JP2005290396A - High strength hot rolled steel sheet having excellent elongation property, stretch flange property, tensile fatigue property and impact resistance, and its production method - Google Patents

High strength hot rolled steel sheet having excellent elongation property, stretch flange property, tensile fatigue property and impact resistance, and its production method Download PDF

Info

Publication number
JP2005290396A
JP2005290396A JP2004102513A JP2004102513A JP2005290396A JP 2005290396 A JP2005290396 A JP 2005290396A JP 2004102513 A JP2004102513 A JP 2004102513A JP 2004102513 A JP2004102513 A JP 2004102513A JP 2005290396 A JP2005290396 A JP 2005290396A
Authority
JP
Japan
Prior art keywords
less
ferrite
property
precipitates
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004102513A
Other languages
Japanese (ja)
Other versions
JP4333444B2 (en
Inventor
周作 ▲高▼木
Shusaku Takagi
Fusaaki Kariya
房亮 仮屋
Tetsuo Shimizu
哲雄 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004102513A priority Critical patent/JP4333444B2/en
Publication of JP2005290396A publication Critical patent/JP2005290396A/en
Application granted granted Critical
Publication of JP4333444B2 publication Critical patent/JP4333444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength hot rolled steel sheet having a high strength satisfying a TS (tensile strength) of ≥780 MPa, having excellent elongation properties, stretch flange properties and tensile fatigue properties, and further having impact resistance at a strain rate of 10/s for checking the deformation of an automobile cabin. <P>SOLUTION: In Ti-Mo compositely added steel, the steel structure of, by volume occupancy to the whole structure, 40 to 93% ferrite, 4 to 15% retained austenite, 3 to 12% martensite, and the balance bainite is formed, and also, the average diameter of precipitates composed of Ti, Mo and C precipitated in the ferrite is controlled to ≤20 nm, and the average spacing between the precipitates is controlled to ≤60 nm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、引張強度(TS)が 780 MPa以上の高強度において、伸び特性、伸びフランジ特性、引張疲労特性および耐衝突特性に優れた高強度熱延鋼板およびその製造方法に関するものである。
本鋼板は、例えば自動車用のフレームやアンダーボディー等のように、良好な成形性のみならず、引張疲労特性や耐衝突特性が必要とされる部品に適用して好適なものである。
The present invention relates to a high-strength hot-rolled steel sheet excellent in elongation characteristics, stretch flange characteristics, tensile fatigue characteristics, and impact resistance characteristics, and a method for producing the same, at a high strength having a tensile strength (TS) of 780 MPa or more.
This steel plate is suitable for application to parts that require not only good formability but also tensile fatigue properties and impact resistance properties, such as automobile frames and under bodies.

上述したような用途には、TSが 780 MPa程度のいわゆるTS780MPa級鋼では成形が困難なため、従来はTSがせいぜい 590 MPa程度のいわゆるTS590MPa級鋼熱延板が使用されてきた。また、TS780MPa級鋼を使用する場合、当然、従来のTS590MPa級鋼よりも板厚が薄くされるため、部材としてみた場合に、これまでのTS780MPa級鋼では引張疲労特性の点に問題を残していた。
しかしながら、近年、自動車の耐衝突特性向上のために、自動車用鋼板の高強度化が推進され、引張疲労特性が必要とされる部位にも、TS780MPa級鋼の使用が検討され始めている。また、それらの部品は、従来、耐衝突特性が特に必要とされてはいなかったのであるが、近年はこれらの部品についても自動車の衝突時にキャビンの変形を防止するために、耐衝突特性が必要とされるようになった。さらに、成形性の面からは、これらの部品には、伸びおよび伸びフランジ特性が必要とされる。
For the above-mentioned applications, so-called TS780 MPa grade steel with a TS of about 780 MPa is difficult to form, so conventionally a so-called TS590 MPa grade steel hot-rolled plate with a TS of about 590 MPa has been used. In addition, when using TS780MPa class steel, the plate thickness is naturally thinner than that of conventional TS590MPa class steel, so when viewed as a member, conventional TS780MPa class steel still has a problem in terms of tensile fatigue properties. It was.
However, in recent years, in order to improve the impact resistance characteristics of automobiles, the strength of automobile steel sheets has been increased, and the use of TS780MPa grade steel has also begun to be examined for parts that require tensile fatigue characteristics. In addition, these parts have not been particularly required to have anti-collision properties in the past, but these parts are also required to have anti-collision properties in recent years in order to prevent deformation of the cabin during a car collision. And came to be. Furthermore, from the standpoint of formability, these parts require stretch and stretch flange characteristics.

伸びを向上させる手段としては、特許文献1に開示のような、残留オーステナイトを利用した技術が挙げられる。
しかしながら、残留オーステナイトは、伸び特性の改善には有効であるものの、伸びフランジ成形性に問題がある。すなわち、伸びフランジ性は、主相とその他の相(第2相)の間の硬度差が小さいほど良好なのであるが、残留オーステナイト鋼は第2相が硬質で主相であるフェライトとの硬度差が大きくなるため、伸びフランジを劣化させる。
一方、焼戻しマルテンサイトやベイナイト単相組織鋼は主相と第2相間の硬度差が小さいため、伸びフランジ成形性は良好であるが、伸び特性に劣るという問題がある。
As a means for improving the elongation, there is a technique using retained austenite as disclosed in Patent Document 1.
However, although retained austenite is effective in improving the elongation characteristics, there is a problem in stretch flangeability. That is, the stretch flangeability is better as the hardness difference between the main phase and the other phase (second phase) is smaller. However, the retained austenitic steel is harder in the second phase and has a hardness difference from ferrite, which is the main phase. Increases, which degrades the stretch flange.
On the other hand, tempered martensite and bainite single-phase structure steel have a problem that the stretch flange formability is good but the stretch properties are inferior because the hardness difference between the main phase and the second phase is small.

従って、伸び特性と伸びフランジ特性を両立させるためには、主相と第2相の硬度差の小さい複合組織鋼とする必要がある。
特許文献2には、フェライトを析出強化して第2相のマルテンサイトとの硬度差を減少した複合組織鋼板に関する技術が開示されているが、この技術はTS:50 kgf/mm2(490 MPa)〜60 kgf/mm2(590MPa)程度の強度の鋼板を得ようとするものにすぎず、最近の要求には対応できない。また、TS:780 MPa程度の鋼板について開示されているものは、伸びは20%程度であり、この点もさらなる向上が必要である。
Therefore, in order to achieve both elongation characteristics and stretch flange characteristics, it is necessary to use a composite structure steel having a small hardness difference between the main phase and the second phase.
Patent Document 2 discloses a technology related to a composite structure steel plate in which the hardness difference from martensite of the second phase is reduced by precipitation strengthening of ferrite. This technology is TS: 50 kgf / mm 2 (490 MPa). ) ~ 60 kgf / mm 2 (590MPa) is merely intended to obtain a steel plate, it can not meet the recent requirements. Further, the steel sheet disclosed about TS: about 780 MPa has an elongation of about 20%, and this point needs further improvement.

これらの問題点を解決するために、特許文献3では、TiとMoもしくはWをを含有する炭化物を析出させた析出強化フェライトに加えて、残留オーステナイト、ベイナイトの3相もしくはそれにマルテンサイトを加えた4相からなる鋼板についての技術が開示されている。この特許文献3の実施例によると、板厚:3.2mmで伸び:30%以上、伸びフランジ特性の指標である穴広げ率:65%以上を達成しているが、引張疲労特性については必ずしも十分とはいえなかった。   In order to solve these problems, in Patent Document 3, in addition to precipitation strengthened ferrite in which carbide containing Ti and Mo or W is precipitated, residual austenite and bainite three phases or martensite is added thereto. A technique for a steel plate having four phases is disclosed. According to the example of Patent Document 3, the plate thickness: 3.2 mm, the elongation: 30% or more, and the hole expansion ratio: 65% or more, which is an index of the stretch flange characteristic, are achieved, but the tensile fatigue characteristics are not always sufficient. That wasn't true.

