JP2013133524A - High-tensile hot-rolled steel sheet excellent in blanking property and stretch flange formability, and manufacturing method therefor - Google Patents

High-tensile hot-rolled steel sheet excellent in blanking property and stretch flange formability, and manufacturing method therefor Download PDF

Info

Publication number
JP2013133524A
JP2013133524A JP2011285916A JP2011285916A JP2013133524A JP 2013133524 A JP2013133524 A JP 2013133524A JP 2011285916 A JP2011285916 A JP 2011285916A JP 2011285916 A JP2011285916 A JP 2011285916A JP 2013133524 A JP2013133524 A JP 2013133524A
Authority
JP
Japan
Prior art keywords
less
steel sheet
rolled steel
hot
tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011285916A
Other languages
Japanese (ja)
Other versions
JP5884164B2 (en
Inventor
Yoshimasa Funakawa
義正 船川
Tetsuo Yamamoto
徹夫 山本
Hiroshi Uchomae
洋 宇張前
Hiroshi Owada
浩 大和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011285916A priority Critical patent/JP5884164B2/en
Publication of JP2013133524A publication Critical patent/JP2013133524A/en
Application granted granted Critical
Publication of JP5884164B2 publication Critical patent/JP5884164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a high-tensile hot-rolled steel sheet with a high tensile strength of 780-900 MPa excellent in blanking property and stretch flange formability, and a manufacturing method therefor.SOLUTION: Molten steel with a composition containing, by mass%, 0.03-0.06% C, 0.0020-0.0100% N, and 0.135-0.195% Ti with Si, Mn, and Al being adjusted to an appropriate amount is made into a steel raw material by a continuous casting method at a casting speed of 5 m/min or lower. The steel raw material is heated to a temperature of 1,250°C or higher, and rough rolling is started at a temperature of 1,200°C or higher. Hot rolling is finished at 900°C or higher. The steel raw material is cooled and is made into a wound hot rolled steel sheet at a winding temperature of 550°C or higher. The high-tensile hot-rolled steel sheet has a structure in which Ti carbide with a mean diameter of less than 6 nm is dispersed and precipitated in the ferrite crystal grain, the ferrite crystal grain occupies 95% or more of the metal structure in the area rate, TiN with a mean size of 20 nm or more is dispersed in the metal structure; and has a high tensile strength TS of 780-900 MPa and excellent blanking property and stretch flange formability.

Description

本発明は、自動車をはじめとする輸送機械類の部品、配電盤や建築用などの構造用部材として好適な、引張強さTSが780〜900MPaの高強度を有する伸びフランジ加工性に優れた高張力熱延鋼板およびその製造方法に係り、とくに打抜き性の向上に関する。   The present invention is suitable as a structural member for parts such as automobiles and other transportation machinery, switchboards and buildings, and has a high tensile strength TS with a high strength of 780 to 900 MPa. The present invention relates to a hot-rolled steel sheet and a method for manufacturing the hot-rolled steel sheet, and particularly to improvement of punchability.

近年、自動車業界においては、地球環境の保全という観点から、炭酸ガスCO2排出量を削減すべく、自動車の燃費を改善することが常に重要な課題となってきた。自動車の燃費向上には、自動車車体の軽量化を図ることが有効であるが、自動車車体の強度を維持しつつ車体の軽量化を図る必要がある。自動車部品用素材となる鋼板を高強度化し、素材を薄肉化すれば、自動車車体としての強度を低下することなく、車体の軽量化が達成できる。たとえば、自動車の足回り部品用鋼板の高強度化は、自動車車体の大幅な軽量化に繋がり、自動車の燃費向上に極めて有効な手段となる。このようなことから、最近では、これらの部品用素材に対し、高強度化の要望が非常に強くなっている。また、その他の構造部材についても軽量化のために高強度化の要望が強くなってきている。 In recent years, improving the fuel efficiency of automobiles has always been an important issue in the automobile industry in order to reduce carbon dioxide CO 2 emissions from the viewpoint of protecting the global environment. It is effective to reduce the weight of an automobile body to improve the fuel efficiency of the automobile, but it is necessary to reduce the weight of the vehicle body while maintaining the strength of the automobile body. If the strength of the steel sheet used for automobile parts is increased and the material is made thinner, the weight of the car body can be reduced without reducing the strength of the car body. For example, increasing the strength of steel sheets for automobile undercarriage parts leads to a significant reduction in weight of the automobile body, and is an extremely effective means for improving the fuel efficiency of automobiles. For these reasons, recently, there is a strong demand for increasing the strength of these component materials. In addition, with respect to other structural members, there is a strong demand for higher strength in order to reduce weight.

鋼板の高強度化に伴い、加工性、特に伸びフランジ加工性が劣化することから、高強度化し、伸びフランジ加工性を向上させるための各種技術が提案されてきた。そのなかでも、金属組織を実質的にフェライト相単相とし、該フェライト相の粒内に微細炭化物を析出させた組織を用いる技術は、高強度と優れた伸びフランジ加工性とを兼備させるために有用な技術であることが知られている。   As the strength of steel sheets increases, workability, particularly stretch flangeability, deteriorates, and various techniques have been proposed for increasing strength and improving stretch flangeability. Among them, the technology using a structure in which the metal structure is substantially a single ferrite phase and fine carbides are precipitated in the ferrite phase grains is used to combine high strength and excellent stretch flangeability. It is known to be a useful technique.

実質的にフェライト相単相の金属組織を有し、伸びフランジ加工性に優れた高張力鋼板としては、例えば、特許文献1には、伸びフランジ性に優れた超微細フェライト組織高強度熱延鋼板が提案されている。特許文献1に記載された技術は、wt%で、C:0.01〜0.10%、Si:1.5%以下、Mn:1.0超〜2.5%、P:0.15%以下、S:0.008%以下、Al:0.01〜0.08%、Ti,Nbの1種又は2種の合計:0.10〜0.60%を含む組成と、フェライト量が面積率で95%以上で、かつフェライトの平均結晶粒径が2.0〜10.0μm で、マルテンサイトおよび残留オーステナイトを含まない組織とを有し、引張強さが490MPa以上で、伸びフランジ性に優れた超微細フェライト組織高強度熱延鋼板である。特許文献1に記載された技術では、Mn含有量を1.0%超〜2.5%とすることにより、鋼板強度が向上するとともに微細フェライト粒が得られ、高強度化が達成できるとしている。また、特許文献1に記載された技術では、疲労強度も向上するとしている。   As a high-tensile steel plate having a substantially single-phase ferrite phase metal structure and excellent stretch flangeability, for example, Patent Document 1 discloses an ultrafine ferrite structure high-strength hot-rolled steel plate excellent in stretch flangeability. Has been proposed. The technique described in Patent Document 1 is wt%, C: 0.01 to 0.10%, Si: 1.5% or less, Mn: more than 1.0 to 2.5%, P: 0.15% or less, S: 0.008% or less, Al: 0.01 ~ 0.08%, total of one or two of Ti and Nb: composition containing 0.10 ~ 0.60%, ferrite content is 95% or more by area ratio, and the average grain size of ferrite is 2.0 ~ 0.0μm, It is a high-strength hot-rolled steel sheet with an ultrafine ferrite structure that has a structure free from martensite and retained austenite, has a tensile strength of 490 MPa or more, and is excellent in stretch flangeability. According to the technique described in Patent Document 1, by setting the Mn content to more than 1.0% to 2.5%, the strength of the steel sheet is improved and fine ferrite grains are obtained, thereby achieving high strength. Further, in the technique described in Patent Document 1, fatigue strength is also improved.

また、特許文献2には、質量%で、C:0.01〜0.1%、S:0.03%以下、N:0.005%以下、Ti:0.05〜0.5%、Si:0.01〜2%、Mn:0.05〜2%、P:0.1%以下、Al:0.005〜1.0%を含み、さらに(Ti−48/12C−48/14N−48/32S)が0%以上を満たす範囲でTiを含有する組成と、鋼中の粒子で5nm以上のTiを含む析出物の平均サイズが10〜10nmで、最小間隔が10 nm超10nm以下である、引張強さが640MPa以上でバーリング加工性と疲労特性に優れた熱延鋼板が提案されている。 Further, in Patent Document 2, in mass%, C: 0.01 to 0.1%, S: 0.03% or less, N: 0.005% or less, Ti: 0.05 to 0.5%, Si: 0.01 to 2%, Mn: 0.05 to 2 %, P: 0.1% or less, Al: 0.005 to 1.0%, and (Ti-48 / 12C-48 / 14N-48 / 32S) containing Ti in a range satisfying 0% or more, and in steel with an average size of 10 1 to 10 3 nm of precipitates containing 5nm or more Ti particle, the minimum interval is less than 10 1 nm ultra 10 4 nm, the tensile strength of more than 640MPa at the burring workability fatigue properties An excellent hot-rolled steel sheet has been proposed.

