increasing the strength of the grain boundaries. In order to effectively exhibit such an effect, Cr is preferably contained in an amount of 0.2% or more. . However, if Cr is excessively contained, deformation resistance increases and cold workability may be lowered. Therefore, the content is recommended to be 2% or less, more preferably 1.5% or less, especially 1% or less. Is done.
 また、Moは、加工後の鋼材の硬さおよび変形能を増加させる作用を有する元素であり、このような作用を有効に発揮させるためには、Moは0.04%以上、さらに好ましくは0.08%以上含有させることが好ましい。しかし、Moを過剰に含有させると、冷間加工性が劣化するおそれがあるため、その含有量は2%以下、さらには1.5%以下、特に1%以下が推奨される。 Mo is an element having an action of increasing the hardness and deformability of the steel material after processing. In order to effectively exhibit such action, Mo is 0.04% or more, more preferably 0. It is preferable to contain 0.08% or more. However, if Mo is excessively contained, the cold workability may be deteriorated. Therefore, the content is recommended to be 2% or less, further 1.5% or less, particularly 1% or less.
<Ti:0.2%以下(0%を含まない)、
 Nb:0.2%以下(0%を含まない)、
 V:0.2%以下(0%を含まない)よりなる群から選ばれる少なくとも1種> 
 これらの元素はNとの親和力が強く、Nと共存してN化合物を形成し、鋼の結晶粒を微細化し、冷間加工後に得られる加工品の靱性を向上させ、また、耐割れ性を向上させる役割を有する元素である。しかし、各元素とも上限値を超えて含有させても特性改善効果が得られない。各元素の含有量はそれぞれ、0.2%以下、さらには0.001~0.15%、特に0.002~0.1%が推奨される。
<Ti: 0.2% or less (excluding 0%),
Nb: 0.2% or less (excluding 0%),
V: at least one selected from the group consisting of 0.2% or less (excluding 0%)>
These elements have a strong affinity for N, coexist with N to form N compounds, refine steel grains, improve the toughness of processed products obtained after cold working, and improve crack resistance. It is an element that has a role to improve. However, even if each element is contained exceeding the upper limit value, the effect of improving the characteristics cannot be obtained. It is recommended that the content of each element is 0.2% or less, further 0.001 to 0.15%, particularly 0.002 to 0.1%.
<B:0.005%以下(0%を含まない)>
 Bは、上記Ti、NbおよびVと同様、Nとの親和力が強く、Nと共存してN化合物を形成し、鋼の結晶粒を微細化し、冷間加工後に得られる加工品の靱性を向上させ、また、耐割れ性を向上させる役割を有する元素である。そのため、本発明の鋼板がBを含有する場合、所要の固溶N量を確保して冷間加工後の強度を向上させることができることから、その含有量は0.005%以下、さらには0.0001~0.0035%、特に0.0002~0.002%が推奨される。
<B: 0.005% or less (excluding 0%)>
B, like Ti, Nb, and V, has a strong affinity with N, and coexists with N to form an N compound, refines the grain of steel, and improves the toughness of the workpiece obtained after cold working And an element having a role of improving crack resistance. Therefore, when the steel sheet of the present invention contains B, the required solid solution N amount can be secured and the strength after cold working can be improved, so the content is 0.005% or less, and further 0 0.0001 to 0.0035%, especially 0.0002 to 0.002% is recommended.
<Cu:5%以下(0%を含まない)、
 Ni:5%以下(0%を含まない)、
 Co:5%以下(0%を含まない)よりなる群から選ばれる少なくとも1種>
 これらの元素は、いずれも鋼材をひずみ時効させ、硬化させる作用があり、加工後強度を向上させるのに有効な元素である。このような作用を有効に発揮させるためには、これらの元素は、それぞれ0.1%以上、さらには0.3%以上含有させることが好ましい。しかし、これらの元素の含有量が過剰であると、鋼材をひずみ時効および硬化させる効果、さらに、加工後強度を向上させる効果が飽和し、また、割れを促進させるおそれがあるため、それぞれ5%以下、さらには4%以下、特に3%以下が推奨される。
<Cu: 5% or less (excluding 0%),
Ni: 5% or less (excluding 0%),
Co: at least one selected from the group consisting of 5% or less (excluding 0%)>
All of these elements have the effect of strain aging and hardening the steel material, and are effective in improving the strength after processing. In order to effectively exhibit such an action, these elements are preferably contained in an amount of 0.1% or more, and more preferably 0.3% or more. However, if the content of these elements is excessive, the effects of strain aging and hardening of the steel material, and the effect of improving the strength after processing are saturated, and there is a possibility of promoting cracking. In the following, 4% or less, particularly 3% or less is recommended.
<Ca:0.05%以下(0%を含まない)、 
 REM:0.05%以下(0%を含まない)、
 Mg:0.02%以下(0%を含まない)、
 Li:0.02%以下(0%を含まない)、
 Pb:0.5%以下(0%を含まない)、
 Bi:0.5%以下(0%を含まない)よりなる群から選ばれる少なくとも1種>
 Caは、MnSなどの硫化化合物系介在物を球状化させ、鋼の変形能を高めるとともに、被削性の向上に寄与する元素である。このような作用を有効に発揮させるためには、Caは、0.0005%以上、さらには0.001%以上含有させることが好ましい。しかし、過剰に含有しても、その効果が飽和し、含有量に見合う効果が期待できないため、0.05%以下、さらには0.03%以下、特に0.01%以下が推奨される。
<Ca: 0.05% or less (excluding 0%),
REM: 0.05% or less (excluding 0%),
Mg: 0.02% or less (excluding 0%),
Li: 0.02% or less (excluding 0%),
Pb: 0.5% or less (excluding 0%),
Bi: at least one selected from the group consisting of 0.5% or less (excluding 0%)>
Ca is an element that spheroidizes sulfide compound inclusions such as MnS, improves the deformability of steel, and contributes to improvement of machinability. In order to effectively exhibit such an action, Ca is preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more. However, even if contained excessively, the effect is saturated and an effect commensurate with the content cannot be expected. Therefore, 0.05% or less, further 0.03% or less, particularly 0.01% or less is recommended.
 REMは、Caと同様にMnSなどの硫化化合物系介在物を球状化させ、鋼の変形能を高めるとともに、被削性の向上に寄与する元素である。このような作用を有効に発揮させるためには、REMは、0.0005%以上、さらには0.001%以上含有させることが好ましい。しかし、過剰に含有しても、その効果が飽和し、含有量に見合う効果が期待できないため、0.05%以下、さらには0.03%以下、特に0.01%以下が推奨される。
 なお、本発明において、REMとは、ランタノイド元素(LaからLnまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む意味である。これらの元素のなかでも、La、CeおよびYよりなる群から選ばれる少なくとも1種の元素を含有することが好ましく、より好ましくはLaおよび/またはCeを含有するのがよい。
REM is an element that, like Ca, spheroidizes compound inclusions such as MnS to increase the deformability of steel and contribute to the improvement of machinability. In order to effectively exhibit such an action, REM is preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more. However, even if contained excessively, the effect is saturated and an effect commensurate with the content cannot be expected. Therefore, 0.05% or less, further 0.03% or less, particularly 0.01% or less is recommended.
In the present invention, REM means a lanthanoid element (15 elements from La to Ln), Sc (scandium) and Y (yttrium). Among these elements, it is preferable to contain at least one element selected from the group consisting of La, Ce and Y, more preferably La and / or Ce.