その他、特許文献4には、TS×伸び(El)≧246000 MPa・%かつ穴広げ率≧70%を達成する技術が開示されている 。
また、特許文献5には、フェライトおよび第2相の粒径を微細にし、さらに残留オーステナイトを利用することにより、伸びおよび伸びフランジ性をともに向上させる技術が開示されているが、この技術は、スラブ加熱温度が低温であるため、圧延荷重が大きく、ロールの磨耗が激しく、製造に従来よりも余分なコストがかかるという不利がある。
そして、これらの技術はいずれも、疲労特性の向上については何ら考慮が払われていない。
In addition, Patent Document 4 discloses a technique for achieving TS × elongation (El) ≧ 246000 MPa ·% and hole expansion rate ≧ 70%.
Patent Document 5 discloses a technique for improving both elongation and stretch flangeability by reducing the grain size of ferrite and the second phase and further using retained austenite. Since the slab heating temperature is low, there is a disadvantage that the rolling load is large, the wear of the roll is severe, and the production costs extra than conventional.
In any of these techniques, no consideration is given to the improvement of fatigue characteristics.

疲労特性を向上させるための技術としては、特許文献6に、表層および内層の組織分率をコントロールすることにより、伸びおよび疲労特性を向上させる技術が開示されている。しかしながら、この特許文献6では、伸びフランジ成形性の向上については何ら考慮が払われていない。   As a technique for improving fatigue characteristics, Patent Document 6 discloses a technique for improving elongation and fatigue characteristics by controlling the structural fraction of the surface layer and the inner layer. However, in Patent Document 6, no consideration is given to improvement of stretch flange formability.

次に、耐衝突特性の観点から見ると、乗客の生存空間を確保するために自動車のキャビンの変形を抑制することが要求される部材は、衝突エネルギーを吸収するための部材と比べると、同じ衛突時間でも変形量が小さいために到達ひずみ速度が小さく、10/s程度での吸収エネルギーが重要となる。
耐衝突特性を向上させる手段としては、特許文献7に、残留オーステナイトとマルテンサイトとアシキュラーフェライトからなる組織の鋼に関する技術が開示されている。この技術では、耐衝突特性は、ひずみ速度:2000/sでの動的n値を向上させることにより、鋼材のエネルギー吸収量を増加させることが検討されている。このひずみ速度:2000/sでの吸収エネルギーは、部材自身が変形することにより自動車の衝突時の衝突エネルギーを吸収するために必要な特性である。衝突エネルギー吸収用部材は、短時間に大変形するため、変形ひずみ速度が102/s, 103/sに達する。そのため、102/s,103/sでの吸収エネルギーや静動比を向上させる必要があった。しかしながら、自動車の耐衝撃性向上のためには、乗客の生存空間を確保するために部品を変形させずにキャビンを保護することも重要である。このような箇所に使用される部材は、上述したとおり、衝突エネルギー吸収部材と比較して同じ衝突時間でも変形量が小さいために到達ひずみ速度が小さく、10/s程度での吸収エネルギーが重要なのであるが、特許文献7では、ひずみ速度が10/s程度における耐衝突特性の向上策については何ら言及されていない。
Next, from the viewpoint of collision-resistant characteristics, the members that are required to suppress the deformation of the automobile cabin in order to ensure the passenger's living space are the same as the members that absorb the collision energy. Since the amount of deformation is small even during the collision time, the ultimate strain rate is small, and the absorbed energy at about 10 / s is important.
As a means for improving the impact resistance, Patent Document 7 discloses a technique related to steel having a structure composed of retained austenite, martensite, and acicular ferrite. In this technique, it has been studied to increase the energy absorption amount of the steel material by improving the dynamic n value at a strain rate of 2000 / s. The absorbed energy at a strain rate of 2000 / s is a characteristic necessary for absorbing the collision energy at the time of automobile collision by deformation of the member itself. Since the collision energy absorbing member undergoes large deformation in a short time, the deformation strain rate reaches 10 2 / s, 10 3 / s. Therefore, it is necessary to improve the absorption energy and static ratio at 10 2 / s and 10 3 / s. However, in order to improve the impact resistance of automobiles, it is also important to protect the cabin without deforming the parts in order to secure a passenger living space. As described above, the member used in such a location is small in the amount of deformation even in the same collision time as compared with the collision energy absorbing member, so the ultimate strain rate is small, and the absorbed energy at about 10 / s is important. However, Patent Document 7 does not mention any measures for improving the collision resistance when the strain rate is about 10 / s.

特開平7−62485号公報Japanese Unexamined Patent Publication No. 7-62485 特開平9−263885号公報Japanese Patent Laid-Open No. 9-263885 特開2003−321738号公報JP2003-321738A 特開平11−189842号公報Japanese Patent Laid-Open No. 11-189842 特開2001−220648号公報JP 2001-220648 特開平11−241141号公報Japanese Patent Laid-Open No. 11-241141 特開平11−189842号公報Japanese Patent Laid-Open No. 11-189842

本発明は、上記の問題を有利に解決するもので、TSが 780 MPa以上の高強度鋼において、伸び特性、伸びフランジ特性および引張疲労特性を向上させ、さらに自動車のキャビンの変形を阻止するためにひずみ速度が10/sでの耐衝突特性に向上させた高強度熱延鋼板を、その有利な製造方法と共に提案することを目的とする。
本発明における目標特性(板厚:2.0mmで)は次のとおりである。
・引張強度(TS)≧ 780 MPa
・伸び特性:伸び(El)≧ 27 %
・伸びフランジ特性:穴広げ率(λ)≧ 60 %
・引張疲労特性:引張疲労の耐久比〔疲労限(FL)とTSの比(FL/TS)〕≧0.75
・耐衝突特性:ひずみ速度:10/sでの真ひずみ 0.1までの吸収エネルギー≧ 80 MJ/m3
The present invention advantageously solves the above-mentioned problems, and in order to improve elongation characteristics, stretch flange characteristics and tensile fatigue characteristics in a high strength steel having a TS of 780 MPa or more, and to prevent deformation of an automobile cabin. Another object of the present invention is to propose a high-strength hot-rolled steel sheet having improved impact resistance at a strain rate of 10 / s, together with its advantageous manufacturing method.
The target characteristics (thickness: 2.0 mm) in the present invention are as follows.
・ Tensile strength (TS) ≧ 780 MPa
-Elongation characteristics: Elongation (El) ≥ 27%
-Stretch flange characteristics: Hole expansion rate (λ) ≥ 60%
・ Tensile fatigue properties: Durability ratio of tensile fatigue [Fatigue limit (FL) to TS ratio (FL / TS)] ≧ 0.75
-Collision resistance: Strain rate: True strain at 10 / s Absorbed energy up to 0.1 ≥ 80 MJ / m 3

さて、発明者らは、上記の課題を解決するために鋭意研究を重ねた結果、TiとMoの複合添加鋼において、鋼組織を制御すると共に、フェライト中にTi,Mo,Cからなる析出物を析出させ、その粒径および分散状態を厳密に制御することにより、伸び特性、伸びフランジ特性および引張疲労特性が格段に向上し、さらに良好な耐衝突特性、具体的にはひずみ速度:10/sでの真ひずみ0.1までの吸収エネルギーが80 MJ/m3以上の高特性が得られることの知見を得た。
また、かかる組織を形成するためには、仕上圧延後に、急冷→空冷一急冷からなる制御冷却を行い、かつスラブ加熱温度に応じて空冷開始温度を制御すること、さらにはコイルに巻取った後の冷却速度を制御することが、重要であることを見出した。
Now, as a result of intensive studies to solve the above problems, the inventors have controlled the steel structure in the Ti and Mo composite added steel, and precipitates composed of Ti, Mo and C in the ferrite. By strictly controlling the grain size and dispersion state, the elongation characteristics, stretch flange characteristics and tensile fatigue characteristics are significantly improved, and even better impact resistance characteristics, specifically strain rate: 10 / We have obtained the knowledge that high energy of 80 MJ / m 3 or more can be obtained with an absorbed energy up to a true strain of 0.1 at s.
In addition, in order to form such a structure, after finishing rolling, controlled cooling consisting of rapid cooling → air cooling and rapid cooling is performed, and the air cooling start temperature is controlled according to the slab heating temperature, and further after winding on a coil. It was found that it is important to control the cooling rate.

これはおそらく、スラブ加熱温度により、スラブ中に存在するTiを含む炭化物の溶解量が変化し、その結果、仕上圧延後の冷却中(特に空冷中)にフェライト中に析出する析出物のサイズや分布状態が大きく影響を受けるためと考えられる。また、コイル巻取り後の冷却速度は、残留オーステナイトに加えてマルテンサイトを生成させるために必要であるものと考えられる。
本発明は、上記の知見に立脚するものである。
This is probably because the amount of carbides containing Ti present in the slab changes depending on the slab heating temperature. As a result, the size of precipitates precipitated in ferrite during cooling after finish rolling (especially during air cooling) This is probably because the distribution state is greatly affected. Further, it is considered that the cooling rate after coil winding is necessary for generating martensite in addition to the retained austenite.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
(1)質量%で、
C:0.08%超、0.2%以下、
Si:0.3%以上、2.0%以下、
Mn:0.3%以上、2.0%以下、
P:0.06%以下、
S:0.01%以下、
Al:0.05%以下、
Ti:0.03%以上、0.2%以下および
Mo:0.03%以上、0.5%以下
を含み、残部はFeおよび不可避的不純物の組成になり、組織全体に対する体積占有率で、フェライト:40%以上、93%以下、残留オーステナイト:4%以上、15%以下、マルテンサイト:3%以上、12%以下、残部:ベイナイトの鋼組織になり、フェライト中にTi,Mo,Cからなる析出物を含み、かかる析出物の平均直径が20nm以下、析出物間の平均間隔が60nm以下であることを特徴とする伸び特性、伸びフランジ特性、引張疲労特性および耐衝突特性に優れた高強度熱延鋼板。
That is, the gist configuration of the present invention is as follows.
(1) In mass%,
C: more than 0.08%, 0.2% or less,
Si: 0.3% or more, 2.0% or less,
Mn: 0.3% or more, 2.0% or less,
P: 0.06% or less,
S: 0.01% or less,
Al: 0.05% or less,
Ti: 0.03% or more, 0.2% or less and
Mo: 0.03% or more, 0.5% or less included, the balance is Fe and inevitable impurities composition, volume occupancy to the whole structure, ferrite: 40% or more, 93% or less, residual austenite: 4% or more, 15 % Or less, martensite: 3% or more, 12% or less, balance: steel structure of bainite, including precipitates composed of Ti, Mo, C in ferrite, the average diameter of such precipitates being 20 nm or less, precipitates A high-strength hot-rolled steel sheet with excellent elongation characteristics, stretch flange characteristics, tensile fatigue characteristics, and impact resistance characteristics, characterized in that the average distance between them is 60 nm or less.

(2)質量%で、
C:0.08%超、0.2%以下、
Si:0.3%以上、2.0%以下、
Mn:0.3%以上、2.0%以下、
P:0.06%以下、
S:0.01%以下、
Al:0.05%以下、
Ti:0.03%以上、0.2%以下および
Mo:0.03%以上、0.5%以下
含有し、残部はFeおよび不可避的不純物の組成になるスラブを、1150℃超の温度に加熱し、仕上温度がAr3点以上、(Ar3点+100℃)以下の条件で仕上圧延を終了した後、Ar3点未満でかつ(スラブ加熱温度/1.9+80)℃以上、(スラブ加熱温度/1.5+20)℃以下の温度まで平均冷却速度:20℃/s以上で冷却し、ついで3〜15秒間の空冷後、300℃以上、500℃以下まで20℃/s以上の平均冷却速度で冷却したのち、巻取り、ついで200℃まで平均冷却速度:20℃/hr以上の速度で冷却することを特徴とする伸び特性、伸びフランジ特性、引張疲労特性および耐衝突特性に優れた高強度熱延鋼板の製造方法。
(2) In mass%,
C: more than 0.08%, 0.2% or less,
Si: 0.3% or more, 2.0% or less,
Mn: 0.3% or more, 2.0% or less,
P: 0.06% or less,
S: 0.01% or less,
Al: 0.05% or less,
Ti: 0.03% or more, 0.2% or less and
Mo: 0.03% or more and 0.5% or less of slab containing Fe and inevitable impurities in the balance is heated to a temperature above 1150 ° C, and the finishing temperature is Ar 3 points or higher (Ar 3 points + 100 ° C) After finishing rolling under the following conditions, the average cooling rate: 20 ° C / s or more to a temperature of less than 3 points Ar and (slab heating temperature / 1.9 + 80) ° C or higher and (slab heating temperature / 1.5 + 20) ° C or lower Then, after cooling with air for 3 to 15 seconds, after cooling at an average cooling rate of 20 ° C / s or higher to 300 ° C or higher and 500 ° C or lower, winding, and then to 200 ° C, average cooling rate: 20 ° C / hr A method for producing a high-strength hot-rolled steel sheet having excellent elongation characteristics, stretch flange characteristics, tensile fatigue characteristics, and impact resistance characteristics, characterized by cooling at the above speed.

本発明に従い、Ti,Mo複合添加鋼において、鋼組織をフェライト+残留オーステナイト+マルテンサイト(+ベイナイト)とし、かつフェライト中にTi, Mo, Cを含む析出物を微細に分散させることにより、TSが 780 MPa以上の高強度鋼において、優れた伸び特性、伸びフランジ特性、引張疲労特性および耐衝突特性を得ることができ、その結果、自動車用部品の板厚低減および自動車の衝突安全性向上が可能となり、自動車車体の高性能化に大きく貢献する。   According to the present invention, in the Ti and Mo composite added steel, the steel structure is made ferrite + residual austenite + martensite (+ bainite), and precipitates containing Ti, Mo, C in the ferrite are finely dispersed. In high-strength steel with a strength of 780 MPa or more, excellent elongation characteristics, stretch flange characteristics, tensile fatigue characteristics, and impact resistance characteristics can be obtained. As a result, the plate thickness of automobile parts can be reduced and the collision safety of automobiles can be improved. It will be possible and will greatly contribute to the improvement of the performance of automobile bodies.

以下、本発明を具体的に説明する。
まず、本発明において、鋼板および鋼スラブの成分組成を前記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.08%超、0.2%以下
Cは、析出物をフェライト中に析出させつつ、さらに適量の残留オーステナイトおよびマルテンサイトを確保するために必要な元素であり、そのためには0.08%超の含有が必要である。しかしながら、含有量が0.2%を超えると溶接性が劣化するため、上限を0.2%とした。好ましくは0.10〜0.16%の範囲である。
The present invention will be specifically described below.
First, the reason why the composition of the steel plate and the steel slab is limited to the above range in the present invention will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.
C: more than 0.08%, 0.2% or less C is an element necessary for securing a suitable amount of retained austenite and martensite while precipitating the precipitate in the ferrite. is necessary. However, if the content exceeds 0.2%, the weldability deteriorates, so the upper limit was made 0.2%. Preferably it is 0.10 to 0.16% of range.

Si:0.3%以上、2.0%以下
Siは、伸びおよび穴広げ率を向上させ、さらに残留オーステナイトを生成させるために有効な元素である。しかしながら、含有量が0.3%未満では所定量の残留オーステナイトが得られず、一方2.0%を超えて多量に含有させると表面性状が著しく劣化し、耐食性も低下するため、Si量は0.3%以上、2.0%以下とする。好ましくは0.5〜1.5%の範囲である 。
Si: 0.3% or more, 2.0% or less
Si is an effective element for improving elongation and hole expansion ratio and generating retained austenite. However, if the content is less than 0.3%, a predetermined amount of retained austenite cannot be obtained.On the other hand, if the content exceeds 2.0%, the surface properties are remarkably deteriorated and the corrosion resistance is also lowered. 2.0% or less. Preferably it is 0.5 to 1.5% of range.

Mn:0.3%以上、2.0%以下
Mnは、強度上昇のために添加する。しかしながら、含有量が0.3%に満たないとその添加効果に乏しく、一方含有量が2.0%を超える過剰な添加は溶接性を著しく低下させるため、Mn量は0.3%以上、2.0%以下とする。好ましくは0.5〜1.5%の範囲である。
Mn: 0.3% or more, 2.0% or less
Mn is added to increase the strength. However, if the content is less than 0.3%, the effect of addition is poor. On the other hand, excessive addition exceeding 2.0% significantly reduces weldability, so the Mn content is 0.3% or more and 2.0% or less. Preferably it is 0.5 to 1.5% of range.

P:0.06%以下
Pは、旧オーステナイト粒界に偏析して低温靭性を劣化させるだけでなく、鋼中に偏析して鋼板の異方性を大きくし加工性を低下させので、極力低減する方が好ましいが、0.06%までは許容される。好ましくは0.04%以下とする。
P: 0.06% or less P is not only segregated at the prior austenite grain boundaries and deteriorates low-temperature toughness, but also segregates in the steel to increase the anisotropy of the steel sheet and reduce workability. Is preferred, but up to 0.06% is acceptable. Preferably it is 0.04% or less.

S:0.01%以下
Sが旧オーステナイト粒界に偏析したり、またはMnSが多量に生成した場合には、低温靭性が低下し、寒冷地で使用し難くなるため、その混入は極力低減することが好ましいが、0.01%までは許容される。好ましくは0.004%以下である。
S: 0.01% or less If S is segregated at the prior austenite grain boundaries or a large amount of MnS is formed, the low temperature toughness is lowered and it becomes difficult to use in cold regions. Although preferred, up to 0.01% is acceptable. Preferably it is 0.004% or less.

Al:0.05%以下
Alは、鋼の脱酸剤として添加され、鋼の清浄度を向上させるのに有効な元素である。この効果を得るためには0.001%以上含有させることが好ましいが、0.05%を超えると介在物が多量に発生し、鋼板の疵の原因になるので、Alの上限は0.05%とする。
Al: 0.05% or less
Al is added as a steel deoxidizer, and is an effective element for improving the cleanliness of steel. In order to acquire this effect, it is preferable to make it contain 0.001% or more, but if it exceeds 0.05%, a large amount of inclusions will be generated and cause flaws in the steel sheet, so the upper limit of Al is made 0.05%.

Ti:0.03%以上、0.2%以下
Tiは、フェライトを析出強化する上で非常に重要な元素である。TS:780 MPa以上を達成するためには、0.03%以上のTiを含有させることが必要であり、含有させる量が多いほど析出物が増加し強度は上昇する。しかしながら、0.2%を超えて多量に含有してもその効果が飽和するため、上限を0.2%とした。好ましくは0.05〜0.15%の範囲である。
Ti: 0.03% or more, 0.2% or less
Ti is an extremely important element for precipitation strengthening of ferrite. In order to achieve TS: 780 MPa or more, it is necessary to contain 0.03% or more of Ti, and as the amount of inclusion increases, precipitates increase and the strength increases. However, even if the content exceeds 0.2%, the effect is saturated, so the upper limit was made 0.2%. Preferably it is 0.05 to 0.15% of range.

Mo:0.03%以上、0.5%以下
Moは、炭化物の析出に大きく影響する。Moが含有されていない場合、強度上昇量が少ない。TS≧780 MPaを達成するためには0.03%以上のMo量が必要であり、Mo含有量が多いほど析出物が増加し強度は上昇する。しかしながら、0.5%を超えて多量に含有させてもその効果が飽和するため、上限を0.5%とした。好ましくは0.05〜0.3%の範囲である。
Mo: 0.03% or more, 0.5% or less
Mo greatly affects the precipitation of carbides. When Mo is not contained, the increase in strength is small. In order to achieve TS ≧ 780 MPa, a Mo content of 0.03% or more is necessary. As the Mo content increases, precipitates increase and the strength increases. However, since the effect is saturated even if it is contained in a large amount exceeding 0.5%, the upper limit was made 0.5%. Preferably it is 0.05 to 0.3% of range.

次に、鋼組織の限定理由について説明する。
フェライト:40%以上、93%以下
組織全体に対する体積占有率で、フェライトが40%未満の場合、硬質な第2相が過多となり、伸びフランジ特性が低下する。一方、93%を超えた場合には、残留オーステナイトおよびマルテンサイトが少なすぎて伸び特性や耐衝突特性が向上しない。より好適な範囲は60%以上、90%以下である。
Next, the reason for limiting the steel structure will be described.
Ferrite: 40% or more, 93% or less When the volume occupancy ratio of the entire structure is less than 40%, the hard second phase becomes excessive, and the stretch flange characteristics deteriorate. On the other hand, if it exceeds 93%, the retained austenite and martensite are too small and the elongation characteristics and impact resistance characteristics are not improved. A more preferable range is 60% or more and 90% or less.

残留オーステナイト:4%以上、15%以下
組織全体に対する体積占有率で、残留オーステナイトが4%未満では、伸び特性が低下し、一方15%を超えると伸びフランジ特性が劣化する。より好適な範囲は5%以上、12%未満である。
Residual austenite: 4% or more and 15% or less The volume occupancy ratio of the entire structure is such that if the retained austenite is less than 4%, the elongation characteristics deteriorate, whereas if it exceeds 15%, the stretch flange characteristics deteriorate. A more preferable range is 5% or more and less than 12%.

マルテンサイト:3%以上、12%以下
組織全体に対する体積占有率で、マルテンサイトが3%未満では、耐衝突特性が向上せず、一方12%を超えると伸びフランジ性が劣化する。より好適な範囲は5%以上、10%以下である。
Martensite: 3% or more, 12% or less If the volume ratio of the entire structure is less than 3%, the impact resistance is not improved, while if it exceeds 12%, the stretch flangeability deteriorates. A more preferable range is 5% or more and 10% or less.

鋼組織の残部は、実質的にベイナイトとなる。なお、ここで、その他パーライト等が混入する場合があるが、これらの総量が3%未満であれば許容でき、鋼組織の残部は実質的にベーナイトであるといえる。   The balance of the steel structure is substantially bainite. In addition, although other pearlite etc. may mix here, if these total amount is less than 3%, it will accept | permit, and it can be said that the remainder of a steel structure is substantially bainite.

フェライト中に含まれるTi,Mo,Cからなる析出物の平均直径が20nm以下で、かつ析出物間の平均間隔が60nm以下
Ti,Mo,Cのいずれかを含まない炭化物では、所望の引張疲労限が達成できない。また、析出物の平均直径が20nm超、析出物間の平均間隔が60nm超では同じく所望の引張疲労限が得られず、また伸びフランジ性も低下する。なお、析出物の平均直径の好適範囲は10nm以下、平均間隔は40nm以下である。
本発明では、Ti,Mo,Cからなる析出物は、主にフェライト中に析出する。この理由は、フェライトにおけるCの固溶限がオーステナイトより小さく、過飽和のCはフェライト中に析出し易いためと考えられる。実際、鋼板から作製した薄膜試料を透過型電子顕微鏡(TEM)にて観察した結果、フェライト中に該析出物が認められた。
The average diameter of precipitates composed of Ti, Mo, and C contained in the ferrite is 20 nm or less, and the average interval between the precipitates is 60 nm or less.
A carbide that does not contain any of Ti, Mo, and C cannot achieve the desired tensile fatigue limit. Further, if the average diameter of the precipitates exceeds 20 nm and the average interval between the precipitates exceeds 60 nm, the desired tensile fatigue limit cannot be obtained, and the stretch flangeability also decreases. The preferred range of the average diameter of the precipitates is 10 nm or less, and the average interval is 40 nm or less.
In the present invention, precipitates composed of Ti, Mo, and C are mainly precipitated in ferrite. The reason for this is considered that the solid solubility limit of C in ferrite is smaller than that of austenite, and supersaturated C is likely to precipitate in ferrite. Actually, as a result of observing a thin film sample made of a steel plate with a transmission electron microscope (TEM), the precipitate was observed in the ferrite.

次に、本発明の製造工程について説明する。
なお、本発明の製造に用いられるスラブの組成は、前述した鋼板の組成と同様であるので、限定理由の説明は省略する。
本発明における溶製法は、通常の方法で良く、特に限定しない。転炉または電気炉で溶製し、取鍋精錬、脱ガス処理等を施し、連鋳法あるいは造塊法によってスラブとし、熱間圧延に供する。
Next, the manufacturing process of the present invention will be described.
In addition, since the composition of the slab used for manufacture of this invention is the same as that of the steel plate mentioned above, description of the reason for limitation is abbreviate | omitted.
The melting method in the present invention may be an ordinary method and is not particularly limited. It is melted in a converter or electric furnace, ladle refining, degassing treatment, etc., made into a slab by continuous casting method or ingot forming method, and subjected to hot rolling.

スラブ加熱温度(SRT):1150℃超
TiおよびMoは、スラブ中ではほとんどが炭化物として存在している。熱間圧延後にフェライト中に目標どおりに析出させるためには、Ti系炭化物を一旦溶解させる必要がある。そのためには1150℃を超える温度(好ましくは1200℃以上)に加熱する必要がある。1150℃以下では、TiおよびCの固溶量が少なく、熱延後に析出するTi−Mo系炭化物が少なくなるため、析出物の平均間隔が広くなり、伸びフランジ性および疲労特性が劣化する。なお、1300℃を超えてスラブ加熱を行っても特性はほとんど変化せず、コストアップの要因となるので、スラブ加熱温度の上限は1300℃程度とするのが好適である。
Slab heating temperature (SRT): over 1150 ℃
Ti and Mo are mostly present as carbides in the slab. In order to precipitate as desired in ferrite after hot rolling, it is necessary to once dissolve the Ti-based carbide. For this purpose, it is necessary to heat to a temperature exceeding 1150 ° C. (preferably 1200 ° C. or higher). Below 1150 ° C., the amount of Ti and C dissolved is small, and Ti—Mo-based carbides precipitated after hot rolling are reduced, so the average interval between the precipitates is widened, and the stretch flangeability and fatigue characteristics are deteriorated. Note that even if slab heating is performed at temperatures exceeding 1300 ° C., the characteristics hardly change and the cost increases. Therefore, the upper limit of the slab heating temperature is preferably about 1300 ° C.

仕上圧延温度:Ar3点以上、(Ar3点+100℃)以下
圧延温度がAr3点未満では、(フェライト+オーステナイト)2相域での圧延となり、この場合にはフェライト中のひずみが解放され難いため、伸び特性が劣化する。また、フェライト中に含まれる析出物が粗大化し、伸びフランジ特性および疲労特性が劣化する。一方、(Ar3点+100℃)を超える条件で圧延すると、組織が粗大化し、必要量の残留オーステナイトが得られなくなる。従って、仕上圧延温度は、Ar3点以上、(Ar3点+100℃)以下の範囲に限定した。
Finishing rolling temperature: Ar 3 points or more, (Ar 3 points + 100 ° C) or less If the rolling temperature is less than Ar 3 points, rolling is performed in the two-phase region (ferrite + austenite). In this case, strain in the ferrite is released. Since it is difficult, the elongation characteristics deteriorate. Further, precipitates contained in the ferrite are coarsened, and the stretch flange characteristics and fatigue characteristics are deteriorated. On the other hand, if rolling is performed under conditions exceeding (Ar 3 point + 100 ° C.), the structure becomes coarse and the required amount of retained austenite cannot be obtained. Therefore, the finish rolling temperature is limited to a range of Ar 3 points or more and (Ar 3 points + 100 ° C.) or less.

Ar3点未満でかつ(スラブ加熱温度/1.9+80)℃以上、(スラブ加熱温度/1.5+20)℃以下の温度まで平均冷却速度:20℃/s以上で冷却
所定の特性を発現させるためには、フェライト中に炭化物を絶妙に析出させる必要があり、そのためには、仕上圧延後の冷却速度および空冷温度域を上記範囲にコントロールすることが重要である。
仕上圧延後の平均冷却速度が20℃/sに満たないと、析出物が粗大化し伸びフランジ特性および引張疲労特性が劣化する。
また、この冷却の停止温度域すなわち空冷の温度域も重要で、かかる温度域をAr3点未満でかつ(スラブ加熱温度/1.9+80)℃以上、(スラブ加熱温度/1.5+20)℃以下とすることによって、フェライト中にTi,Mo,Cを含む析出物を、それらの平均直径が20nm以下で、かつそれらの平均間隔が60nm以下となる状態で、析出させることができる。
Cooling at an average cooling rate of 20 ° C / s or higher to a temperature of less than 3 points and (slab heating temperature / 1.9 + 80) ° C or higher and (slab heating temperature / 1.5 + 20) ° C or lower In order to achieve this, it is important to control the cooling rate after finishing rolling and the air cooling temperature range to the above ranges.
If the average cooling rate after finish rolling is less than 20 ° C / s, the precipitates become coarse and the stretch flange characteristics and tensile fatigue characteristics deteriorate.
In addition, the cooling stop temperature range, that is, the air cooling temperature range is also important. This temperature range is less than Ar 3 and (slab heating temperature / 1.9 + 80) ° C. or more and (slab heating temperature / 1.5 + 20) ° C. or less. As a result, precipitates containing Ti, Mo, and C in the ferrite can be precipitated in a state where the average diameter thereof is 20 nm or less and the average interval thereof is 60 nm or less.

