JP6676973B2 - Hot rolled steel sheet and method for producing the same - Google Patents

Hot rolled steel sheet and method for producing the same Download PDF

Info

Publication number
JP6676973B2
JP6676973B2 JP2016004752A JP2016004752A JP6676973B2 JP 6676973 B2 JP6676973 B2 JP 6676973B2 JP 2016004752 A JP2016004752 A JP 2016004752A JP 2016004752 A JP2016004752 A JP 2016004752A JP 6676973 B2 JP6676973 B2 JP 6676973B2
Authority
JP
Japan
Prior art keywords
ferrite
steel sheet
less
cooling
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016004752A
Other languages
Japanese (ja)
Other versions
JP2017125235A (en
Inventor
真吾 藤中
真吾 藤中
中川 浩行
浩行 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016004752A priority Critical patent/JP6676973B2/en
Publication of JP2017125235A publication Critical patent/JP2017125235A/en
Application granted granted Critical
Publication of JP6676973B2 publication Critical patent/JP6676973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、熱延鋼板およびその製造方法に関する。   The present invention relates to a hot-rolled steel sheet and a method for producing the same.

近年、CO排出量の削減を目的とした車体軽量化による燃費向上や衝突安全基準の厳格化の観点から、自動車の車体部品の高強度化が推進されている。また、省資源の観点から、車体部品の素材である鋼板には少ない合金添加量で高強度を得ることが望まれている。 2. Description of the Related Art In recent years, from the viewpoint of improving fuel efficiency by reducing the weight of a vehicle body for the purpose of reducing CO 2 emissions and stricter collision safety standards, increasing the strength of vehicle body parts has been promoted. Further, from the viewpoint of resource saving, it is desired to obtain high strength with a small alloy addition amount in a steel sheet as a material of a body part.

このような背景の中、車体部品の形状は多様化している。このため、熱延鋼板には、高強度だけではなく、プレス成形性や溶接性、さらには耐衝突特性等の諸特性を併せ持つことがよりいっそう要求されている。特に、足回り部品や構造部材には、優れた伸びフランジ性が不可欠であり、このような用途に供される場合には所望の延性や穴広げ性が求められる。   Against this background, the shapes of body parts have been diversified. For this reason, the hot-rolled steel sheet is required to have not only high strength but also various properties such as press formability, weldability, and impact resistance. In particular, excellent stretch flangeability is indispensable for underbody parts and structural members, and when used for such applications, desired ductility and hole-expandability are required.

特許文献1には、C:0.01〜0.2%(本明細書では化学組成に関する「%」は特に断りがない限り「質量%」を意味する)、Si:0.01〜2%、Mn:0.1〜2%、P≦0.1%、S≦0.03%、Al:0.001〜0.1%、N≦0.01%を含有し、残部はFeおよび不純物からなる化学組成を有する鋼片を粗圧延後、Ar変態点+50℃以上の温度域で仕上げ圧延を終了し、その後0.5秒間経過時以降に、Ar〜500℃の温度域を80℃/秒以上の冷却速度で500℃以下の温度域まで冷却し巻取ることにより、金属組織が主に均一な連続冷却変態組織(Zw)であり、その平均粒径が8μm超30μm以下である、引張強度が370〜490MPa級のBH性と伸びフランジ性を兼ね備える熱延鋼板を製造する発明が開示されている。 In Patent Document 1, C: 0.01 to 0.2% (in the present specification, “%” related to the chemical composition means “% by mass” unless otherwise specified), Si: 0.01 to 2% , Mn: 0.1-2%, P ≦ 0.1%, S ≦ 0.03%, Al: 0.001-0.1%, N ≦ 0.01%, the balance being Fe and impurities After rough rolling of a slab having the chemical composition consisting of the following, finish rolling is completed in a temperature range of Ar 3 transformation point + 50 ° C. or higher, and after 0.5 seconds, the temperature range of Ar 3 to 500 ° C. is raised to 80 ° C. By cooling to a temperature range of 500 ° C. or lower at a cooling rate of 500 ° C./second or higher and winding, the metal structure is mainly a continuous cooling transformed structure (Zw) having an average particle size of more than 8 μm and 30 μm or less. Manufacture hot-rolled steel sheet having both BH property and stretch flangeability with tensile strength of 370-490 MPa class. Invention is disclosed.

特許文献1により開示された発明は、金属組織を連続冷却変態組織に制御することにより組織を均質化し、ボイドの起点となる硬質相と軟質相の界面を無くすことにより、伸びフランジ性(穴広げ性)を向上させる。   In the invention disclosed in Patent Document 1, the metallographic structure is controlled to a continuous cooling transformation structure to homogenize the structure, and eliminate the interface between the hard phase and the soft phase, which are the starting points of voids, thereby improving stretch flangeability (hole expansion). Nature).

特許文献2には、C:0.05〜0.40%、Si:1.0〜3.0%、Mn:0.6〜3.0%、Cr:0.2〜2.0%を含有し、かつTi:0.005〜0.25%、Nb:0.003〜0.1%、V:0.003〜0.1%のうちから選んだ少なくとも1種を含有し、残部は実質的にFeである化学組成を有し、主相が初析フェライトで、第2相がマルテンサイト、針状フェライトおよび残留オーステナイトからなる鋼組織を有するともに、主相である初析フェライト相の硬さHを180以上、主相と第2相との硬さの差ΔHを200以下とすることにより、耐衝撃特性と強度および伸びのバランスとに優れるとともに、耐疲労特性および穴拡げ性にも優れる高強度高加工性熱延鋼板に係る発明が開示されている。 Patent Document 2 discloses that C: 0.05 to 0.40%, Si: 1.0 to 3.0%, Mn: 0.6 to 3.0%, and Cr: 0.2 to 2.0%. And at least one selected from Ti: 0.005 to 0.25%, Nb: 0.003 to 0.1%, and V: 0.003 to 0.1%, with the balance being It has a chemical composition of substantially Fe, the main phase is pro-eutectoid ferrite, the second phase has a steel structure composed of martensite, acicular ferrite, and retained austenite, and the main phase is a pro-eutectoid ferrite phase. the hardness H V 180 or more, the main phase and by the difference [Delta] H V in hardness between the second phase and 200 or less, excellent in the balance between impact resistance and strength and elongation, spread fatigue resistance and hole An invention relating to a high-strength, high-workability hot-rolled steel sheet having excellent workability is disclosed.

特許文献2により開示された発明では、Ti,Nb,Vといった析出強化元素を添加し、初析フェライトの硬度を上昇させることにより軟質相のフェライトと硬質第2相の硬度差を低減し、穴広げ性を向上させる。   In the invention disclosed in Patent Document 2, the hardness difference between the soft phase ferrite and the hard second phase is reduced by adding a precipitation strengthening element such as Ti, Nb, or V to increase the hardness of the proeutectoid ferrite. Improve spreadability.

特開2005−82841号公報JP 2005-82841 A 特開平11−189842号公報JP-A-11-189842

鋼の強化機構には、固溶強化、析出強化(粒子分散強化)、転位強化、結晶粒微細化強化があり、これら各種の強化法を組み合わせて鋼の高強度化を図ることができる。一方、高強度化により鋼の延性は劣化することが知られている。これまで、高い延性および強度を両立したDP鋼やTRIP鋼等の複相組織鋼が開発されてきた。   Steel strengthening mechanisms include solid solution strengthening, precipitation strengthening (particle dispersion strengthening), dislocation strengthening, and crystal grain refinement strengthening, and these various strengthening methods can be combined to increase the strength of the steel. On the other hand, it is known that ductility of steel is deteriorated by increasing strength. Hitherto, a dual phase steel such as DP steel and TRIP steel having both high ductility and strength has been developed.

他方、材料の延性は、均一伸びおよび局部伸びの加算により成り立っており、材料の伸びフランジ性は、特に局部伸びと強い相関があるとされている。また、材料の伸びフランジ性は、穴広げ試験によって評価される穴広げ性との相関が高いとされ、伸びフランジ性の簡易的な評価手法としてよく用いられる。   On the other hand, the ductility of a material is established by the addition of uniform elongation and local elongation, and it is said that the stretch flangeability of a material has a particularly strong correlation with local elongation. Further, the stretch flangeability of a material is considered to have a high correlation with the hole expandability evaluated by a hole expanding test, and is often used as a simple evaluation method of stretch flangeability.

複相組織を有するDP鋼やTRIP鋼は局部伸びが低いことから、この穴広げ性が劣位にあることが知られている。これは、軟質相と硬質相とが混在するために、その異相の界面で打抜き時あるいは伸びフランジ変形中にボイドが生成し易いためである。このため、これまで軟質相と硬質相の硬さ差(硬さ比)を低減することにより組織の均質化を図り、穴広げ性を向上させた各種高強度鋼板が開発されている。   It is known that DP steels and TRIP steels having a dual phase structure have low local elongation, and therefore have poor hole-expandability. This is because the soft phase and the hard phase are mixed, and voids are likely to be generated at the interface between the different phases during punching or during stretch flange deformation. For this reason, various high-strength steel sheets have been developed in which the difference in hardness (hardness ratio) between the soft phase and the hard phase is reduced to homogenize the structure and improve hole expanding properties.

穴広げ性の向上のための具体的な改善技術として、(i)低炭素量化により破壊起点となる粗大なセメンタイトの生成抑制やREM添加による介在物制御、(ii)特許文献1により開示された発明のように、ベイナイトや焼き戻しマルテンサイトを主相とした組織の均質化、(iii)特許文献2により開示された発明のように、複相組織鋼で軟質相の硬度上昇のため、MC系炭化物の析出強化元素の活用、Si等の置換型元素による固溶強化等が知られている。   As a specific improvement technique for improving the hole expanding property, (i) suppression of generation of coarse cementite, which is a fracture starting point due to reduction in carbon content, and control of inclusions by adding REM, (ii) disclosed in Patent Document 1 As in the invention, the homogenization of the structure containing bainite or tempered martensite as a main phase, and (iii) as in the invention disclosed in Patent Document 2, the hardness of the soft phase is increased in the steel having a dual phase structure. Utilization of precipitation strengthening elements for system carbides, solid solution strengthening with substitutional elements such as Si, and the like are known.

しかし、(i)の技術には、低炭素量化に伴う脱炭コストの上昇やREM添加精度の問題があり、量産性に課題がある。また、(ii)の技術では、均一伸びの低下により材料の延性が劣化する。さらに、(iii)の技術では、合金コストの増加を伴うばかりか、溶融亜鉛めっき性や化成処理性が劣化する場合があり、表面性状の確保に課題がある。   However, the technique (i) has a problem of an increase in decarburization cost due to a reduction in the amount of carbon and a problem of accuracy of REM addition, and thus has a problem in mass productivity. Further, in the technique (ii), the ductility of the material is deteriorated due to a decrease in uniform elongation. Furthermore, in the technique (iii), not only the alloy cost is increased, but also the hot-dip galvanizing property and the chemical conversion property may be deteriorated, and there is a problem in securing surface properties.

本発明の目的は、穴広げ性に優れることから、例えば、自動車の足回り部品やクロスメンバー等の自動車車体の補強部材等に用いるのに好適な熱延鋼板、具体的には、引張強さ440〜590MPa、穴広げ率75%以上、全伸び30%以上の機械特性を兼備する熱延鋼板を低コストで提供することである。   An object of the present invention is to provide a hot-rolled steel sheet suitable for use as a reinforcing member of an automobile body such as an undercarriage part of an automobile or a cross member, etc. An object of the present invention is to provide a low-cost hot-rolled steel sheet having mechanical properties of 440 to 590 MPa, a hole expansion ratio of 75% or more, and a total elongation of 30% or more.

本発明者らは、このような背景を鑑みて、少ない合金添加量で高強度と穴広げ性、さらには延性(全伸び)を確保する手法として、フェライト中の固溶炭素量を増加させることによるフェライトの硬度上昇を検討した。   In view of such a background, the present inventors increase the amount of solute carbon in ferrite as a technique for securing high strength, hole expandability, and ductility (total elongation) with a small amount of alloy addition. The increase in ferrite hardness due to aging was studied.

その結果、フェライト中に過飽和に固溶した炭素による焼入れ時効硬化によりフェライトの硬度を上昇させることにより、組織中に存在する硬質第2相との硬度比を低減することができ、これにより、高強度を有しながら穴広げ性を向上できることを知見した。   As a result, by increasing the hardness of the ferrite by quenching and aging hardening by the carbon supersaturated in the ferrite, the hardness ratio of the ferrite to the hard second phase existing in the structure can be reduced. It has been found that the hole expanding property can be improved while having strength.

本発明者らは、さらに検討を重ねた結果、フェライト中の過飽和固溶炭素の量を確保するためには、仕上げ圧延後の冷却過程でパーライトやセメンタイト等の鉄炭化物を極力析出させないことが重要であることを知見した。   The present inventors have further studied and found that, in order to secure the amount of supersaturated solid solution carbon in ferrite, it is important to prevent precipitation of iron carbide such as pearlite and cementite as much as possible in the cooling process after finish rolling. It was found that.

さらに、本発明者らは、このような組織を得るためには、仕上げ圧延後、所定の温度域内で一旦冷却を停止する一次冷却を行うことによりフェライト内の固溶炭素量を充分に確保し、以降の二次冷却過程において、セメンタイトや鉄炭化物の生成が抑制される200℃以下の温度域で巻取ればよいことを知見した。   Furthermore, in order to obtain such a structure, the present inventors ensure sufficient amount of solute carbon in the ferrite by performing primary cooling after stopping the cooling once within a predetermined temperature range after finish rolling. In the subsequent secondary cooling process, it has been found that winding may be performed in a temperature range of 200 ° C. or lower where generation of cementite and iron carbide is suppressed.

本発明は、これらの新規な知見に基づいて完成したものであり、以下に列記の通りである。   The present invention has been completed based on these new findings, and is as described below.

(1)化学組成は、C:0.07〜0.14%、Si:0.01〜0.2%、Mn:0.3〜1.2%、P:0.10%以下、S:0.03%以下、Al:0.001〜0.3%、N:0.010%以下、残部Feおよび不純物であり、
金属組織は、面積率で、70%以上のポリゴナルフェライトと、硬質第2相である15%以下のパーライトとを有する複相組織であり、ポリゴナルフェライトのフェライト粒径が15μm以下であり、フェライト中に含まれる固溶炭素量が5ppm以上であり、フェライトの硬さが160Hv以上、かつフェライトに対する硬質第2相の硬さ比(硬質第2相の硬さ/フェライトの硬さ)が1.5以下であるとともに、
機械特性は、引張強さ(TS)が440MPa以上590MPa未満、穴広げ率(λ)が75%以上、全伸び(El)が30%以上である、熱延鋼板。
(1) Chemical composition: C: 0.07 to 0.14%, Si: 0.01 to 0.2%, Mn: 0.3 to 1.2%, P: 0.10% or less, S: 0.03% or less, Al: 0.001 to 0.3%, N: 0.010% or less, the balance being Fe and impurities,
The metal structure is a double-phase structure having an area ratio of 70% or more of polygonal ferrite and 15% or less of pearlite, which is a hard second phase, wherein the ferrite particle size of the polygonal ferrite is 15 μm or less; The amount of solute carbon contained in the ferrite is 5 ppm or more, the hardness of the ferrite is 160 Hv or more, and the hardness ratio of the hard second phase to the ferrite (hard second phase hardness / ferrite hardness) is 1 .5 or less,
A mechanical property is a hot-rolled steel sheet having a tensile strength (TS) of 440 MPa or more and less than 590 MPa, a hole expansion ratio (λ) of 75% or more, and a total elongation (El) of 30% or more.

(2)鋼片を1100〜1300℃の温度域に加熱する加熱工程と、
該加熱工程後に前記鋼片を前記温度域に30分間以上保持する均質化処理工程と、
前記均質化処理工程後に1000℃以上の温度域で粗圧延を行って粗圧延板とした後、該粗圧延板に仕上げ圧延を行い、仕上げ圧延の最終パス仕上げ温度を、鋼板表面において(Ar−10)℃以上として圧延を完了する圧延工程と、
前記圧延工程後に鋼板表面において、平均冷却速度15℃/秒以上で冷却を行い、500〜700℃の温度域で1〜5秒間冷却を停止する一次冷却工程と、
前記一次冷却工程後に鋼板表面において平均冷却速度10〜100℃/秒で冷却を行う二次冷却工程と、
前記二次冷却工程後に鋼板表面において200℃以下の温度域で巻取る巻取工程とを含む、1項に記載の熱延鋼板の製造方法。
(2) a heating step of heating the billet to a temperature range of 1100 to 1300 ° C;
A homogenizing treatment step of holding the steel slab in the temperature range for 30 minutes or more after the heating step;
After the homogenization process, rough rolling is performed in a temperature range of 1000 ° C. or more to form a rough rolled plate, and then the rough rolled plate is finish-rolled, and the final pass finishing temperature of the finish rolling is set to (Ar 3 -10) a rolling step of completing rolling at a temperature of not less than ℃,
A primary cooling step of performing cooling at an average cooling rate of 15 ° C./second or more on the steel sheet surface after the rolling step, and stopping cooling in a temperature range of 500 to 700 ° C. for 1 to 5 seconds;
A secondary cooling step of cooling the steel sheet surface at an average cooling rate of 10 to 100 ° C./sec after the primary cooling step,
2. The method for producing a hot-rolled steel sheet according to claim 1, further comprising: a winding step of winding the steel sheet surface in a temperature range of 200 ° C. or less after the secondary cooling step.

ただし、Ar3(℃)=905-455[%C]-38[%Si]-62[%Mn]+472[%P] ・・・・・(1)
であり、(1)式における[%C],[%Si],[%Mn],[%P]は、それぞれ、C,Si,Mn,Pの含有量(質量%)を示す。
However, Ar 3 (° C.) = 905-455 [% C] -38 [% Si] -62 [% Mn] +472 [% P] (1)
[% C], [% Si], [% Mn] and [% P] in the equation (1) indicate the contents (% by mass) of C, Si, Mn and P, respectively.

本発明に係る「熱延鋼板」は、JIS G 3113(自動車構造用熱間圧延鋼板及び鋼帯)に規定された熱延鋼板に属する。   The “hot-rolled steel sheet” according to the present invention belongs to a hot-rolled steel sheet specified in JIS G 3113 (hot-rolled steel sheet for automobile structure and steel strip).

本発明に係る熱延鋼板は、引張強度440MPa以上590MPa未満という高強度を有するとともに、穴広げ率:75%以上、全伸び:30%以上を有することから、成形性の厳しい自動車部材、例えばホイールやホイールリム等の足回り部材やシャシーや各種メンバー等の部材の素材として好適に用いることができる。   The hot-rolled steel sheet according to the present invention has high tensile strength of 440 MPa or more and less than 590 MPa, and has a hole expansion ratio of 75% or more and a total elongation of 30% or more. It can be suitably used as a material for underbody members such as wheels and wheel rims, and members such as chassis and various members.

さらに、本発明に係る熱延鋼板は、TiやNbといったMC系炭化物による析出強化やSi等の固溶強化元素を多量に含有しなくとも、高強度と優れた穴広げ性のバランスを安定して得られ、環境負荷や製造コストを低減することもできる。   Furthermore, the hot-rolled steel sheet according to the present invention stabilizes the balance between high strength and excellent hole-expanding properties without containing a large amount of precipitation strengthening by MC-based carbides such as Ti and Nb and solid solution strengthening elements such as Si. It is also possible to reduce environmental load and manufacturing cost.

本発明を説明する。
1.本発明に係る熱延鋼板
(1)化学組成
(1−1)C:0.07〜0.14%
Cは、熱延鋼板の強度を確保するとともにフェライトを強化する重要な元素である。C含有量が0.07%未満であると、440MPa以上の引張強度を確保することができない。このため、C含有量は、0.07%以上であり、好ましくは0.08%以上である。一方、C含有量が0.14%を超えると、パーライト量が増加するために穴広げ時の亀裂の起点が増加して熱延鋼板の穴広げ性が劣化する。このため、C含有量は、0.14%以下であり、好ましくは0.12%以下であり、さらに好ましくは0.11%以下である。
The present invention will be described.
1. Hot-rolled steel sheet according to the present invention (1) Chemical composition (1-1) C: 0.07 to 0.14%
C is an important element that secures the strength of the hot-rolled steel sheet and strengthens the ferrite. If the C content is less than 0.07%, a tensile strength of 440 MPa or more cannot be secured. Therefore, the C content is 0.07% or more, preferably 0.08% or more. On the other hand, if the C content exceeds 0.14%, the starting point of cracks at the time of hole expansion increases because the amount of pearlite increases, and the hole expansion property of the hot-rolled steel sheet deteriorates. Therefore, the C content is 0.14% or less, preferably 0.12% or less, and more preferably 0.11% or less.

(1−2)Si:0.01〜0.2%
Siは、セメンタイトの形成を抑制し、熱延鋼板の穴広げ性を向上させる。Si含有量が0.01%未満ではこの効果を得られない。このため、Si含有量は、0.01%以上であり、好ましくは0.02%以上である。一方、Si含有量が0.2%を超えると、熱延鋼板の化成処理性およびめっき性が損なわれる。このため、Si含有量は、0.2%以下であり、好ましくは0.1%以下である。
(1-2) Si: 0.01 to 0.2%
Si suppresses the formation of cementite and improves the hole expanding property of the hot-rolled steel sheet. If the Si content is less than 0.01%, this effect cannot be obtained. Therefore, the Si content is at least 0.01%, preferably at least 0.02%. On the other hand, if the Si content exceeds 0.2%, the chemical conversion property and the plating property of the hot-rolled steel sheet are impaired. For this reason, the Si content is 0.2% or less, and preferably 0.1% or less.

(1−3)Mn:0.3〜1.2%
Mnは、固溶強化により熱延鋼板を強化する。Mn含有量が0.3%未満では、440MPa以上の引張強度を確保できない。このため、Mn含有量は、0.3%以上であり、好ましくは0.4%以上である。一方、Mn含有量が1.2%を超えると、Mn偏析やMnSの形成により熱延鋼板の延性や穴広げ性が劣化する。このため、Mn含有量は、1.2%以下であり、好ましくは1.1%以下である。
(1-3) Mn: 0.3 to 1.2%
Mn strengthens a hot-rolled steel sheet by solid solution strengthening. If the Mn content is less than 0.3%, a tensile strength of 440 MPa or more cannot be secured. Therefore, the Mn content is at least 0.3%, preferably at least 0.4%. On the other hand, if the Mn content exceeds 1.2%, the ductility and hole expanding property of the hot-rolled steel sheet deteriorate due to Mn segregation and formation of MnS. Therefore, the Mn content is at most 1.2%, preferably at most 1.1%.

(1−4)P:0.10%以下
Pは、不純物として鋼中に存在し、熱延鋼板の溶接性を劣化させる。したがって、P含有量は少ないほど好ましい。P含有量が0.10%を超えると熱延鋼板の溶接性が劣化する。このため、P含有量は、0.10%以下であり、好ましくは0.03%以下である。
(1-4) P: 0.10% or less P exists as an impurity in steel and deteriorates the weldability of a hot-rolled steel sheet. Therefore, the smaller the P content, the better. If the P content exceeds 0.10%, the weldability of the hot-rolled steel sheet deteriorates. For this reason, the P content is 0.10% or less, preferably 0.03% or less.

(1−5)S:0.03%以下
Sは、不純物として鋼中に存在し、Mnと結合してMnSを形成し易く、熱延鋼板の穴広げ性を劣化させる。したがって、S含有量は少ないほど好ましい。S含有量が0.03%を超えるとMnSの形成により熱延鋼板の穴広げ性が劣化する。このため、S含有量は、0.03%以下であり、好ましくは0.01%以下である。
(1-5) S: 0.03% or less S is present in steel as an impurity, and easily combines with Mn to form MnS, thereby deteriorating the hole-expanding properties of a hot-rolled steel sheet. Therefore, the smaller the S content, the better. If the S content exceeds 0.03%, the hole-expandability of the hot-rolled steel sheet deteriorates due to the formation of MnS. For this reason, the S content is 0.03% or less, and preferably 0.01% or less.

(1−6)Al:0.001〜0.3%
Alは、Siと同様にセメンタイトの形成を抑制し、熱延鋼板の穴広げ性を向上させる。Al含有量が0.001%未満ではこの効果を得られない。このため、Al含有量は、0.001%以上であり、好ましくは0.005%以上であり、さらに好ましくは0.01%以上である。一方、Al含有量が0.3%を超えると、非金属介在物を増大させ、熱延鋼板の穴広げ性が劣化する。このため、Al含有量は、0.3%以下であり、好ましくは0.2%以下である。
(1-6) Al: 0.001 to 0.3%
Al suppresses the formation of cementite similarly to Si, and improves the hole expanding property of the hot-rolled steel sheet. If the Al content is less than 0.001%, this effect cannot be obtained. For this reason, the Al content is at least 0.001%, preferably at least 0.005%, and more preferably at least 0.01%. On the other hand, when the Al content exceeds 0.3%, nonmetallic inclusions increase, and the hole expanding property of the hot-rolled steel sheet deteriorates. Therefore, the Al content is at most 0.3%, preferably at most 0.2%.

(1−7)N:0.010%以下
Nは、不純物として鋼中に存在し、Alと結合してAlN等の非金属介在物を形成し、熱延鋼板の穴広げ性を劣化させる。このため、N含有量は、0.010%以下であり、好ましくは0.003%以下である。
(1-7) N: 0.010% or less N is present in steel as an impurity and combines with Al to form nonmetallic inclusions such as AlN, thereby deteriorating the hole-expanding properties of the hot-rolled steel sheet. For this reason, the N content is 0.010% or less, and preferably 0.003% or less.

上記以外の残部は、Feおよび不純物である。なお、不純物とは、鋼材を工業的に製造する際に、鉱石、スクラップ等の原料その他の要因により混入する成分を意味する。   The balance other than the above is Fe and impurities. In addition, the impurity means a component mixed due to a raw material such as ore and scrap and other factors when a steel material is industrially manufactured.

(2)金属組織
(2−1)面積率で、ポリゴナルフェライト:70%以上と、硬質第2相であるパーライト:15%以下とを有する複相組織
ポリゴナルフェライトが鋼組織として存在すると、材料の変形を担う主体相として作用し、熱延鋼板の延性を高める。ポリゴナルフェライトの量が面積率で70%未満であると、30%以上の全伸び(El)を確保できない。したがって、ポリゴナルフェライトは、面積率で、70%以上であり、好ましくは80%以上であり、さらに好ましくは85%以上である。
(2) Metallic structure (2-1) In terms of area ratio, polyphase structure having polygonal ferrite: 70% or more and pearlite, which is a hard second phase: 15% or less, When polygonal ferrite is present as a steel structure, It acts as the main phase responsible for the deformation of the material and increases the ductility of the hot rolled steel sheet. If the amount of polygonal ferrite is less than 70% in area ratio, it is impossible to secure a total elongation (El) of 30% or more. Therefore, the polygonal ferrite has an area ratio of 70% or more, preferably 80% or more, and more preferably 85% or more.

ポリゴナルフェライトの面積率が高いほど高い延性を得られて好ましいものの、硬質第2相としてのパーライトの面積率を確保するために、ポリゴナルフェライトは、面積率で、好ましくは99%以下であり、さらに好ましくは97%以下である。   The higher the area ratio of the polygonal ferrite is, the higher the ductility is obtained, which is preferable. However, in order to secure the area ratio of the pearlite as the hard second phase, the area ratio of the polygonal ferrite is preferably 99% or less. , More preferably 97% or less.

パーライトが鋼中に存在すると、複相組織となり高強度を得られる。しかし、パーライトが面積率で15%を超えて存在すると、パーライトを構成するセメンタイトとフェライトの界面の面積が増加し、穴広げ変形中にボイドの発生起点が増加するため、熱延鋼板の穴広げ性が劣化する。このため、パーライトは、面積率で15%以下であり、好ましくは8%以下である。確実に高強度を得るためには、パーライトは、面積率で1%以上であることが好ましい。   When pearlite is present in steel, it has a double-phase structure and can have high strength. However, if pearlite is present in an area ratio exceeding 15%, the area of the interface between cementite and ferrite constituting pearlite increases, and the origin of voids increases during hole expansion deformation. The property is deteriorated. Therefore, the area ratio of pearlite is 15% or less, and preferably 8% or less. In order to ensure high strength, it is preferable that the pearlite has an area ratio of 1% or more.

本発明に係る熱延鋼板は、基本的に、主相であるポリゴナルフェライトと、第2相であるパーライトとから構成されるが、この他に不可避的に形成される組織(例えばベイナイトやマルテンサイト)を面積率で5%以下有していてもよい。   The hot-rolled steel sheet according to the present invention is basically composed of polygonal ferrite, which is the main phase, and pearlite, which is the second phase. Site) in an area ratio of 5% or less.

(2−2)ポリゴナルフェライトのフェライト粒径:15μm以下
結晶粒径は熱延鋼板の強度に影響する。このため、熱延鋼板の強度を高めるにはフェライト粒径は小さいほど好ましい。ポリゴナルフェライトのフェライト粒径が15μmを超えると、結晶粒微細化強化の効果が少なくなり、所望の引張強度を得られなくなる。このため、ポリゴナルフェライトのフェライト粒径は、15μm以下であり、好ましくは10μm以下である。本発明では、フェライト粒径の下限は特に規定する必要はなく、後述する本発明に係る製造方法により本発明に係る熱延鋼板を製造する場合には、鋼中のフェライト粒径の下限は2μmである。
(2-2) Ferrite grain size of polygonal ferrite: 15 μm or less The crystal grain size affects the strength of a hot-rolled steel sheet. Therefore, to increase the strength of the hot-rolled steel sheet, the smaller the ferrite grain size, the better. If the ferrite grain size of the polygonal ferrite exceeds 15 μm, the effect of strengthening the grain refinement is reduced, and a desired tensile strength cannot be obtained. For this reason, the ferrite particle size of the polygonal ferrite is 15 μm or less, preferably 10 μm or less. In the present invention, the lower limit of the ferrite grain size does not need to be particularly defined. When the hot-rolled steel sheet according to the present invention is manufactured by the manufacturing method according to the present invention described below, the lower limit of the ferrite grain size in the steel is 2 μm. It is.

(2−3)フェライト中に含まれる固溶炭素量:5ppm以上
フェライト中の固溶炭素量は、本発明において最も重要なパラメータであり、固溶炭素量が多いほどフェライトの硬さは大きくなる。固溶炭素量が5ppm未満であるとフェライトの硬さが小さくなり、硬質第2相との硬さの比が増大するために、所望の穴広げ性を得られない。このため、フェライト中に含まれる固溶炭素量は、5ppm以上であり、好ましくは10ppm以上である。なお、フェライト中に固溶する炭素量は、最大でも200ppmである。
(2-3) The amount of solute carbon contained in ferrite: 5 ppm or more The amount of solute carbon in ferrite is the most important parameter in the present invention, and the greater the amount of solute carbon, the greater the hardness of ferrite. . If the amount of solute carbon is less than 5 ppm, the hardness of the ferrite becomes small, and the ratio of the hardness to the hard second phase increases, so that the desired hole expanding property cannot be obtained. Therefore, the amount of solute carbon contained in the ferrite is 5 ppm or more, preferably 10 ppm or more. The amount of carbon dissolved in ferrite is at most 200 ppm.

(2−4)フェライトの硬さ:160Hv以上、かつフェライトに対する硬質第2相の硬さ比(硬質第2相の硬さ/フェライトの硬さ):1.5以下
フェライトの硬さが高いほど硬質第2相の硬さ比を小さくできるため、フェライト硬さは高いことが好ましい。フェライトの硬さがHvで160未満であると、硬質第2相との硬さ比が大きくなり、所望の穴広げ性が得られない。このため、フェライトの硬さは160Hv以上である。
(2-4) Ferrite hardness: 160 Hv or more, and hardness ratio of hard second phase to ferrite (hard second phase hardness / ferrite hardness): 1.5 or less The higher the ferrite hardness is, Since the hardness ratio of the hard second phase can be reduced, the ferrite hardness is preferably high. If the hardness of the ferrite is less than 160 in Hv, the hardness ratio with the hard second phase becomes large, and the desired hole expanding property cannot be obtained. For this reason, the hardness of ferrite is 160 Hv or more.

本発明で規定する硬質第2相はパーライトであり、基本的にベイナイトやマルテンサイトを含まない。フェライトに対する硬質第2相の硬さ比が大きいと、穴広げ成形時に硬質第2相とフェライトの界面にボイドが生成し易く、所望の穴広げ性を得られない。このため、フェライト硬さに対するパーライトの硬さ比(硬質第2相の硬さ/フェライトの硬さ)は1.5以下とする。   The hard second phase defined in the present invention is pearlite, and basically contains no bainite or martensite. If the hardness ratio of the hard second phase to the ferrite is large, voids are likely to be formed at the interface between the hard second phase and the ferrite at the time of hole expansion molding, and the desired hole expansion property cannot be obtained. For this reason, the hardness ratio of pearlite to ferrite hardness (hardness of hard second phase / hardness of ferrite) is set to 1.5 or less.

(3)機械特性
(3−1)引張強さ(TS):440MPa以上590MPa未満
本発明に係る熱延鋼板は、440MPa以上590MPa未満の引張強さを有する。引張強さが440MPaを下回る場合には、そもそも、本発明で規定する穴広げ性や全伸びを容易に達成することができるだけでなく、剛性を要求される自動車車体の補強部材に用いることには適さない。このため、本発明に係る熱延鋼板は、440MPa以上の引張強さを有する。
(3) Mechanical properties (3-1) Tensile strength (TS): 440 MPa or more and less than 590 MPa The hot-rolled steel sheet according to the present invention has a tensile strength of 440 MPa or more and less than 590 MPa. When the tensile strength is less than 440 MPa, it is not only possible to easily achieve the hole-expanding property and the total elongation defined in the present invention, but also to use it as a reinforcing member for an automobile body which requires rigidity. Not suitable. Therefore, the hot-rolled steel sheet according to the present invention has a tensile strength of 440 MPa or more.

一方、引張強さが590MPa以上になると全伸び(El)が劣化するため、プレス成形性の確保のために、適用可能な部品が制限される。このため、本発明に係る熱延鋼板は、590MPa未満の引張強さを有する。   On the other hand, if the tensile strength is 590 MPa or more, the total elongation (El) is degraded, so that applicable parts are limited to ensure press formability. For this reason, the hot-rolled steel sheet according to the present invention has a tensile strength of less than 590 MPa.

(3−2)穴広げ率(λ):75%以上、全伸び(El):30%以上
本発明に係る熱延鋼板は、穴広げ率(λ):75%以上、全伸び(El):30%以上の機械特性を確保することにより、自動車の足回り部材や補強部材を始めとする様々な自動車部材の素材として用いることができる。
(3-2) Hole expansion ratio (λ): 75% or more, total elongation (El): 30% or more The hot-rolled steel sheet according to the present invention has a hole expansion ratio (λ): 75% or more, total elongation (El). : By securing mechanical properties of 30% or more, it can be used as a material for various automobile members including undercarriage members and reinforcing members of automobiles.

2.本発明に係る製造方法
(1)加熱工程
連続鋳造などにより製造された、上述の化学組成を有する鋼片を、1100〜1300℃の温度域に加熱する。鋼片の加熱温度が1100℃未満であると、Mnの均質化が進まずにMnが偏在するため、熱延鋼板の穴広げ性が劣化する。一方、鋼片の加熱温度が1300℃を超えると、スケールロスが大きくなるだけでなく、旧オーステナイト粒径が大きくなり、最終的に得られるフェライト粒径が粗大になるために所望の引張強さを得られない。このため、鋼片の加熱温度は、1100℃以上1300℃以下であり、好ましくは1200℃以上1250℃以下である。
2. Production method according to the present invention (1) Heating step A slab having the above-mentioned chemical composition produced by continuous casting or the like is heated to a temperature range of 1100 to 1300 ° C. If the heating temperature of the steel slab is lower than 1100 ° C., the homogenization of Mn does not proceed and Mn is unevenly distributed, so that the hole-expandability of the hot-rolled steel sheet deteriorates. On the other hand, when the heating temperature of the slab exceeds 1300 ° C., not only the scale loss becomes large, but also the prior austenite grain size becomes large and the finally obtained ferrite grain size becomes coarse, so that the desired tensile strength is obtained. I can't get it. Therefore, the heating temperature of the slab is 1100 ° C. or more and 1300 ° C. or less, preferably 1200 ° C. or more and 1250 ° C. or less.

(2)均質化処理工程
加熱工程で加熱された鋼片を上記温度域(1100〜1300℃)に30分間以上保持する均質化処理(溶体化処理)を行う。均質化処理の保持時間が30分間未満であると、均質化が十分に進行せず、Mn偏析に起因して熱延鋼板の穴広げ性が劣化する。このため、均質化処理の保持時間は、30分間以上であり、好ましくは55分間以上であり、さらに好ましくは60分間以上である。
(2) Homogenization treatment step A homogenization treatment (solution treatment) is performed in which the steel slab heated in the heating step is kept in the above temperature range (1100 to 1300 ° C) for 30 minutes or more. If the holding time of the homogenization treatment is less than 30 minutes, the homogenization does not sufficiently proceed, and the hole expanding property of the hot-rolled steel sheet is deteriorated due to Mn segregation. Therefore, the holding time of the homogenization treatment is 30 minutes or more, preferably 55 minutes or more, and more preferably 60 minutes or more.

(3)圧延工程
均質化処理を行われた鋼片に1000℃以上で粗圧延を行って粗圧延板とした後、粗圧延板に仕上げ圧延を行い、仕上げ圧延の最終パス仕上げ温度を(Ar−10)℃以上として圧延を完了する。ただし、
Ar3(℃)=905-455[%C]-38[%Si]-62[%Mn]+472[%P] ・・・・・(1)
であり、(1)式における[%C],[%Si],[%Mn],[%P]は、それぞれ、C,Si,Mn,Pの含有量(質量%)を示す。
(3) Rolling Step After the slab having been subjected to the homogenization treatment is roughly rolled at a temperature of 1000 ° C. or more to form a rough rolled plate, the rough rolled plate is finish-rolled, and the final pass finishing temperature of the finish rolling is set to (Ar 3 -10) to complete the rolling as above ° C.. However,
Ar 3 (° C) = 905-455 [% C] -38 [% Si] -62 [% Mn] +472 [% P] (1)
[% C], [% Si], [% Mn] and [% P] in the equation (1) indicate the contents (% by mass) of C, Si, Mn and P, respectively.

粗圧延の温度が1000℃未満であると、再結晶が抑制されて圧延集合組織が発達し、熱延鋼板の穴広げ性が劣化する。このため、粗圧延の温度は、1000℃以上であり、好ましくは1040℃以上であり、さらに好ましくは1050℃以上である。   If the temperature of the rough rolling is lower than 1000 ° C., recrystallization is suppressed, the rolling texture develops, and the hole expanding property of the hot-rolled steel sheet deteriorates. For this reason, the temperature of the rough rolling is 1000 ° C. or higher, preferably 1040 ° C. or higher, and more preferably 1050 ° C. or higher.