また、特許文献3には、質量%で、C:0.02〜0.08%、Si:0.01〜1.5%、Mn:0.1〜1.5%、Ti:0.03〜0.06%%を含有し、P:0.1%以下、S:0.005%以下、Al:0.5%以下、N:0.009%以下に制限し、更に、Nb、Mo、Vの含有量の合計を0.01%以下に制限し、Ti/C:0.375〜1.6であり、結晶粒内のTiC析出物の平均直径が0.8〜3nmで、平均個数密度が1×1017個/cmで、引張強度が540〜650MPaである省合金型高強度熱延鋼板が提案されている。 Patent Document 3 contains, in mass%, C: 0.02 to 0.08%, Si: 0.01 to 1.5%, Mn: 0.1 to 1.5%, Ti: 0.03 to 0.06%, P: 0.1% or less, S: 0.005% or less, Al: 0.5% or less, N: 0.009% or less, further, the total content of Nb, Mo, V is limited to 0.01% or less, Ti / C: 0.375 to 1.6 An alloy-saving high-strength hot-rolled steel sheet with an average diameter of TiC precipitates in crystal grains of 0.8 to 3 nm, an average number density of 1 × 10 17 / cm 3 and a tensile strength of 540 to 650 MPa has been proposed. ing.

特開2000−328186号公報JP 2000-328186 A 特開2002−161340号公報JP 2002-161340 A 特開2011−26690号公報JP 2011-26690 A

鋼板を素材とする自動車部品の多くは、プレス加工によって成形される。鋼板は、プレス加工に先立ち、ブランクと呼ばれる成形に適した形状に打ち抜かれる。打抜きに際しては、打抜き端面の性状が乱れないことが重要とされる。打抜き端面は、図1に示すように、剪断面と破断面に分けられるが、「打抜き端面が乱れる」とは、特に破断面の性状が粗くなることをいう。そして、「破断面の性状が粗くなる」とは、破断面で大きな開口が生じる場合や、剪断面部分と破断面部分とが剥離するように分かれる場合や、破断面が異常に剪断面に対して傾いている場合をいう。破断面での開口や、剪断面部分と破断面部分とが剥離するような開口が存在することは、引続き行われるプレス加工の際に、割れの原因となるとともに、部品の外観や耐食性を劣化させる。また、破断面が剪断面に対して傾くことは、ブランクの寸法精度を劣化させ、最終製品(部品)の寸法精度を低下させる原因となる。   Many automobile parts made of steel plates are formed by pressing. Prior to pressing, the steel sheet is punched into a shape suitable for forming called a blank. When punching, it is important that the properties of the punched end face are not disturbed. As shown in FIG. 1, the punched end surface is divided into a sheared surface and a fracture surface, and “the punched end surface is disturbed” means that the properties of the fractured surface are particularly rough. And, “the property of the fractured surface becomes rough” means that a large opening occurs in the fractured surface, the sheared surface part and the fractured surface part are separated so as to be separated, or the fractured surface is abnormally different from the sheared surface. When it is tilted. The presence of an opening at the fracture surface or an opening where the shearing surface part and the fracture surface part peel off may cause cracks during subsequent pressing, and deteriorate the appearance and corrosion resistance of the part. Let In addition, the fact that the fracture surface is inclined with respect to the shearing surface deteriorates the dimensional accuracy of the blank and causes the dimensional accuracy of the final product (part) to be reduced.

特許文献1、特許文献2、特許文献3のいずれにも、打抜き性についての記載はなく、打抜き性については、現在まで、あまり詳細な検討は行われてこなかった。
打抜き性の観点において、特許文献1に記載された技術では、鋼板のMn含有量が高いため、鋼板中にMnが偏析した箇所(Mn偏析部)が多数存在し、打抜きの際に、このMn偏析部から割れが生じやすくなる。そのため、特許文献1に記載された技術で製造された鋼板における打抜き端面破断面の性状は良好であるとはいい難い。
None of Patent Document 1, Patent Document 2, and Patent Document 3 have a description of punchability, and the punchability has not been studied in detail so far.
From the viewpoint of punchability, in the technique described in Patent Document 1, since the Mn content of the steel sheet is high, there are many places where Mn segregates in the steel sheet (Mn segregation part). Cracks are likely to occur from the segregated part. Therefore, it is difficult to say that the properties of the punched end face fracture surface in the steel sheet manufactured by the technique described in Patent Document 1 are good.

また、特許文献2に記載された技術では、Tiを所定量含有し、Ti炭化物を形成することにより、固溶Cの低減を図っている。しかし、発明者らの検討によれば、Cに対して過剰のTiを含有させると、Ti炭化物が粗大化し易く、例えば引張強さ780MPa級以上の高強度を安定して確保することが難しい。また、TiによりCが完全に固定されるため、粗大なセメンタイトが生成しなくなり、打抜き時にマイクロボイドが発生しにくくなる。このために、打抜き端面では一つのマイクロボイドが大きく成長しやすくなり、剪断面と破断面の境界近傍でマイクロボイドの成長が板面に平行な方向に成長して開口が生じやすくなる。また、破断面の剪断面に対する傾き角度も大きくなり、ブランクの寸法精度が低下するという問題がある。そのため、特許文献2に記載された技術で製造された熱延鋼板は、打抜き性に優れた熱延鋼板であるとはいい難い。   In the technique described in Patent Document 2, a predetermined amount of Ti is contained, and Ti carbide is formed to reduce the solid solution C. However, according to the study by the inventors, when an excessive amount of Ti is contained with respect to C, Ti carbide tends to be coarsened, and it is difficult to stably ensure high strength of, for example, a tensile strength of 780 MPa or higher. Further, since C is completely fixed by Ti, coarse cementite is not generated, and microvoids are hardly generated at the time of punching. For this reason, one microvoid tends to grow greatly on the punched end face, and the microvoid grows in the direction parallel to the plate surface in the vicinity of the boundary between the shear plane and the fracture surface, and an opening is likely to be formed. In addition, the angle of inclination of the fracture surface with respect to the shear surface also increases, and there is a problem that the dimensional accuracy of the blank is lowered. Therefore, it is difficult to say that the hot-rolled steel sheet manufactured by the technique described in Patent Document 2 is a hot-rolled steel sheet having excellent punchability.

また、特許文献3に記載された技術では、実施例にも示されているように得られる熱延鋼板の強度は、たかだか引張強さ540MPa級程度までであり、引張強さ780MPa級以上の高強度を安定して確保することは難しいという問題がある。
本発明は、かかる従来技術の問題を有利に解決し、自動車部品用の素材として好適な、引張強さTS:780MPa以上900MPa以下の高強度を有し、優れた打抜き性と優れた伸びフランジ加工性とを兼備する高張力熱延鋼板およびその製造方法を提供することを目的とする。
In the technique described in Patent Document 3, the strength of the hot-rolled steel sheet obtained as shown in the examples is at most about 540 MPa class tensile strength, which is higher than 780 MPa class tensile strength. There is a problem that it is difficult to ensure the strength stably.
The present invention advantageously solves the problems of the prior art, and has a high tensile strength TS: 780 MPa or more and 900 MPa or less, which is suitable as a material for automobile parts, and has excellent punchability and excellent stretch flange processing. It aims at providing the high-tensile-strength hot-rolled steel plate which combines the property, and its manufacturing method.

本発明者らは、上記した目的を達成するため、伸びフランジ加工性と打抜き性に及ぼす各種要因について鋭意検討した。
材料(鋼板)をポンチで所定形状に打抜く際には、まず、材料(鋼板)にめり込んだポンチの先端近傍で、材料(鋼板)内にマイクロボイドが多数発生する。そして、それらが連結、合体して、大きな亀裂に成長する。成長した亀裂が板厚方向に材料(鋼板)を貫通して、打抜きが完了する。このときに、ボイドの起点となるのは、主として材料(鋼板)中に分散して存在する粗大な介在物や析出物である。しかし、介在物や析出物が材料(鋼板)中に分散して存在すれば、その析出物や介在物が起点となり、伸びフランジ加工性が低下する。このようなことから、従来から、伸びフランジ加工性と打抜き性とは両立しがたいものであると考えられてきた。
In order to achieve the above-mentioned object, the present inventors diligently studied various factors affecting stretch flange workability and punchability.
When a material (steel plate) is punched into a predetermined shape with a punch, first, a number of microvoids are generated in the material (steel plate) in the vicinity of the tip of the punch that is recessed into the material (steel plate). And they connect and unite, and grow into a big crack. The grown crack penetrates the material (steel plate) in the thickness direction, and punching is completed. At this time, the starting point of the void is mainly coarse inclusions and precipitates dispersed in the material (steel plate). However, if inclusions and precipitates are dispersed in the material (steel plate), the precipitates and inclusions are the starting point, and stretch flangeability is deteriorated. For these reasons, it has been conventionally considered that stretch flange workability and punchability are incompatible.

そこで、本発明者らは、高強度化したうえで、打抜き性と伸びフランジ加工性とを両立すべく、更なる検討を鋭意行った。その結果、6nm未満の微細Tiを含む微細炭化物をフェライト結晶粒内に分散し、このフェライト結晶粒が全金属組織に対する面積率で95%以上を占め、さらにTi窒化物、それも比較的粗大なTi窒化物をフェライト結晶粒からなる金属組織中に分散させることを思い付いた。Ti窒化物はフェライト結晶粒に比べて硬質であり、打抜き時のマイクロボイド形成の起点になり、しかも20nm以上の比較的粗大なTi窒化物とすれば、Ti窒化物の分散が疎になるために伸びフランジ加工性には顕著な悪影響を及ぼさないことを突き止めた。   Therefore, the present inventors diligently studied further in order to achieve both the punching performance and the stretch flange workability after increasing the strength. As a result, fine carbide containing fine Ti of less than 6 nm is dispersed in the ferrite crystal grains, and this ferrite crystal grain accounts for 95% or more in terms of the area ratio with respect to the total metal structure, and Ti nitride, which is also relatively coarse I came up with the idea of dispersing Ti nitride in a metallographic structure consisting of ferrite grains. Ti nitride is harder than ferrite grains and becomes the starting point for microvoid formation at the time of punching. In addition, if Ti nitride is relatively coarser than 20 nm, the dispersion of Ti nitride becomes sparse. In particular, it has been found that there is no significant adverse effect on stretch flangeability.

伸びフランジ加工性を向上させるためには、まず、光学顕微鏡や走査型電子顕微鏡で500〜5000倍程度で観察される金属組織を転位密度が低いフェライト結晶粒で占める必要があり、そして、この個々のフェライト結晶粒中に、大きさ6nm未満のTiを含む微細炭化物を密に分散析出させて析出強化すれば、所望の高強度を確保できる。さらにフェライト結晶粒からなる金属組織中に、20nm以上の大きさのTiNを疎に分散させることにより、所望の高強度と、優れた伸びフランジ加工性を維持しつつ、打抜き性が向上することを見出した。   In order to improve stretch flange workability, first, it is necessary to occupy the metal structure observed at about 500 to 5000 times with an optical microscope or a scanning electron microscope with ferrite crystal grains having a low dislocation density. If fine carbide containing Ti having a size of less than 6 nm is densely dispersed and precipitated in the ferrite crystal grains, the desired high strength can be secured. Furthermore, it is possible to improve punchability while maintaining desired high strength and excellent stretch flangeability by sparsely dispersing TiN of 20 nm or more in the metal structure consisting of ferrite crystal grains. I found it.

本発明は上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)質量%で、C:0.03〜0.06%、Si:0.1%以下、Mn:0.6%以下、P:0.025%以下、S:0.02%以下、N:0.0020〜0.0100%、Al:0.1%以下、Ti:0.135〜0.195%を含有し、残部Feおよび不可避的不純物からなる組成と、平均径が6nm未満であるTiを含む微細炭化物がフェライト結晶粒内に分散し、該フェライト結晶粒が全金属組織の95%以上の面積を占めており、該フェライト結晶粒よりなる金属組織中に平均サイズが20nm以上であるTiNとが分散した組織と、を有し、優れた打抜き性と優れた伸びフランジ加工性とを兼備することを特徴とする引張強さが780〜900MPaである高張力熱延鋼板。
(2)(1)において、前記組成に加えてさらに、質量%でB:0.0035%以下を含有することを特徴とする高張力熱延鋼板。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Cu、Sn、Ni、Ca、Mg、Co、As、Cr、Mo、Sb、W、Nb、Pb、Ta、REM、V、Cs、Zr、Hfのいずれか1種以上を合計で、1%以下含有することを特徴とする高張力熱延鋼板。
(4)(1)ないし(3)のいずれかにおいて、鋼板表面にめっき皮膜を有することを特徴とする高張力熱延鋼板。
(5)質量%で、C:0.03〜0.06%、Si:0.1%以下、Mn:0.6%以下、P:0.025%以下、S:0.02%以下、N:0.0020〜0.0100%、Al:0.1%以下、Ti:0.135〜0.195%を含有し、残部Feおよび不可避的不純物からなる組成の溶鋼を、鋳造速度:5m/min以下の連続鋳造法で鋼素材とした後、該鋼素材に、加熱温度:1250℃以上に加熱したのち、圧延開始温度:1200℃以上とする粗圧延と、圧延終了温度:900℃以上とする仕上圧延とからなる熱間圧延を施し、ついで冷却し、巻取り温度:550℃以上で巻き取ることを特徴とする、引張強さ:780〜900MPaで、打抜き性と伸びフランジ加工性に優れた高張力熱延鋼板の製造方法。
(6)(5)において、前記組成に加えてさらに、質量%でB:0.0035%以下を含有することを特徴とする高張力熱延鋼板の製造方法。
(7)(5)または(6)において、前記組成に加えてさらに、質量%で、Cu、Sn、Ni、Ca、Mg、Co、As、Cr、Mo、Sb、W、Nb、Pb、Ta、REM、V、Cs、Zr、Hfのいずれか1種以上を合計で1%以下含有することを特徴とする高張力熱延鋼板の製造方法。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.03-0.06%, Si: 0.1% or less, Mn: 0.6% or less, P: 0.025% or less, S: 0.02% or less, N: 0.0020-0.0100%, Al: 0.1% or less , Ti: 0.135 to 0.195%, the composition comprising the balance Fe and inevitable impurities, and fine carbide containing Ti having an average diameter of less than 6 nm are dispersed in the ferrite crystal grains, and the ferrite crystal grains are all metals. The structure occupies an area of 95% or more of the structure, and has a structure in which TiN having an average size of 20 nm or more is dispersed in the metal structure made of the ferrite crystal grains, and has excellent punchability and excellent stretch flange A high-tensile hot-rolled steel sheet with a tensile strength of 780 to 900 MPa, characterized by having workability.
(2) In (1), in addition to the said composition, B: 0.0035% or less is further contained in the mass%, The high-tensile-strength hot-rolled steel plate characterized by the above-mentioned.
(3) In (1) or (2), in addition to the above-mentioned composition, Cu, Sn, Ni, Ca, Mg, Co, As, Cr, Mo, Sb, W, Nb, Pb, Ta are also contained in mass%. , REM, V, Cs, Zr, Hf, containing a total of 1% or less, high tensile hot-rolled steel sheet,
(4) The high-tensile hot-rolled steel sheet according to any one of (1) to (3), wherein the steel sheet surface has a plating film.
(5) By mass%, C: 0.03-0.06%, Si: 0.1% or less, Mn: 0.6% or less, P: 0.025% or less, S: 0.02% or less, N: 0.0020-0.0100%, Al: 0.1% or less , Ti: 0.135 to 0.195% containing molten steel having the balance Fe and unavoidable impurities is used as a steel material by a continuous casting method with a casting speed of 5 m / min or less. After heating to 1250 ° C or higher, hot rolling consisting of rough rolling at a rolling start temperature of 1200 ° C or higher and finish rolling at a rolling end temperature of 900 ° C or higher is performed, followed by cooling and winding temperature: 550 A method for producing a high-tensile hot-rolled steel sheet having a tensile strength of 780 to 900 MPa, excellent in punchability and stretch flangeability, characterized by winding at a temperature of ℃ or higher.
(6) In (5), in addition to the said composition, B: 0.0035% or less is further contained in the mass%, The manufacturing method of the high-tensile hot-rolled steel plate characterized by the above-mentioned.
(7) In (5) or (6), in addition to the above-mentioned composition, Cu, Sn, Ni, Ca, Mg, Co, As, Cr, Mo, Sb, W, Nb, Pb, Ta are further contained in mass%. , REM, V, Cs, Zr, Hf, or a total of 1% or less.

本発明によれば、自動車をはじめとする輸送機械類の部品、配電盤や建築用などの構造用部材として好適な、引張強さTS:780〜900MPaの高強度を有し、且つ優れた打抜き性と優れた伸びフランジ加工性とを兼備する高張力熱延鋼板を容易に製造でき、産業上格段の効果を奏する。   According to the present invention, the tensile strength TS: high strength of 780 to 900 MPa, which is suitable as a structural member such as parts for transportation machinery such as automobiles, switchboards and buildings, etc., and excellent punchability High-strength hot-rolled steel sheet that combines excellent stretch-flange formability with excellent industrial advantages.

打抜き端面の性状と、開口部長さの測定方法を示す説明図である。It is explanatory drawing which shows the property of a punching end surface, and the measuring method of opening part length.

以下、本発明について詳細に説明する。
本発明熱延鋼板は、質量%で、C:0.03〜0.06%、Si:0.1%以下、Mn:0.6%以下、P:0.025%以下、S:0.02%以下、N:0.0020〜0.0100%、Al:0.1%以下、Ti:0.135〜0.195%を含有し、残部Feおよび不可避的不純物からなる組成を有する。まず、本発明熱延鋼板の組成限定の理由について説明する。なお、以下、質量%は、特に断らない限り%で記す。
Hereinafter, the present invention will be described in detail.
The hot-rolled steel sheet of the present invention is in mass%, C: 0.03-0.06%, Si: 0.1% or less, Mn: 0.6% or less, P: 0.025% or less, S: 0.02% or less, N: 0.0020-0.0100%, Al : 0.1% or less, Ti: 0.135 to 0.195% is contained, and the composition is composed of the remaining Fe and inevitable impurities. First, the reason for limiting the composition of the hot-rolled steel sheet of the present invention will be described. Hereinafter, mass% is expressed as% unless otherwise specified.

C:0.03〜0.06%
Cは、微細炭化物を形成し、鋼板の強度を増加させる作用を有する。所望の引張強さである780MPa以上の高強度を確保するためには、0.03%以上の含有を必要とする。0.03%未満では、780MPa級の引張強さを得るための微細炭化物を確保することができない。一方、0.06%を超える含有は、強度が増加しすぎるうえ、パーライトが形成されやすくする。パーライトは伸びフランジ加工時にボイド発生の起点となるため、パーライトの形成は、伸びフランジ加工性を低下させる要因となる。このため、Cは0.03〜0.06%の範囲に限定した。なお、好ましくは0.04〜0.06%、より好ましくは0.04〜0.05%である。
C: 0.03-0.06%
C has the effect of forming fine carbides and increasing the strength of the steel sheet. In order to ensure a high strength of 780 MPa or more, which is a desired tensile strength, a content of 0.03% or more is required. If it is less than 0.03%, fine carbides for obtaining a tensile strength of 780 MPa class cannot be secured. On the other hand, if the content exceeds 0.06%, the strength increases excessively and pearlite is easily formed. Since pearlite serves as a starting point for generating voids during stretch flange processing, the formation of pearlite is a factor that reduces stretch flange processability. For this reason, C was limited to the range of 0.03-0.06%. In addition, Preferably it is 0.04-0.06%, More preferably, it is 0.04-0.05%.

Si:0.1%以下
本発明では、Tiを含有する微細炭化物でフェライト粒を強化するため、Si含有の必要はない。Siを0.1%を超えて含有すると、偏析により打抜き時に偏析に沿った開口が生じやすいうえ、バリの発生も顕著となる。このため、Siは0.1%以下に限定した。なお、好ましくは0.05%以下である。
Si: 0.1% or less In the present invention, since ferrite grains are strengthened with fine carbides containing Ti, it is not necessary to contain Si. If Si is contained in an amount exceeding 0.1%, an opening along the segregation is likely to occur at the time of punching due to segregation, and the occurrence of burrs becomes significant. For this reason, Si was limited to 0.1% or less. In addition, Preferably it is 0.05% or less.

Mn:0.6%以下
Mnを0.6%を超えて含有すると、Mnの偏析が生じやすくなる。Mn偏析部(ミクロ偏析)では、打抜き時に偏析に沿って開口が生じやすく、そのため、打抜き性が低下する。このようなことから、Mnは0.6%以下に限定した。なお、好ましくは0.5%以下である。
P:0.025%以下
Pを0.025%を超えて多量に含有すると偏析が顕著になり、偏析に沿って開口が生じやすくなり、打抜き性が低下する。本発明では、偏析を抑制する観点から、できるだけ低減することが好ましい。このようなことから、Pは0.025%以下に限定した。なお、好ましくは0.020%以下である。
Mn: 0.6% or less
When Mn exceeds 0.6%, segregation of Mn tends to occur. In the Mn segregation portion (micro segregation), an opening is likely to occur along the segregation during punching, and therefore punchability is reduced. For these reasons, Mn is limited to 0.6% or less. In addition, Preferably it is 0.5% or less.
P: 0.025% or less When P is contained in a large amount exceeding 0.025%, segregation becomes prominent, opening tends to occur along the segregation, and punchability decreases. In the present invention, it is preferable to reduce as much as possible from the viewpoint of suppressing segregation. Therefore, P is limited to 0.025% or less. In addition, Preferably it is 0.020% or less.

S:0.02%以下
Sは、Mn、Tiを含有する本発明では、Tiと結合してTiSを、Mnと結合してMnSを形成する。これらの硫化物は、フェライト粒界に析出して伸びフランジ加工性を低下させる。このため、Sは0.02%以下に限定した。なお、好ましくは0.005%以下であり、さらに好ましくは0.001%以下である。
S: 0.02% or less In the present invention containing Mn and Ti, S combines with Ti to form TiS and Mn to form MnS. These sulfides precipitate at the ferrite grain boundaries and reduce stretch flangeability. For this reason, S was limited to 0.02% or less. In addition, Preferably it is 0.005% or less, More preferably, it is 0.001% or less.

N:0.0020〜0.0100%
Nは、本発明では重要な元素で、Tiと結合して硬質なTiNを形成し、打抜き時にマイクロボイド形成の起点となり、打抜き破断面の粗さを低減し、打抜き性を向上させる。N量が0.0020%未満では、TiN量が少なくなり、打抜き時のマイクロボイド形成の起点が少なくなって打抜き破断面が粗くなり、打抜き性が低下する。一方、0.0100%を超えて多くなると、TiNが凝集し、粗大化するため、伸びフランジ加工性が低下するとともに、打抜き性も逆に低下させる。このため、Nは0.0020〜0.0100%の範囲に限定した。
N: 0.0020-0.0100%
N is an important element in the present invention, and combines with Ti to form hard TiN, which becomes a starting point for microvoid formation at the time of punching, reduces the roughness of the punched fracture surface, and improves punchability. If the N content is less than 0.0020%, the TiN content decreases, the starting point of microvoid formation at the time of punching decreases, the punched fracture surface becomes rough, and the punchability decreases. On the other hand, when the content exceeds 0.0100%, TiN aggregates and becomes coarse, so that stretch flangeability is lowered and punchability is also lowered. For this reason, N was limited to the range of 0.0020 to 0.0100%.

Al:0.1%以下
Alは、脱酸剤として作用する元素である。このような効果を得るためには0.001%以上含有することが望ましい。一方、0.1%を超えて過剰に含有すると、脱酸生成物が凝集し、粗大化するため、伸びフランジ加工性、打抜き性がともに低下する。このため、Alは0.1%以下に限定した。
Al: 0.1% or less
Al is an element that acts as a deoxidizer. In order to acquire such an effect, it is desirable to contain 0.001% or more. On the other hand, if the content exceeds 0.1%, the deoxidized product is aggregated and coarsened, so that both stretch flangeability and punchability are reduced. For this reason, Al was limited to 0.1% or less.

Ti:0.135〜0.195%
Tiは、本発明において最も重要な元素である。Tiは微細な炭化物を形成することにより、優れた伸びフランジ加工性を維持しつつ、鋼板の高強度化に寄与する。このような効果を得るためには、0.135%以上の含有を必要とする。Ti量が0.135%未満では、所望の高強度を確保できない。一方、0.195%を超えて多量に含有すると、粗大なTiを含有する炭化物が生じやすく、所望の引張強さが得られなくなる。このため、Tiは0.135〜0.195%の範囲に限定した。なお、好ましくは0.145〜0.175%である。
Ti: 0.135 to 0.195%
Ti is the most important element in the present invention. Ti forms fine carbides and contributes to increasing the strength of steel sheets while maintaining excellent stretch flangeability. In order to obtain such an effect, the content of 0.135% or more is required. If the Ti content is less than 0.135%, the desired high strength cannot be secured. On the other hand, if it is contained in a large amount exceeding 0.195%, a carbide containing coarse Ti is likely to be produced, and a desired tensile strength cannot be obtained. For this reason, Ti was limited to the range of 0.135 to 0.195%. In addition, Preferably it is 0.145 to 0.175%.

上記した成分が基本の成分であるが、基本組成に加えて選択元素として、B:0.0035%以下、および/または、Cu、Sn、Ni、Ca、Mg、Co、As、Cr、Mo、Sb、W、Nb、Pb、Ta、REM、V、Cs、Zr、Hfのうちの1種または2種以上を合計で1%以下、を、必要に応じて選択して含有できる。
B:0.0035%以下
Bは、オーステナイト粒界に偏析して、圧延後のフェライト変態を遅延させ、Ti炭化物を微細化する元素である。このような効果を得るためには、0.0010%以上含有することが望ましい。一方、0.0035%を超えて含有すると、Fe23(CB)が析出し、打抜き性が低下する。このため、含有する場合には、Bは0.0035%以下に限定することが好ましい。
上記した成分に加えて、本発明では、Cu、Sn、Ni、Ca、Mg、Co、As、Cr、Mo、Sb、W、Nb、Pb、Ta、REM、V、Cs、Zr、Hfのうちの1種または2種以上を含有してもよいが、含有する場合には合計で1%以下とすることが好ましい。なお、より好ましくは合計で0.5%以下である。
The above-mentioned components are basic components, but as a selective element in addition to the basic composition, B: 0.0035% or less, and / or Cu, Sn, Ni, Ca, Mg, Co, As, Cr, Mo, Sb, One or two or more of W, Nb, Pb, Ta, REM, V, Cs, Zr, and Hf can be selected and contained as required in total.
B: 0.0035% or less B is an element that segregates at austenite grain boundaries, delays ferrite transformation after rolling, and refines Ti carbide. In order to acquire such an effect, it is desirable to contain 0.0010% or more. On the other hand, when the content exceeds 0.0035%, Fe 23 (CB) 6 precipitates, punching is lowered. For this reason, when it contains, it is preferable to limit B to 0.0035% or less.
In addition to the above components, the present invention includes Cu, Sn, Ni, Ca, Mg, Co, As, Cr, Mo, Sb, W, Nb, Pb, Ta, REM, V, Cs, Zr, and Hf. 1 type or 2 types or more may be contained, but when it is contained, the total content is preferably 1% or less. More preferably, the total content is 0.5% or less.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。
本発明熱延鋼板は、上記した組成に加えて、平均径が6nm未満であるTiを含む微細炭化物が分散したフェライト結晶粒と、該フェライト結晶粒が面積率で95%以上を占める金属組織と、該フェライト結晶粒よりなる金属組織中に、平均サイズが20nm以上であるTiNが分散した組織を有する。
The balance other than the components described above consists of Fe and inevitable impurities.
In addition to the above composition, the hot-rolled steel sheet of the present invention includes ferrite crystal grains in which fine carbides containing Ti having an average diameter of less than 6 nm are dispersed, and a metal structure in which the ferrite crystal grains occupy 95% or more in area ratio. In addition, the metal structure composed of the ferrite crystal grains has a structure in which TiN having an average size of 20 nm or more is dispersed.

つぎに、本発明熱延鋼板の組織限定の理由を説明する。
フェライト結晶粒が面積率で95%以上を占める金属組織
優れた伸びフランジ加工性を確保するためには、金属組織を転位密度の低い延性に優れたフェライト結晶粒で構成することが有効である。ここでいう「フェライト結晶粒で構成する」とは、100%がフェライト結晶粒で占められる場合だけでなく、実質的にフェライト結晶粒で占められる場合であっても所望の特性を確保できる。「実質的にフェライト結晶粒で占められる場合」とは、フェライト結晶粒が金属組織全体に対する面積率で95%以上である組織をいうものとする。なお、好ましくは面積率で97%以上である。この場合の金属組織とは、光学顕微鏡や走査型電子顕微鏡で500〜5000倍で観察したときに観察できる組織を指す。
Next, the reason for limiting the structure of the hot-rolled steel sheet of the present invention will be described.
Metal structure in which ferrite crystal grains occupy 95% or more in area ratio In order to ensure excellent stretch flangeability, it is effective to configure the metal structure with ferrite crystal grains having excellent ductility with low dislocation density. The phrase “consisting of ferrite crystal grains” as used herein can ensure desired characteristics not only when 100% is occupied by ferrite crystal grains but also when substantially 100% is occupied by ferrite crystal grains. “Substantially occupied by ferrite crystal grains” means a structure in which ferrite crystal grains are 95% or more in terms of the area ratio with respect to the entire metal structure. The area ratio is preferably 97% or more. The metal structure in this case refers to a structure that can be observed when observed with an optical microscope or a scanning electron microscope at a magnification of 500 to 5000 times.

なお、本発明の熱延鋼板において、フェライト結晶粒以外の組織としては、セメンタイト、パーライト、ベイナイト相、マルテンサイト相、残留オーステナイト相等が挙げられ、これらの合計は金属組織全体に対する面積率で5%程度以下、好ましくは3%程度以下であれば許容される。
Tiを含む微細炭化物の平均径:6nm未満
Tiを含む炭化物は、その平均径が極めて小さい微細炭化物となる傾向が強く、このような微細炭化物をフェライト結晶粒内に分散析出させることにより熱延鋼板の高強度化を図ることができる。
In the hot-rolled steel sheet of the present invention, examples of the structure other than the ferrite crystal grains include cementite, pearlite, bainite phase, martensite phase, retained austenite phase, and the like. Less than about, preferably less than about 3% is acceptable.
Average diameter of fine carbides containing Ti: less than 6nm
The carbide containing Ti has a strong tendency to be a fine carbide having an extremely small average diameter, and the strength of the hot-rolled steel sheet can be increased by dispersing and precipitating such fine carbide in the ferrite crystal grains.

高強度化の観点からは、Ti を含む微細炭化物の粒径を小さくすることが重要となる。本発明における所望の高強度(引張強さ:780MPa以上)を確保するためには、Ti を含む微細炭化物の平均径を10nm以下とすれば、十分である。しかし、優れた打抜き性を確保するために分散析出させる比較的粗大なTiNにより、多少の伸びフランジ加工性の低下は避けられないため、この伸びフランジ加工性の低下を補う目的で、Tiを含む微細炭化物の平均径を6nm未満とした。これは、Tiを含む微細炭化物(TiC等)の伸びフランジ加工性への悪影響をできるだけ少なくしておくためである。Tiを含む微細炭化物(TiC等)の平均径を小さく限定することにより、TiNによる伸びフランジ加工性の低下を十分に防止できる。なお、Tiを含む微細炭化物の平均径を3nm以下とすると、伸びフランジ加工性の向上が顕著となる。Tiを含む微細炭化物の平均径が0.6nmを下回ると転位がTiを含む炭化物を迂回して進むようになり、所望の高強度を確保できなくなる。このため、Tiを含む炭化物の平均径は0.6nm以上とすることが好ましい。   From the viewpoint of increasing the strength, it is important to reduce the particle size of the fine carbide containing Ti. In order to ensure the desired high strength (tensile strength: 780 MPa or more) in the present invention, it is sufficient that the average diameter of fine carbides containing Ti is 10 nm or less. However, due to the relatively coarse TiN dispersed and deposited to ensure excellent punchability, a slight decrease in stretch flangeability is inevitable, so Ti is included to compensate for this decrease in stretch flangeability. The average diameter of the fine carbide was set to less than 6 nm. This is to keep the adverse effects on stretch flangeability of fine carbides (TiC, etc.) containing Ti as small as possible. By limiting the average diameter of fine carbides containing Ti (such as TiC) to be small, it is possible to sufficiently prevent the stretch flangeability from being lowered by TiN. Note that when the average diameter of the fine carbide containing Ti is 3 nm or less, the stretch flangeability is significantly improved. If the average diameter of the fine carbide containing Ti is less than 0.6 nm, the dislocation proceeds by bypassing the carbide containing Ti, and the desired high strength cannot be secured. For this reason, it is preferable that the average diameter of the carbide containing Ti is 0.6 nm or more.

TiNの平均サイズ:20nm以上
TiNを分散させることは、本発明ではきわめて重要である。本発明では、Tiを含有させ、Tiを含む微細炭化物を分散析出させて、鋼板の高強度化を達成しているため、Tiの含有により、TiNも分散析出する。従来、TiNは、伸びフランジ加工性を低下させる析出物として、分散析出を抑制することが試みられてきた。しかし、本発明では、TiNを打抜き性向上のために、積極的に利用する。打抜き性を向上させるため、TiNの平均サイズを20nm以上に限定した。20nm以上と、比較的粗大なTiNは、打抜き加工時のマイクロボイドの起点として作用する。一方、1μmを超えて粗大化すると、TiNが凝集して、TiNの個数が減少し、打抜き加工時のマイクロボイドの起点が少なくなり、打抜き破断面が粗くなり、打抜き性が低下する。このため、分散析出したTiNの平均サイズは、20nm以上、好ましくは1μm以下に限定した。なお、より好ましくは500nm以下である。
Average size of TiN: 20nm or more
Dispersing TiN is extremely important in the present invention. In the present invention, Ti is contained and fine carbides containing Ti are dispersed and precipitated to achieve high strength of the steel sheet. Therefore, TiN is also dispersed and precipitated by containing Ti. Conventionally, TiN has been attempted to suppress dispersion precipitation as a precipitate that reduces stretch flangeability. However, in the present invention, TiN is actively used to improve punchability. In order to improve punchability, the average size of TiN was limited to 20 nm or more. The relatively coarse TiN of 20 nm or more acts as a starting point for microvoids during punching. On the other hand, when the particle size exceeds 1 μm, TiN agglomerates, the number of TiNs decreases, the number of microvoids at the time of punching decreases, the punched fracture surface becomes rough, and the punchability decreases. For this reason, the average size of TiN dispersed and precipitated was limited to 20 nm or more, preferably 1 μm or less. More preferably, it is 500 nm or less.

また、本発明熱延鋼板は、表面にめっき皮膜を形成してもよい。鋼板表面にめっき皮膜を形成することにより、熱延鋼板の耐食性が向上し、厳しい腐食環境に晒される部品、例えば自動車の足回り部品の素材用として好適な熱延鋼板となる。なお、めっき皮膜としては、例えば溶融亜鉛めっき皮膜や合金化溶融亜鉛めっき皮膜、電気めっき皮膜等が挙げられる。   Moreover, this invention hot-rolled steel plate may form a plating film on the surface. By forming a plating film on the surface of the steel sheet, the corrosion resistance of the hot-rolled steel sheet is improved, and a hot-rolled steel sheet suitable as a material for parts exposed to severe corrosive environments, for example, parts for automobile undercarriage parts. Examples of the plating film include a hot dip galvanized film, an alloyed hot dip galvanized film, and an electroplated film.

次に、本発明熱延鋼板の好ましい製造方法について説明する。
上記した組成を有する鋼素材に、粗圧延と仕上圧延からなる熱間圧延を施し、ついで冷却し、巻き取って、熱延鋼板とする。
本発明の製造方法では、上記した組成を有する溶鋼を溶製し、連続鋳造法で鋳造して得られた連続鋳造製の鋼素材(スラブ)を出発素材として使用する。
Next, the preferable manufacturing method of this invention hot-rolled steel plate is demonstrated.
The steel material having the above composition is subjected to hot rolling consisting of rough rolling and finish rolling, then cooled and wound to obtain a hot rolled steel sheet.
In the production method of the present invention, a steel material (slab) made by continuous casting obtained by melting molten steel having the above composition and casting it by a continuous casting method is used as a starting material.

本発明では、溶鋼の溶製方法は特に限定されず、転炉、電気炉等の常用の溶製方法がいずれも適用できる。溶製された上記組成を有する溶鋼は、連続鋳造法を用いて、所定形状の鋼素材(スラブ等)に鋳造される。
本発明では、打抜き性向上のために、TiN の大きさを所定の平均サイズ以上となるように、調整する必要がある。TiNは主として1200℃以上の高温で析出するため、本発明では、鋳込み直後の鋼素材(スラブ)の引抜き速度(鋳造速度)、すなわち、連続鋳造時の鋳造速度を調整し、TiNを所望のサイズに調整する。本発明では、連続鋳造時の鋳造速度を5m/min以下に限定する。鋳造速度が5m/minを超えて速くなると、TiNの平均サイズが20nm未満と微細となるため、打抜き性向上効果が得られない。このようなことから、連続鋳造時の鋳造速度を5m/min以下に限定した。なお、好ましくは0.5〜1.5m/min程度である。
In the present invention, the method for melting molten steel is not particularly limited, and any conventional melting method such as a converter or an electric furnace can be applied. The molten steel having the above composition is cast into a steel material (slab or the like) having a predetermined shape using a continuous casting method.
In the present invention, in order to improve punchability, it is necessary to adjust the size of TiN to be equal to or larger than a predetermined average size. Since TiN precipitates mainly at a high temperature of 1200 ° C or higher, the present invention adjusts the drawing speed (casting speed) of the steel material (slab) immediately after casting, that is, the casting speed during continuous casting, so that TiN has a desired size. Adjust to. In the present invention, the casting speed during continuous casting is limited to 5 m / min or less. When the casting speed exceeds 5 m / min, the average size of TiN becomes as fine as less than 20 nm, so that the punchability improvement effect cannot be obtained. For this reason, the casting speed during continuous casting is limited to 5 m / min or less. In addition, Preferably it is about 0.5-1.5 m / min.

得られた連続鋳造製鋼素材(スラブ)は、ついで、熱間圧延を施される。熱間圧延を施すにあたり、鋼素材は、加熱炉で1250℃以上の温度に再加熱される。TiNは、1200℃以上の高温で析出、成長させることで大きさを制御することから、1250℃以上の高温に再加熱すれば、安定してTiNを所定値以上(20nm以上)の大きさに調整することができる。加熱温度が1250℃未満では、微細な TiNが存在する場合があり、十分な打抜き性の向上効果が得られない場合がある。なお、1350℃を超える高温に加熱すると、TiNが異常に粗大化して、伸びフランジ加工性が劣化する。このため、鋼素材の加熱温度は、1250℃以上、好ましくは1350℃以下に限定した。   The obtained continuous cast steel material (slab) is then subjected to hot rolling. In performing hot rolling, the steel material is reheated to a temperature of 1250 ° C. or higher in a heating furnace. Since the size of TiN is controlled by precipitating and growing at a high temperature of 1200 ° C or higher, if it is reheated to a high temperature of 1250 ° C or higher, TiN can be stably grown to a specified value (20nm or higher). Can be adjusted. If the heating temperature is less than 1250 ° C, fine TiN may be present, and a sufficient punching effect may not be obtained. When heated to a high temperature exceeding 1350 ° C., TiN becomes abnormally coarse and stretch flangeability deteriorates. For this reason, the heating temperature of the steel material is limited to 1250 ° C. or higher, preferably 1350 ° C. or lower.

加熱された鋼素材は、ついで、粗圧延と仕上圧延からなる熱間圧延を施される。本発明では、熱間圧延は1200℃以上の温度で開始する。すなわち、粗圧延の開始は1200℃以上とする。圧延開始温度が1200℃未満と低くなると、圧延による歪み誘起析出で微細TiNが生じやすくなり打抜き性が低下する。このため、熱間圧延(粗圧延)開始温度は1200℃以上に限定した。   The heated steel material is then subjected to hot rolling comprising rough rolling and finish rolling. In the present invention, hot rolling starts at a temperature of 1200 ° C. or higher. That is, the start of rough rolling is 1200 ° C. or higher. If the rolling start temperature is lower than 1200 ° C., fine TiN is likely to occur due to strain-induced precipitation by rolling, and the punchability is lowered. For this reason, the hot rolling (rough rolling) start temperature is limited to 1200 ° C. or higher.

粗圧延の条件は、所定形状の粗圧延バーを確保できればよく、圧延開始温度以外の条件はとくに限定する必要はない。
粗圧延終了後、ついで仕上圧延を施す。
仕上圧延は、仕上圧延終了温度を900℃以上とする圧延とする。仕上圧延終了温度が900℃未満では、フェライト粒が圧延方向に伸展しやすく、そのため、打抜き後の破断面に開口が生じやすい。このようなことから、仕上圧延終了温度を900℃以上に限定した。
仕上圧延終了後、冷却され、550℃以上の巻取り温度で巻き取る。
The conditions for rough rolling are not particularly limited as long as a rough rolling bar having a predetermined shape can be secured, and conditions other than the rolling start temperature are not particularly limited.
After the rough rolling, finish rolling is performed.
Finish rolling is rolling with a finish rolling finishing temperature of 900 ° C. or higher. When the finish rolling finish temperature is less than 900 ° C., the ferrite grains tend to extend in the rolling direction, so that an opening is likely to be formed on the fracture surface after punching. For this reason, the finish rolling finish temperature was limited to 900 ° C. or higher.
After finishing rolling, it is cooled and wound at a winding temperature of 550 ° C or higher.

仕上圧延終了後の冷却は、とくに限定する必要はないが、750℃までの平均冷却速度で50℃/s以上とすることが、強度の観点から好ましい。冷却速度が平均で、50℃/sを下回ると、金属組織を実質的にフェライト結晶粒で占めることが難しくなる。このようなことから、平均冷却速度は、好ましくは50℃/s以上とすることが好ましい。
巻取り温度が550℃未満では、組織が、帯状にベイナイト相が混在した金属組織を呈するようになる。このような帯状のベイナイト相が混在すると、打抜き面での開口が生じ、打抜き性が低下する。このため、巻取り温度は550℃以上に限定した。なお、好ましくは600℃以上である。また、巻取り温度の上限は、強度の観点から好ましくは750℃以下である。
The cooling after finishing rolling is not particularly limited, but is preferably 50 ° C./s or more at an average cooling rate up to 750 ° C. from the viewpoint of strength. If the cooling rate is below 50 ° C./s on average, it becomes difficult to substantially occupy the metal structure with ferrite crystal grains. For this reason, the average cooling rate is preferably 50 ° C./s or more.
When the coiling temperature is less than 550 ° C., the structure exhibits a metal structure in which a bainite phase is mixed in a band shape. When such a band-like bainite phase is mixed, an opening is formed on the punched surface, and the punchability is lowered. For this reason, the coiling temperature was limited to 550 ° C. or higher. In addition, Preferably it is 600 degreeC or more. The upper limit of the coiling temperature is preferably 750 ° C. or less from the viewpoint of strength.

なお、以上のようにして製造された熱延鋼板に対し、めっき処理により、鋼板表面にめっき皮膜を形成してもよい。めっき処理として、例えば、溶融亜鉛めっき処理を施し溶融亜鉛めっき皮膜を形成しても、或いは溶融亜鉛めっき処理後、更に合金化処理を施すことにより、鋼板表面に合金化溶融亜鉛めっき皮膜を形成してもよい。また、電気めっき処理を施して電気めっき皮膜を形成してもよい。   In addition, you may form a plating film in the steel plate surface with a plating process with respect to the hot-rolled steel plate manufactured as mentioned above. As a plating process, for example, even if a hot dip galvanizing process is performed to form a hot dip galvanized film, or after the hot dip galvanizing process, an alloying process is further performed to form an alloyed hot dip galvanized film on the surface of the steel sheet. May be. Also, an electroplating treatment may be performed to form an electroplating film.

以下、実施例に基づいてさらに、本発明について詳細に説明する。   Hereinafter, the present invention will be further described in detail based on examples.

表1に示す組成の溶鋼を、転炉により溶製したのち、表2に示す鋳造速度(引抜き速度)で連続鋳造して、肉厚270mmのスラブ(鋼素材)とした。なお、鋼1Oのみ肉厚50mmとした。ついで、これらのスラブを、表2に示す加熱温度に加熱した後、表2に示す圧延開始温度で粗圧延を行い、ついで表2に示す仕上圧延終了温度で仕上圧延を終了し、表2に示す冷却速度で冷却する。冷却後、表2に示す巻取り温度で巻取り、板厚:2.0mmの熱延鋼板(鋼帯)とした。なお、一部の熱延鋼板(鋼板No.8、No.9、No.31、No.32、No.33)については、酸洗して表層のスケールを除去したのち、溶融亜鉛めっき処理(480℃の亜鉛めっき浴(0.1%Al−Zn浴)中に浸漬)を施し、付着量:48g/mの溶融亜鉛めっき皮膜を形成し、さらに520℃で合金化処理を施し、合金化溶融亜鉛めっき鋼板とした。 The molten steel having the composition shown in Table 1 was melted in a converter and then continuously cast at the casting speed (drawing speed) shown in Table 2 to obtain a slab (steel material) having a thickness of 270 mm. Only steel 1O had a wall thickness of 50 mm. Next, these slabs were heated to the heating temperature shown in Table 2, and then rough rolled at the rolling start temperature shown in Table 2, and then finish rolling was finished at the finish rolling end temperature shown in Table 2. Table 2 Cool at the indicated cooling rate. After cooling, it was wound at the winding temperature shown in Table 2 to obtain a hot-rolled steel sheet (steel strip) having a thickness of 2.0 mm. For some hot-rolled steel plates (steel plates No. 8, No. 9, No. 31, No. 32, No. 33), after pickling to remove the scale of the surface layer, hot dip galvanizing treatment ( Dip in a 480 ° C galvanizing bath (0.1% Al-Zn bath) to form a hot-dip galvanized film with a coating weight of 48g / m 2 and further alloying at 520 ° C for alloying and melting A galvanized steel sheet was obtained.

得られた熱延鋼板から試験片を採取し、組織観察、引張試験、穴拡げ試験を行った。試験方法は次のとおりとした。
(1)組織観察
得られた熱延鋼板から組織観察用試験片を採取し、圧延方向と平行な断面(L断面)を機械研磨し、ナイタール液で腐食したのち、走査型電子顕微鏡(倍率:3000倍)で組織観察を行い、撮像した。得られた組織写真を用いて、画像解析装置によりフェライト相、フェライト相以外の組織の種類、およびそれらの組織分率(面積率)を求めた。
Test pieces were collected from the obtained hot-rolled steel sheet and subjected to structure observation, tensile test, and hole expansion test. The test method was as follows.
(1) Microstructure observation A specimen for microstructural observation is collected from the obtained hot-rolled steel sheet, a cross section (L cross section) parallel to the rolling direction is mechanically polished and corroded with a nital solution, and then a scanning electron microscope (magnification: The tissue was observed and imaged at 3000x. Using the obtained structure photograph, the type of structure other than the ferrite phase and the ferrite phase, and the structure fraction (area ratio) thereof were determined by an image analysis apparatus.

また、得られた熱延鋼板から透過型電子顕微鏡観察用薄膜を作製し、透過型電子顕微鏡で観察し、Tiを含む微細炭化物の平均径およびTiNの平均サイズを求めた。なお、Tiを含む微細炭化物は、340000倍で30視野以上観察し撮像した。得られた組織写真を用い画像解析により、合計で300個以上のTiを含む微細炭化物について、円近似で直径をもとめ、それらの値を算術平均して、その鋼板(試験片)におけるTiを含む微細炭化物の平均径とした。   Moreover, the thin film for transmission electron microscope observation was produced from the obtained hot-rolled steel plate, and it observed with the transmission electron microscope, and calculated | required the average diameter of the fine carbide | carbonized_material containing Ti, and the average size of TiN. Note that fine carbides containing Ti were imaged by observing 30 or more fields at 340,000 times. By image analysis using the obtained structure photograph, the diameter of the fine carbide containing a total of 300 or more Ti was obtained by circular approximation, and those values were arithmetically averaged to include Ti in the steel sheet (test piece). The average diameter of fine carbides was used.

また、TiNのサイズは、1000倍で10視野以上観察し撮像し、得られた組織写真を用い、画像解析により、合計で30個以上のTiNについてサイズを求めた。TiNは立方体又は直方体であることから、そのサイズを立方体では1辺の長さ、直方体では一番長い辺と短い辺を算術平均し、その値を個々のTiNのサイズとして求め、それらの値を算術平均して、その鋼板(試験片)におけるTiN平均サイズとした。
(2)引張試験
得られた熱延鋼板から、圧延方向に対し直角方向を引張方向とするJIS 5号引張試験片(GL:50mm)を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、引張強さTSを求めた。
(3)打抜き性試験
得られた熱延鋼板から、試験片(大きさ:50mm×50mm)を採取し、30mmφの円筒ポンチで打ち抜いた。なお、クリアランスは25%とした。打抜き後に、試験片の打抜き破面を観察し、破断面の開口部長さを測定した。開口部長さは、次のようにして算出した(図1参照)。
In addition, the size of TiN was observed and imaged by 10 times or more at 1000 times, and the obtained tissue photograph was used to obtain the size of 30 or more TiN in total by image analysis. Since TiN is a cube or a rectangular parallelepiped, its size is the average of the length of one side in a cube and the longest and shortest sides in a rectangular parallelepiped, and the value is obtained as the size of each TiN. Arithmetic average was taken as the average TiN size in the steel sheet (test piece).
(2) Tensile test From the obtained hot-rolled steel sheet, a JIS No. 5 tensile test piece (GL: 50mm) with the direction perpendicular to the rolling direction as the tensile direction was sampled, and the tensile test was performed in accordance with the provisions of JIS Z 2241. And tensile strength TS was determined.
(3) Punchability test A test piece (size: 50 mm x 50 mm) was sampled from the obtained hot-rolled steel sheet and punched with a 30 mmφ cylindrical punch. The clearance was 25%. After punching, the punched fracture surface of the test piece was observed, and the opening length of the fracture surface was measured. The opening length was calculated as follows (see FIG. 1).

開口部の両端と打抜き穴部の中心を結ぶ扇形を描き、その中心角θi(rad.)を測定する。得られた中心角の合計θ Draw a fan that connects both ends of the opening and the center of the punched hole, and measure the center angle θ i (rad.). Total angle θ obtained

Figure 2013133524
Figure 2013133524

と扇形の半径r(15mm)との積rθを求め、開口部の長さとした。なお、開口部長さが10以下である場合を打抜き加工性が良好であると評価した。
(4)穴拡げ試験
得られた鋼板から、穴拡げ試験片(大きさ:130mm×130mm)を採取し、穴拡げ試験片にポンチにより初期直径do(10mmφ)の穴を打抜き加工で形成した。これら試験片を用いて、穴拡げ試験を実施した。試験は、打抜き加工で形成された穴に、頂角:60゜の円錐ポンチを挿入し、該穴を押し広げ、亀裂が鋼板(試験片)を貫通したときの穴の径dを測定し、次式で定義される穴拡げ率λ(%)を算出した。
And the product rθ of the fan-shaped radius r (15 mm) was obtained as the length of the opening. The case where the opening length was 10 or less was evaluated as having good punching workability.
(4) Hole Expansion Test A hole expansion test piece (size: 130 mm × 130 mm) was taken from the obtained steel sheet, and a hole with an initial diameter do (10 mmφ) was formed by punching the hole expansion test piece. Using these test pieces, a hole expansion test was performed. In the test, a conical punch having a vertex angle of 60 ° is inserted into a hole formed by punching, the hole is expanded, and the diameter d of the hole when the crack penetrates the steel plate (test piece) is measured. The hole expansion rate λ (%) defined by the following formula was calculated.

穴拡げ率λ(%)={(d−do)/do}×100
穴拡げ率λが100%以上である場合を伸びフランジ加工性に優れたと評価した。
得られた結果を表3に示す。
Hole expansion rate λ (%) = {(d−do) / do} × 100
The case where the hole expansion ratio λ was 100% or more was evaluated as excellent in stretch flangeability.
The obtained results are shown in Table 3.

Figure 2013133524
Figure 2013133524

Figure 2013133524
Figure 2013133524

Figure 2013133524
Figure 2013133524

本発明例はいずれも、引張強さTS:780MPa以上の高強度と、良好な伸びフランジ加工性、および良好な打抜き性を兼備した高張力熱延鋼板である。一方、本発明の範囲から外れる比較例は、所望の高強度が確保できていないか、或いは打抜き性が低下しているか、伸びフランジ加工性が低下している。   Each of the examples of the present invention is a high-tensile hot-rolled steel sheet that has a high tensile strength TS: 780 MPa or more, a good stretch flangeability, and a good punching property. On the other hand, in the comparative example that is out of the scope of the present invention, the desired high strength cannot be ensured, the punchability is lowered, or the stretch flange workability is lowered.

Claims (7)

質量%で、
C:0.03〜0.06%、 Si:0.1%以下、
Mn:0.6%以下、 P:0.025%以下、
S:0.02%以下、 N:0.0020〜0.0100%、
Al:0.1%以下、 Ti:0.135〜0.195%
を含有し、残部Feおよび不可避的不純物からなる組成と、平均径が6nm未満であるTiを含む微細炭化物がフェライト結晶粒内に分散し、該フェライト結晶粒が全金属組織の95%以上の面積を占めており、該フェライト結晶粒よりなる金属組織中に平均サイズが20nm以上であるTiNが分散した組織と、を有し、優れた打抜き性と優れた伸びフランジ加工性とを兼備することを特徴とする引張強さが780〜900MPaである高張力熱延鋼板。
% By mass
C: 0.03-0.06%, Si: 0.1% or less,
Mn: 0.6% or less, P: 0.025% or less,
S: 0.02% or less, N: 0.0020 to 0.0100%,
Al: 0.1% or less, Ti: 0.135-0.195%
And a fine carbide containing Ti having an average diameter of less than 6 nm and a composition comprising the balance Fe and inevitable impurities is dispersed in the ferrite crystal grains, and the ferrite crystal grains have an area of 95% or more of the total metal structure And having a structure in which TiN having an average size of 20 nm or more is dispersed in a metal structure composed of the ferrite crystal grains, and having both excellent punchability and excellent stretch flangeability A high-tensile hot-rolled steel sheet with a characteristic tensile strength of 780 to 900 MPa.
前記組成に加えてさらに、質量%でB:0.0035%以下を含有することを特徴とする請求項1に記載の高張力熱延鋼板。   The high-tensile hot-rolled steel sheet according to claim 1, further comprising B: 0.0035% or less by mass% in addition to the composition. 前記組成に加えてさらに、質量%で、Cu、Sn、Ni、Ca、Mg、Co、As、Cr、Mo、Sb、W、Nb、Pb、Ta、REM、V、Cs、Zr、Hfのいずれか1種以上を合計で、1%以下含有することを特徴とする請求項1または2に記載の高張力熱延鋼板。   In addition to the above composition, any one of Cu, Sn, Ni, Ca, Mg, Co, As, Cr, Mo, Sb, W, Nb, Pb, Ta, REM, V, Cs, Zr, and Hf can be used. The high-strength hot-rolled steel sheet according to claim 1 or 2, wherein the total content is 1% or less. 鋼板表面にめっき皮膜を有することを特徴とする請求項1ないし3のいずれかに記載の高張力熱延鋼板。   The high-tensile hot-rolled steel sheet according to any one of claims 1 to 3, further comprising a plating film on the surface of the steel sheet. 質量%で、
C:0.03〜0.06%、 Si:0.1%以下、
Mn:0.6%以下、 P:0.025%以下、
S:0.02%以下、 N:0.0020〜0.0100%、
Al:0.1%以下、 Ti:0.135〜0.195%
を含有し、残部Feおよび不可避的不純物からなる組成の溶鋼を、鋳造速度:5m/min以下の連続鋳造法で鋼素材とした後、該鋼素材に、加熱温度:1250℃以上に加熱したのち、圧延開始温度:1200℃以上とする粗圧延と、圧延終了温度:900℃以上とする仕上圧延とからなる熱間圧延を施し、ついで冷却し、巻取り温度:550℃以上で巻き取ることを特徴とする、引張強さ:780〜900MPaで、打抜き性と伸びフランジ加工性に優れた高張力熱延鋼板の製造方法。
% By mass
C: 0.03-0.06%, Si: 0.1% or less,
Mn: 0.6% or less, P: 0.025% or less,
S: 0.02% or less, N: 0.0020 to 0.0100%,
Al: 0.1% or less, Ti: 0.135-0.195%
After the molten steel having a composition comprising the balance Fe and inevitable impurities is made into a steel material by a continuous casting method with a casting speed of 5 m / min or less, the steel material is heated to a heating temperature of 1250 ° C. or higher. The rolling start temperature is 1200 ° C or higher, and the rolling end temperature is 900 ° C or higher and finish rolling is applied, followed by cooling and winding at a winding temperature of 550 ° C or higher. A method for producing a high-tensile hot-rolled steel sheet, which is characterized by a tensile strength of 780 to 900 MPa and excellent in punchability and stretch flangeability.
前記組成に加えてさらに、質量%でB:0.0035%以下を含有することを特徴とする請求項5に記載の高張力熱延鋼板の製造方法。   The method for producing a high-tensile hot-rolled steel sheet according to claim 5, further comprising B: 0.0035% or less by mass% in addition to the composition. 前記組成に加えてさらに、質量%で、Cu、Sn、Ni、Ca、Mg、Co、As、Cr、Mo、Sb、W、Nb、Pb、Ta、REM、V、Cs、Zr、Hfのいずれか1種以上を合計で1%以下含有することを特徴とする請求項5または6に記載の高張力熱延鋼板の製造方法。   In addition to the above composition, any one of Cu, Sn, Ni, Ca, Mg, Co, As, Cr, Mo, Sb, W, Nb, Pb, Ta, REM, V, Cs, Zr, and Hf can be used. The method for producing a high-tensile hot-rolled steel sheet according to claim 5 or 6, wherein one or more types are contained in total of 1% or less.
JP2011285916A 2011-12-27 2011-12-27 High-tensile hot-rolled steel sheet excellent in punchability and stretch flangeability and manufacturing method thereof Active JP5884164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011285916A JP5884164B2 (en) 2011-12-27 2011-12-27 High-tensile hot-rolled steel sheet excellent in punchability and stretch flangeability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011285916A JP5884164B2 (en) 2011-12-27 2011-12-27 High-tensile hot-rolled steel sheet excellent in punchability and stretch flangeability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013133524A true JP2013133524A (en) 2013-07-08
JP5884164B2 JP5884164B2 (en) 2016-03-15

Family

ID=48910423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011285916A Active JP5884164B2 (en) 2011-12-27 2011-12-27 High-tensile hot-rolled steel sheet excellent in punchability and stretch flangeability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5884164B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021196365A1 (en) * 2020-03-30 2021-10-07 南京钢铁股份有限公司 High-ductility pipeline steel plate and manufacturing method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244651A (en) * 2003-02-10 2004-09-02 Nippon Steel Corp High-strength hot-rolled steel sheet superior in hole-expandability and ductility, and manufacturing method therefor
JP2004250749A (en) * 2003-02-20 2004-09-09 Nippon Steel Corp High strength thin steel sheet having burring property, and production method therefor
JP2004315857A (en) * 2003-04-14 2004-11-11 Nippon Steel Corp High-strength hot-rolled steel sheet superior in stampability, and manufacturing method therefor
JP2005298924A (en) * 2004-04-13 2005-10-27 Nippon Steel Corp High strength hot rolled steel sheet having excellent stamping workability and its production method
JP2007016319A (en) * 2006-08-11 2007-01-25 Sumitomo Metal Ind Ltd High tensile hot-dip galvanized steel sheet, and method for producing the same
JP2007247049A (en) * 2006-03-20 2007-09-27 Nippon Steel Corp High strength hot rolled steel sheet having excellent stretch-flanging property
JP2007302992A (en) * 2006-04-11 2007-11-22 Nippon Steel Corp High strength hot rolled steel sheet and galvanized steel sheet having excellent stretch flange formability and method for producing them

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244651A (en) * 2003-02-10 2004-09-02 Nippon Steel Corp High-strength hot-rolled steel sheet superior in hole-expandability and ductility, and manufacturing method therefor
JP2004250749A (en) * 2003-02-20 2004-09-09 Nippon Steel Corp High strength thin steel sheet having burring property, and production method therefor
JP2004315857A (en) * 2003-04-14 2004-11-11 Nippon Steel Corp High-strength hot-rolled steel sheet superior in stampability, and manufacturing method therefor
JP2005298924A (en) * 2004-04-13 2005-10-27 Nippon Steel Corp High strength hot rolled steel sheet having excellent stamping workability and its production method
JP2007247049A (en) * 2006-03-20 2007-09-27 Nippon Steel Corp High strength hot rolled steel sheet having excellent stretch-flanging property
JP2007302992A (en) * 2006-04-11 2007-11-22 Nippon Steel Corp High strength hot rolled steel sheet and galvanized steel sheet having excellent stretch flange formability and method for producing them
JP2007016319A (en) * 2006-08-11 2007-01-25 Sumitomo Metal Ind Ltd High tensile hot-dip galvanized steel sheet, and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021196365A1 (en) * 2020-03-30 2021-10-07 南京钢铁股份有限公司 High-ductility pipeline steel plate and manufacturing method therefor

Also Published As

Publication number Publication date
JP5884164B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
KR102173601B1 (en) High-strength thin steel sheet and its manufacturing method
JP5609786B2 (en) High-tensile hot-rolled steel sheet excellent in workability and manufacturing method thereof
WO2011162412A1 (en) High-strength hot-rolled steel sheet having excellent stretch flangeability and method for producing same
TWI486458B (en) High strength hot-rolled steel sheet and method for manufacturing the same
TW201335386A (en) Galvanized steel sheet and method for manufacturing the same
JP5884476B2 (en) High-tensile hot-rolled steel sheet excellent in bending workability and manufacturing method thereof
JP2013133497A (en) High-strength hot-rolled steel sheet excellent in stretch flange formability, and manufacturing method therefor
JP5892147B2 (en) High strength hot rolled steel sheet and method for producing the same
JP5915412B2 (en) High strength hot-rolled steel sheet excellent in bendability and manufacturing method thereof
TW201326422A (en) High strength hot-rolled steel sheet and method for manufacturing the same
KR20140129148A (en) High-strength hot-rolled steel plate with good ductility, stretch flangeability and material quality uniformity, and process for manufacturing same
WO2015002190A1 (en) Cold-rolled steel plate, galvanized cold-rolled steel plate, and method for manufacturing said plates
WO2017169869A1 (en) Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method
WO2020026594A1 (en) High-strength hot-rolled plated steel sheet
JP6224704B2 (en) Manufacturing method of high strength hot-rolled steel sheet
JP5482779B2 (en) High-tensile hot-rolled steel sheet excellent in punchability and stretch flangeability and manufacturing method thereof
JP5610089B2 (en) High-tensile hot-rolled steel sheet and manufacturing method thereof
JP6052503B2 (en) High-strength hot-rolled steel sheet and its manufacturing method
CN110402297B (en) High-strength hot-rolled plated steel sheet
JP5594438B2 (en) High tensile hot rolled galvanized steel sheet and method for producing the same
JP5884164B2 (en) High-tensile hot-rolled steel sheet excellent in punchability and stretch flangeability and manufacturing method thereof
WO2013099196A1 (en) High-tension hot-rolled steel sheet and manufacturing method therefor
JP5987999B1 (en) High strength steel plate and manufacturing method thereof
JP2014025132A (en) Hot-dip metal coated steel sheet and manufacturing method therefor

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130716

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5884164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250