ここに、上記の冷却の停止温度域すなわち空冷の温度域をスラブ加熱温度との関係で定めた理由は、スラブ加熱温度が高いほど、スラブ中の析出物が多く溶解し、その溶解量に応じて空冷中における析出物の生成条件が変わるため、スラブ加熱温度によって空冷温度域を変化させる必要があると考えられるからである。
なお、上記冷却の停止温度域は、この考えに基づき種々の実験を行って求めたものである。また、上記冷却の停止温度域をAr3点未満としたのは、フェライト中に炭化物を析出する必要があるためである。
Here, the reason why the above-mentioned cooling stop temperature range, that is, the air cooling temperature range is defined in relation to the slab heating temperature is that the higher the slab heating temperature, the more precipitates in the slab dissolve, This is because it is considered necessary to change the air-cooling temperature range depending on the slab heating temperature because the conditions for generating precipitates during air-cooling change.
The cooling stop temperature range is obtained by conducting various experiments based on this idea. The reason why the cooling stop temperature range is set to less than Ar 3 is that it is necessary to precipitate carbide in the ferrite.

図1に、スラブ加熱温度および冷却停止温度が、フェライト中に析出するTi,Mo,Cを含む析出物の平均直径および平均間隔に及ぼす影響について調べた結果を整理して示す。なお、図中〇印は、析出物の平均直径が20nm以下でかつ平均間隔が60nm以下の場合を、また□印は、析出物の平均直径および平均間隔の少なくともいずれかが適正範囲を逸脱した場合を示す。またこの調査において、冷却停止温度は全てAr3点未満の温度とした。
同図から明らかなように、本発明で所望する析出物の析出状態が得られるのは、スラブ加熱温度が1150℃超で、かつ冷却停止温度域が(スラブ加熱温度/1.9+80)℃以上、(スラブ加熱温度/1.5+20)℃以下の範囲を満足する場合であることが分かる。
なお、上記の冷却過程における冷却手段としては、水冷を用いた制御冷却などが有利に適合する。
FIG. 1 summarizes the results of examining the influence of the slab heating temperature and cooling stop temperature on the average diameter and average interval of precipitates containing Ti, Mo, and C precipitated in ferrite. In the figure, ◯ indicates the case where the average diameter of the precipitates is 20 nm or less and the average interval is 60 nm or less, and □ indicates that at least one of the average diameter and the average interval of the precipitates deviates from the appropriate range. Show the case. In this investigation, the cooling stop temperature was set to a temperature lower than Ar 3 points.
As is clear from the figure, the desired precipitation state of the present invention is obtained because the slab heating temperature is higher than 1150 ° C. and the cooling stop temperature range is (slab heating temperature / 1.9 + 80) ° C. or higher. It can be seen that (slab heating temperature / 1.5 + 20) ° C. or less is satisfied.
As the cooling means in the above cooling process, controlled cooling using water cooling is advantageously adapted.

空冷時間:3〜15秒
空冷時間が、3秒未満では40%以上のフェライトが生成せず、伸び特性が劣化する。一方、15秒を超えると析出物が粗大化し、伸び特性および伸びフランジ特性が劣化するので、空冷時間は3〜15秒間とした。
Air cooling time: 3 to 15 seconds If the air cooling time is less than 3 seconds, 40% or more of ferrite is not formed, and the elongation characteristics deteriorate. On the other hand, if it exceeds 15 seconds, the precipitate becomes coarse and the elongation characteristics and the stretch flange characteristics deteriorate, so the air cooling time was set to 3 to 15 seconds.

300℃以上、500℃以下まで20℃/s以上の平均冷却速度で冷却し、巻取る。
上記の空冷後、巻取りまでの平均冷却速度が20℃/s未満では、パーライトが生成するため、特性が劣化する。巻取り温度が、500℃超または300℃未満では所定量の残留オーステナイトが得られない。好ましい温度域は350℃以上、450℃以下である。
Cool to an average cooling rate of 20 ° C / s or higher and wind up to 300 ° C or higher and 500 ° C or lower.
When the average cooling rate until the winding after the air cooling is less than 20 ° C./s, pearlite is generated and the characteristics deteriorate. When the coiling temperature exceeds 500 ° C. or less than 300 ° C., a predetermined amount of retained austenite cannot be obtained. A preferable temperature range is 350 ° C. or higher and 450 ° C. or lower.

巻取り後、200℃まで平均冷却速度:20℃/hr以上
巻取り後の平均冷却速度が20℃/hr以上未満では所定量のマルテンサイトが生成せず、耐衝突特性の向上が望めない。好適範囲は60℃/hr以上である。
なお、巻取り後の冷却は、例えばミスト雰囲気等で強制冷却を行えばよい。
After winding, the average cooling rate up to 200 ° C .: 20 ° C./hr or more If the average cooling rate after winding is less than 20 ° C./hr or more, a predetermined amount of martensite is not generated, and improvement in impact resistance cannot be expected. A preferable range is 60 ° C./hr or more.
In addition, what is necessary is just to perform forced cooling in mist atmosphere etc., for example after cooling after winding.

表1に示す成分組成になる鋼を転炉で溶製し、連続鋳造によりスラブとしたのち、該スラブを、表2に示す条件で熱間圧延→冷却→巻取り→冷却を行って、板厚:2.0mmの熱延鋼板とした。
なお、表2中のAr3は、Ar3=910−203×√C+44.7×Si+31.5×Mo(ここで、C,Si,Moは各元素の含有量(質量%))により求めた値である。
かくして得られた熱延鋼板のミクロ組織、引張特性、伸びフランジ特性、引張疲労特性および耐衝突特性について調べた結果を、表3に示す。
The steel having the composition shown in Table 1 was melted in a converter and made into a slab by continuous casting. The slab was then subjected to hot rolling → cooling → winding → cooling under the conditions shown in Table 2, Thickness: 2.0 mm hot rolled steel sheet.
In Table 2, Ar 3 was determined from Ar 3 = 910−203 × √C + 44.7 × Si + 31.5 × Mo (where C, Si, and Mo are the contents (mass%) of each element). Value.
Table 3 shows the results of examining the microstructure, tensile properties, stretch flange properties, tensile fatigue properties, and impact resistance properties of the hot-rolled steel sheets thus obtained.