 Mgは、Caと同様にMnSなどの硫化化合物系介在物を球状化させ、鋼の変形能を高めるとともに、被削性の向上に寄与する元素である。このような作用を有効に発揮させるためには、Mgは、0.0002%以上、さらには0.0005%以上含有させることが好ましい。しかし、過剰に含有しても、その効果が飽和し、含有量に見合う効果が期待できないため、0.02%以下、さらには0.015%以下、特に0.01%以下が推奨される。 Mg, like Ca, is an element that spheroidizes sulfide compound inclusions such as MnS to enhance the deformability of steel and contribute to the improvement of machinability. In order to effectively exhibit such an action, Mg is preferably contained in an amount of 0.0002% or more, more preferably 0.0005% or more. However, even if contained excessively, the effect is saturated and an effect commensurate with the content cannot be expected, so 0.02% or less, further 0.015% or less, and particularly 0.01% or less is recommended.
 Liは、Caと同様にMnSなどの硫化化合物系介在物を球状化させ、鋼の変形能を高めることができ、また、Al系酸化物を低融点化して無害化して被削性の向上に寄与する元素である。このような作用を有効に発揮させるためには、Liは、0.0002%以上、さらには0.0005%以上含有させることが好ましい。しかし、過剰に含有しても、その効果が飽和し、含有量に見合う効果が期待できないため、0.02%以下、さらには0.015%以下、特に0.01%以下が推奨される。  Li can spheroidize sulfide compound inclusions such as MnS and increase the deformability of steel like Ca, and lower the melting point of Al-based oxides to make them harmless and improve machinability. It is a contributing element. In order to effectively exhibit such an action, Li is preferably contained in an amount of 0.0002% or more, and more preferably 0.0005% or more. However, even if contained excessively, the effect is saturated and an effect commensurate with the content cannot be expected, so 0.02% or less, further 0.015% or less, and particularly 0.01% or less is recommended.
 Pbは、被削性を向上させるために有効な元素である。このような作用を有効に発揮させるためには、Pbは0.005%以上、さらには0.01%以上含有させることが好ましい。しかし、過剰に含有させると、圧延疵の発生等の製造上の問題を生じるため、0.5%以下、さらには0.4%以下、特に0.3%以下が推奨される。 Pb is an effective element for improving machinability. In order to effectively exhibit such an action, Pb is preferably contained in an amount of 0.005% or more, and more preferably 0.01% or more. However, if it is contained excessively, production problems such as generation of rolling defects occur, so 0.5% or less, further 0.4% or less, particularly 0.3% or less is recommended.
 Biは、Pbと同様に、被削性を向上させるために有効な元素である。このような作用を有効に発揮させるためには、Biは0.005%以上、さらには0.01%以上含有させることが好ましい。しかし、過剰に含有させても被削性向上の効果が飽和するため、0.5%以下、さらには0.4%以下、特に0.3%以下が推奨される。 Bi is an element effective for improving the machinability like Pb. In order to effectively exhibit such an action, Bi is preferably contained in an amount of 0.005% or more, and more preferably 0.01% or more. However, since the effect of improving the machinability is saturated even if contained excessively, 0.5% or less, further 0.4% or less, and particularly 0.3% or less are recommended.
 次に、本発明鋼板を特徴づける集合組織について説明する。 Next, the texture that characterizes the steel sheet of the present invention will be described.
〔本発明鋼板の集合組織〕 
 上述したとおり、本発明鋼板は、フェライト主体、またはフェライト-パーライト複相組織鋼をベースとするものであるが、特に、フェライト結晶粒の板面方位およびそのサイズを特定範囲に制御することを特徴とする。
[A texture of the steel sheet of the present invention]
As described above, the steel sheet of the present invention is based on ferrite-based or ferrite-pearlite double phase steel, and is particularly characterized by controlling the plane direction of ferrite crystal grains and the size thereof within a specific range. And
 本発明鋼板の集合組織は、フェライトとパーライトの複相組織で構成される。パーライトが過剰に存在すると鋼板の成形性を劣化させるので、パーライトは面積率で10%以下、さらには9%以下、特に8%以下とするのが好ましい。残部はフェライトである。 The texture of the steel sheet of the present invention is composed of a multiphase structure of ferrite and pearlite. If excessive pearlite is present, the formability of the steel sheet is deteriorated. Therefore, the pearlite is preferably 10% or less, more preferably 9% or less, and particularly preferably 8% or less in terms of area ratio. The balance is ferrite.
<深さt/4(t:板厚、以下同じ。)の位置に存在するフェライト結晶粒に関し、
 板面方位が(123)面から10°以内のフェライト結晶粒の面積率:20%以上、
 板面方位が(111)面から10°以内のフェライト結晶粒の面積率:5%以上、
 板面方位が(001)面から10°以内のフェライト結晶粒の面積率:20%以下>
 集合組織のでき方は結晶系が同じでも加工法によって異なり、圧延材の場合は圧延面や、圧延方向で表現される。本発明では、圧延面(〇〇〇)で表現する。なお、○は整数を示している。これら各方位の表現については、長島晋一編著:「集合組織」(丸善株式会社刊)などに記載されている。
<Ferrite crystal grains present at the position of depth t / 4 (t: plate thickness, the same shall apply hereinafter)
Area ratio of ferrite crystal grains whose plate plane orientation is within 10 ° from the (123) plane: 20% or more,
Area ratio of ferrite crystal grains whose plate plane orientation is within 10 ° from the (111) plane: 5% or more,
Area ratio of ferrite crystal grains whose plate plane orientation is within 10 ° from the (001) plane: 20% or less>
The formation of the texture differs depending on the processing method even if the crystal system is the same, and in the case of a rolled material, it is expressed by the rolling surface and the rolling direction. In the present invention, it is expressed by a rolled surface (000). In addition, (circle) has shown the integer. The expression of each of these directions is described in, for example, edited by Shinichi Nagashima: “Group Texture” (published by Maruzen Co., Ltd.).
 本発明では、深さt/4の位置に存在するフェライト結晶粒に関し、板面方位が、(123)面から10°以内のフェライト結晶粒の面積率を20%以上、(111)面から10°以内のフェライト結晶粒の面積率を5%以上、(001)面から10°以内のフェライト結晶粒の面積率を20%以下にそれぞれ制御することで、熱延鋼板の絞り成形性を向上させることができる。 In the present invention, the ferrite crystal grains present at the position of the depth t / 4 have an area ratio of ferrite crystal grains having a plate plane orientation within 10 ° from the (123) plane of 20% or more, and from the (111) plane to 10%. By controlling the area ratio of ferrite crystal grains within 5 ° to 5% or more and the area ratio of ferrite crystal grains within 10 ° from the (001) plane to 20% or less, the drawability of the hot rolled steel sheet is improved. be able to.
 従来から、フェライト結晶粒の板面方位に関し、板面に平行な(111)面方位を強く発達させる一方、(001)面方位を弱めることが深絞り性の向上に有効であることが知られている。冷間圧延工程と焼鈍工程を施す工程ではこのような板面方位の制御が可能であったが、熱間圧延工程において、かつ、板厚2~15mmといった、薄鋼板としては肉厚の熱延鋼板ではこのような板面方位の制御が難しかった。 Conventionally, with regard to the plate orientation of ferrite crystal grains, it has been known that the (111) plane orientation parallel to the plate surface is strongly developed while the (001) plane orientation is effective for improving deep drawability. ing. Although the sheet surface orientation can be controlled in the cold rolling process and the annealing process, the hot rolling process has a thickness of 2 to 15 mm and the thickness of the steel sheet is 2 to 15 mm. With a steel plate, it is difficult to control the orientation of the plate surface.
 そこで本発明では、新たに(123)面の板面方位を有するフェライト結晶粒を導入することによって、熱間圧延板での集合組織制御を可能にし、成形性向上を実現できるようになった。 Therefore, in the present invention, by newly introducing ferrite crystal grains having a (123) plane, it is possible to control the texture in the hot rolled sheet and realize improvement in formability.
 上述したように、板面方位として(123)面を有するフェライト結晶粒は、成形性、深絞り性を向上させる作用を有し、このような作用を有効に発揮させるためには、面積率で20%以上が必要である。好ましくは22%以上、さらに好ましくは24%以上、特に好ましくは26%以上である。 As described above, the ferrite crystal grains having the (123) plane as the plate surface orientation have the effect of improving the formability and deep drawability. 20% or more is necessary. Preferably it is 22% or more, more preferably 24% or more, particularly preferably 26% or more.
 (111)面も、成形性、深絞り成形性を向上させる作用を有し、このような作用を有効に発揮させるためには、面積率で5%以上、好ましくは6%以上、さらに好ましくは8%以上が必要である。  The (111) plane also has an effect of improving moldability and deep drawability, and in order to effectively exhibit such an effect, the area ratio is 5% or more, preferably 6% or more, more preferably 8% or more is necessary.
 (001)面は、成形による面内異方性を生じさせ、成形性を劣化させる。したがって、面積率を20%以下、好ましくは18%以下、さらに好ましくは15%以下に制限する。  (001) plane causes in-plane anisotropy due to molding and deteriorates moldability. Therefore, the area ratio is limited to 20% or less, preferably 18% or less, and more preferably 15% or less.
 なお、熱延鋼板の組織形態は、板厚方向に組織分布を有するが、板厚の1/4の深さ位置を代表位置として組織形態を規定した。また、板面方位が上記各理想面方位((123)面、(111)面、(001)面)から10°以内のフェライト結晶粒はほぼ同等の作用を有すると考えられるので、その範囲の板面方位を有するフェライト結晶粒の面積率でそれぞれ規定することとした。 In addition, although the structure | tissue form of a hot-rolled steel plate has a structure distribution in the plate | board thickness direction, the structure | tissue form was prescribed | regulated by making the depth position of 1/4 of plate | board thickness into a representative position. In addition, it is considered that ferrite crystal grains whose plate plane orientation is within 10 ° from each of the ideal plane orientations ((123) plane, (111) plane, (001) plane) have almost the same action. Each area ratio of ferrite crystal grains having a plate surface orientation is defined.
<深さt/4の位置に存在するフェライト結晶粒の平均粒径:3~35μm>
 フェライト組織を構成するフェライト結晶粒の平均粒径は、鋼板の加工性(絞り加工性、曲げ加工性、プレス加工性)を向上させるとともに、加工後の表面性状を満足させるため、3~35μmの範囲であることが必要である。フェライト結晶粒が細かくなりすぎると、変形抵抗が高くなりすぎるため、その平均粒径は3μm以上、好ましくは4μm以上、さらに好ましくは5μm以上とする。一方、フェライト結晶粒が粗大化しすぎると、靱性、疲労特性などが劣化するとともに、結晶方位を制御しても、曲げ加工性や張出などのプレス成形性が著しく低下し、成形時の割れや肌荒れなどの不良が生じ易いため、その平均粒径は35μm以下、好ましくは30μm以下、さらに好ましくは28μm以下とする。なお、上記と同様、熱延鋼板では板厚方向でフェライト結晶粒のサイズ分布が存在するが、板厚の1/4の深さ位置を代表位置としてフェライト結晶粒の平均粒径を規定した。
<Average diameter of ferrite crystal grains existing at a position of depth t / 4: 3 to 35 μm>
The average grain size of the ferrite crystal grains constituting the ferrite structure is 3 to 35 μm in order to improve the workability (drawing workability, bending workability, press workability) of the steel sheet and satisfy the surface properties after working. It must be in range. If the ferrite crystal grains become too fine, the deformation resistance becomes too high, so the average grain size is 3 μm or more, preferably 4 μm or more, and more preferably 5 μm or more. On the other hand, if the ferrite crystal grains become too coarse, the toughness, fatigue characteristics, etc. deteriorate, and even if the crystal orientation is controlled, the press formability such as bending workability and overhang is remarkably lowered, and cracks during molding Since defects such as rough skin are likely to occur, the average particle size is 35 μm or less, preferably 30 μm or less, and more preferably 28 μm or less. Similarly to the above, the hot rolled steel sheet has a ferrite crystal grain size distribution in the sheet thickness direction, but the average grain diameter of the ferrite crystal grain is defined with a depth position of 1/4 of the sheet thickness as a representative position.
〔各相の面積率の測定方法〕
 上記各相の面積率については、各供試鋼板をナイタール腐食し、走査型電子顕微鏡(SEM;倍率1000倍)により5視野撮影し、フェライトおよびパーライトの各比率を点算法で求めることができる。
[Measurement method of area ratio of each phase]
About the area ratio of each said phase, each test steel plate carries out a nital corrosion, and 5 field-of-views are image | photographed with a scanning electron microscope (SEM; magnification 1000 times), and each ratio of a ferrite and pearlite can be calculated | required with a point method.
〔フェライト結晶粒の板面方位の測定方法〕
 フェライト結晶粒の板面方位は、SEM-EBSP[Electron Back Scattering Patternと、EBSD(Electron Back Scattering Diffraction)によって、測定・解析される。SEM装置としては、例えば日本電子社製SEM(JEOLJSM5410)、EBSP測定解析システムとして、例えばEBSP:TSL社製(OIM)を各々用いる。また、結晶粒の大きさにもよるが試料の測定領域は300~1000μm×300~1000μmとし、測定ステップ間隔は例えば1~3μm以下とする。このようにして同定した各フェライト結晶粒の結晶方位より、上記各理想面方位から10°以内の方位のものを集計して合計面積を求め、測定領域の面積で除すことにより、各理想面方位ごとの面積率を求めた。
[Measurement method of plate orientation of ferrite crystal grains]
The plate surface orientation of the ferrite crystal grains is measured and analyzed by SEM-EBSP [Electron Back Scattering Pattern and EBSD (Electron Back Scattering Diffraction). As the SEM device, for example, SEM (JEOLJSM5410) manufactured by JEOL Ltd. is used, and for example, EBSP: manufactured by TSL (OIM) is used as the EBSP measurement analysis system. Although it depends on the size of the crystal grains, the measurement area of the sample is 300 to 1000 μm × 300 to 1000 μm, and the measurement step interval is, for example, 1 to 3 μm or less. From the crystal orientation of each ferrite crystal grain thus identified, the total area is obtained by summing the orientations within 10 ° from each ideal plane orientation, and divided by the area of the measurement region. The area ratio for each direction was determined.
〔フェライト結晶粒の平均粒径の測定方法〕
 上記フェライト結晶粒の平均粒径は、上記SEM-EBSPと、その測定条件を用い、所定の測定領域内に観察される各フェライト結晶粒の最大直径を各々測定し、それらの平均値を平均粒径として求めた。 
[Measurement method of average grain size of ferrite crystal grains]
The average grain size of the ferrite crystal grains is determined by measuring the maximum diameter of each ferrite crystal grain observed in a predetermined measurement region using the SEM-EBSP and measurement conditions thereof, and calculating the average value of the average grain diameters. Obtained as the diameter.
 次に、上記本発明鋼板を得るための好ましい製造方法を以下に説明する。 Next, a preferred manufacturing method for obtaining the steel sheet of the present invention will be described below.
〔本発明鋼板の好ましい製造方法〕
 本発明鋼板の製造は、上記成分組成を有する原料鋼を所望の板厚に成形できる方法であれば、いずれの方法にしたがって行ってもよい。例えば、以下に示す条件にて、転炉で上記成分組成を有する溶鋼を調製し、これを造塊または連続鋳造によりスラブしてから所望板厚の熱延鋼板に圧延することによって行うことができる。 
[Preferred production method of the steel sheet of the present invention]
The steel plate of the present invention may be produced according to any method as long as the raw steel having the above composition can be formed into a desired plate thickness. For example, it can be carried out by preparing a molten steel having the above component composition in a converter under the conditions shown below, slab this by ingot casting or continuous casting, and then rolling it into a hot-rolled steel sheet having a desired thickness. .
[溶鋼の調製]
 溶鋼中のNの含有量については、転炉での溶製の際に、溶鋼にN化合物を含む原料を添加すること、および/または、転炉の雰囲気をN雰囲気に制御することにより調整することができる。 
[Preparation of molten steel]
The N content in the molten steel is adjusted by adding a raw material containing an N compound to the molten steel and / or controlling the converter atmosphere to an N 2 atmosphere during melting in the converter. can do.
[加熱]
 熱間圧延前の加熱は1100~1300℃で行う。この加熱では、N化合物を生成せずに、なるべく多くのNを固溶させるために、高温の加熱条件が必要である。加熱温度の好ましい下限は1100℃、さらに好ましい下限は1150℃である。一方、1300℃を超える温度は操業上困難である。 
[heating]
Heating before hot rolling is performed at 1100 to 1300 ° C. This heating requires high-temperature heating conditions in order to dissolve as much N as possible without producing an N compound. The minimum with a preferable heating temperature is 1100 degreeC, and a more preferable minimum is 1150 degreeC. On the other hand, temperatures exceeding 1300 ° C. are difficult to operate.
[熱間圧延]
 熱間圧延は、仕上げ圧延温度が870℃以上になるように行う。仕上げ圧延温度を低温化しすぎるとフェライト変態が高温で起るようになり、フェライト中の析出炭化物が粗大化し、疲労強度が劣化するため、一定以上の仕上げ圧延温度が必要である。仕上げ圧延温度は、オーステナイト粒を粗大化してフェライトの粒径をある程度大きくするため、900℃以上とするのがより好ましい。なお、仕上げ圧延温度の上限は温度確保が難しいため、1000℃とする。 
[Hot rolling]
Hot rolling is performed so that the finish rolling temperature is 870 ° C. or higher. If the finish rolling temperature is too low, ferrite transformation occurs at a high temperature, the precipitated carbides in the ferrite become coarse, and the fatigue strength deteriorates. Therefore, a certain finish rolling temperature is required. The finish rolling temperature is more preferably 900 ° C. or higher in order to coarsen the austenite grains and increase the ferrite grain size to some extent. The upper limit of the finish rolling temperature is set to 1000 ° C. because it is difficult to secure the temperature.
[熱間圧延パススケジュール]
 本発明の熱延鋼板の板厚は2~15mmであるが、フェライト結晶粒を微細化して、その平均粒径を所定の粒径範囲に制御するために、上記の圧延温度の制御だけでなく、仕上げ圧延のタンデム圧延の最終圧下率を15%以上とすることが必要である。通常、仕上げ圧延は、5~7パスのタンデム圧延を実施するが、板のカミ込み制御の観点でパススケジュールが設定され、最終圧下率は、12~13%程度までである。上記最終圧下率は、好ましくは16%以上、より好ましくは17%以上である。上記最終圧下率は、20%、30%と高いほど、結晶粒をより微細化する効果が得られるが、圧延制御の観点で上限は30%程度に規定される。 
[Hot rolling pass schedule]
The thickness of the hot-rolled steel sheet of the present invention is 2 to 15 mm. In order to refine the ferrite crystal grains and control the average grain size within a predetermined grain size range, not only the control of the rolling temperature described above. The final reduction ratio of tandem rolling of finish rolling needs to be 15% or more. Normally, the finish rolling is performed by tandem rolling of 5 to 7 passes, but a pass schedule is set from the viewpoint of control of sheet penetration, and the final rolling reduction is about 12 to 13%. The final rolling reduction is preferably 16% or more, more preferably 17% or more. The higher the final reduction ratio is 20% or 30%, the more effective the crystal grains are refined, but the upper limit is defined to be about 30% from the viewpoint of rolling control.
[熱間圧延の圧延速度]
 上記のような板面方位を有するフェライト結晶粒の集合組織を得るため、また板厚方向の集合組織ができるだけ均一になるように制御するために、仕上げ圧延の圧延速度の制御も必要である。このため、最終パスの圧延速度を300~700m/minに制御する。圧延速度が高すぎても、低すぎても、所望の板面方位が得られにくく、また板厚方向の集合組織が不均一になりやすく好ましくない。また圧延速度が遅い場合は、生産性も悪くなる。好ましくは、350~650m/min、より好ましくは、400~600m/mimである。 
[Rolling speed of hot rolling]
In order to obtain a texture of ferrite crystal grains having the plate surface orientation as described above and to control the texture in the thickness direction to be as uniform as possible, it is necessary to control the rolling speed of finish rolling. For this reason, the rolling speed of the final pass is controlled to 300 to 700 m / min. If the rolling speed is too high or too low, it is difficult to obtain a desired plate surface orientation, and the texture in the plate thickness direction tends to be uneven, which is not preferable. In addition, when the rolling speed is low, the productivity also deteriorates. Preferably, it is 350 to 650 m / min, more preferably 400 to 600 m / mim.
[熱延後の急冷]
 上記仕上げ圧延終了後、5s以内に20℃/s以上の冷却速度(第1急冷速度)で急冷し、580℃以上670℃未満の温度(急冷停止温度)で急冷を停止する。フェライト主体の組織、すなわちパーライト分率が許容範囲内のフェライト-パーライト複相組織を得るためである。冷却速度(急冷速度)が20℃/s未満ではパーライト変態が促進され、または、急冷停止温度が580℃未満ではパーライト変態またはベイナイト変態が促進され、いずれもパーライト分率が許容範囲内のフェライト-パーライト鋼を得るのが困難になり、所望の集合組織に制御することができず、絞り加工性、曲げ加工性が劣化する。一方、急冷停止温度が670℃以上になるとフェライト中の析出炭化物が粗大化してしまい、同じく、絞り加工性、曲げ加工性が劣化する。急冷停止温度は、好ましくは600~650℃、さらに好ましくは610~640℃である。 
[Rapid cooling after hot rolling]
After completion of the finish rolling, quenching is performed at a cooling rate (first quenching rate) of 20 ° C./s or more within 5 s, and quenching is stopped at a temperature of 580 ° C. or more and less than 670 ° C. (quenching stop temperature). This is to obtain a ferrite-based structure, that is, a ferrite-pearlite double phase structure in which the pearlite fraction is within an allowable range. When the cooling rate (quenching rate) is less than 20 ° C./s, the pearlite transformation is promoted, or when the quenching stop temperature is less than 580 ° C., the pearlite transformation or the bainite transformation is promoted. It becomes difficult to obtain pearlite steel, it cannot be controlled to a desired texture, and drawability and bending workability deteriorate. On the other hand, when the quenching stop temperature is 670 ° C. or higher, the precipitated carbide in the ferrite is coarsened, and the drawing workability and bending workability are similarly deteriorated. The quenching stop temperature is preferably 600 to 650 ° C, more preferably 610 to 640 ° C.
[急冷停止後の緩冷]
 上記急冷停止後、放冷または空冷により10℃/s以下の冷却速度(緩冷速度)で5~20s緩冷する。これによりフェライトの形成を十分に進行させつつ、フェライト中の析出炭化物を適度に微細化させる。冷却速度が10℃/sを超え、または、緩冷時間が5s未満では、フェライトの形成量が不足するとともに、所望の集合組織に制御することができず、絞り加工性、曲げ加工性が劣化する。一方、緩冷時間が20sを超えると析出炭化物が粗大化せず、疲労強度が劣化する。 
[Slow cooling after rapid cooling stop]
After the rapid cooling is stopped, it is slowly cooled for 5 to 20 seconds at a cooling rate (slow cooling rate) of 10 ° C./s or less by cooling or air cooling. Thus, the precipitated carbide in the ferrite is appropriately refined while sufficiently progressing the formation of the ferrite. When the cooling rate exceeds 10 ° C./s or the slow cooling time is less than 5 s, the amount of ferrite formed is insufficient and the desired texture cannot be controlled, and the drawing workability and bending workability deteriorate. To do. On the other hand, if the slow cooling time exceeds 20 s, the precipitated carbide is not coarsened and the fatigue strength is deteriorated.
[緩冷後の急冷、巻取り]
 上記緩冷後、再度20℃/s以上の冷却速度(第2急冷速度)で急冷し、300℃超450℃以下で巻き取る。フェライト主体の組織にすることで、所望も集合組織形成を行うことにより、絞り加工性、曲げ加工性を確保するためである。冷却速度(第2急冷速度)が20℃/s未満、または、巻取り温度が450℃超では、パーライトが多く形成され、一方300℃未満では、マルテンサイトや残留オーステナイトが形成され、絞り加工性、曲げ加工性が劣化する。 
[Rapid cooling after slow cooling, winding]
After the slow cooling, it is rapidly cooled again at a cooling rate of 20 ° C./s or higher (second rapid cooling rate), and wound up at a temperature exceeding 300 ° C. and not exceeding 450 ° C. This is because, by making the structure mainly composed of ferrite, it is desirable to secure the drawing workability and the bending workability by forming the texture. When the cooling rate (second quenching rate) is less than 20 ° C./s, or when the coiling temperature exceeds 450 ° C., a lot of pearlite is formed, whereas when it is less than 300 ° C., martensite and retained austenite are formed, and drawing workability. , Bending workability deteriorates.
 以下、本発明を実施例によってさらに詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.
 下記表1に示す成分組成の鋼を真空溶解法により溶製し、厚さ120mmのインゴットに鋳造し、これを下記表2に示す条件にて熱間圧延を施し熱延鋼板を作製した。なお、いずれの試験においても、仕上げ圧延終了後における急冷停止までの冷却速度は20℃/s以上であり、急冷停止後の冷却は10℃/s以下の冷却速度で5~20s緩冷する条件であった。 Steel having the component composition shown in the following Table 1 was melted by a vacuum melting method, cast into an ingot having a thickness of 120 mm, and hot rolled under the conditions shown in Table 2 to produce a hot rolled steel sheet. In any test, the cooling rate until the quenching stop after finishing rolling is 20 ° C./s or more, and the cooling after the quenching stop is a condition of slow cooling for 5 to 20 s at a cooling rate of 10 ° C./s or less. Met.
 このようにして得られた熱延鋼板について、固溶N量、鋼板中組織の各相の面積率、ならびに、フェライト結晶粒の板面方位および平均粒径を、上記[発明を実施するための形態]のところで説明した各測定方法により求めた。 About the hot-rolled steel sheet thus obtained, the amount of solute N, the area ratio of each phase of the structure in the steel sheet, and the plate surface orientation and average grain size of the ferrite crystal grains are the above [for carrying out the invention] It was determined by each measuring method described in the section of [Form].
 また、上記熱延鋼板の絞り加工性については、板厚4~10mm程度の鋼板であるが、円筒成形試験で評価した。パンチサイズはφ100mm、パンチ肩R8mm、ダイス径φ103mm、ダイ肩R8mmとした。円筒の直径(d)に対するブランク直径(D)の比(D/d)の「絞り比」で、1回の絞りで破断を起こさないで円筒を絞ることのできる最大のブランク直径をDmaxとしたとき、Dmax/dを「限界絞り比」(LDR(Limiting Drawing Ratio))と定義して、これを評価指標とした。そして、LDRが2~2.1のものを合格とした。 Further, the drawing workability of the hot-rolled steel sheet is a steel sheet having a thickness of about 4 to 10 mm, and was evaluated by a cylindrical forming test. The punch size was 100 mm, punch shoulder R8 mm, die diameter 103 mm, and die shoulder R8 mm. The maximum blank diameter at which the cylinder can be squeezed without causing breakage by one squeezing is defined as Dmax, with the ratio (D / d) of the blank diameter (D) to the cylinder diameter (d). At this time, Dmax / d was defined as “limit drawing ratio” (LDR (Limiting Drawing Ratio)), and this was used as an evaluation index. An LDR of 2 to 2.1 was accepted.
 また、成形後の試験片を取り出し、円筒部およびフランジ部分の外側を目視で観察した。目視観察の結果、割れの発生が見られる場合を×、割れは発生していないが、目視できるクラックが見られる場合を△、微小な凹凸(シワ)が見られるものの、クラックは発生していない場合を○、シワの発生も見られない場合を◎とした。そして、◎または○のものを合格とした。なお、「割れ」と「クラック」とは、隙間の最大幅が、1mm以上のものを「割れ」、1mm未満のものを「クラック」と定義して区別した。 Also, the molded specimen was taken out and the outside of the cylindrical part and the flange part was visually observed. As a result of visual observation, x is observed when cracks are observed, no cracks are generated, but Δ is observed when visible cracks are observed, but fine irregularities (wrinkles) are observed, but no cracks are generated. The case was marked with ◯, and the case without wrinkles was marked with ◎. And the thing of (double-circle) or (circle) was set as the pass. In addition, “crack” and “crack” were distinguished by defining a crack having a maximum width of 1 mm or more as “crack” and a crack having a maximum width of less than 1 mm as “crack”.
 また、上記絞り加工試験後のフランジ部における表面部の硬さを測定し、加工後の表面硬さを評価した。ビッカース硬さ試験機を用いて、荷重:1000g、測定位置:試験片断面のD/4位置中央部(D:部品直径)および測定回数:5回の条件で、各加工後試験片のビッカース硬さ(Hv)を測定した。そして、250Hv以上の物を合格とした。 Also, the hardness of the surface portion of the flange portion after the drawing test was measured, and the surface hardness after processing was evaluated. Using a Vickers hardness tester, load: 1000 g, measurement position: D / 4 position center of test piece cross section (D: part diameter) and number of measurements: 5 times Vickers hardness of each processed test piece The thickness (Hv) was measured. And the thing more than 250Hv was set as the pass.
 これらの測定結果を下記表3に示す。なお、同表における「フェライト結晶粒」の欄の「(○○○)面(%)」の表記は、板面方位が(○○○)面から10°以内のフェライト結晶粒の面積率(単位:%)を意味する。 These measurement results are shown in Table 3 below. In addition, the notation of “(xxx) plane (%)” in the column of “ferrite crystal grain” in the table indicates the area ratio of ferrite crystal grains whose plate plane orientation is within 10 ° from the (xxx) plane ( Unit:%).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、鋼No.1、2、7~14、25~31はいずれも、本発明の成分組成規定の要件を満足する鋼種を用い、推奨の熱間圧延条件で製造した結果、本発明の組織規定の要件を充足する発明鋼であり、絞り加工性および加工後表面硬さはすべて合格基準を満たしており、加工中は良好な絞り加工性を示しつつ、加工後は所定の表面硬さ(強度)を示す熱延鋼板が得られることが確認できた。 As shown in Table 3, steel no. 1, 2, 7 to 14, 25 to 31 all satisfy the requirements of the structure provision of the present invention as a result of manufacturing with the recommended hot rolling conditions using the steel grade that satisfies the requirements of the compositional composition of the present invention. Inventive steel, drawing workability and post-working surface hardness all meet the acceptance criteria, while exhibiting good drawing workability during working, and exhibiting a predetermined surface hardness (strength) after working It was confirmed that a rolled steel sheet was obtained.
 これに対し、鋼No.3~6、15~24は本発明で規定する成分組成および組織の要件のうち少なくともいずれかを満足しない比較鋼であり、絞り加工性および加工後表面硬さのうち少なくともいずれかが合格基準を満たしていない。 In contrast, Steel No. 3 to 6 and 15 to 24 are comparative steels that do not satisfy at least one of the component composition and the structure requirements specified in the present invention, and at least one of drawing workability and post-working surface hardness meets the acceptance criteria. not filled.
 例えば、鋼No.3は、成分組成の要件は満たしているものの、熱延前の加熱温度、熱延時の仕上げ圧延温度、および、熱延後の急冷停止温度が推奨範囲を外れて低すぎ、固溶N量が不足するとともに、(123)面方位のフェライト結晶粒が不足する一方で(001)面方位のフェライト結晶粒が過剰になり、絞り加工性、加工後表面硬さともに劣っている。  For example, steel No. 3, although the requirements of the component composition are satisfied, the heating temperature before hot rolling, the finish rolling temperature during hot rolling, and the quenching stop temperature after hot rolling are too low outside the recommended range, and the amount of solute N is too low. In addition to the shortage of ferrite crystal grains with the (123) plane orientation, ferrite crystal grains with the (001) plane orientation become excessive, and both drawability and surface hardness after processing are inferior.
 また、鋼No.4は、成分組成の要件は満たしているものの、熱延後の板厚が規定範囲を外れて大きすぎ、(123)面方位、(111)面方位のフェライト結晶粒がともに不足する一方で(001)面方位のフェライト結晶粒が過剰になるとともに、フェライト結晶粒が粗大化し、少なくとも絞り加工性が劣っている。 Steel No. 4, while the requirements of the component composition are satisfied, the plate thickness after hot rolling is too large outside the specified range, while the ferrite grains of (123) plane orientation and (111) plane orientation are both insufficient ( The (001) plane orientation ferrite crystal grains become excessive, the ferrite crystal grains become coarse, and at least the drawability is inferior.
 また、鋼No.5は、成分組成の要件は満たしているものの、熱延時の最終パスの圧延速度が推奨範囲を外れて大きすぎ、(123)面方位のフェライト結晶粒が不足する一方で(001)面方位のフェライト結晶粒が過剰になり、絞り加工性が劣っている。 Steel No. 5, although the requirements of the component composition are satisfied, the rolling speed of the final pass at the time of hot rolling is too large outside the recommended range, while (123) face orientation ferrite crystal grains are insufficient, while (001) face orientation The ferrite crystal grains become excessive and the drawing processability is inferior.
 また、鋼No.6は、成分組成の要件は満たしているものの、熱延時の最終圧下率が推奨範囲を外れて小さすぎ、フェライト結晶粒が粗大化し、少なくとも絞り加工性が劣っている。 Steel No. No. 6 satisfies the requirements of the component composition, but the final rolling reduction during hot rolling is too small outside the recommended range, the ferrite crystal grains are coarsened, and at least the drawability is inferior.
 また、鋼No.15(鋼種j)は、熱延条件は推奨範囲にあるものの、N含有量が低すぎるため、固溶N量が不足し、加工後表面硬さが劣っている。  Steel No. Although 15 (steel type j) has a hot rolling condition in the recommended range, since the N content is too low, the amount of solute N is insufficient and the surface hardness after processing is inferior.
 一方、鋼No.16(鋼種k)は、熱延条件は推奨範囲にあるものの、N含有量が高すぎ、少なくとも絞り加工性が劣っている。  On the other hand, steel No. In No. 16 (steel type k), the hot rolling conditions are in the recommended range, but the N content is too high and at least the drawability is inferior.
 また、鋼No.17(鋼種l)は、熱延条件は推奨範囲にあるものの、C含有量が高すぎ、固溶N量が不足し、加工後表面硬さが劣っている。  Steel No. No. 17 (steel type l) has a hot rolling condition in the recommended range, but the C content is too high, the amount of solute N is insufficient, and the surface hardness after processing is inferior.
 また、鋼No.18(鋼種m)は、熱延条件は推奨範囲にあるものの、Si含有量が高すぎ、(123)面方位のフェライト結晶粒が不足する一方で(001)面方位のフェライト結晶粒が過剰になり、少なくとも絞り加工性が劣っている。  Steel No. No. 18 (steel type m), although the hot rolling conditions are in the recommended range, the Si content is too high, and (123) plane orientation ferrite crystal grains are insufficient, while (001) plane orientation ferrite crystal grains are excessive. Therefore, at least the drawability is inferior.
 また、鋼No.19(鋼種n)は、熱延条件は推奨範囲にあるものの、Mn含有量が低すぎ、(001)面方位のフェライト結晶粒が過剰になり、絞り加工性、加工後表面硬さともに劣っている。  Steel No. 19 (steel type n), although the hot rolling conditions are in the recommended range, the Mn content is too low, the ferrite grains with the (001) orientation are excessive, and the drawability and surface hardness after processing are inferior. Yes.
 一方、鋼No.20(鋼種o)は、熱延条件は推奨範囲にあるものの、Mn含有量が高すぎ、(123)面方位のフェライト結晶粒が不足する一方で(001)面方位のフェライト結晶粒が過剰になり、少なくとも絞り加工性が劣っている。  On the other hand, steel No. 20 (steel type o), although the hot rolling conditions are in the recommended range, the Mn content is too high, and the ferrite crystal grains with (123) orientation are insufficient, while the ferrite grains with (001) orientation are excessive. Therefore, at least the drawability is inferior.
 また、鋼No.21(鋼種p)は、熱延条件は推奨範囲にあるものの、P含有量が高すぎ、(123)面方位のフェライト結晶粒が不足する一方で(001)面方位のフェライト結晶粒が過剰になり、少なくとも絞り加工性が劣っている。  Steel No. 21 (steel type p), although the hot rolling conditions are in the recommended range, the P content is too high, and (123) plane orientation ferrite crystal grains are insufficient, while (001) plane orientation ferrite crystal grains are excessive. Therefore, at least the drawability is inferior.
 また、鋼No.22(鋼種q)は、熱延条件は推奨範囲にあるものの、S含有量が高すぎ、(123)面方位、(111)面方位のフェライト結晶粒が不足する一方で(001)面方位のフェライト結晶粒が過剰になり、少なくとも絞り加工性が劣っている。  Steel No. Although 22 (steel type q) has a hot rolling condition in the recommended range, the S content is too high, and ferrite grains of (123) plane orientation and (111) plane orientation are insufficient, while (001) plane orientation Ferrite crystal grains become excessive, and at least drawing workability is inferior.
 また、鋼No.23(鋼種r)は、熱延条件は推奨範囲にあるものの、Al含有量が低すぎ、(123)面方位のフェライト結晶粒が不足する一方で(001)面方位のフェライト結晶粒が過剰になり、少なくとも絞り加工性が劣っている。  Steel No. 23 (steel type r), although the hot rolling conditions are in the recommended range, the Al content is too low, and (123) plane orientation ferrite crystal grains are insufficient, while (001) plane orientation ferrite crystal grains are excessive. Therefore, at least the drawability is inferior.
 一方、鋼No.24(鋼種s)は、熱延条件は推奨範囲にあるものの、Al含有量が高すぎ、(123)面方位のフェライト結晶粒が不足する一方で(001)面方位のフェライト結晶粒が過剰になり、少なくとも絞り加工性が劣っている。  On the other hand, steel No. 24 (steel type s), although the hot rolling conditions are in the recommended range, the Al content is too high, and (123) plane orientation ferrite crystal grains are insufficient, while (001) plane orientation ferrite crystal grains are excessive. Therefore, at least the drawability is inferior.
 以上より、本発明の適用性が確認できた。 From the above, the applicability of the present invention was confirmed.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2013年3月15日出願の日本特許出願(特願2013-053564)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on March 15, 2013 (Japanese Patent Application No. 2013-053564), the contents of which are incorporated herein by reference.
 本発明の熱延鋼板は、自動車のギヤなどのトランスミッション部品やケース等に用いられ、これらの軽量化・高強度化を実現することができる。 The hot-rolled steel sheet of the present invention is used for transmission parts such as automobile gears, cases, and the like, and it is possible to reduce the weight and strength of these parts.

Claims (2)

  1.  板厚が2~15mmであり、 
     成分組成が、 
     質量%で(以下、化学成分について同じ。)、
     C :0.3%以下(0%を含まない)、 
     Si:0.5%以下(0%を含まない)、 
     Mn:0.2~1%、 
     P :0.05%以下(0%を含まない)、 
     S :0.05%以下(0%を含まない)、 
     Al:0.01~0.1%、 
     N :0.008~0.025%、 
     残部は鉄および不可避的不純物からなり、 
     固溶N:0.007%以上であり、 
     深さt/4(t:板厚、以下同じ。)の位置に存在するフェライト結晶粒に関し、 
     板面方位が(123)面から10°以内のフェライト結晶粒の面積率が20%以上、 
     板面方位が(111)面から10°以内のフェライト結晶粒の面積率が5%以上、 
     板面方位が(001)面から10°以内のフェライト結晶粒の面積率が20%以下であるとともに、
     前記深さt/4の位置に存在するフェライト結晶粒の平均粒径が3~35μmである ことを特徴とする絞り加工性と加工後の表面硬さに優れる熱延鋼板。
    The plate thickness is 2-15mm,
    Ingredient composition
    % By mass (hereinafter the same for chemical components)
    C: 0.3% or less (excluding 0%),
    Si: 0.5% or less (excluding 0%),
    Mn: 0.2 to 1%
    P: 0.05% or less (excluding 0%),
    S: 0.05% or less (excluding 0%),
    Al: 0.01 to 0.1%,
    N: 0.008 to 0.025%,
    The balance consists of iron and inevitable impurities,
    Solid solution N: 0.007% or more,
    Regarding ferrite crystal grains existing at a position of depth t / 4 (t: plate thickness, the same shall apply hereinafter),
    The area ratio of ferrite crystal grains whose plate plane orientation is within 10 ° from the (123) plane is 20% or more,
    The area ratio of ferrite crystal grains whose plate plane orientation is within 10 ° from the (111) plane is 5% or more,
    The area ratio of ferrite crystal grains whose plate plane orientation is within 10 ° from the (001) plane is 20% or less,
    A hot-rolled steel sheet excellent in drawing workability and surface hardness after processing, characterized in that the average grain size of ferrite crystal grains present at the position of the depth t / 4 is 3 to 35 μm.
  2.  成分組成が、さらに、 (a)~(e)の少なくとも1つを含むものである請求項1記載の熱延鋼板。
    (a)Cr:2%以下(0%を含まない)及び Mo:2%以下(0%を含まない)の少なくとも1種
    (b)Ti:0.2%以下(0%を含まない)、Nb:0.2%以下(0%を含まない)及びV:0.2%以下(0%を含まない)の少なくとも1種 
    (c)B:0.005%以下(0%を含まない) 
    (d)Cu:5%以下(0%を含まない)、Ni:5%以下(0%を含まない)及びCo:5%以下(0%を含まない)の少なくとも1種 
    (e)Ca:0.05%以下(0%を含まない)、REM:0.05%以下(0%を含まない)、Mg:0.02%以下(0%を含まない)、Li:0.02%以下(0%を含まない)、Pb:0.5%以下(0%を含まない)及びBi:0.5%以下(0%を含まない)の少なくとも1種
    The hot rolled steel sheet according to claim 1, wherein the component composition further comprises at least one of (a) to (e).
    (A) at least one of Cr: 2% or less (not including 0%) and Mo: 2% or less (not including 0%) (b) Ti: 0.2% or less (not including 0%), Nb: 0.2% or less (not including 0%) and V: 0.2% or less (not including 0%)
    (C) B: 0.005% or less (excluding 0%)
    (D) At least one of Cu: 5% or less (not including 0%), Ni: 5% or less (not including 0%), and Co: 5% or less (not including 0%)
    (E) Ca: 0.05% or less (not including 0%), REM: 0.05% or less (not including 0%), Mg: 0.02% or less (not including 0%), Li: At least one of 0.02% or less (excluding 0%), Pb: 0.5% or less (not including 0%), and Bi: 0.5% or less (not including 0%)
PCT/JP2014/055296 2013-03-15 2014-03-03 Hot-rolled steel sheet having excellent drawability and post-processing surface hardness WO2014141919A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480011947.0A CN105026596B (en) 2013-03-15 2014-03-03 The hot rolled steel plate of the case hardness excellence after drawing processability and processing
US14/769,910 US20160002745A1 (en) 2013-03-15 2014-03-03 Hot-rolled steel sheet having excellent drawability and post-processing surface hardness

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-053564 2013-03-15
JP2013053564A JP6177551B2 (en) 2013-03-15 2013-03-15 Hot-rolled steel sheet with excellent drawability and surface hardness after processing

Publications (1)

Publication Number Publication Date
WO2014141919A1 true WO2014141919A1 (en) 2014-09-18

Family

ID=51536592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055296 WO2014141919A1 (en) 2013-03-15 2014-03-03 Hot-rolled steel sheet having excellent drawability and post-processing surface hardness

Country Status (5)

Country Link
US (1) US20160002745A1 (en)
JP (1) JP6177551B2 (en)
CN (1) CN105026596B (en)
TW (1) TWI527909B (en)
WO (1) WO2014141919A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060311A1 (en) * 2013-10-22 2015-04-30 株式会社神戸製鋼所 Hot-rolled steel sheet having excellent surface hardness after carburizing heat treatment and excellent drawability
CN107849651A (en) * 2015-07-31 2018-03-27 新日铁住金株式会社 High tensile hot rolled steel sheet
CN108368562A (en) * 2015-12-11 2018-08-03 新日铁住金株式会社 The manufacturing method and formed products of formed products
WO2023140239A1 (en) * 2022-01-21 2023-07-27 日本製鉄株式会社 Cold-rolled steel sheet and manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106148803B (en) * 2016-08-30 2017-11-24 唐山钢铁集团有限责任公司 A kind of production method of deep-draw battery case steel
CA3152893A1 (en) * 2019-11-20 2021-05-27 Akihide MATSUMOTO Hot-rolled steel sheet for electric resistance welded steel pipe and method for manufacturing the same, electric resistance welded steel pipe and method for manufacturing the same, line pipe, and building structure
KR102321319B1 (en) * 2019-12-19 2021-11-03 주식회사 포스코 Steel sheet having excellent ductility and low-temperature impact toughness and method for manufacturing thereof
CN114318170A (en) * 2021-12-19 2022-04-12 江阴市江扬标准紧固件制造有限公司 High-strength corrosion-resistant flange bolt for automobile and preparation process thereof
CN116024502A (en) * 2022-12-29 2023-04-28 中国重汽集团济南动力有限公司 High-strength high-elongation light saddle shell and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321715A (en) * 2002-04-26 2003-11-14 Jfe Steel Kk Method of producing galvanized hot rolled steel sheet having excellent stain aging hardening property
JP2004323925A (en) * 2003-04-25 2004-11-18 Nippon Steel Corp Strain aging hardening type steel sheet having excellent cold elongation deterioration resistance, cold delayed aging property and low temperature bake hardenability, and its production method
JP2005002441A (en) * 2003-06-13 2005-01-06 Sumitomo Metal Ind Ltd High strength steel and its production method
JP2007291514A (en) * 2006-03-28 2007-11-08 Jfe Steel Kk Hot-rolled steel sheet with small in-plane anisotropy after cold rolling and recrystallization annealing, cold-rolled steel sheet with small in-plane anisotropy and production method therefor
JP2012012682A (en) * 2010-07-02 2012-01-19 Sumitomo Metal Ind Ltd Hot-rolled steel sheet and manufacturing method thereof
JP2012172234A (en) * 2011-02-24 2012-09-10 Jfe Steel Corp High-strength hot-rolled steel sheet having excellent bending workability, and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5092433B2 (en) * 2007-02-02 2012-12-05 住友金属工業株式会社 Hot rolled steel sheet and manufacturing method thereof
JP4917186B2 (en) * 2009-05-11 2012-04-18 新日本製鐵株式会社 Hot-rolled steel sheet, hot-dip galvanized steel sheet excellent in punching workability and fatigue characteristics, and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321715A (en) * 2002-04-26 2003-11-14 Jfe Steel Kk Method of producing galvanized hot rolled steel sheet having excellent stain aging hardening property
JP2004323925A (en) * 2003-04-25 2004-11-18 Nippon Steel Corp Strain aging hardening type steel sheet having excellent cold elongation deterioration resistance, cold delayed aging property and low temperature bake hardenability, and its production method
JP2005002441A (en) * 2003-06-13 2005-01-06 Sumitomo Metal Ind Ltd High strength steel and its production method
JP2007291514A (en) * 2006-03-28 2007-11-08 Jfe Steel Kk Hot-rolled steel sheet with small in-plane anisotropy after cold rolling and recrystallization annealing, cold-rolled steel sheet with small in-plane anisotropy and production method therefor
JP2012012682A (en) * 2010-07-02 2012-01-19 Sumitomo Metal Ind Ltd Hot-rolled steel sheet and manufacturing method thereof
JP2012172234A (en) * 2011-02-24 2012-09-10 Jfe Steel Corp High-strength hot-rolled steel sheet having excellent bending workability, and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060311A1 (en) * 2013-10-22 2015-04-30 株式会社神戸製鋼所 Hot-rolled steel sheet having excellent surface hardness after carburizing heat treatment and excellent drawability
CN107849651A (en) * 2015-07-31 2018-03-27 新日铁住金株式会社 High tensile hot rolled steel sheet
EP3330394A4 (en) * 2015-07-31 2018-12-19 Nippon Steel & Sumitomo Metal Corporation High-strength hot-rolled steel sheet
CN107849651B (en) * 2015-07-31 2019-09-03 日本制铁株式会社 High tensile hot rolled steel sheet
CN108368562A (en) * 2015-12-11 2018-08-03 新日铁住金株式会社 The manufacturing method and formed products of formed products
EP3388538A4 (en) * 2015-12-11 2018-11-21 Nippon Steel & Sumitomo Metal Corporation Molded product manufacturing method and molded product
US10603706B2 (en) 2015-12-11 2020-03-31 Nippon Steel Corporation Method of producing molded product and molded product
CN108368562B (en) * 2015-12-11 2021-07-20 日本制铁株式会社 Method for producing molded article and molded article
US11161163B2 (en) 2015-12-11 2021-11-02 Nippon Steel Corporation Method of producing molded product and molded product
WO2023140239A1 (en) * 2022-01-21 2023-07-27 日本製鉄株式会社 Cold-rolled steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
TWI527909B (en) 2016-04-01
JP2014177686A (en) 2014-09-25
CN105026596A (en) 2015-11-04
US20160002745A1 (en) 2016-01-07
JP6177551B2 (en) 2017-08-09
TW201506171A (en) 2015-02-16
CN105026596B (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6058439B2 (en) Hot-rolled steel sheet with excellent cold workability and surface hardness after processing
JP6177551B2 (en) Hot-rolled steel sheet with excellent drawability and surface hardness after processing
CA2966476C (en) High toughness and high tensile strength thick steel plate with excellent material homogeneity and production method for same
JP6068314B2 (en) Hot-rolled steel sheet with excellent cold workability and surface hardness after carburizing heat treatment
JP6143355B2 (en) Hot-rolled steel sheet with excellent drawability and surface hardness after carburizing heat treatment
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
WO2015093321A1 (en) H-shaped steel and method for producing same
KR101965521B1 (en) Rolled steel bar or rolled wire material for cold-forged component
CN103108973A (en) High-strength hot-rolled steel sheet having superior punchability and method for producing same
KR20170066632A (en) Rolled steel bar or rolled wire material for cold-forged component
CN104726768A (en) High strength hot rolled steel sheet having excellent surface property and method for manufacturing the same
WO2015159965A1 (en) Hot-rolled steel sheet having good cold workability and excellent hardness after working
KR102064147B1 (en) High-strength thin steel sheet and method for manufacturing same
JP6058508B2 (en) Hot-rolled steel sheet with excellent cold workability, surface properties and hardness after processing
US11021776B2 (en) Method of manufacture of multiphase, hot-rolled ultra-high strength steel
JP6841383B2 (en) Steel plate and its manufacturing method
JP6068291B2 (en) Soft high carbon steel sheet
JP2019011510A (en) Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment
JP6032173B2 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength alloyed hot-dip galvanized steel sheet having a maximum tensile strength of 980 MPa and excellent delayed fracture resistance
KR20170121267A (en) Hot rolled bar stock, manufacturing method of parts and hot rolled bar stock
JP2017197816A (en) Hot rolled steel sheet excellent in cold workability and hardness after being cold-worked
JP6668662B2 (en) Steel sheet excellent in fatigue characteristics and formability and method for producing the same
JP2018062692A (en) Hot rolled steel sheet
JP5387501B2 (en) Steel sheet, surface-treated steel sheet, and production method thereof
JPWO2020017606A1 (en) Steel plate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480011947.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14762785

Country of ref document: EP

Kind code of ref document: A1