粗圧延に続き、仕上げ圧延を行う。仕上げ圧延は、熱延鋼板の穴広げ性を劣化させる圧延集合組織を抑制するため、基本的にAr点以上で行う。仕上げ圧延の最終パスにおける鋼板の表面温度が(Ar−10)℃を下回ると、2相域での圧延となるため、フェライトの異常粒成長が生じ、熱延鋼板の延性や穴広げ性が劣化する。このため、仕上げ圧延の最終パス仕上げ温度は、鋼板の表面温度で(Ar−10)℃以上である。 Following rough rolling, finish rolling is performed. The finish rolling is basically performed at three or more Ar points in order to suppress a rolling texture that degrades the hole expanding property of the hot-rolled steel sheet. If the surface temperature of the steel sheet in the final pass of the finish rolling is lower than (Ar 3 -10) ° C., rolling is performed in a two-phase region, so that abnormal grain growth of ferrite occurs and the ductility and hole expanding property of the hot-rolled steel sheet are reduced. to degrade. For this reason, the final pass finishing temperature of the finish rolling is (Ar 3 −10) ° C. or more at the surface temperature of the steel sheet.

圧延に続いて、温度域を変えた2段冷却(一次冷却および二次冷却)を行う。   Subsequent to rolling, two-stage cooling (primary cooling and secondary cooling) in different temperature ranges is performed.

(4)一次冷却工程
圧延後に鋼板の表面温度で、平均冷却速度15℃/秒以上で冷却(水冷)を行い、500〜700℃の温度域で1〜5秒間冷却(水冷)を停止する。
(4) Primary Cooling Step After rolling, cooling (water cooling) is performed at a surface temperature of the steel sheet at an average cooling rate of 15 ° C./sec or more, and cooling (water cooling) is stopped in a temperature range of 500 to 700 ° C. for 1 to 5 seconds.

一次冷却は、結晶粒を微細化して強度を高めるために、鋼板表面を高速で冷却する。鋼板の表面温度で一次冷却の平均冷却速度が15℃/秒未満であると、冷却中に生成するパーライト量が多くなり、熱延鋼板の穴広げ性が劣化し、また、フェライトが過剰に大きくなるため、所望の引張強さを得られない。このため、鋼板の表面温度で一次冷却の平均冷却速度は、15℃/秒以上であり、ましくは50℃/秒以上であり、さらに好ましくは60℃/秒以上である。 In primary cooling, the steel sheet surface is cooled at a high speed in order to refine crystal grains and increase strength. If the average primary cooling rate at the surface temperature of the steel sheet is less than 15 ° C./sec, the amount of pearlite generated during cooling increases, the hole expanding property of the hot-rolled steel sheet deteriorates, and the ferrite becomes excessively large. Therefore, a desired tensile strength cannot be obtained. Therefore, the average cooling rate of the primary cooling at a surface temperature of the steel sheet is at 15 ° C. / sec or more, good Mashiku is at 50 ° C. / sec or more, further preferably 60 ° C. / sec or more.

一次冷却の平均冷却速度の上限は特に規定する必要はないが、冷却装置の性能から通常、一次冷却の平均冷却速度は鋼板の表面温度で200℃/秒以下である。   Although the upper limit of the average cooling rate of the primary cooling need not be particularly defined, the average cooling rate of the primary cooling is usually 200 ° C./sec or less at the surface temperature of the steel sheet from the performance of the cooling device.

一次冷却後は、一旦冷却(水冷)を停止する。冷却(水冷)の停止、すなわち冷却水噴射の停止により、高い全伸びや穴広げ性を得るための組織制御をする。   After the primary cooling, the cooling (water cooling) is temporarily stopped. By stopping the cooling (water cooling), that is, stopping the injection of the cooling water, the structure is controlled to obtain high total elongation and hole-expandability.

このとき、冷却の停止温度は500〜700℃とする。鋼板の表面温度が700℃を超えるとパーライト量が多くなり、熱延鋼板の穴広げ性が劣化する。一方、熱延鋼板の表面温度が500℃未満であると、フェライト中の固溶炭素量が少なくなり、フェライトの強度が不足するため、熱延鋼板の穴広げ性が劣化するとともに、硬質第2相としてベイナイトやマルテンサイトが
過剰に生じ、適正なフェライト量が得られないために所望の延性を得られない。
At this time, the cooling stop temperature is 500 to 700 ° C. If the surface temperature of the steel sheet exceeds 700 ° C., the amount of pearlite increases and the hole-expandability of the hot-rolled steel sheet deteriorates. On the other hand, when the surface temperature of the hot-rolled steel sheet is less than 500 ° C., the amount of solute carbon in the ferrite decreases, and the strength of the ferrite becomes insufficient. Bainite and martensite are excessively generated as a phase, and a desired amount of ferrite cannot be obtained, so that desired ductility cannot be obtained.

冷却の停止時間が1秒間未満であると、フェライト中の固溶炭素量が少なくなり、フェライトの強度が不足するため、熱延鋼板の穴広げ性が劣化する。一方、冷却の停止時間が5秒間を超えるとパーライトが過剰に生成し、熱延鋼板の穴広げ性が劣化することに加えて、500℃を下回る低温域では遷移沸騰域に入ることから鋼板内での冷却のばらつきを生じ、鋼板の平坦度が崩れるおそれがある。このため、冷却の停止時間は1〜5秒間とする。   If the cooling stop time is less than 1 second, the amount of solute carbon in the ferrite decreases, and the strength of the ferrite becomes insufficient, so that the hole expandability of the hot-rolled steel sheet deteriorates. On the other hand, if the cooling stop time exceeds 5 seconds, pearlite is excessively generated, and the hole expanding property of the hot-rolled steel sheet is deteriorated. In this case, there is a possibility that the flatness of the steel sheet is lost. Therefore, the cooling stop time is set to 1 to 5 seconds.

(5)二次冷却工程
一次冷却後に、鋼板の表面温度で平均冷却速度10〜100℃/秒で冷却(水冷)を行う。二次冷却は、主に穴広げ成形中の破壊起点となる組織を制御するため、鋼板表面の冷却を行う。
(5) Secondary Cooling Step After primary cooling, cooling (water cooling) is performed at an average cooling rate of 10 to 100 ° C./sec at the surface temperature of the steel sheet. The secondary cooling mainly cools the surface of the steel sheet in order to control a structure serving as a fracture starting point during hole expansion forming.

鋼板表面の冷却速度が10℃/秒を下回ると、冷却中にセメンタイトが粗大化し、熱延鋼板の穴広げ性を劣化させる。一方、鋼板表面の冷却速度が100℃/秒を超えると、硬質相にベイナイトやマルテンサイト等が形成され、フェライトとの硬度比が著しく大きくなるために穴広げ成形時に異相の界面よりボイドが生成し易くなり、熱延鋼板の穴広げ性が劣化する。このため、二次冷却の冷却速度は、鋼板表面で、10〜100℃/秒であり、好ましくは30〜80℃/秒である。   If the cooling rate of the steel sheet surface is lower than 10 ° C./sec, the cementite becomes coarse during cooling and deteriorates the hole expanding property of the hot-rolled steel sheet. On the other hand, if the cooling rate of the steel sheet surface exceeds 100 ° C./sec, bainite and martensite are formed in the hard phase, and the hardness ratio with ferrite becomes remarkably large. And the hole-expandability of the hot-rolled steel sheet deteriorates. For this reason, the cooling rate of the secondary cooling is 10 to 100 ° C./sec, preferably 30 to 80 ° C./sec on the surface of the steel sheet.

(6)巻取工程
二次冷却後に鋼板表面において200℃以下の温度域でコイルに巻取る。200℃超の巻取り温度で巻取ると、鉄炭化物が形成されるためにフェライト中の固溶炭素量が減少し、フェライトの強度が不足するために、熱延鋼板の穴広げ性が劣化する。このため、巻取り温度は200℃以下である。
(6) Winding Step After secondary cooling, the steel sheet is wound around a coil in a temperature range of 200 ° C. or less on the surface of the steel sheet. When wound at a winding temperature of more than 200 ° C., iron carbide is formed, so the amount of solute carbon in the ferrite decreases, and the strength of the ferrite is insufficient, so that the hole expanding property of the hot-rolled steel sheet deteriorates. . For this reason, the winding temperature is 200 ° C. or less.

このようにして、本発明に係る熱延鋼板が製造される。   Thus, the hot-rolled steel sheet according to the present invention is manufactured.

実施例を参照しながら本発明をより具体的に説明する。   The present invention will be described more specifically with reference to examples.

表1に示す化学組成を有する鋼種A〜P,a〜eからなるスラブを、表2に示す再加熱温度に加熱し、この温度域に表2に示す保持時間保持して均質化処理を行った。   A slab composed of steel types A to P and a to e having the chemical compositions shown in Table 1 was heated to the reheating temperature shown in Table 2, and held in this temperature range for the holding time shown in Table 2 to perform a homogenization treatment. Was.

その後、表2に示す粗圧延温度で粗圧延を行った後に仕上げ圧延に供し、表2に示す仕上げ温度で圧延を完了した。   Then, after performing rough rolling at the rough rolling temperature shown in Table 2, it was subjected to finish rolling, and the rolling was completed at the finishing temperature shown in Table 2.

圧延後に表2に示す一次冷却速度で冷却(水冷)を行い、表2に示す冷却停止温度および保持時間で冷却(水冷)を停止した。一次冷却後に表2に示す二次冷却速度で二次冷却を行った。そして、二次冷却後に表2に示す巻取り温度でコイルに巻取ることにより、試料No.1〜45の熱延鋼板を製造した。   After rolling, cooling (water cooling) was performed at the primary cooling rate shown in Table 2, and cooling (water cooling) was stopped at the cooling stop temperature and holding time shown in Table 2. After the primary cooling, secondary cooling was performed at the secondary cooling rate shown in Table 2. After the secondary cooling, the sample was wound around a coil at a winding temperature shown in Table 2 to obtain a sample No. 1 to 45 hot-rolled steel sheets were produced.

そして、試料No.1〜45の熱延鋼板に対して下記の試験を行った。   Then, the sample No. The following tests were performed on 1 to 45 hot-rolled steel sheets.

(1)鋼組織の評価
(1−1)金属組織の測定方法
フェライト,パーライトの面積率は、光学顕微鏡組織観察により得られた写真について、画像処理方法を用いて測定した。具体的には、試料No.1〜45の熱延鋼板の圧延方向に平行な断面についてバフ仕上げの研磨を行った後、4%ナイタール溶液(4%硝酸+エタノール)により金属組織を現出し、光学顕微鏡を用いて板厚の1/4t位置について500,1000倍の観察を各10視野で行い、得られた観察像からフェライト,パーライトの相を特定した後、二次元粒子解析ソフトを用いて各々の相の面積率を測定した。また、フェライト粒径は、二次元粒子解析ソフトにより得られた円相当径の平均値とした。
(1) Evaluation of steel structure (1-1) Measurement method of metal structure The area ratio of ferrite and pearlite was measured by using an image processing method for a photograph obtained by observing the structure of an optical microscope. Specifically, the sample No. After performing buff finish polishing on a cross section parallel to the rolling direction of the hot-rolled steel sheets 1 to 45, a metal structure is revealed with a 4% nital solution (4% nitric acid + ethanol), and the thickness of the sheet is reduced using an optical microscope. After observing the 1 / 4t position at a magnification of 500 or 1000 times in 10 fields of view, specifying the ferrite and pearlite phases from the obtained observation image, measuring the area ratio of each phase using two-dimensional particle analysis software. did. Further, the ferrite particle diameter was an average value of the circle equivalent diameter obtained by two-dimensional particle analysis software.

(1−2)固溶炭素量の測定方法
試料No.1〜45の熱延鋼板より、厚さ1.0mm,幅5mm,長さ110mmのサイズに機械加工して固溶炭素量測定試料とした。固溶炭素量の測定は、逆さ吊りねじり振動型の内部摩擦試験装置を用い、振動の自由減衰の対数減衰率から求まる内部摩擦(Snoekピーク高さ(Q−1max))を求めた。振動の周期は2.2Hzとし、昇温速度は1℃/minとし、測定温度を−10℃から110℃の範囲として測定を行った。得られたQ−1maxを下記(2)式に代入し、固溶炭素量[C]を求めた。
Ar3(℃)=905-455[%C]-38[%Si]-62[%Mn]+472[%P] ・・・・・(1)
[C]=0.0043×Tp×Q-1max×10000 ・・・・・(2)
[C]:固溶炭素量(ppm)、Tp:Snoekピークの現れる絶対温度(K)
(1-2) Method for measuring the amount of solute carbon Sample No. From 1 to 45 hot-rolled steel sheets, a sample having a thickness of 1.0 mm, a width of 5 mm, and a length of 110 mm was machined to obtain a solid solution carbon measurement sample. The amount of dissolved carbon was measured using an inverted hanging torsional vibration type internal friction tester, and the internal friction (Snoek peak height (Q -1 max)) determined from the logarithmic decrement of free vibration damping. The measurement was performed with a vibration cycle of 2.2 Hz, a temperature rising rate of 1 ° C./min, and a measurement temperature in the range of −10 ° C. to 110 ° C. The obtained Q -1 max was substituted into the following equation (2) to determine the amount of dissolved carbon [C].
Ar 3 (° C) = 905-455 [% C] -38 [% Si] -62 [% Mn] +472 [% P] (1)
[C] = 0.0043 × Tp × Q -1 max × 10000 (2)
[C]: amount of dissolved carbon (ppm), Tp: absolute temperature at which Snoek peak appears (K)

(1−3)フェライトおよび硬質第2相の硬さの測定方法
上述した金属組織測定用サンプルで観察されるフェライトおよび硬質第2相に対し、マイクロビッカース硬度計を用い、圧痕荷重5gf、保持時間10秒間の条件で圧痕を打つことにより、ビッカース硬度(Hv)を測定した。測定は光顕倍率500倍で観察される任意のフェライトおよび硬質第2相のそれぞれの相で10個ずつ測定を行い、これを5視野分で実施し、得られた硬さの平均値をフェライト硬さおよび硬質第2相硬さとした。
(1-3) Method for Measuring Hardness of Ferrite and Hard Second Phase For the ferrite and hard second phase observed in the above-described metallographic sample, an indentation load of 5 gf and a holding time were measured using a micro Vickers hardness tester. The Vickers hardness (Hv) was measured by hitting an indent under the condition of 10 seconds. The measurement was performed for each of 10 arbitrary ferrites and a hard second phase observed at a magnification of 500 times with an optical microscope, and the measurements were performed for 5 fields of view. And a second phase hardness.

(2)機械的性質の評価
得られた試料No.1〜45の熱延鋼板を用い、以下に示す試験を行って、引張特性および穴広げ性を評価した。
(2) Evaluation of mechanical properties Using the hot-rolled steel sheets Nos. 1 to 45, the following tests were performed to evaluate the tensile properties and the hole expanding properties.

(2−1)引張特性の評価
試料No.1〜45の熱延鋼板の圧延平行方向からJIS5号B引張試験を採取し、JIS Z2241に規定される試験方法に準じて、降伏点YP、引張強さTS、全伸びElを測定した
(2−2)穴広げ率の評価
試料No.1〜45の熱延鋼板より100mm角の素板を切り出し、万能試験機によって素板中央部に直径10mmの打抜き加工を施した。打抜きのクリアランスは日本鉄鋼連盟規格(JFST1001−1996)に準拠して約12%とした。
(2-1) Evaluation of tensile properties JIS No. 5B tensile test was taken from the rolling direction of the hot-rolled steel sheets 1 to 45, and the yield point YP, tensile strength TS, and total elongation El were measured in accordance with the test method specified in JIS Z2241. -2) Evaluation of hole expansion ratio Sample No. A 100 mm square base plate was cut out from 1 to 45 hot-rolled steel plates, and a 10 mm diameter punching process was performed at the center of the base plate using a universal testing machine. The punching clearance was about 12% in accordance with the Japan Iron and Steel Federation Standard (JFST1001-1996).

これらの素板に対して穴広げ試験を行った。穴広げ試験は、日本鉄鋼連盟規格(JFST1001−1996)に準じた方法で実施し、各試料ともに同一条件で3回の測定を行い、その平均値を穴広げ率(λ)とした。   A hole expanding test was performed on these base plates. The hole expansion test was performed by a method according to the Japan Iron and Steel Federation Standard (JFST1001-1996), and three measurements were performed on each sample under the same conditions, and the average value was defined as the hole expansion ratio (λ).

(2−3)めっき性の評価
試料No.1〜45の熱延鋼板に対して、10%塩酸でスケールを除去した後、Al濃度を0.13質量%に調整した溶融亜鉛めっき浴に浸漬させることにより、溶融亜鉛めっきを行った。
(2-3) Evaluation of plating property Hot-rolled steel sheets 1 to 45 were subjected to hot-dip galvanizing by removing the scale with 10% hydrochloric acid and then immersing the hot-rolled steel sheets in a hot-dip galvanizing bath whose Al concentration was adjusted to 0.13% by mass.

得られた溶融亜鉛めっき鋼板について、不めっき(めっきが付着していない領域)の存在有無を目視で確認することにより、めっき性の判定を行った。めっき性の判定は、各鋼板について100mm×100mmの領域で各10視野の目視確認を行い、1視野でも不めっきが存在する場合は×、すべての視野で不めっきが観察されない場合は○という基準で評価を行った。   With respect to the obtained hot-dip galvanized steel sheet, the plating property was determined by visually checking the presence or absence of non-plating (area where no plating was attached). Judgment of the plating property was performed by visually confirming 10 visual fields in each area of 100 mm x 100 mm for each steel sheet. If no plating was present even in one visual field, x; Was evaluated.

金属組織,機械的性質,表面性状の結果を、製造条件と併せて、表2にまとめて示す。なお、表1,2における*印は、化学組成または製造条件が本発明で規定する範囲を外れていること、または機械特性が低位であることを示す。   Table 2 shows the results of the metal structure, mechanical properties, and surface properties together with the production conditions. The asterisks in Tables 1 and 2 indicate that the chemical composition or production conditions are out of the range specified in the present invention, or that the mechanical properties are low.

表2における試料No.1,4,6,9〜13,16,17,20,22,24,25,27,30〜32,34〜37,39は、本発明が規定する条件を全て満足する本発明例であり、試料No.2,3,5,7,8,14,15,18,19,21,23,26,28,29,33,38,40〜45は、本発明が規定する条件を満足しない比較例である。   Sample No. in Table 2 1,4,6,9-13,16,17,20,22,24,25,27,30-32,34-37,39 are examples of the present invention that satisfy all the conditions specified by the present invention. , Sample No. 2,3,5,7,8,14,15,18,19,21,23,26,28,29,33,38,40 to 45 are comparative examples that do not satisfy the conditions specified by the present invention. .

表2に示すように、試料No.1,4,6,9〜13,16,17,20,22,24,25,27,30〜32,34〜37,39は、Ti,Nb,Vといった析出強化元素を含有せずに、引張強さTS:442〜560MPa,穴広げ率λ:76〜145%,全伸び:30.5〜38.4%という機械特性を有するとともに、めっき性も良好であった。このため、これらの本発明例は、いずれも、成形性の厳しい自動車部材、例えばホイールやホイールリム等の足回り部材やシャシーや各種メンバー等の部材に好適に用いることができる。   As shown in Table 2, the sample No. 1,4,6,9-13,16,17,20,22,24,25,27,30-32,34-37,39 do not contain precipitation strengthening elements such as Ti, Nb, V, Tensile strength TS: 442 to 560 MPa, hole expansion ratio λ: 76 to 145%, total elongation: 30.5 to 38.4%, and good plating properties. For this reason, any of these examples of the present invention can be suitably used for automobile members with severe moldability, for example, underbody members such as wheels and wheel rims, and members such as chassis and various members.

これに対し、試料No.2は、スラブの再加熱温度が1050℃と本発明の範囲の下限を下回るため、Mnが偏析して不均質な組織となり、全伸びや穴広げ性が低位となった。   On the other hand, the sample No. In Sample No. 2, since the reheating temperature of the slab was 1050 ° C., which was lower than the lower limit of the range of the present invention, Mn segregated to form a heterogeneous structure, and the total elongation and hole-expandability were low.

試料No.3は、スラブの再加熱温度が1400℃と本発明の範囲の上限を上回るためにフェライト粒径が粗大になり、引張強さが低位となった。   Sample No. In No. 3, since the reheating temperature of the slab was 1400 ° C., which was higher than the upper limit of the range of the present invention, the ferrite grain size was coarse and the tensile strength was low.

試料No.5は、均質化処理の保持時間が25分間と本発明の範囲の下限を下回るため、Mn偏析が生じてMnSの形成が進み、全伸びや穴広げ性が低位となった。   Sample No. In No. 5, since the holding time of the homogenization treatment was 25 minutes, which was lower than the lower limit of the range of the present invention, Mn segregation occurred, the formation of MnS progressed, and the total elongation and hole-expandability became low.

試料No.7は、粗圧延の温度が950℃と本発明の範囲の下限を下回るため、旧オーステナイト粒の再結晶が進まずに圧延集合組織が過度に発達し、穴広げ性が低位となった。   Sample No. In No. 7, since the temperature of the rough rolling was 950 ° C., which was lower than the lower limit of the range of the present invention, the recrystallization of old austenite grains did not proceed, the rolling texture was excessively developed, and the hole expandability was low.

試料No.8は、仕上げ圧延の仕上げ温度が800℃と本発明の下限であるAr−10℃を下回るため、異常粒成長により組織が粗大で不均一となり、引張強さ、全伸びおよび穴広げ性がいずれも低位となった。 Sample No. In No. 8, since the finishing temperature of the finish rolling is lower than 800 ° C. and lower than Ar 3 −10 ° C. which is the lower limit of the present invention, the structure becomes coarse and non-uniform due to abnormal grain growth, and the tensile strength, the total elongation and the hole expanding property are reduced. Both were low.

試料No.14は、仕上げ圧延後の一次冷却速度が13℃/秒と本発明の範囲の下限を下回るために、パーライトが過剰に生成し、穴広げ性が低位となった。また、フェライトが粗大化し、引張強さも低位となった。   Sample No. In No. 14, since the primary cooling rate after the finish rolling was 13 ° C./sec, which was lower than the lower limit of the range of the present invention, pearlite was excessively generated and the hole expanding property was low. Further, the ferrite was coarsened and the tensile strength was low.

試料No.15は、圧延後の巻取温度が550℃と本発明の範囲の上限を上回るため、フェライト中の固溶炭素量が不足してフェライト硬さが低下し、引張強さが低位となった。また、フェライトに対する硬質第2相の硬さ比が1.6と本発明の範囲の上限を上回るため、穴広げ性も低位となった。   Sample No. In No. 15, since the winding temperature after rolling was 550 ° C., which was higher than the upper limit of the range of the present invention, the amount of dissolved carbon in the ferrite was insufficient, the ferrite hardness was reduced, and the tensile strength was low. Further, since the hardness ratio of the hard second phase to ferrite was 1.6, which was higher than the upper limit of the range of the present invention, the hole expandability was low.

試料No.18は、一次冷却の冷却停止温度が750℃と本発明の範囲の上限を上回るためにパーライトが過剰に生成し、穴広げ性が低位となった。   Sample No. In No. 18, since the cooling stop temperature of the primary cooling was 750 ° C., which was higher than the upper limit of the range of the present invention, pearlite was excessively generated, and the hole expanding property was low.

試料No.19は、一次冷却の冷却停止温度が450℃と本発明の範囲の下限を下回るためにフェライト中の固溶炭素量が不足してフェライト硬度が低くなり、これにより、フェライトに対する硬質第2相の硬さ比が大きくなり、穴広げ性が低位となった。   Sample No. No. 19 is that the cooling stop temperature of the primary cooling is 450 ° C., which is lower than the lower limit of the range of the present invention, so that the amount of dissolved carbon in the ferrite becomes insufficient and the ferrite hardness becomes low. The hardness ratio was increased, and the hole spreading property was low.

試料No.21は、仕上げ圧延後の一次冷却速度が10℃/秒と本発明の範囲の下限を下回るため、パーライトが過剰に生成し、穴広げ性が低位となった。また、フェライトが粗大化し、引張強さも低位となった。   Sample No. In No. 21, since the primary cooling rate after the finish rolling was 10 ° C / sec, which was lower than the lower limit of the range of the present invention, pearlite was excessively generated and the hole expanding property was low. Further, the ferrite was coarsened and the tensile strength was low.

試料No.23は、二次冷却速度が150℃/秒と本発明の範囲の上限を上回るために、硬質第2相としてマルテンサイトが生成し、フェライトに対する硬質第2相の硬さ比が著しく大きくなり、穴広げ性が低位となった。   Sample No. No. 23, since the secondary cooling rate is 150 ° C./sec, which is higher than the upper limit of the range of the present invention, martensite is generated as the hard second phase, and the hardness ratio of the hard second phase to ferrite is significantly increased; Hole spreadability was low.

試料No.26は、一次冷却の冷却停止温度における保持時間が10秒と本発明の範囲の上限を上回るためにパーライトが過剰に生成し、穴広げ性が低位となった。   Sample No. In No. 26, the holding time at the cooling stop temperature of the primary cooling was 10 seconds, which exceeded the upper limit of the range of the present invention, so that pearlite was excessively generated and the hole expanding property was low.

試料No.28は、仕上げ圧延後の一次冷却速度が10℃/秒と本発明の範囲の下限を下回るため、パーライトが過剰に生成し、穴広げ性が低位となった。   Sample No. In No. 28, since the primary cooling rate after the finish rolling was 10 ° C./sec, which was lower than the lower limit of the range of the present invention, pearlite was excessively generated and the hole expanding property was low.

試料No.29は、巻取温度が600℃と本発明の範囲の上限を上回るため、フェライト中の固溶炭素量が不足し、フェライト硬さが本発明の範囲の下限を下回り、フェライトに対する硬質第2相の硬さ比が本発明の範囲の上限を上回り、穴広げ性が低位となった。また、フェライト粒径も本発明の範囲の上限を上回り、引張強さが低位となった。   Sample No. No. 29 has a winding temperature of 600 ° C., which is higher than the upper limit of the range of the present invention, so that the amount of solute carbon in the ferrite is insufficient, the ferrite hardness is lower than the lower limit of the range of the present invention, and the hard second phase with respect to ferrite. Was higher than the upper limit of the range of the present invention, and the hole expanding property was low. Also, the ferrite particle size exceeded the upper limit of the range of the present invention, and the tensile strength was low.

試料No.33は、均質化処理の保持時間が25分間と本発明の範囲の下限を下回るためにMn偏析が生じてMnSの形成が進み、全伸びや穴広げ性が低位となった。   Sample No. In No. 33, since the holding time of the homogenization treatment was 25 minutes, which was lower than the lower limit of the range of the present invention, Mn segregation occurred, and the formation of MnS proceeded, and the total elongation and the hole-expandability were low.

試料No.38は、一次冷却の冷却停止温度が450℃と本発明の範囲の下限を下回るためにベイナイトが過剰に生成し、引張強さが595MPaと本発明の範囲の上限を上回った。また、フェライト量が不足して全伸びが低位となったのに加え、フェライトに対する硬質第2相の硬さ比が本発明の範囲の上限を上回り、穴広げ性も低位となった。   Sample No. In No. 38, the cooling stop temperature of the primary cooling was 450 ° C., which was lower than the lower limit of the range of the present invention, so that bainite was excessively generated, and the tensile strength was 595 MPa, which was higher than the upper limit of the range of the present invention. In addition to the low ferrite content, the total elongation was low, the hardness ratio of the hard second phase to ferrite exceeded the upper limit of the range of the present invention, and the hole expandability was low.

試料No.40は、二次冷却速度が5℃/秒と本発明の範囲の下限を下回るために、冷却中にセメンタイトが粗大化し、穴広げ性が劣位となった。   Sample No. In No. 40, since the secondary cooling rate was 5 ° C./sec, which was lower than the lower limit of the range of the present invention, cementite was coarsened during cooling, and the hole expanding property was inferior.

試料No.41は、C含有量が0.17%と本発明の範囲の上限を上回るためにパーライト量が過剰となり、穴広げ性が低位となった。   Sample No. In No. 41, since the C content was 0.17%, which exceeded the upper limit of the range of the present invention, the amount of pearlite was excessive, and the hole expanding property was low.

試料No.42は、Si含有量が0.25%と本発明の範囲の上限を上回るためにめっき時に不めっきが生じ、表面性状が低位となった。   Sample No. In No. 42, since the Si content was 0.25%, which exceeded the upper limit of the range of the present invention, non-plating occurred during plating, and the surface properties were low.

試料No.43は、Mn含有量1.40%と本発明の範囲の上限を上回るためにMn偏析を生じ、全伸びや穴広げ性が低位となった。   Sample No. In No. 43, since the Mn content was 1.40%, which exceeded the upper limit of the range of the present invention, Mn segregation occurred, and the total elongation and hole expanding properties were low.

試料No.44は、Al含有量が0.35%と本発明の範囲の上限を上回るために、非金属介在物であるAlNの量が増加し、穴広げ時のボイドの発生起点となり、穴広げ性が低位となった。   Sample No. In No. 44, since the Al content is 0.35%, which exceeds the upper limit of the range of the present invention, the amount of AlN, which is a nonmetallic inclusion, increases, and serves as a starting point of void generation at the time of hole expansion. It was low.

さらに、試料No.45は、N含有量が0.011%と本発明の範囲の上限を上回るためにAlNが過剰に生成し、穴広げ性が低位となった。   Further, the sample No. In No. 45, since the N content was 0.011%, which exceeded the upper limit of the range of the present invention, AlN was excessively generated, and the hole expanding property was low.

Figure 0006676973
Figure 0006676973

Figure 0006676973
Figure 0006676973

Claims (2)

化学組成は、質量%で、
C :0.07〜0.14%、
Si:0.01〜0.2%、
Mn:0.3〜1.2%、
P :0.10%以下、
S :0.03%以下、
Al:0.001〜0.3%、
N:0.003%以下、
残部Feおよび不純物であり、
金属組織は、面積率で、70%以上のポリゴナルフェライト、硬質第2相である15%以下のパーライト、および不可避的に形成される組織を5%以下有する複相組織であり、
前記ポリゴナルフェライトのフェライト粒径が15μm以下であり、
フェライト中に含まれる固溶炭素量が5ppm以上であり、
フェライトの硬さが160Hv以上、かつフェライトに対する硬質第2相の硬さ比(硬質第2相の硬さ/フェライトの硬さ)が1.5以下であるとともに、
機械特性は、引張強さが440MPa以上590MPa未満、穴広げ率が75%以上、全伸びが30%以上である、熱延鋼板。
Chemical composition is in mass%
C: 0.07 to 0.14%,
Si: 0.01 to 0.2%,
Mn: 0.3-1.2%,
P: 0.10% or less,
S: 0.03% or less,
Al: 0.001 to 0.3%,
N: 0.0 03% or less,
The balance being Fe and impurities,
Metal structure, an area ratio, a duplex structure having 70% or more of polygonal Blow wells, more than 15% pearlite is a hard second phase, and inevitably formed tissue than 5%,
Ferrite grain size of the polygonal ferrite is 15 μm or less,
The amount of solute carbon contained in the ferrite is 5 ppm or more,
The hardness of the ferrite is 160 Hv or more, and the hardness ratio of the hard second phase to the ferrite (hard second phase hardness / ferrite hardness) is 1.5 or less;
A hot-rolled steel sheet having mechanical properties of a tensile strength of 440 MPa or more and less than 590 MPa, a hole expansion ratio of 75% or more, and a total elongation of 30% or more.
請求項1に記載の化学組成を有する鋼片を1100〜1300℃の温度域に加熱する加熱工程と、
該加熱工程後に前記鋼片を前記温度域に30分間以上保持する均質化処理工程と、
前記均質化処理工程後に1000℃以上の温度域で粗圧延を行って粗圧延板とした後、
該粗圧延板に仕上げ圧延を行い、仕上げ圧延の最終パス仕上げ温度を、鋼板表面において(Ar−10)℃以上として圧延を完了する圧延工程と、
前記圧延工程後に鋼板表面において、平均冷却速度15℃/秒以上で冷却を行い、500〜700℃の温度域で1〜5秒間冷却を停止する一次冷却工程と、
前記一次冷却工程後に鋼板表面において平均冷却速度10〜100℃/秒で冷却を行う二次冷却工程と、
前記二次冷却工程後に鋼板表面において200℃以下の温度域で巻取る巻取工程とを含む、請求項1に記載の熱延鋼板の製造方法。
ただし、Ar3(℃)=905-455[%C]-38[%Si]-62[%Mn]+472[%P] ・・・・・(1)
であり、(1)式における[%C],[%Si],[%Mn],[%P]は、それぞれ、C,Si,Mn,Pの含有量(質量%)を示す。
A heating step of heating the steel slab having the chemical composition according to claim 1 to a temperature range of 1100 to 1300 ° C,
A homogenizing treatment step of holding the steel slab in the temperature range for 30 minutes or more after the heating step;
After performing the rough rolling in the temperature range of 1000 ° C. or more after the homogenization process to obtain a rough rolled plate,
A rolling step in which the rough rolling plate is subjected to finish rolling, and the final pass finishing temperature of the finish rolling is set to (Ar 3 -10) ° C. or higher on the steel sheet surface to complete rolling.
A primary cooling step of performing cooling at an average cooling rate of 15 ° C./second or more on the steel sheet surface after the rolling step, and stopping cooling in a temperature range of 500 to 700 ° C. for 1 to 5 seconds;
A secondary cooling step of cooling the steel sheet surface at an average cooling rate of 10 to 100 ° C./sec after the primary cooling step,
The method for producing a hot-rolled steel sheet according to claim 1, further comprising: a winding step of winding the steel sheet surface in a temperature range of 200 ° C or less after the secondary cooling step.
However, Ar 3 (° C.) = 905-455 [% C] -38 [% Si] -62 [% Mn] +472 [% P] (1)
[% C], [% Si], [% Mn] and [% P] in the equation (1) indicate the contents (% by mass) of C, Si, Mn and P, respectively.
JP2016004752A 2016-01-13 2016-01-13 Hot rolled steel sheet and method for producing the same Active JP6676973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016004752A JP6676973B2 (en) 2016-01-13 2016-01-13 Hot rolled steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016004752A JP6676973B2 (en) 2016-01-13 2016-01-13 Hot rolled steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017125235A JP2017125235A (en) 2017-07-20
JP6676973B2 true JP6676973B2 (en) 2020-04-08

Family

ID=59364763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016004752A Active JP6676973B2 (en) 2016-01-13 2016-01-13 Hot rolled steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP6676973B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6601286B2 (en) * 2016-03-15 2019-11-06 日本製鉄株式会社 Hot-rolled steel sheet and manufacturing method thereof
KR102164112B1 (en) * 2018-11-29 2020-10-12 주식회사 포스코 High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof
CN110669913B (en) * 2019-09-30 2021-05-28 鞍钢股份有限公司 Hot-rolled and acid-washed dual-phase steel for high-strength automobile wheels and production method thereof
CN113249659B (en) * 2021-04-15 2022-01-18 首钢集团有限公司 High-strength anti-crack steel with excellent ductility and preparation method thereof
CN114774783A (en) * 2022-03-29 2022-07-22 本钢板材股份有限公司 Preparation method of low-cost high-weldability 440 MPa-grade hot-rolled pickled plate for automobile structure

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268491A (en) * 2002-03-13 2003-09-25 Jfe Steel Kk High-strength steel sheet for working member, production method thereof, and production method for working member having working plane excellent in abrasion resistance
JP3821036B2 (en) * 2002-04-01 2006-09-13 住友金属工業株式会社 Hot rolled steel sheet, hot rolled steel sheet and cold rolled steel sheet
JP4379618B2 (en) * 2005-06-17 2009-12-09 住友金属工業株式会社 High-tensile hot-rolled steel sheet and manufacturing method thereof
JP4737761B2 (en) * 2006-06-01 2011-08-03 株式会社神戸製鋼所 High strength hot-rolled steel sheet with excellent strength-elongation balance and fatigue properties
JP5817671B2 (en) * 2012-08-02 2015-11-18 新日鐵住金株式会社 Hot-rolled steel sheet and manufacturing method thereof
JP5888181B2 (en) * 2012-08-20 2016-03-16 新日鐵住金株式会社 Hot rolled steel sheet
RU2605014C2 (en) * 2012-09-26 2016-12-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Two-phase steel sheet and method of making thereof
CN103469058B (en) * 2013-10-08 2016-01-13 武汉钢铁(集团)公司 Tensile strength 450MPa level has Ferrite bainitic steel and the production method thereof of high reaming performance
JP6264082B2 (en) * 2014-02-18 2018-01-24 新日鐵住金株式会社 Manufacturing method of hot-rolled steel sheet

Also Published As

Publication number Publication date
JP2017125235A (en) 2017-07-20

Similar Documents

Publication Publication Date Title
US10550446B2 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same
US10077486B2 (en) High-strength cold-rolled steel sheet and method of manufacturing the same
EP3214199B1 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same
JP5447741B1 (en) Steel plate, plated steel plate, and manufacturing method thereof
RU2502820C1 (en) Plate steel characterised by low ratio between yield point and ultimate strength, high strength and high uniform relative elongation, and method for its manufacture
JP4947176B2 (en) Manufacturing method of ultra-high strength cold-rolled steel sheet
JP5136182B2 (en) High-strength steel sheet with less characteristic deterioration after cutting and method for producing the same
JP5858174B2 (en) Low yield ratio high strength cold-rolled steel sheet and method for producing the same
KR102014663B1 (en) High strength thin steel sheet and method of producing the same
WO2018011978A1 (en) Hot-dip galvanized steel sheet
JP6676973B2 (en) Hot rolled steel sheet and method for producing the same
JP6597811B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP2007138262A (en) High strength cold rolled steel sheet reduced in dispersion in mechanical characteristic, and its manufacturing method
KR101626233B1 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
JP2007154283A (en) High strength steel sheet having excellent formability and shape fixability
CN108350536B (en) High-strength hot-rolled steel sheet and method for producing same
WO2018186335A1 (en) High strength cold rolled steel sheet and method for producing same
JP6816355B2 (en) Hot-rolled steel sheet and its manufacturing method
JPWO2019216269A1 (en) Hot rolled steel sheet and method of manufacturing the same
JP5811725B2 (en) High-tensile cold-rolled steel sheet excellent in surface distortion resistance, bake hardenability and stretch flangeability, and method for producing the same
KR20220005572A (en) Cold-rolled martensitic steel sheet and manufacturing method thereof
KR101115739B1 (en) Steel sheet having excellent spot weldabity, strength and elongation for automobile and method for manufacturing the same
JP2013181183A (en) High strength cold rolled steel sheet having low in-plane anisotropy of yield strength, and method of producing the same
JP2003253385A (en) Cold-rolled steel sheet superior in high-velocity deformation characteristic and bending characteristic, and manufacturing method therefor
JP6519011B2 (en) Hot rolled steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200225

R151 Written notification of patent or utility model registration

Ref document number: 6676973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151