鋼組織および材料特性の測定方法は次のとおりである。
(1)引張特性は、圧延方向に垂直な方向を長手方向として採取したJIS5号試験片を用いてJIS Z 2241に準拠した方法で行った。
(2) 穴広げ試験は、日本鉄鋼連盟規格JFS-T1001-1996に準拠じて試験を行った。
(3) 残留オーステナイト量は、熱延板を板厚1/4位置まで研削した後、化学研磨によりさらに0.1mm研磨した面について、X線回折装置でMoのKα線を用いて、fcc鉄の(200),(220),(311)面とbcc鉄の(200),(211),(220)面の積分強度を測定し、これらから 残留オーステナイトの分率を求め、残留オーステナイトの体積占有率とした。
(4) フェライト量は、3%ナイタール溶液で組織を現出し、画像処理によりフェライト部分の面積率を定量化し、これをフェライトの体積占有率とした。
(5) マルテンサイト量は、4%ピクリン酸アルコールと2%ピロ硫酸ナトリウムを1対1に混合した腐食液でマルテンサイトのみを白く現出させた組織写真を用い、画像処理により白い部分の面積率を定量化し、これをマルテンサイトの体積占有率とした。
(6) また、上記フェライトおよびマルテンサイトの組織観察時にフェライト、マルテンサイト以外の残余の組織の種類についても観察も行い、得られた熱延鋼板においてパーライト等の分率は3%未満であり、フェライト、マルテンサイト以外の残部は実質的に残留オーステナイトとベイナイトであることを確認した。
(7) 析出物観察は、透過型電子顕微鏡により20万倍以上でフェライト組織観察を行った。Ti,Mo等の組成は、TEMに装備されたエネルギー分散型X線分光装置(EDX)による分析から決定した。析出物の直径は画像処理により、析出物を円とみなしたときの平均直径を求めた。析出物間隔は電子顕微鏡写真上の300nm四方の領域に存在する析出物の個数を数え、試料の膜厚を測定して析出物をカウントした試料の体積を計算し、析出物が均一分散したときの間隔を計算により求め、析出物平均間隔とした。
(8) 引張疲労試験は、応力比R0.05の条件で行い、繰り返し数107での疲労限(FL)を求め、耐久比(FL/TS)を求めた。なお、応力比Rとは、最小繰返し応力/最大繰返し応力で定義される値である。
(9) ひすみ速度:10/sでの引張試験には、鷺宮製作所製の検力台ブロック式材料試験機を用い、真ひずみ0.1までの吸収エネルギーを真応力−真ひずみ曲線から求めた。なお、引張の方向は圧延方向と垂直な方向とした。
The steel structure and material properties are measured as follows.
(1) Tensile properties were measured by a method based on JIS Z 2241 using a JIS No. 5 test piece taken with the direction perpendicular to the rolling direction as the longitudinal direction.
(2) The hole expansion test was conducted in accordance with the Japan Iron and Steel Federation Standard JFS-T1001-1996.
(3) The amount of retained austenite is determined by using the Kα line of Mo with an X-ray diffractometer on the surface polished by 0.1 mm by chemical polishing after grinding the hot-rolled sheet to 1/4 position. Measure the integrated strength of the (200), (220), (311) planes and the (200), (211), (220) planes of bcc iron, determine the fraction of retained austenite from these, and determine the volume occupied by retained austenite Rate.
(4) The amount of ferrite was expressed with a 3% nital solution, and the area ratio of the ferrite portion was quantified by image processing, and this was defined as the volume occupancy of ferrite.
(5) The amount of martensite is the area of the white part by image processing, using a structure photograph in which only martensite appears white in a corrosive solution in which 4% picric alcohol and 2% sodium pyrosulfate are mixed 1: 1. The rate was quantified, and this was defined as the martensite volume occupancy.
(6) In addition, when observing the structure of the ferrite and martensite, the remaining structure other than ferrite and martensite is also observed, and the fraction of pearlite and the like in the obtained hot-rolled steel sheet is less than 3%. It was confirmed that the balance other than ferrite and martensite was substantially retained austenite and bainite.
(7) Precipitates were observed with a transmission electron microscope at a magnification of 200,000 times or more. The composition of Ti, Mo, etc. was determined from analysis by an energy dispersive X-ray spectrometer (EDX) equipped with TEM. The diameter of the precipitate was determined by image processing to obtain an average diameter when the precipitate was regarded as a circle. Precipitate spacing is calculated by counting the number of precipitates present in the 300 nm square area on the electron micrograph, measuring the sample film thickness, and counting the sample volume. Was obtained by calculation, and was defined as an average precipitate interval.
(8) The tensile fatigue test was performed under the condition of the stress ratio R0.05, the fatigue limit (FL) at 10 7 repetitions was determined, and the durability ratio (FL / TS) was determined. The stress ratio R is a value defined by minimum cyclic stress / maximum cyclic stress.
(9) Hysteresis speed: For tensile test at 10 / s, using a force table block type material testing machine manufactured by Kashiwamiya Seisakusho, the absorbed energy up to true strain of 0.1 was obtained from the true stress-true strain curve. The direction of tension was the direction perpendicular to the rolling direction.

Figure 2005290396
Figure 2005290396

Figure 2005290396
Figure 2005290396

Figure 2005290396
Figure 2005290396

表3に示したとおり、発明例はいずれも、板厚:0.2mmで、TSが 780MPa以上、Elが27%以上、穴広げ率が60%以上、疲労試験における耐久比(FL/TS))が0.75以上という優れた特性が得られ、またひずみ速度:10/sでの真ひずみ 0.1までの吸収エネルギーも80 MJ/m3以上と良好であった。 As shown in Table 3, all the inventive examples have a plate thickness of 0.2 mm, TS of 780 MPa or more, El of 27% or more, hole expansion ratio of 60% or more, durability ratio in fatigue test (FL / TS)) Excellent characteristics of 0.75 or more were obtained, and the absorbed energy up to a true strain of 0.1 at a strain rate of 10 / s was 80 MJ / m 3 or more.

スラブ加熱温度および冷却停止温度が、フェライト中に析出するTi、Mo、Cを含む析出物の平均直径および平均間隔に及ぼす影響を示したグラフである。It is the graph which showed the influence which the slab heating temperature and cooling stop temperature exert on the average diameter and average space | interval of the precipitate containing Ti, Mo, and C which precipitate in a ferrite.

Claims (2)

質量%で、
C:0.08%超、0.2%以下、
Si:0.3%以上、2.0%以下、
Mn:0.3%以上、2.0%以下、
P:0.06%以下、
S:0.01%以下、
Al:0.05%以下、
Ti:0.03%以上、0.2%以下および
Mo:0.03%以上、0.5%以下
を含み、残部はFeおよび不可避的不純物の組成になり、組織全体に対する体積占有率で、フェライト:40%以上、93%以下、残留オーステナイト:4%以上、15%以下、マルテンサイト:3%以上、12%以下、残部:ベイナイトの鋼組織になり、フェライト中にTi,Mo,Cからなる析出物を含み、かかる析出物の平均直径が20nm以下、析出物間の平均間隔が60nm以下であることを特徴とする伸び特性、伸びフランジ特性、引張疲労特性および耐衝突特性に優れた高強度熱延鋼板。
% By mass
C: more than 0.08%, 0.2% or less,
Si: 0.3% or more, 2.0% or less,
Mn: 0.3% or more, 2.0% or less,
P: 0.06% or less,
S: 0.01% or less,
Al: 0.05% or less,
Ti: 0.03% or more, 0.2% or less and
Mo: 0.03% or more, 0.5% or less included, the balance is Fe and inevitable impurities composition, volume occupancy to the whole structure, ferrite: 40% or more, 93% or less, residual austenite: 4% or more, 15 % Or less, martensite: 3% or more, 12% or less, balance: steel structure of bainite, including precipitates composed of Ti, Mo, C in ferrite, the average diameter of such precipitates being 20 nm or less, precipitates A high-strength hot-rolled steel sheet with excellent elongation characteristics, stretch flange characteristics, tensile fatigue characteristics, and impact resistance characteristics, characterized in that the average distance between them is 60 nm or less.
質量%で、
C:0.08%超、0.2%以下、
Si:0.3%以上、2.0%以下、
Mn:0.3%以上、2.0%以下、
P:0.06%以下、
S:0.01%以下、
Al:0.05%以下、
Ti:0.03%以上、0.2%以下および
Mo:0.03%以上、0.5%以下
含有し、残部はFeおよび不可避的不純物の組成になるスラブを、1150℃超の温度に加熱し、仕上温度がAr3点以上、(Ar3点+100℃)以下の条件で仕上圧延を終了した後、Ar3点未満でかつ(スラブ加熱温度/1.9+80)℃以上、(スラブ加熱温度/1.5+20)℃以下の温度まで平均冷却速度:20℃/s以上で冷却し、ついで3〜15秒間の空冷後、300℃以上、500℃以下まで20℃/s以上の平均冷却速度で冷却したのち、巻取り、ついで200℃まで平均冷却速度:20℃/hr以上の速度で冷却することを特徴とする伸び特性、伸びフランジ特性、引張疲労特性および耐衝突特性に優れた高強度熱延鋼板の製造方法。
% By mass
C: more than 0.08%, 0.2% or less,
Si: 0.3% or more, 2.0% or less,
Mn: 0.3% or more, 2.0% or less,
P: 0.06% or less,
S: 0.01% or less,
Al: 0.05% or less,
Ti: 0.03% or more, 0.2% or less and
Mo: 0.03% or more and 0.5% or less of slab containing Fe and inevitable impurities in the balance is heated to a temperature above 1150 ° C, and the finishing temperature is Ar 3 points or higher (Ar 3 points + 100 ° C) After finishing rolling under the following conditions, the average cooling rate: 20 ° C / s or more to a temperature of less than 3 points Ar and (slab heating temperature / 1.9 + 80) ° C or higher and (slab heating temperature / 1.5 + 20) ° C or lower Then, after cooling with air for 3 to 15 seconds, after cooling at an average cooling rate of 20 ° C / s or higher to 300 ° C or higher and 500 ° C or lower, winding, and then to 200 ° C, average cooling rate: 20 ° C / hr A method for producing a high-strength hot-rolled steel sheet having excellent elongation characteristics, stretch flange characteristics, tensile fatigue characteristics, and impact resistance characteristics, characterized by cooling at the above speed.
JP2004102513A 2004-03-31 2004-03-31 High-strength hot-rolled steel sheet having excellent elongation characteristics, stretch flange characteristics, tensile fatigue characteristics, and impact resistance characteristics, and a method for producing the same Expired - Fee Related JP4333444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004102513A JP4333444B2 (en) 2004-03-31 2004-03-31 High-strength hot-rolled steel sheet having excellent elongation characteristics, stretch flange characteristics, tensile fatigue characteristics, and impact resistance characteristics, and a method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004102513A JP4333444B2 (en) 2004-03-31 2004-03-31 High-strength hot-rolled steel sheet having excellent elongation characteristics, stretch flange characteristics, tensile fatigue characteristics, and impact resistance characteristics, and a method for producing the same

Publications (2)

Publication Number Publication Date
JP2005290396A true JP2005290396A (en) 2005-10-20
JP4333444B2 JP4333444B2 (en) 2009-09-16

Family

ID=35323666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004102513A Expired - Fee Related JP4333444B2 (en) 2004-03-31 2004-03-31 High-strength hot-rolled steel sheet having excellent elongation characteristics, stretch flange characteristics, tensile fatigue characteristics, and impact resistance characteristics, and a method for producing the same

Country Status (1)

Country Link
JP (1) JP4333444B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146209A (en) * 2005-11-25 2007-06-14 Jfe Steel Kk High strength steel sheet having excellent uniform elongation property and its production method
JP2007321201A (en) * 2006-06-01 2007-12-13 Kobe Steel Ltd High-strength hot-rolled steel plate superior in strength-elongation balance and fatigue characteristics
JP2009084648A (en) * 2007-09-28 2009-04-23 Kobe Steel Ltd High strength hot rolled steel sheet having excellent fatigue strength and stretch-flange formability
JP2009256695A (en) * 2008-04-11 2009-11-05 Sumitomo Metal Ind Ltd Thin steel sheet, and method for producing the same
WO2013022043A1 (en) 2011-08-09 2013-02-14 新日鐵住金株式会社 Hot-rolled steel sheet having high yield ratio and excellent low-temperature impact energy absorption and haz softening resistance and method for producing same
US20140000766A1 (en) * 2011-03-18 2014-01-02 Daisuke Maeda Hot-rolled steel sheet with excellent press formability and production method thereof
CN108374131A (en) * 2018-03-13 2018-08-07 昆明理工大学 A kind of cooling controlling and rolling controlling process method of Ti-Mo combined microalloyings steel fine austenite grain

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146209A (en) * 2005-11-25 2007-06-14 Jfe Steel Kk High strength steel sheet having excellent uniform elongation property and its production method
JP2007321201A (en) * 2006-06-01 2007-12-13 Kobe Steel Ltd High-strength hot-rolled steel plate superior in strength-elongation balance and fatigue characteristics
JP4737761B2 (en) * 2006-06-01 2011-08-03 株式会社神戸製鋼所 High strength hot-rolled steel sheet with excellent strength-elongation balance and fatigue properties
JP2009084648A (en) * 2007-09-28 2009-04-23 Kobe Steel Ltd High strength hot rolled steel sheet having excellent fatigue strength and stretch-flange formability
JP2009256695A (en) * 2008-04-11 2009-11-05 Sumitomo Metal Ind Ltd Thin steel sheet, and method for producing the same
US20140000766A1 (en) * 2011-03-18 2014-01-02 Daisuke Maeda Hot-rolled steel sheet with excellent press formability and production method thereof
US10428409B2 (en) * 2011-03-18 2019-10-01 Nippon Steel Corporation Hot-rolled steel sheet with excellent press formability and production method thereof
WO2013022043A1 (en) 2011-08-09 2013-02-14 新日鐵住金株式会社 Hot-rolled steel sheet having high yield ratio and excellent low-temperature impact energy absorption and haz softening resistance and method for producing same
CN108374131A (en) * 2018-03-13 2018-08-07 昆明理工大学 A kind of cooling controlling and rolling controlling process method of Ti-Mo combined microalloyings steel fine austenite grain

Also Published As

Publication number Publication date
JP4333444B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
JP5070732B2 (en) High-strength hot-rolled steel sheet excellent in elongation characteristics, stretch flange characteristics and tensile fatigue characteristics, and method for producing the same
JP4649868B2 (en) High strength hot rolled steel sheet and method for producing the same
CA2805834C (en) High-strength cold rolled sheet having excellent formability and crashworthiness and method for manufacturing the same
JP4692015B2 (en) High ductility hot-rolled steel sheet with excellent stretch flangeability and fatigue characteristics and method for producing the same
EP1870483B1 (en) Hot-rolled steel sheet, method for production thereof and workedd article formed therefrom
JP4740099B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
KR20080110904A (en) High-strength hot-rolled steel plate having excellent stretch properties, stretch flanging properties and tension fatigue properties, and method for production thereof
EP2757171A1 (en) High-strength hot-dipped galvanized steel sheet having excellent formability and impact resistance, and method for producing same
JP5316634B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JP2010196115A (en) High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for manufacturing the same
JP5482204B2 (en) High strength hot rolled steel sheet and method for producing the same
WO2011065479A1 (en) High-strength ultra-thick h shape steel and process for production thereof
JP4976906B2 (en) Thick steel plate with excellent HAZ toughness, base material toughness, elongation, and strength-elongation balance
JP4736441B2 (en) High-strength hot-rolled steel sheet excellent in elongation characteristics, stretch flange characteristics and tensile fatigue characteristics, and method for producing the same
JP2003253385A (en) Cold-rolled steel sheet superior in high-velocity deformation characteristic and bending characteristic, and manufacturing method therefor
JP4333444B2 (en) High-strength hot-rolled steel sheet having excellent elongation characteristics, stretch flange characteristics, tensile fatigue characteristics, and impact resistance characteristics, and a method for producing the same
EP1659191B1 (en) High tensile strength cold-rolled steel sheet and method for production thereof
EP4043593B1 (en) High strength steel sheet, impact absorbing member, and method for manufacturing high strength steel sheet
JP7192819B2 (en) High-strength steel plate and its manufacturing method
JP7192818B2 (en) High-strength steel plate and its manufacturing method
TWI475114B (en) High strength cold rolled steel sheet excellent in workability and impact resistance and a method of manufacturing the same
JP5655436B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP4964007B2 (en) Thick steel plate with little material anisotropy and excellent HAZ toughness and low temperature base metal toughness
JP2007224408A (en) Hot-rolled steel sheet having excellent strain aging property and method for producing the same
EP2801633A1 (en) High carbon hot-rolled steel sheet and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4333444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees