JP4737761B2 - High strength hot-rolled steel sheet with excellent strength-elongation balance and fatigue properties - Google Patents

High strength hot-rolled steel sheet with excellent strength-elongation balance and fatigue properties Download PDF

Info

Publication number
JP4737761B2
JP4737761B2 JP2006152932A JP2006152932A JP4737761B2 JP 4737761 B2 JP4737761 B2 JP 4737761B2 JP 2006152932 A JP2006152932 A JP 2006152932A JP 2006152932 A JP2006152932 A JP 2006152932A JP 4737761 B2 JP4737761 B2 JP 4737761B2
Authority
JP
Japan
Prior art keywords
less
strength
ferrite
fraction
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006152932A
Other languages
Japanese (ja)
Other versions
JP2007321201A (en
Inventor
俊夫 村上
正裕 野村
陽一 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006152932A priority Critical patent/JP4737761B2/en
Publication of JP2007321201A publication Critical patent/JP2007321201A/en
Application granted granted Critical
Publication of JP4737761B2 publication Critical patent/JP4737761B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自動車の足回り、フレーム部品等の強度と加工性及び疲労特性が必要な部品に用いられる優れた強度−伸びバランス及び高疲労特性を示す高強度熱延鋼板に関する。   The present invention relates to a high-strength hot-rolled steel sheet exhibiting excellent strength-elongation balance and high fatigue properties used for parts that require strength, workability, and fatigue characteristics such as undercarriages and frame parts of automobiles.

近年、自動車部品の高強度化が進み、自動車の足回り部品やフレーム部品等でも高強度化が進んでいるが、部品の軽量化のためには、静的強度とともに疲労強度の改善が必要とされている。また、複雑な形状に加工されるため、加工性(延性)との両立が求められている。
強度、疲労特性及び加工性の改善に関する従来知見として、特許文献1には、主相であるポリゴナルフェライトの平均結晶粒径を、板厚中心から表層に向けて漸次小さくし、疲労破壊の発生する表層部の組織を微細化することで熱延鋼板の疲労特性を改善することが記載されている。この熱延鋼板の製造にあたっては、前記のような結晶粒径傾斜組織を形成するため、レベラによる繰り返し曲げ・曲げ戻しが必須となり、大規模な設備導入が必要という問題がある。また特許文献2には、C、Ti、Mo比を制御し、フェライト単相組織にTi及びMoを含む炭化物を分散析出させて、熱延鋼板の強度、疲労特性及び加工性を改善することが記載されている。しかし、フェライト単相組織であるため、強度−伸びバランスが不十分である。
In recent years, the strength of automobile parts has been increased, and the strength of automobile undercarriage parts and frame parts has also been increased. However, in order to reduce the weight of parts, it is necessary to improve the fatigue strength as well as the static strength. Has been. Moreover, since it is processed into a complicated shape, compatibility with workability (ductility) is required.
As conventional knowledge about improvement of strength, fatigue characteristics and workability, Patent Document 1 discloses that the average crystal grain size of polygonal ferrite, which is the main phase, gradually decreases from the center of the plate thickness to the surface layer, and fatigue fracture occurs. It is described that the fatigue characteristics of a hot-rolled steel sheet are improved by refining the structure of the surface layer portion to be made. In the production of this hot-rolled steel sheet, the above-mentioned grain size gradient structure is formed, so that repeated bending and unbending by a leveler is indispensable, and there is a problem that large-scale equipment introduction is necessary. In Patent Document 2, the C, Ti, and Mo ratios are controlled, and carbides containing Ti and Mo are dispersed and precipitated in the ferrite single phase structure to improve the strength, fatigue characteristics, and workability of the hot-rolled steel sheet. Are listed. However, since it is a ferrite single phase structure, the strength-elongation balance is insufficient.

一方、強度−伸びバランスの改善には、強度比の大きい2種類の組織からなる鋼(Dual鋼、DP鋼)とすることが有効であり、さらにDP鋼の疲労特性の改善方法として、強度が低く応力集中の起こりやすいフェライト部を強化することが有効であることが知られている。例えば特許文献3には、Ti又はNbの炭化物で析出強化した主相フェライトと硬質な第2相からなるDP鋼において、20μmまでの表層部の平均フェライト粒径を5μm以下にすることが記載され、特許文献4には、第2相をマルテンサイト・針状フェライト・残留オーステナイトとしたDP鋼において、初析フェライトを析出強化することで、強度−加工性−疲労特性を改善することが記載されている。   On the other hand, in order to improve the strength-elongation balance, it is effective to use steel (Dual steel, DP steel) having two structures with a large strength ratio. Further, as a method for improving the fatigue characteristics of DP steel, the strength is It is known that it is effective to reinforce a ferrite portion that is low and easily causes stress concentration. For example, Patent Document 3 describes that in a DP steel composed of a main phase ferrite precipitated and strengthened with a carbide of Ti or Nb and a hard second phase, the average ferrite grain size of the surface layer portion up to 20 μm is set to 5 μm or less. Patent Document 4 describes that in DP steel in which the second phase is martensite, acicular ferrite, and retained austenite, precipitation-strengthening of pro-eutectoid ferrite improves strength-workability-fatigue properties. ing.

特開2004−211199号公報JP 2004-2111199 A 特開2003−321726号公報JP 2003-321726 A 特開平9−137249号公報JP-A-9-137249 特開平11−189842号公報JP-A-11-189842

前記特許文献3,4に記載された熱延鋼板は、700〜800℃付近の保持・滞留時間を短時間とし、フェライト中にTi、Nbの炭化物を分散析出させ、主相フェライトを析出強化している。この熱延鋼板では、上記温度範囲での短時間の保持・滞留で微細に分散析出した析出物が、転位の繰り返し運動に対して障害物になり、疲労特性を改善するものと考えられている。しかし、従来技術では、これにより十分な疲労特性改善効果が得られたとはいえなかった。
従って、本発明は、強度−伸びバランスに優れたDP鋼において、疲労特性をさらに改善することを第1の目的とする。また、伸びフランジ特性にも優れたDP鋼を得ることを第2の目的とする。
The hot-rolled steel sheets described in Patent Documents 3 and 4 have a retention and residence time of around 700 to 800 ° C., a dispersion of Ti and Nb carbides in ferrite, and precipitation strengthening of main phase ferrite. ing. In this hot-rolled steel sheet, it is considered that precipitates that are finely dispersed and precipitated by holding and staying in the above-mentioned temperature range for a short period of time become obstacles to repeated movement of dislocations and improve fatigue properties. . However, in the prior art, it could not be said that a sufficient fatigue property improving effect was obtained.
Accordingly, the first object of the present invention is to further improve the fatigue characteristics of DP steel having an excellent strength-elongation balance. A second object is to obtain DP steel having excellent stretch flange characteristics.

本発明者らの研究により、DP鋼においてフェライトをTi、Nb、Vなどの析出物により強化する場合に、上記温度範囲での保持・滞留時間を長くし、その析出物を適度に粗大化することにより、高い疲労特性改善効果が得られることが分かった。これは、析出物を適度に粗大化することで、転位が析出物を通過する機構がカッティング機構からオロワン機構に変わり、析出物が疲労試験中の転位の繰り返し運動に対し有効な障害物になり、疲労特性が改善するものと考えられる。   According to the researches of the present inventors, when strengthening ferrite with precipitates such as Ti, Nb, and V in DP steel, the retention and residence time in the above temperature range is lengthened, and the precipitates are appropriately coarsened. Thus, it was found that a high effect of improving fatigue characteristics can be obtained. This is because, by appropriately coarsening the precipitates, the mechanism by which dislocations pass through the precipitates is changed from the cutting mechanism to the Orowan mechanism, and the precipitates become an effective obstacle to the repetitive movement of dislocations during fatigue tests. It is considered that the fatigue characteristics are improved.

本発明に係る強度−伸びバランスと疲労特性に優れた高強度熱延鋼板は、質量%で、C:0.01%超、0.30%以下、Si:0.1%以上、2.0%以下、Mn:0.1%以上、2.5%以下を含み、V:0.01%以上、0.15%以下、Nb:0.02%以上、0.30%以下、Ti:0.01%以上、0.15%以下の1種又は2種以上を下記条件式(1)を満たすように含み、残部がFe及び不可避不純物からなり、フェライト分率が50%以上、95%以下、マルテンサイト+残留オーステナイトからなる硬質第2相分率が5%以上、50%以下の組織を有し、フェライト中に形成された析出物の平均粒径rが6nm以上であり、平均粒径rと下記式(2)で表される析出物分率fが下記条件式(3)を満たすことを特徴とする。
C−12×(V/51+Nb/93+Ti/48)≧0.01 ・・・・(1)
f=(2.08Ti+1.69V+1.14Nb)/100 ・・・・(2)
r/f≦13000 ・・・・(3)
ここで、上記式(1)、(2)中の元素記号は当該元素の質量%を意味する。
The high-strength hot-rolled steel sheet excellent in strength-elongation balance and fatigue properties according to the present invention is mass%, C: more than 0.01%, 0.30% or less, Si: 0.1% or more, 2.0 %: Mn: 0.1% or more, 2.5% or less, V: 0.01% or more, 0.15% or less, Nb: 0.02% or more, 0.30% or less, Ti: 0 0.01% or more and 0.15% or less is included so as to satisfy the following conditional expression (1), the balance is made of Fe and inevitable impurities, and the ferrite fraction is 50% or more and 95% or less And a hard second phase fraction composed of martensite + residual austenite having a structure of 5% or more and 50% or less, and the average particle size r of the precipitate formed in the ferrite is 6 nm or more. The precipitate fraction f represented by r and the following formula (2) satisfies the following conditional formula (3). .
C-12 × (V / 51 + Nb / 93 + Ti / 48) ≧ 0.01 (1)
f = (2.08Ti + 1.69V + 1.14Nb) / 100 (2)
r / f ≦ 13000 (3)
Here, the element symbol in the above formulas (1) and (2) means mass% of the element.

上記高強度熱延鋼板において、硬質第2相の平均粒径が5μm以下であることが望ましい。これにより伸びフランジ性が改善される。
上記高強度熱延鋼板は、必要に応じて、さらにCu:0.02%以上、2.0%以下、Ni:0.02%以上、2.0%以下、Cr:0.02%以上、2.0%以下、Mo:0.01%以上、0.5%以下の1種又は2種以上、又は/及びP:0.02%以上、0.3%以下、Al:0.02%以上、0.3%以下の1種又は2種を含むことができる。
In the high-strength hot-rolled steel sheet, it is desirable that the average particle diameter of the hard second phase is 5 μm or less. Thereby, stretch flangeability is improved.
If necessary, the high-strength hot-rolled steel sheet is further Cu: 0.02% or more, 2.0% or less, Ni: 0.02% or more, 2.0% or less, Cr: 0.02% or more, 2.0% or less, Mo: 0.01% or more, 0.5% or less, one or more, or / and P: 0.02% or more, 0.3% or less, Al: 0.02% As mentioned above, 0.3% or less of 1 type or 2 types can be included.

本発明によれば、加工性と疲労特性が共に優れた高強度熱延鋼板を得ることができる。本発明に係る高強度熱延鋼板は、強度と加工性及び疲労特性が必要とされる自動車の足回り、フレーム部品等の製造に適している。
なお、本発明において加工性は、強度−伸びバランス(TS×El)と強度−伸びフランジバランス(TS×λ)で評価し、疲労特性は疲労強度比(FL/TS)で評価する。TSは引張強さ、Elは伸び、λは伸びフランジ性(穴広がり率)、FLは疲労強度を意味する。
According to the present invention, a high-strength hot-rolled steel sheet having excellent workability and fatigue characteristics can be obtained. The high-strength hot-rolled steel sheet according to the present invention is suitable for manufacturing automobile undercarriages and frame parts that require strength, workability, and fatigue characteristics.
In the present invention, workability is evaluated by strength-elongation balance (TS × E1) and strength-elongation flange balance (TS × λ), and fatigue properties are evaluated by fatigue strength ratio (FL / TS). TS means tensile strength, El means elongation, λ means stretch flangeability (hole spreading ratio), and FL means fatigue strength.

まず、本発明に係る高強度熱延鋼板の組成及び組織限定理由について説明する。
・C:0.01%超、0.30%以下
Cは強化元素であり、C量が増加するとフェライト分率が低下する。0.01%以下では必要な強度が得られず、0.30%を超えると第2相(マルテンサイト+残留オーステナイト)分率が大きくなり過ぎ、TS×Elバランス及びTS×λバランスが確保できない。好ましくは、0.040%超、0.20%以下である。
First, the composition of the high-strength hot-rolled steel sheet according to the present invention and the reason for limiting the structure will be described.
C: more than 0.01% and 0.30% or less C is a strengthening element, and the ferrite fraction decreases as the C content increases. If it is less than 0.01%, the required strength cannot be obtained, and if it exceeds 0.30%, the fraction of the second phase (martensite + retained austenite) becomes too large, and TS × El balance and TS × λ balance cannot be secured. . Preferably, it is more than 0.040% and 0.20% or less.

・Si:0.1%以上、2.0%以下
Siはフェライトの固溶強化元素としてTS×Elバランス改善に寄与し、疲労特性改善にも寄与する。しかし、0.15%未満であると脱酸が不十分となりTS×Elバランスが劣化し、2.0%を超えるとフェライトが強化されすぎ、TS×Elバランス及びTS×λバランスが劣化する。好ましくは0.5%以上、1.7%以下である。
・Mn:0.1%以上、2.5%以下
Mnは脱酸元素として添加され、また固溶強化によりTS×Elバランスの改善に寄与する。しかし、0.1%未満であると脱酸が不十分となりTS×Elバランスが劣化し、2.5%を超えると焼き入れ性が高くなり過ぎフェライト分率が低下する。好ましくは1.0%以上、2.0%以下である。
Si: 0.1% or more and 2.0% or less Si, as a solid solution strengthening element of ferrite, contributes to improving the TS × El balance and contributes to improving fatigue characteristics. However, if it is less than 0.15%, deoxidation is insufficient and the TS × E1 balance deteriorates, and if it exceeds 2.0%, the ferrite is excessively strengthened, and the TS × El balance and TS × λ balance deteriorate. Preferably they are 0.5% or more and 1.7% or less.
Mn: 0.1% or more, 2.5% or less Mn is added as a deoxidizing element, and contributes to the improvement of the TS × El balance by solid solution strengthening. However, if it is less than 0.1%, deoxidation is insufficient and the TS × E1 balance is deteriorated, and if it exceeds 2.5%, the hardenability becomes too high and the ferrite fraction decreases. Preferably they are 1.0% or more and 2.0% or less.

・V:0.01%以上、0.15%以下
・Nb:0.02%以上、0.30%以下
・Ti:0.01%以上、0.15%以下
これらの元素は炭化物としてフェライトを析出強化することで疲労特性改善に寄与する。しかし、それぞれ下限値未満であると析出強化効果が不十分であり、上限値を超えて添加しても特性改善効果が得られない。好ましくはV:0.03%以上、0.12%以下、Nb:0.05%以上、0.25%以下、Ti:0.03%以上、0.12%以下である。
・C−12×(V/51+Nb/93+Ti/48)≧0.01((1)式)
この式はV、Nb、Tiにより固定されないフリーC量を0.01%以上残存させることを意味する。フリーCは必要な硬質第2相分率の確保に寄与する。左辺の計算値(成分パラメータという)は0.04%以上が好ましい。なお、式中の元素記号は当該元素の質量%を意味する。
・ V: 0.01% or more, 0.15% or less ・ Nb: 0.02% or more, 0.30% or less ・ Ti: 0.01% or more, 0.15% or less These elements contain ferrite as carbides Contributing to the improvement of fatigue properties by strengthening precipitation. However, if it is less than the lower limit, the effect of precipitation strengthening is insufficient, and even if the content exceeds the upper limit, the effect of improving the characteristics cannot be obtained. Preferably, V is 0.03% or more and 0.12% or less, Nb is 0.05% or more and 0.25% or less, and Ti is 0.03% or more and 0.12% or less.
・ C-12 × (V / 51 + Nb / 93 + Ti / 48) ≧ 0.01 (Equation (1))
This equation means that the amount of free C not fixed by V, Nb, and Ti remains 0.01% or more. Free C contributes to securing the necessary hard second phase fraction. The calculated value (referred to as component parameter) on the left side is preferably 0.04% or more. In addition, the element symbol in a formula means the mass% of the said element.

・Cu:0.02%以上、2.0%以下
・Ni:0.02%以上、2.0%以下
・Cr:0.02%以上、2.0%以下
・Mo:0.01%以上、0.5%以下
これらの元素は鋼の焼き入れ性を高めることにより、マルテンサイト及び残留オーステナイト以外の組織の形成を抑制する効果があり、必要に応じて添加される。しかし、下限値未満ではその効果が得られず、上限値を超えるとフェライトが脆化し、強度−伸びバランスを低下させる。
Cu: 0.02% or more, 2.0% or less Ni: 0.02% or more, 2.0% or less Cr: 0.02% or more, 2.0% or less Mo: 0.01% or more 0.5% or less These elements have the effect of suppressing the formation of structures other than martensite and retained austenite by enhancing the hardenability of steel, and are added as necessary. However, if it is less than the lower limit, the effect cannot be obtained, and if it exceeds the upper limit, the ferrite becomes brittle and the strength-elongation balance is lowered.

・P:0.02%以上、0.3%以下
・Al:0.03%以上、0.3%以下
これらの元素は固溶強化によりTS−Elバランスを改善する効果があり、必要に応じて添加される。しかし、下限値未満ではその効果が得られず、上限値を超えると粒界偏析し粒界破壊を助長してTS−Elバランスを低下させる。
・ P: 0.02% or more, 0.3% or less ・ Al: 0.03% or more, 0.3% or less These elements have the effect of improving the TS-El balance by solid solution strengthening. Added. However, if it is less than the lower limit, the effect cannot be obtained, and if it exceeds the upper limit, it segregates at the grain boundary, promotes grain boundary fracture, and lowers the TS-El balance.

・フェライト分率(面積分率):50%以上、95%以下
・硬質第2相分率(面積分率):5%以上、50%以下
フェライト分率が50%未満又は硬質第2相(マルテンサイト+残留オーステナイト)分率が50%を越えると、硬質第2相が連結することによりTS×Elバランスが低下し、一方、フェライト分率が95%を超え又は硬質第2相分率が5%未満であると、複相組織化によるTS×Elバランス改善効果が得られない。好ましくはフェライト分率は70%以上、93%以下、マルテンサイト+残留オーステナイト分率は7%以上、30%以下である。
主相であるフェライト及び硬質第2相以外の組織(ベイナイト、パーライト)の分率は5%以下が望ましい。これは中途半端な硬質相の存在によりTS×Elバランスが低下するためである。
-Ferrite fraction (area fraction): 50% or more, 95% or less-Hard second phase fraction (area fraction): 5% or more, 50% or less Ferrite fraction is less than 50% or hard second phase ( When the fraction of martensite + retained austenite) exceeds 50%, the hard second phase is connected to lower the TS x El balance, while the ferrite fraction exceeds 95% or the hard second phase fraction is If it is less than 5%, the TS × El balance improvement effect due to the multiphase organization cannot be obtained. Preferably, the ferrite fraction is 70% to 93%, and the martensite + retained austenite fraction is 7% to 30%.
The fraction of the structure (bainite, pearlite) other than the main phase ferrite and the hard second phase is preferably 5% or less. This is because the TS × El balance decreases due to the presence of a halfway hard phase.

・フェライト中に形成された析出物の平均粒径r:6nm以上
・r/f≦13000((3)式)
この2つの規定は、析出物の平均粒径rを転位によりカッティングされないサイズに制御し、同時に析出物の粒子間距離(r/f)を小さい値に制限することを意味する。これにより、繰り返し応力付与中の転位の移動に対する抵抗力を大きくし、疲労特性を改善することができる。なお、fは析出物分率(面積分率)であり、前記(2)式で表される。好ましくはr/fは11000以下である。
・ Average particle size r of precipitates formed in ferrite: 6 nm or more ・ r / f ≦ 13000 (Equation (3))
These two rules mean that the average particle size r of the precipitate is controlled to a size that is not cut by dislocation, and at the same time, the interparticle distance (r / f) of the precipitate is limited to a small value. Thereby, the resistance force to the movement of dislocation during repeated stress application can be increased, and the fatigue characteristics can be improved. In addition, f is a precipitate fraction (area fraction), and is represented by the formula (2). Preferably r / f is 11000 or less.

・硬質第2相の平均粒径:5μm以下
マルテンサイト及び/又は残留オーステナイトからなる硬質第2相の平均粒径を小さくすることで、局所的な変形を抑制し、伸びフランジ性が改善される。硬質第2相の平均粒径が5μmを越えると十分な伸びフランジ性が得られない。C量、Mn量が高くフェライト形成が抑制されたり、熱延仕上げ温度が高くオーステナイト粒が粗大化すると、硬質第2層の平均粒径が大きくなるので、硬質第2相の平均粒径を5μm以下にするには、C、Mn量を前記好ましい範囲の上限値以下とし、熱延仕上げ温度を後述する好ましい範囲の上限値以下とすることが望ましい。
-Average particle size of hard second phase: 5 μm or less By reducing the average particle size of hard second phase composed of martensite and / or retained austenite, local deformation is suppressed and stretch flangeability is improved. . If the average particle diameter of the hard second phase exceeds 5 μm, sufficient stretch flangeability cannot be obtained. When the amount of C and Mn is high and ferrite formation is suppressed, or when the austenite grain is coarsened due to high hot rolling finishing temperature, the average particle size of the hard second layer becomes large, so the average particle size of the hard second phase is 5 μm. In order to make it below, it is desirable that the amounts of C and Mn are not more than the upper limits of the above preferable ranges, and the hot rolling finishing temperature is not more than the upper limits of the preferable ranges described later.

続いて、本発明に係る高強度熱延鋼板の製造方法について説明する。
典型的な製造方法は、鋼素材を加熱した後、仕上げ圧延を含む熱間圧延、熱延後の急冷、急冷停止後の保持又は滞留、保持又は滞留後の冷却、巻き取りである。以下、各工程について説明する。
・加熱
熱間圧延前の加熱は1100℃以上、1300℃以下で行う。この加熱によりオーステナイト単相とし、かつV、Nb、Tiをオーステナイトに固溶させる。加熱温度が1100℃未満ではV、Nb、Tiがオーステナイトに固溶できず、粗大な炭化物が形成されるため疲労特性改善効果が得られない。一方、1300℃を越える温度は操業上困難である。
Then, the manufacturing method of the high intensity | strength hot-rolled steel plate which concerns on this invention is demonstrated.
A typical manufacturing method is hot rolling including finish rolling after heating a steel material, quenching after hot rolling, holding or staying after quenching stop, cooling after holding or staying, and winding. Hereinafter, each step will be described.
-Heating Heating before hot rolling is performed at 1100 ° C or higher and 1300 ° C or lower. By this heating, an austenite single phase is obtained, and V, Nb, and Ti are dissolved in austenite. When the heating temperature is less than 1100 ° C., V, Nb, and Ti cannot be dissolved in austenite, and coarse carbides are formed, so that the effect of improving fatigue characteristics cannot be obtained. On the other hand, temperatures exceeding 1300 ° C. are difficult to operate.

・熱間圧延
熱間圧延は、仕上げ圧延温度が700℃以上、1050℃以下の範囲になるように行う。仕上げ圧延温度が700℃未満では焼き入れ性が低下し、フェライト変態、パーライト変態が促進され、TS×Elバランスが低下する。一方、1050℃を超えるとオーステナイトが粗大化し、焼き入れ性が高まるため、十分なフェライト量が確保できない。また、最終組織が微細化しない。好ましくは、700℃以上、850℃以下である。
・熱延後の急冷
熱延後の急冷は650℃以上、800℃以下の温度域に20℃/s以上で急冷する。これはフェライト析出ノーズに急冷してフェライトを形成させるためである。急冷停止温度が650℃未満ではパーライト変態又はベイナイト変態が促進され、800℃を超えるとフェライト変態が生じず、所定の相分率のDP鋼を得るのが困難である。
-Hot rolling Hot rolling is performed so that the finish rolling temperature is in the range of 700 ° C or higher and 1050 ° C or lower. When the finish rolling temperature is less than 700 ° C., the hardenability is lowered, the ferrite transformation and the pearlite transformation are promoted, and the TS × El balance is lowered. On the other hand, when the temperature exceeds 1050 ° C., austenite is coarsened and hardenability is increased, so that a sufficient amount of ferrite cannot be secured. Moreover, the final structure is not refined. Preferably, they are 700 degreeC or more and 850 degrees C or less.
-Rapid cooling after hot rolling Rapid cooling after hot rolling is performed at a temperature range of 650 ° C or higher and 800 ° C or lower at a rate of 20 ° C / s or higher. This is because the ferrite precipitation nose is rapidly cooled to form ferrite. When the quenching stop temperature is less than 650 ° C., pearlite transformation or bainite transformation is promoted, and when it exceeds 800 ° C., ferrite transformation does not occur, and it is difficult to obtain DP steel having a predetermined phase fraction.

・急冷停止後の保持又は滞留
急冷停止後の前記温度域での保持又は前記温度域内での滞留(前記温度域内で例えば空冷により冷却)は、20sを超える時間行うことが望ましい。これによりフェライト変態を進行させ、かつフェライト中の析出物を適度に粗大化させる。前記温度域での保持又は滞留の時間が短いと、析出物が十分なサイズに粗大化せず、疲労特性が十分に改善しない。一方、保持又は滞留の時間が長過ぎると、析出物が粗大化しすぎて疲労特性が改善しない。析出物分率fとの兼ね合いで上限値は変化するが、一般的には300s以下の範囲で選択することが好ましい
-Holding or retention after rapid cooling stop It is desirable that the retention in the temperature range after the rapid cooling stop or the retention in the temperature range (cooling by, for example, air cooling in the temperature range) be performed for a time exceeding 20 s. As a result, the ferrite transformation proceeds and the precipitates in the ferrite are appropriately coarsened. When the holding or staying time in the temperature range is short, the precipitates are not coarsened to a sufficient size and the fatigue characteristics are not sufficiently improved. On the other hand, if the holding or staying time is too long, the precipitates become too coarse and fatigue characteristics are not improved. Although the upper limit varies depending on the precipitate fraction f, it is generally preferable to select it within a range of 300 s or less.

・保持後又は滞留後の冷却、巻き取り
前記温度域での保持又は滞留後、第2相をマルテンサイト又は残留オーステナイトにするため、300℃以下まで5℃/s以上の冷却速度で冷却し、巻き取る。300℃を越える温度又は5℃/s未満の冷却速度の場合、マルテンサイト又は残留オーステナイト以外の組織が形成され、TS−Elバランスが改善しない。
-Cooling and winding after holding or dwelling After holding or dwelling in the above temperature range, in order to make the second phase martensite or retained austenite, it is cooled to 300 ° C or less at a cooling rate of 5 ° C / s or more, Wind up. When the temperature exceeds 300 ° C. or the cooling rate is less than 5 ° C./s, a structure other than martensite or retained austenite is formed, and the TS-El balance is not improved.

表1,2に示す成分の50kg鋳塊を溶製し、熱間圧延により25mm厚の板材とし、これを供試材とした。表1,2中、成分パラメータは(1)式の左辺の計算値を意味する。   A 50 kg ingot having the components shown in Tables 1 and 2 was melted and hot rolled into a 25 mm thick plate, which was used as a test material. In Tables 1 and 2, the component parameter means the calculated value on the left side of equation (1).

Figure 0004737761
Figure 0004737761

Figure 0004737761
Figure 0004737761

この供試材を、図1に示すプロセス及び表3に示す条件で熱間圧延し、熱延鋼板を製造した。より詳しくは、表3に示す加熱温度に30分保持した後、表3に示す温度で仕上げ圧延を行い、仕上げ板厚は3mmとした。仕上げ圧延後、表3に示す熱延後冷却速度で表3に示す急冷停止温度まで冷却し、表3に示す保持時間だけ保持した。その後、表3に示す保持後冷却速度で表3に示す巻き取り模擬温度まで冷却し、30分保持した後、炉冷した。
得られた熱延鋼板からサンプルを採取し、組織観察、引張試験、疲労試験、伸びフランジ特性試験を下記要領で実施した。
This test material was hot-rolled under the process shown in FIG. 1 and the conditions shown in Table 3 to produce a hot-rolled steel sheet. More specifically, after holding at the heating temperature shown in Table 3 for 30 minutes, finish rolling was performed at the temperature shown in Table 3, and the finished plate thickness was 3 mm. After finish rolling, the steel sheet was cooled to the quenching stop temperature shown in Table 3 at the cooling rate after hot rolling shown in Table 3, and held for the holding time shown in Table 3. Then, it cooled to the coiling | winding simulation temperature shown in Table 3 with the cooling rate after a holding shown in Table 3, and after having held for 30 minutes, it cooled in the furnace.
Samples were collected from the obtained hot-rolled steel sheets and subjected to structure observation, tensile test, fatigue test, and stretch flange characteristic test in the following manner.

Figure 0004737761
Figure 0004737761

・組織観察
鋼板中心部のTD面の組織を観察した。サンプルは鏡面に研磨した後、レペラ試薬により腐食し、×400で5視野観察及び撮影し、その中の白い領域をマルテンサイト+残留オーステナイト(以下、残留γ)、黒い領域をその他の組織、中間色の領域をフェライトとして、画像解析ソフト(Micromedia社製Image Pro Plus)を用いて、それぞれの組織分率を求めた。マルテンサイト+残留γの平均粒径についても、上記画像解析ソフトを用い、個々のマルテンサイト+残留γの面積を測定し、その面積から円相当直径を算出し、その平均をマルテンサイト+残留γの粒径とした。
-Structure observation The structure of the TD surface of the steel plate center part was observed. The sample is polished to a mirror surface and then corroded by a repeller reagent, and 5 fields of view are observed and photographed at × 400. The white area is martensite + retained austenite (hereinafter referred to as residual γ), the black area is other texture, intermediate color Using the image analysis software (Image Pro Plus, manufactured by Micromedia) as the ferrite region, the respective tissue fractions were obtained. Regarding the average particle size of martensite + residual γ, the area of each martensite + residual γ was measured using the above image analysis software, the equivalent circle diameter was calculated from the area, and the average was calculated as martensite + residual γ. Particle size.

・析出物の平均粒径r、r/f
フェライト中の析出物の平均粒径rは、抽出レプリカ法により析出物を抽出し、フェライト領域を透過形電子顕微鏡にて、倍率×150000で1μm×1μmの領域を観察及び撮影し、その中に観察された析出物(円相当直径で2nm以上)を画像解析して各粒子の面積を求め、その面積から円相当直径を求めて平均値を算出し、平均粒径とした。
また、求めた平均粒径rと析出物分率f(式(3))からr/fを計算した。
-Average particle size r, r / f of precipitates
The average particle diameter r of the precipitates in the ferrite is determined by extracting the precipitates by the extraction replica method, and observing and photographing the ferrite region with a transmission electron microscope at a magnification of 150,000 × 1 μm × 1 μm. The observed precipitates (equivalent circle diameter of 2 nm or more) were image-analyzed to determine the area of each particle, and the equivalent circle diameter was determined from the area to calculate the average value to obtain the average particle diameter.
Moreover, r / f was calculated from the obtained average particle diameter r and the precipitate fraction f (formula (3)).

・引張試験
引張試験は、サンプルをJISZ2201記載の5号試験片に加工し、JISZ2241に従って実施した。また、引張強さ(TS)と伸び(El)から強度−伸びバランス(TS×El)を計算した。
・疲労試験
疲労試験は、サンプルの表裏面を0.2mmずつ研削し、その後、JISZ2275記載の平面曲げ試験で疲労強度を測定した。また、疲労強度(FL)と引張強さ(TS)から疲労限度比(FL/TS)を計算した。
・伸びフランジ特性試験
伸びフランジ特性試験として穴広げ試験を行い、穴広がり率(λ)を測定した。穴広げ試験は、日本鉄鋼連盟規格JFST1001に従って行い、穴広がり率(λ)を測定した。
また、穴広がり率(γ)と引張強さ(TS)から強度−伸びフランジバランス(λ×TS)を計算した。
-Tensile test The tensile test was carried out according to JISZ2241, after processing the sample into No. 5 test piece described in JISZ2201. Further, the strength-elongation balance (TS × El) was calculated from the tensile strength (TS) and the elongation (El).
・ Fatigue test
In the fatigue test, the front and back surfaces of the sample were ground 0.2 mm each, and then the fatigue strength was measured by a plane bending test described in JISZ2275. Further, the fatigue limit ratio (FL / TS) was calculated from the fatigue strength (FL) and the tensile strength (TS).
-Stretch flange characteristic test A hole widening test was performed as the stretch flange characteristic test, and the hole spread ratio (λ) was measured. The hole expansion test was performed in accordance with Japan Iron and Steel Federation standard JFST1001, and the hole expansion ratio (λ) was measured.
Further, the strength-elongation flange balance (λ × TS) was calculated from the hole expansion rate (γ) and the tensile strength (TS).

測定結果を表4〜7に示す。表4〜7において、引張強度は590MPa以上を良好と評価し、強度−伸びバランス(TS×El)は17000MPa%以上を良好、18000MPa%以上を特に良好と評価し、疲労限度比(FL/TS)は0.62以上を良好、0.65以上を特に良好と評価し、強度−伸びフランジバランス(λ×TS)は64000MPa%以上を良好と評価した。   The measurement results are shown in Tables 4-7. In Tables 4 to 7, the tensile strength is evaluated as good at 590 MPa or more, the strength-elongation balance (TS × El) is evaluated as good at 17000 MPa% or more, particularly as good at 18000 MPa% or more, and the fatigue limit ratio (FL / TS ) Evaluated 0.62 or more as good, 0.65 or more as particularly good, and strength-elongation flange balance (λ × TS) as 64,000 MPa% or more as good.

Figure 0004737761
Figure 0004737761

Figure 0004737761
Figure 0004737761

Figure 0004737761
Figure 0004737761

Figure 0004737761
Figure 0004737761

表4〜7の測定結果を以下簡単に説明する。
No.3,4,17,19,21,25〜34,38,43,44は、クレーム記載の組成、相分率、析出物粒径、r/f、マルテンサイト+残留γ粒径の各要件を満たし、TS×El、FL/TS、TS×γを満足する。
No.2,10,11,14,23は、クレーム記載の組成、相分率、析出物粒径、r/f、マルテンサイト+残留γ粒径の各要件を満たし、TS×El、FL/TS、TS×γを満足する。ただし、No.2はr/fがやや大きめで、FL/TSがやや低めであり、No.10はSiがやや少なめで、TS×Elがやや低めであり、No.11はSiがやや多いめで、TS×γが低く、No.14はMnがやや少なめで、TS×Elがやや低めであり、No.23は成分パラメータがやや低めで、マルテンサイト+残留γ分率がやや低め、かつTS×Elがやや低めである。
No.7,15,47は、クレーム記載の組成、相分率、析出物粒径、r/fの要件を満たし、TS×El、FL/TSを満足する。ただし、No.7はマルテンサイト+残留γ分率がやや大きめで、マルテンサイト+残留γ粒径が上限値を超え、TS×Elがやや低めで、TS×λが低く、No.15,47は、マルテンサイト+残留γ粒径が上限値を超え、TS×λが低い。
The measurement results in Tables 4 to 7 will be briefly described below.
No. 3,4,17,19,21,25-34,38,43,44, each requirement of composition, phase fraction, precipitate particle size, r / f, martensite + residual γ particle size described in claims Satisfies and satisfies TS × El, FL / TS, TS × γ.
No. 2,10,11,14,23 satisfy each requirement of composition, phase fraction, precipitate particle size, r / f, martensite + residual γ particle size described in the claims, TS × El, FL / TS, Satisfies TS × γ. However, no. No. 2 has a slightly larger r / f and a slightly lower FL / TS. No. 10 has slightly less Si and TS × El slightly lower. No. 11 is slightly more Si, TS × γ is lower, No. 11 No. 14 has a slightly lower Mn and a slightly lower TS × E1. 23 has a slightly lower component parameter, a slightly lower martensite + residual γ fraction, and a slightly lower TS × El.
No. Nos. 7, 15, and 47 satisfy the requirements of the composition, phase fraction, precipitate particle size, and r / f described in the claims, and satisfy TS × El and FL / TS. However, no. No. 7 has a slightly larger martensite + residual γ fraction, the martensite + residual γ particle size exceeds the upper limit, TS × El is slightly lower, TS × λ is lower, No. 7 In Nos. 15 and 47, the martensite + residual γ particle size exceeds the upper limit, and TS × λ is low.

一方、No.1は、V、Nb、Tiを含まず、FL/TSが低い。
No.5は、Cが下限値未満で、成分パラメータが下限値未満であり、マルテンサイト+残留γ分率が下限値未満となり、TS×Elが低い。
No.8は、Cが上限値を超え、マルテンサイト+残留γ分率が過大となり、TS×Elが低い。
No.9は、Siが下限値未満であり、TS×Elが低い。
No.12は、Siが上限値を越え、TS×El、γ×TSが低い。
No.13は、Mnが下限値未満であり、TS×Elが低い。
No.16は、Mnが上限値を越え、マルテンサイト+残留γ分率が過大となり、TS×Elが低い。
No.18,20,22は、V,Nb、Tiの含有量が下限値未満で、r/fが上限値を超え、FL/TSが低い。
No.24は、成分パラメータが下限値未満で、マルテンサイト+残留γ分率が下限値未満となり、TS×Elが低い。
On the other hand, no. 1 does not contain V, Nb, and Ti, and has a low FL / TS.
No. No. 5, C is less than the lower limit value, the component parameter is less than the lower limit value, the martensite + residual γ fraction is less than the lower limit value, and TS × El is low.
No. In No. 8, C exceeds the upper limit, the martensite + residual γ fraction becomes excessive, and TS × El is low.
No. In No. 9, Si is less than the lower limit, and TS × El is low.
No. In No. 12, Si exceeds the upper limit, and TS × El and γ × TS are low.
No. In No. 13, Mn is less than the lower limit, and TS × El is low.
No. In No. 16, Mn exceeds the upper limit value, the martensite + residual γ fraction becomes excessive, and TS × El is low.
No. In 18, 20, and 22, the contents of V, Nb, and Ti are less than the lower limit, r / f exceeds the upper limit, and FL / TS is low.
No. In No. 24, the component parameter is less than the lower limit, the martensite + residual γ fraction is less than the lower limit, and TS × El is low.

No.6,39,45は、r/fが上限値を超え、FL/TSが低い。
No.35〜37,40〜42は、析出物粒径が下限値未満で、FL/TSが低い。
No.46は、フェライト分率が下限値未満で、TS×Elが低い。
No.48は、フェライト分率が下限値未満、マルテンサイト+残留γ分率が上限値を超え、TS×Elが低い。
No.49は、フェライト分率が下限値未満で、TS×Elが低い。
No.50は、マルテンサイト+残留γ分率が下限値未満で、TS×Elが低い。
No. 6,39,45 has r / f exceeding the upper limit and FL / TS is low.
No. 35-37 and 40-42 have a precipitate particle size of less than the lower limit and a low FL / TS.
No. No. 46 has a ferrite fraction lower than the lower limit, and TS × El is low.
No. In No. 48, the ferrite fraction is less than the lower limit, the martensite + residual γ fraction exceeds the upper limit, and TS × El is low.
No. No. 49 has a ferrite fraction lower than the lower limit, and TS × El is low.
No. No. 50 has a martensite + residual γ fraction less than the lower limit and a low TS × El.

実施例のプロセスを説明する図である。It is a figure explaining the process of an Example.

Claims (3)

質量%で、C:0.01%超、0.30%以下、Si:0.1%以上、2.0%以下、Mn:0.1%以上、2.5%以下を含み、V:0.01%以上、0.15%以下、Nb:0.02%以上、0.30%以下、Ti:0.01%以上、0.15%以下の1種又は2種以上を下記条件式(1)を満たすように含み、残部がFe及び不可避不純物からなり、フェライト分率が50%以上、95%以下、マルテンサイト+残留オーステナイトからなる硬質第2相分率が5%以上、50%以下、フェライト及び硬質第2相以外の組織分率が2.5%以下である組織を有し、硬質第2相の平均粒径が5μm以下であり、フェライト中に形成された析出物の平均粒径rが6nm以上であり、平均粒径rと下記式(2)で表される析出物分率fが下記条件式(3)を満たすことを特徴とする強度−伸びバランスと疲労特性に優れた高強度熱延鋼板。
C−12×(V/51+Nb/93+Ti/48)≧0.01 ・・・・(1)
f=(2.08Ti+1.69V+1.14Nb)/100 ・・・・(2)
r/f≦13000 ・・・・(3)
ただし、上記式(1)、(2)中の元素記号は当該元素の質量%を意味する。
In mass%, C: more than 0.01%, 0.30% or less, Si: 0.1% or more, 2.0% or less, Mn: 0.1% or more, 2.5% or less, V: 0.01% or more, 0.15% or less, Nb: 0.02% or more, 0.30% or less, Ti: 0.01% or more, 0.15% or less, or one or more of the following conditional expressions (1) is included so that the balance is Fe and inevitable impurities, the ferrite fraction is 50% or more and 95% or less, and the hard second phase fraction consisting of martensite + retained austenite is 5% or more and 50%. Hereinafter , the structure fraction other than ferrite and hard second phase has a structure of 2.5% or less, the average particle size of hard second phase is 5 μm or less, and the average of precipitates formed in ferrite The particle size r is 6 nm or more, and the average particle size r and the precipitate fraction f represented by the following formula (2) are as follows: Strength and satisfies the equation (3) - a high-strength hot-rolled steel sheet with excellent elongation balance and fatigue characteristics.
C-12 × (V / 51 + Nb / 93 + Ti / 48) ≧ 0.01 (1)
f = (2.08Ti + 1.69V + 1.14Nb) / 100 (2)
r / f ≦ 13000 (3)
However, the element symbols in the above formulas (1) and (2) mean mass% of the elements.
さらにCu:0.02%以上、2.0%以下、Ni:0.02%以上、2.0%以下、Cr:0.02%以上、2.0%以下、Mo:0.01%以上、0.5%以下の1種又は2種以上を含むことを特徴とする請求項1に記載された強度−伸びバランスと疲労特性に優れた高強度熱延鋼板。 Furthermore, Cu: 0.02% or more, 2.0% or less, Ni: 0.02% or more, 2.0% or less, Cr: 0.02% or more, 2.0% or less, Mo: 0.01% or more The high-strength hot-rolled steel sheet having excellent strength-elongation balance and fatigue properties according to claim 1 , comprising one or more of 0.5% or less. さらにP:0.02%以上、0.3%以下、Al:0.02%以上、0.3%以下の1種又は2種を含むことを特徴とする請求項1又は2に記載された強度−伸びバランスと疲労特性に優れた高強度熱延鋼板。
Furthermore, P: 0.02% or more, 0.3% or less, Al: 0.02% or more, 0.3% or less 1 type or 2 types are included, It was described in Claim 1 or 2 characterized by the above-mentioned A high-strength hot-rolled steel sheet with excellent strength-elongation balance and fatigue properties.
JP2006152932A 2006-06-01 2006-06-01 High strength hot-rolled steel sheet with excellent strength-elongation balance and fatigue properties Expired - Fee Related JP4737761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006152932A JP4737761B2 (en) 2006-06-01 2006-06-01 High strength hot-rolled steel sheet with excellent strength-elongation balance and fatigue properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006152932A JP4737761B2 (en) 2006-06-01 2006-06-01 High strength hot-rolled steel sheet with excellent strength-elongation balance and fatigue properties

Publications (2)

Publication Number Publication Date
JP2007321201A JP2007321201A (en) 2007-12-13
JP4737761B2 true JP4737761B2 (en) 2011-08-03

Family

ID=38854274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006152932A Expired - Fee Related JP4737761B2 (en) 2006-06-01 2006-06-01 High strength hot-rolled steel sheet with excellent strength-elongation balance and fatigue properties

Country Status (1)

Country Link
JP (1) JP4737761B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272412B2 (en) * 2008-01-17 2013-08-28 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
US9689060B2 (en) 2011-08-17 2017-06-27 Kobe Steel, Ltd. High-strength hot-rolled steel sheet
JP5909143B2 (en) * 2012-04-13 2016-04-26 株式会社神戸製鋼所 MAG welding method for hot rolled steel sheet and MIG welding method for hot rolled steel sheet
EP2902520B1 (en) 2012-09-27 2019-01-02 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet, and production method therefor
JP6676973B2 (en) * 2016-01-13 2020-04-08 日本製鉄株式会社 Hot rolled steel sheet and method for producing the same
CN110643800A (en) * 2019-10-22 2020-01-03 马鞍山钢铁股份有限公司 1200 MPa-level hot-rolled high-strength dual-phase steel plate and manufacturing method thereof
CN114622137A (en) * 2022-03-03 2022-06-14 万向钱潮股份有限公司 Advanced high-strength steel with better fatigue performance and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179396A (en) * 1991-12-27 1993-07-20 Kawasaki Steel Corp Low yield ratio high strength hot rolled steel sheet and manufacture thereof
JPH09263885A (en) * 1996-03-29 1997-10-07 Kawasaki Steel Corp High strength hot rolled steel plate excellent in workability and its production
JP2005290396A (en) * 2004-03-31 2005-10-20 Jfe Steel Kk High strength hot rolled steel sheet having excellent elongation property, stretch flange property, tensile fatigue property and impact resistance, and its production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179396A (en) * 1991-12-27 1993-07-20 Kawasaki Steel Corp Low yield ratio high strength hot rolled steel sheet and manufacture thereof
JPH09263885A (en) * 1996-03-29 1997-10-07 Kawasaki Steel Corp High strength hot rolled steel plate excellent in workability and its production
JP2005290396A (en) * 2004-03-31 2005-10-20 Jfe Steel Kk High strength hot rolled steel sheet having excellent elongation property, stretch flange property, tensile fatigue property and impact resistance, and its production method

Also Published As

Publication number Publication date
JP2007321201A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP4955499B2 (en) High strength hot rolled steel sheet with excellent fatigue strength and stretch flangeability
JP6465266B1 (en) Hot rolled steel sheet and manufacturing method thereof
WO2013024860A1 (en) High-strength hot-rolled steel plate
JP4955496B2 (en) High-strength hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability
JP4542624B2 (en) High strength thick steel plate and manufacturing method thereof
JP4955497B2 (en) Hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability balance
JP4737761B2 (en) High strength hot-rolled steel sheet with excellent strength-elongation balance and fatigue properties
JP5466552B2 (en) High-strength cold-rolled steel sheet that combines elongation, stretch flangeability and weldability
JP5671400B2 (en) Steel wire for springs excellent in wire drawing workability and fatigue properties after wire drawing, and steel wire for springs excellent in fatigue properties and spring workability
JP6811694B2 (en) Steel plate and its manufacturing method
JP7218533B2 (en) Steel material and its manufacturing method
JP5741379B2 (en) High tensile steel plate with excellent toughness and method for producing the same
JP2011052295A (en) High-strength cold-rolled steel sheet superior in balance between elongation and formability for extension flange
WO2019088104A1 (en) Hot-rolled steel sheet and manufacturing method therefor
JP4502272B2 (en) Hot-rolled steel sheet excellent in workability and fatigue characteristics and casting method thereof
JP5679452B2 (en) High-strength hot-rolled steel sheet that combines formability and fatigue properties of the base metal and weld heat-affected zone
JP5466562B2 (en) High-strength cold-rolled steel sheet with excellent elongation and bendability
JP2017101299A (en) Hot rolled steel sheet and production method therefor
WO2018061101A1 (en) Steel
KR20180004245A (en) Spring river
JP6607209B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP6607210B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP6146429B2 (en) Tempered high tensile steel plate and method for producing the same
JP2008156678A (en) High-strength bolt excellent in delayed fracture resistance and corrosion resistance
WO2010109702A1 (en) Cold-rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

R150 Certificate of patent or registration of utility model

Ref document number: 4737761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees