JP2013028842A - Steel plate for high strength high workability can and method for manufacturing the same - Google Patents

Steel plate for high strength high workability can and method for manufacturing the same Download PDF

Info

Publication number
JP2013028842A
JP2013028842A JP2011166110A JP2011166110A JP2013028842A JP 2013028842 A JP2013028842 A JP 2013028842A JP 2011166110 A JP2011166110 A JP 2011166110A JP 2011166110 A JP2011166110 A JP 2011166110A JP 2013028842 A JP2013028842 A JP 2013028842A
Authority
JP
Japan
Prior art keywords
less
steel plate
rolling
workability
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011166110A
Other languages
Japanese (ja)
Other versions
JP5810714B2 (en
Inventor
Takumi Tanaka
田中  匠
Katsumi Kojima
克己 小島
Yoichi Tobiyama
洋一 飛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011166110A priority Critical patent/JP5810714B2/en
Priority to CN201280037600.4A priority patent/CN103717770B/en
Priority to TW101127171A priority patent/TWI460029B/en
Priority to PCT/JP2012/004790 priority patent/WO2013018334A1/en
Priority to MYPI2013004743A priority patent/MY167901A/en
Publication of JP2013028842A publication Critical patent/JP2013028842A/en
Application granted granted Critical
Publication of JP5810714B2 publication Critical patent/JP5810714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0468Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Abstract

PROBLEM TO BE SOLVED: To provide a steel plate for a high-strength high-workability can and to provide a method for manufacturing the same.SOLUTION: The steel plate includes: 0.001% or more and 0.080% or less of C; 0.003% or more and 0.100% or less of Si; 0.10% or more and 0.80% or less of Mn; 0.001% or more and 0.100% or less of P; 0.001% or more and 0.020% or less of S; 0.005% or more and 0.100% or less of Al; 0.0050% or more and 0.0150% or less of N; 0.0002% or more and 0.0050% or less of B; and the balance of Fe and inevitable impurities. The cross-section surface in the rolling direction includes, in area ratio, 0.01-1.00% of crystal grains whose elongation rate is 5.0 or more. Such steel plate for cans can be obtained in the following. The slab reheating temperature of such steel plate is set at 1,200°C or higher, the steel plate is wound up at 650°C or lower after hot rolling, primary cold rolling is performed thereon, then continuous annealing is performed at a soaking temperature of 680-760°C for a soaking time of 10-20 seconds, and secondary cold rolling is performed thereon at a reduction ratio of 20% or lower.

Description

本発明は、高強度であり、かつ、高い加工性を有する缶用鋼板およびその製造方法に関するものである。   The present invention relates to a steel plate for cans having high strength and high workability, and a method for producing the same.

飲料缶や食缶に用いられる鋼板のうち、蓋や底、3ピース缶の胴、絞り缶などには、DR(Double Reduce)材と呼ばれる鋼板が用いられる場合がある。焼鈍の後に再度冷間圧延を行うDR材は、圧延率の小さい調質圧延のみを行うSR(Single Reduce)材に比べて板厚を薄くすることが容易であり、薄い鋼板を用いることによりコストを低減することが可能となる。   Among steel plates used for beverage cans and food cans, steel plates called DR (Double Reduce) materials may be used for lids, bottoms, 3-piece can bodies, drawn cans, and the like. DR material, which is cold-rolled again after annealing, is easier to reduce the thickness than SR (Single Reduce) material, which only performs temper rolling with a small rolling ratio. Can be reduced.

DR材を製造するDR法は焼鈍後に冷間圧延を施すことで加工硬化が生じるため、薄くて硬い鋼板を製造することができる。しかし、その反面、DR法により製造されたDR材は延性に乏しいため、SR材に比べて加工性が劣る。   In the DR method for producing a DR material, work hardening occurs by performing cold rolling after annealing, so that a thin and hard steel plate can be produced. However, on the other hand, the DR material manufactured by the DR method has poor ductility, so that the workability is inferior to that of the SR material.

3ピースで構成される食缶や飲料缶の胴材は、筒状に成形された後、蓋や底を巻き締めるために両端にフランジ加工が施される。そのため、缶胴端部には良好な伸びが要求される。   The body of food cans and beverage cans composed of three pieces is molded into a cylindrical shape, and then flanged at both ends in order to tighten the lid and bottom. Therefore, good elongation is required at the end of the can body.

一方で、製缶素材としての鋼板は板厚に応じた強度が必要とされ、DR材の場合は薄くすることによる経済効果を確保するために、SR材以上の引張強度(約520MPa以上)が必要とされる。   On the other hand, the steel plate as a can-making material requires strength according to the plate thickness, and in the case of DR material, tensile strength (about 520 MPa or more) is higher than that of SR material in order to ensure the economic effect of thinning. Needed.

従来用いられてきたDR材では、上記のような加工性と強度を両立することは困難であり、食缶や飲料缶の胴材には主にSR材が用いられてきた。しかし、現在、コスト低減の観点から板厚を薄くするために、食缶や飲料缶の胴材に対してもDR材を用いることが望まれており、DR材の適用を拡大する要求が高まっている。   Conventionally used DR materials are difficult to achieve both the above-mentioned processability and strength, and SR materials have been mainly used for food cans and beverage cans. However, at present, in order to reduce the plate thickness from the viewpoint of cost reduction, it is desired to use DR material for the body of food cans and beverage cans, and the demand for expanding the application of DR material is increasing ing.

これらを受けて、特許文献1には、低炭素鋼中の固溶N量を一定量以上とし、全伸び値とランクフォード値を規定することによる、フランジ加工性に優れたDR材が開示されている。
特許文献2には、低炭素鋼中の固溶N量および固溶C量を規定することによる、フランジ加工性に優れたDR材が開示されている。
In response to this, Patent Document 1 discloses a DR material having excellent flange workability by setting the solid solution N amount in the low carbon steel to a certain amount or more and defining the total elongation value and the Rankford value. ing.
Patent Document 2 discloses a DR material excellent in flange workability by defining the amount of solute N and amount of solute C in low carbon steel.

特開2007-177315号公報JP 2007-177315 A 特開2002-294399号公報JP 2002-294399 A

しかしながら、上記従来技術は、いずれも問題点を抱えている。   However, all of the above conventional techniques have problems.

特許文献1においては、圧延方向の全伸び値をX、平均ランクフォード値をYで表した場合に、X≧10%かつY≧0.9、または、X<10%かつY≧−0.05X+1.4の関係を満たすDR鋼板が開示されているが、溶接条件によってはやはりHAZ軟化が生じ、フランジ割れが発生する。   In Patent Document 1, when X represents the total elongation value in the rolling direction and Y represents the average rankford value, X ≧ 10% and Y ≧ 0.9, or X <10% and Y ≧ −0.05X + 1.4. Although a DR steel sheet satisfying the above relationship is disclosed, depending on the welding conditions, HAZ softening still occurs and flange cracking occurs.

特許文献2に記載の製造方法では、連続焼鈍工程において過時効処理が必須であるため、製造コストが過大となる。   In the manufacturing method described in Patent Document 2, since overaging treatment is essential in the continuous annealing step, the manufacturing cost becomes excessive.

本発明は、かかる事情に鑑みてなされたもので、蓋、底および3ピース缶胴などの材料として好適である高強度高加工性缶用鋼板およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a steel plate for a high-strength, high-workability can that is suitable as a material for a lid, a bottom, a three-piece can body, and the like, and a method for manufacturing the same.

本発明者らは、上記課題を解決するために鋭意研究を行った。その結果、以下の知見を得た。
加工性と強度を両立するためには、適切な量のNを添加して強度を付与しつつ、焼鈍後の二次冷間圧延率を適切な範囲に制限して加工性を確保することが有効である。
また、熱間圧延前のスラブ再加熱温度が低いと、鋳造後に析出したAlNの再溶解が十分に行われず、熱間圧延後の巻き取り温度が高いと、析出するAlNが過多となる。いずれの場合も強度を担う固溶Nが不足するため、スラブ再加熱温度や巻き取り温度も適切な温度範囲に制限する必要がある。
さらに、焼鈍温度と焼鈍時間を適切な範囲に制限することで、強度と加工性の良好なバランスが実現できる。
The inventors of the present invention have intensively studied to solve the above problems. As a result, the following knowledge was obtained.
In order to achieve both workability and strength, it is necessary to secure the workability by adding an appropriate amount of N to limit the secondary cold rolling rate after annealing to an appropriate range. It is valid.
Further, if the slab reheating temperature before hot rolling is low, the AlN deposited after casting is not sufficiently remelted, and if the coiling temperature after hot rolling is high, the precipitated AlN becomes excessive. In any case, since the solute N responsible for the strength is insufficient, the slab reheating temperature and the winding temperature must be limited to an appropriate temperature range.
Furthermore, a good balance between strength and workability can be realized by limiting the annealing temperature and annealing time to an appropriate range.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]質量%で、C:0.001%以上0.080%以下、Si:0.003%以上0.100%以下、Mn:0.10%以上0.80%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0050%以上0.0150%以下、B:0.0002%以上0.0050%以下を含有し、残部はFeおよび不可避的不純物からなり、さらに、圧延方向断面において、結晶粒の展伸度が5.0以上である結晶粒を面積率にして0.01〜1.00%含むことを特徴とする高強度高加工性缶用鋼板。
[2]質量%で、C:0.001%以上0.080%以下、Si:0.003%以上0.100%以下、Mn:0.10%以上0.80%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0050%以上0.0150%以下、B:0.0002%以上0.0050%以下を含有し、残部はFeおよび不可避的不純物からなる鋼を、連続鋳造によりスラブとし、スラブ再加熱温度を1200℃以上として熱間圧延を行った後に650℃未満の温度で巻き取り、次いで、一次冷間圧延を行い、引き続き、均熱温度680〜760℃、均熱時間10〜20秒で連続焼鈍を行い、次いで、20%以下の圧延率で二次冷間圧延を行うことを特徴とする高強度高加工性缶用鋼板の製造方法。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] By mass%, C: 0.001% to 0.080%, Si: 0.003% to 0.100%, Mn: 0.10% to 0.80%, P: 0.001% to 0.100%, S: 0.001% to 0.020% Hereafter, Al: 0.005% or more and 0.100% or less, N: 0.0050% or more and 0.0150% or less, B: 0.0002% or more and 0.0050% or less, and the balance consists of Fe and inevitable impurities, and further, in the cross section in the rolling direction A steel plate for a high-strength, high-workability can, characterized by containing 0.01 to 1.00% in terms of area ratio of crystal grains having a grain elongation of 5.0 or more.
[2] By mass%, C: 0.001% to 0.080%, Si: 0.003% to 0.100%, Mn: 0.10% to 0.80%, P: 0.001% to 0.100%, S: 0.001% to 0.020% In the following, Al: 0.005% or more and 0.100% or less, N: 0.0050% or more and 0.0150% or less, B: 0.0002% or more and 0.0050% or less, and the balance is made of steel consisting of Fe and unavoidable impurities into slabs by continuous casting, After performing hot rolling with a slab reheating temperature of 1200 ° C or higher, winding at a temperature of less than 650 ° C, followed by primary cold rolling, followed by a soaking temperature of 680-760 ° C and a soaking time of 10-20 A method for producing a steel plate for a high-strength, high-workability can, characterized by performing continuous annealing in seconds and then performing secondary cold rolling at a rolling rate of 20% or less.
In addition, in this specification,% which shows the component of steel is mass% altogether.

本発明によれば、引張強度が520MPa以上でかつ破断伸びが7%以上の高強度高加工性缶用鋼板を得ることができる。
その結果、原板(鋼板)の加工性向上により、3ピース缶のフランジ加工時に割れを生じず、板厚の薄いDR材による製缶が可能となり、缶用鋼板の大幅な薄肉化が達成される。
According to the present invention, it is possible to obtain a high-strength and highly workable steel plate for cans having a tensile strength of 520 MPa or more and a breaking elongation of 7% or more.
As a result, by improving the workability of the original plate (steel plate), it is possible to make cans using DR material with a thin plate thickness, without causing cracks during flange processing of 3-piece cans. .

以下、本発明を詳細に説明する。
本発明の缶用鋼板は、引張強度が520MPa以上でかつ破断伸びが7%以上の高強度高加工性缶用鋼板である。そして、このような鋼板は、0.0050%以上0.0150%以下のNを含有する鋼を用いて、熱間圧延前のスラブ再加熱温度、熱間圧延後の巻き取り温度、焼鈍温度、焼鈍時間および二次冷間圧延率を適正な条件に設定することにより、製造することが可能となる。
Hereinafter, the present invention will be described in detail.
The steel plate for cans of the present invention is a high-strength, high-workability steel plate for cans having a tensile strength of 520 MPa or more and a breaking elongation of 7% or more. Such a steel sheet uses steel containing N of 0.0050% or more and 0.0150% or less, and uses a slab reheating temperature before hot rolling, a winding temperature after hot rolling, an annealing temperature, an annealing time, and two It becomes possible to manufacture by setting the next cold rolling rate to an appropriate condition.

本発明の缶用鋼板の成分組成について説明する。
C: 0.001%以上0.080%以下
C量が0.080%を超えると加工性が悪化し、冷間圧延性も低下する。また、鋳造時に亜包晶割れが生じやすくなり、スラブ手入れなどのコスト増の可能性がある。このため、C量は0.080%以下とする。一方、C量が0.001%未満になると結晶粒の租大化が顕著になり、加工部における肌荒れ不良の生じる危険性が増大する。従って、C量は0.001%以上0.080%以下とする。
The component composition of the steel plate for cans of this invention is demonstrated.
C: 0.001% to 0.080%
When the amount of C exceeds 0.080%, workability deteriorates and cold rollability also decreases. In addition, subperitectic cracks are likely to occur during casting, which may increase costs such as slab care. For this reason, the C content is 0.080% or less. On the other hand, when the amount of C is less than 0.001%, crystal grains become prominent and the risk of rough skin defects occurring in the processed portion increases. Therefore, the C content is 0.001% or more and 0.080% or less.

Si: 0.003%以上0.100%以下
Si量が0.100%を超えると、表面処理性の低下、耐食性の劣化等の問題を引き起こすので、上限は0.100%とする。一方、0.003%未満とするには精錬コストが過大となるため、下限は0.003%とする。
Si: 0.003% to 0.100%
If the amount of Si exceeds 0.100%, problems such as deterioration of surface treatment properties and deterioration of corrosion resistance are caused, so the upper limit is made 0.100%. On the other hand, if it is less than 0.003%, the refining cost becomes excessive, so the lower limit is made 0.003%.

Mn: 0.10%以上0.80%以下
Mnは、Sによる熱延中の赤熱脆性を防止し、結晶粒を微細化する作用を有し、望ましい材質を確保する上で必要な元素である。これらの効果を発揮するためには少なくとも0.10%以上の添加が必要である。一方、Mnを多量に添加し過ぎると、耐食性が劣化し、また鋼板が過剰に硬質化するので、上限は0.80%とする。
Mn: 0.10% to 0.80%
Mn has an effect of preventing red heat embrittlement during hot rolling due to S and refines crystal grains, and is an element necessary for securing a desirable material. In order to exert these effects, it is necessary to add at least 0.10%. On the other hand, if too much Mn is added, the corrosion resistance deteriorates and the steel sheet becomes excessively hard, so the upper limit is made 0.80%.

P:0.001%以上0.100%以下
Pは、鋼を硬質化させ、加工性を悪化させると同時に、耐食性をも悪化させる有害な元素である。そのため、上限は0.100%とする。一方、Pを0.001%未満とするには脱Pコストが過大となる。よって、下限は0.001%とする。
P: 0.001% to 0.100%
P is a harmful element that hardens steel and deteriorates workability and at the same time deteriorates corrosion resistance. Therefore, the upper limit is made 0.100%. On the other hand, the P removal cost is excessive to make P less than 0.001%. Therefore, the lower limit is made 0.001%.

S:0.001%以上0.020%以下
Sは、鋼中で介在物として存在し、加工性の低下、耐食性の劣化をもたらす有害な元素である。そのため、上限は0.020%とする。一方、Sを0.001%未満とするには脱Sコストが過大となる。よって、下限は0.001%とする。
S: 0.001% to 0.020%
S exists as an inclusion in steel, and is a harmful element that causes deterioration in workability and corrosion resistance. Therefore, the upper limit is made 0.020%. On the other hand, in order to make S less than 0.001%, the cost of removing S becomes excessive. Therefore, the lower limit is made 0.001%.

Al: 0.005%以上0.100%以下
Alは、製鋼時の脱酸材として必要な元素である。添加量が少ないと、脱酸が不十分となり、介在物が増加し、加工性が劣化する。含有量が0.005%以上であれば十分に脱酸が行われているとみなすことができる。一方、含有量が0.100%を超えると、アルミナクラスターなどに起因する表面欠陥の発生頻度が増加する。よって、Al量は0.005%以上0.100%以下とする。
Al: 0.005% to 0.100%
Al is an element necessary as a deoxidizer during steelmaking. When the addition amount is small, deoxidation becomes insufficient, inclusions increase, and workability deteriorates. If the content is 0.005% or more, it can be considered that deoxidation is sufficiently performed. On the other hand, when the content exceeds 0.100%, the frequency of occurrence of surface defects due to alumina clusters and the like increases. Therefore, the Al content is 0.005% or more and 0.100% or less.

N: 0.0050%以上0.0150%以下
本発明の缶用鋼板においては、二次冷間圧延率を抑えて伸びを確保する一方、N量を高めとすることで高強度に寄与する。N量が0.0050%未満であると、鋼板の薄肉化による顕著な経済効果を得るために必要な引張強度520MPaが得られない。したがって、N量は0.0050%以上とする。一方、N量が0.0150%を超えると過剰に硬質となり、加工性を確保したまま二次冷間圧延で薄い鋼板を製造することが困難となる。したがって、N量は0.0150%以下とする。
N: 0.0050% or more and 0.0150% or less In the steel plate for cans of the present invention, the secondary cold rolling rate is suppressed to ensure elongation, while increasing the N amount contributes to high strength. If the N content is less than 0.0050%, the tensile strength of 520 MPa necessary for obtaining a remarkable economic effect by thinning the steel sheet cannot be obtained. Therefore, the N content is 0.0050% or more. On the other hand, if the N content exceeds 0.0150%, it becomes excessively hard, and it becomes difficult to produce a thin steel plate by secondary cold rolling while ensuring workability. Therefore, the N content is 0.0150% or less.

B: 0.0002%以上0.0050%以下
Bは溶接部近傍の熱影響部における粒成長を抑制し、局所的な強度低下によるフランジ加工時の割れを防ぐ効果がある。このような割れを防止する効果を十分に得るためには、B量は0.0002%以上必要である。一方、0.0050%を超えても更なる効果は望めず、コスト高となる。したがって、B量は0.0002%以上0.0050%以下とする。
B: 0.0002% to 0.0050%
B has the effect of suppressing grain growth in the heat-affected zone near the weld and preventing cracking during flange processing due to local strength reduction. In order to sufficiently obtain the effect of preventing such cracking, the amount of B needs to be 0.0002% or more. On the other hand, if it exceeds 0.0050%, no further effect can be expected, resulting in high costs. Therefore, the B content is 0.0002% or more and 0.0050% or less.

残部はFeおよび不可避的不純物とするが、公知の溶接缶用鋼板中に一般的に含有される成分元素を含有していても良い。例えば、Cr:0.10%以下、Cu:0.20%以下、Ni:0.15%以下、Mo:0.05%以下、Ti:0.3%以下、Nb:0.3%以下、Zr:0.3%以下、V:0.3%以下、Ca:0.01%以下等の成分元素を目的に応じて含有させることができる。   The balance is Fe and inevitable impurities, but may contain component elements generally contained in known steel sheets for welding cans. For example, Cr: 0.10% or less, Cu: 0.20% or less, Ni: 0.15% or less, Mo: 0.05% or less, Ti: 0.3% or less, Nb: 0.3% or less, Zr: 0.3% or less, V: 0.3% or less, Component elements such as Ca: 0.01% or less can be contained depending on the purpose.

次に、本発明の高強度高加工性缶用鋼板の結晶粒について説明する。   Next, the crystal grains of the steel sheet for a high-strength and high-workability can according to the present invention will be described.

圧延方向断面において、展伸度が5.0以上である結晶粒を面積率にして0.01〜1.00%含む必要がある。通常、上に示すようなN量の鋼を用いてDR材を作製すると、圧延方向断面における結晶粒の展伸度は3.0未満となる。しかし、焼鈍温度および焼鈍時間を適切な範囲に制限することにより、一部の結晶粒の展伸度が大きくなって現れる。そして、メカニズムは明らかとなっていないが、展伸度が5.0以上の結晶粒が0.01%以上の面積率で存在する場合、加工性が向上する。面積率が1.00%を超えると、逆に加工性を阻害するようになる。以上より、展伸度が5.0以上の結晶粒の面積率は0.01〜1.00%とする。   In the cross section in the rolling direction, it is necessary that the crystal grains having a degree of elongation of 5.0 or more be included in an area ratio of 0.01 to 1.00%. Usually, when a DR material is produced using N steel as shown above, the degree of elongation of crystal grains in the cross section in the rolling direction is less than 3.0. However, by limiting the annealing temperature and annealing time to appropriate ranges, the degree of elongation of some crystal grains appears to increase. And although the mechanism is not clear, the workability is improved when crystal grains having an extension degree of 5.0 or more are present at an area ratio of 0.01% or more. If the area ratio exceeds 1.00%, the processability is adversely affected. From the above, the area ratio of crystal grains having a degree of extension of 5.0 or more is set to 0.01 to 1.00%.

なお、圧延方向断面における結晶粒の展伸度は文献「JIS G 0551」に示される結晶粒度の顕微鏡試験方法により測定することができる。また、本発明の鋼組成・製造方法によれば、形成するセメンタイト・パーライトはフェライト粒に比べて非常に小さいので、結晶粒径・展伸度の測定はフェライト結晶粒のみを対象として行う。
結晶粒の面積率は文献「JIS G 0555 附属書1」に示される点算法により測定することができる。これは鋼材中の非金属介在物の面積率測定を目的としているが、上記のような特定形状の結晶粒の面積率測定にも用いることができる。また、顕微鏡写真と任意の画像解析装置を用いて面積率を測定することも可能である。
The degree of elongation of the crystal grains in the cross section in the rolling direction can be measured by a microscopic test method for crystal grain size described in the document “JIS G 0551”. Further, according to the steel composition / manufacturing method of the present invention, the cementite and pearlite to be formed are very small compared to the ferrite grains, so the measurement of the crystal grain size and elongation is performed only on the ferrite crystal grains.
The area ratio of crystal grains can be measured by the point calculation method shown in the document “JIS G 0555 Annex 1”. This is intended for measuring the area ratio of non-metallic inclusions in steel materials, but can also be used for measuring the area ratio of crystal grains having a specific shape as described above. It is also possible to measure the area ratio using a micrograph and an arbitrary image analysis device.

次に、本発明の缶用鋼板の製造方法について説明する。
本発明の高強度高加工性缶用鋼板は、連続鋳造によって製造された上記組成からなる鋼スラブを用い、熱間圧延前のスラブ再加熱温度を1200℃以上とし、熱間圧延を行った後に650℃未満の温度で巻き取り、次いで、一次冷間圧延を行い、引き続き、均熱温度680〜760℃、均熱時間10〜20秒で連続焼鈍を行い、次いで、20%以下の圧延率で二次冷間圧延を行うことで製造される。
Next, the manufacturing method of the steel plate for cans of this invention is demonstrated.
The steel sheet for high strength and high workability cans of the present invention uses a steel slab having the above composition produced by continuous casting, and the slab reheating temperature before hot rolling is 1200 ° C. or more, and after hot rolling Winding at a temperature below 650 ° C., followed by primary cold rolling, followed by continuous annealing at a soaking temperature of 680 to 760 ° C. and a soaking time of 10 to 20 seconds, and then at a rolling rate of 20% or less Manufactured by secondary cold rolling.

通常は、一回の冷間圧延のみでは顕著な経済効果が得られるような薄い板厚とすることは困難である。すなわち、一回の冷間圧延で薄い板厚を得るには圧延機への負荷が過大となり、設備能力によっては不可能である。例えば、最終板厚を0.15mmとする場合には、熱間圧延後の板厚を2.0mmとすると、92.5%と大きな一次冷間圧延率が必要となる。また、冷間圧延後の板厚を小さくするために熱間圧延の段階で通常よりも薄く圧延することも考えられるが、熱間圧延の圧延率を大きくすると、圧延中の鋼板の温度低下が大きくなり、所定の仕上げ圧延温度が得られなくなる。さらに、焼鈍前の板厚を小さくすると、連続焼鈍を施す場合は、焼鈍中に鋼板の破断や変形等のトラブルが生じる可能性が大きくなる。これらの理由により、本発明においては焼鈍後に二回目の冷間圧延を施し、極薄の鋼板を得ることとする。   Usually, it is difficult to obtain a thin plate thickness that can provide a remarkable economic effect by only one cold rolling. That is, in order to obtain a thin plate thickness by a single cold rolling, the load on the rolling mill is excessive, which is impossible depending on the equipment capacity. For example, when the final plate thickness is 0.15 mm, the primary cold rolling rate as large as 92.5% is required when the plate thickness after hot rolling is 2.0 mm. In order to reduce the sheet thickness after cold rolling, it is conceivable that rolling is performed thinner than usual in the hot rolling stage, but if the rolling rate of hot rolling is increased, the temperature of the steel sheet during rolling is decreased. A predetermined finish rolling temperature cannot be obtained. Furthermore, if the plate thickness before annealing is reduced, when continuous annealing is performed, the possibility of troubles such as breakage and deformation of the steel plate during annealing increases. For these reasons, in the present invention, the second cold rolling is performed after annealing to obtain an extremely thin steel plate.

熱間圧延前のスラブ再加熱温度:1200℃以上
熱間圧延前のスラブ再加熱温度が1200℃未満であると、鋳造後に析出したAlNの再溶解が十分に行われず、強度を担う固溶N量が不足となる。よって、熱間圧延前のスラブ再加熱温度は1200℃以上とする。好ましくは、1200〜1300℃である。
Slab reheating temperature before hot rolling: 1200 ° C or more If the slab reheating temperature before hot rolling is less than 1200 ° C, the AlN deposited after casting will not be sufficiently remelted, and solid solution N will bear strength The amount is insufficient. Therefore, the slab reheating temperature before hot rolling is set to 1200 ° C. or higher. Preferably, it is 1200-1300 degreeC.

熱間圧延後の巻き取り温度:650℃未満
熱間圧延後の巻き取り温度が650℃以上であると、AlNが過剰に析出し、強度を担う固溶N量が不足となる。よって、熱間圧延後の巻き取り温度は650℃未満とする。好ましくは、580〜620℃である。
Winding temperature after hot rolling: less than 650 ° C. When the winding temperature after hot rolling is 650 ° C. or more, AlN is excessively precipitated, and the amount of solute N responsible for strength becomes insufficient. Therefore, the coiling temperature after hot rolling is less than 650 ° C. Preferably, it is 580-620 degreeC.

一次冷間圧延
一次冷間圧延率は特に限定しないが、最終的に極薄の鋼板を得るためには一次冷間圧延の圧延率はある程度大きい必要がある。すなわち、熱間圧延率を大きくすることは上述の理由から好ましくなく、二次冷間圧延率は後述する理由により制限する必要がある。したがって、一次冷間圧延率は85%超えが好ましい。さらに好ましくは、89〜92%である。
Primary cold rolling The primary cold rolling rate is not particularly limited, but in order to finally obtain an extremely thin steel plate, the rolling rate of the primary cold rolling needs to be large to some extent. That is, increasing the hot rolling rate is not preferable for the above-described reason, and the secondary cold rolling rate needs to be limited for the reason described later. Therefore, the primary cold rolling rate is preferably more than 85%. More preferably, it is 89 to 92%.

焼鈍
焼鈍は連続焼鈍により行い、均熱温度は680〜760℃、均熱時間は10〜20秒とする。均熱温度が680℃未満、または均熱時間が10秒未満であると、圧延方向断面における展伸度が5.0以上である結晶粒の面積率が1.00%を超えてしまい、加工性が不十分となる。また、均熱温度が760℃超え、または均熱時間が20秒超えであると、圧延方向断面における展伸度が5.0以上である結晶粒の面積率が0.01%未満となり、加工性向上の効果が得られない。
The annealing is performed by continuous annealing, the soaking temperature is 680 to 760 ° C., and the soaking time is 10 to 20 seconds. If the soaking temperature is less than 680 ° C, or the soaking time is less than 10 seconds, the area ratio of the crystal grains with the elongation in the rolling direction cross section exceeding 5.0 exceeds 1.00%, and the workability is insufficient. It becomes. In addition, if the soaking temperature exceeds 760 ° C or the soaking time exceeds 20 seconds, the area ratio of the crystal grains with a degree of elongation of 5.0 or more in the rolling direction cross section will be less than 0.01%, and the effect of improving workability Cannot be obtained.

二次冷間圧延率:20%以下
二次冷間圧延率は20%以下とする。二次冷間圧延率が20%を超えると、加工硬化が過大となり、7%以上の破断伸びが得られなくなる。したがって、二次冷間圧延率は20%以下とする。好ましくは、10%以上20%以下である。
二次冷間圧延以降は、めっき等の工程を常法通り行い、缶用鋼板として仕上げる。
Secondary cold rolling rate: 20% or less The secondary cold rolling rate is 20% or less. When the secondary cold rolling rate exceeds 20%, work hardening becomes excessive, and a breaking elongation of 7% or more cannot be obtained. Therefore, the secondary cold rolling rate is 20% or less. Preferably, it is 10% or more and 20% or less.
After the secondary cold rolling, steps such as plating are performed as usual, and finished as a steel plate for cans.

表1に示す成分組成を含有し、残部がFe及び不可避的不純物からなる鋼を実機転炉で溶製し、連続鋳造法により鋼スラブを得た。得られた鋼スラブに対し、表2に示す条件で再加熱し、表2に示す条件で熱間圧延、一次冷間圧延を施した。熱間圧延の仕上げ圧延温度は890℃とし、熱間圧延後には酸洗を施している。次いで、一次冷間圧延の後、表2に示す条件で連続焼鈍を行い、次いで、表2に示す条件で二次冷間圧延を施した。
以上により得られた鋼板にSnめっきを両面に連続的に施して、片面Sn付着量2.8g/m2のぶりきを得た。
Steel containing the composition shown in Table 1 and the balance being Fe and inevitable impurities was melted in an actual converter, and a steel slab was obtained by a continuous casting method. The obtained steel slab was reheated under the conditions shown in Table 2, and subjected to hot rolling and primary cold rolling under the conditions shown in Table 2. The finish rolling temperature of hot rolling is 890 ° C., and pickling is performed after hot rolling. Next, after the primary cold rolling, continuous annealing was performed under the conditions shown in Table 2, and then secondary cold rolling was performed under the conditions shown in Table 2.
The steel plate obtained as described above was continuously subjected to Sn plating on both sides to obtain a tinplate with a single-side Sn adhesion amount of 2.8 g / m 2 .

Figure 2013028842
Figure 2013028842

Figure 2013028842
Figure 2013028842

以上により得られためっき鋼板(ぶりき)に対して、210℃、20分の塗装焼付け相当の熱処理を行った後、引張試験を行った。引張試験は、JIS5号サイズの引張試験片を用いて、圧延直角方向の引張強度(破断強度)および破断伸びを測定した。   The plated steel sheet (blink) obtained as described above was subjected to a heat treatment equivalent to paint baking at 210 ° C. for 20 minutes, and then subjected to a tensile test. In the tensile test, tensile strength (breaking strength) and elongation at break in the direction perpendicular to rolling were measured using tensile test pieces of JIS No. 5 size.

また、塗装焼付け相当の熱処理を施した鋼板を用いてシーム溶接によって外径52.8mmの缶胴成形を行い、端部を外径50.4mmまでネックイン加工した後に外径55.4mmまでフランジ加工を行ってフランジ割れ発生の有無を評価した。缶胴成形は190g飲料缶サイズとし、鋼板圧延方向に沿って溶接を行った。ネックイン加工はダイネック方式により、フランジ加工はスピンフランジ方式により行った。フランジ加工部で割れが発生した場合を×、割れが発生しない場合を○と評価した。   Also, a can body with an outer diameter of 52.8mm is formed by seam welding using a steel plate that has been heat-treated equivalent to paint baking, and the end is necked in to an outer diameter of 50.4mm and then flanged to an outer diameter of 55.4mm. The presence or absence of flange cracking was evaluated. The can body was formed into a 190 g beverage can size, and welding was performed along the rolling direction of the steel sheet. Neck-in processing was performed by a die neck method, and flange processing was performed by a spin flange method. The case where a crack occurred in the flange processed part was evaluated as x, and the case where no crack occurred was evaluated as o.

また、めっき鋼板のサンプルを採取し、圧延方向断面における、展伸度が5.0以上である結晶粒の面積率を測定した。圧延方向断面における結晶粒の展伸度は、鋼板の垂直断面を研磨しナイタルエッチングにより粒界を現出させた上で、文献「JIS G 0551」に記載の直線試験線による切断法により測定した。
得られた結果を表3に示す。
Moreover, the sample of the plated steel plate was extract | collected and the area ratio of the crystal grain whose extension degree in a rolling direction cross section is 5.0 or more was measured. The elongation of the crystal grains in the cross section in the rolling direction is measured by the cutting method using the linear test line described in the literature “JIS G 0551” after polishing the vertical cross section of the steel sheet and revealing the grain boundary by nitral etching. did.
The results obtained are shown in Table 3.

Figure 2013028842
Figure 2013028842

表3より、本発明例であるNo.1〜5は強度に優れており、極薄の缶用鋼板として必要な引張強度520MPa以上を達成している。また、加工性にも優れており、蓋や3ピース缶胴の加工に必要な7%以上の破断伸びを有している。   From Table 3, Nos. 1 to 5, which are examples of the present invention, are excellent in strength, and have achieved a tensile strength of 520 MPa or more required as an extremely thin steel plate for cans. It is also excellent in workability and has a break elongation of 7% or more necessary for processing of lids and 3-piece can bodies.

一方、比較例のNo.6は、C含有量が多すぎるため、二次冷間圧延により加工性が損なわれ、破断伸びが不足している。比較例のNo.7は、Bを含有していないため、溶接熱影響部が極端に軟質化し、フランジ加工で割れが発生している。比較例のNo.8は、スラブ再加熱温度が低すぎるため、比較例のNo.9は、巻き取り温度が高すぎるため、いずれもAlNとして存在するN量が多すぎ、引張強度が不足している。比較例のNo.10は、N含有量が少なすぎるため、引張強度が不足している。比較例のNo.11は、連続焼鈍の均熱温度が低すぎるため、展伸度が5.0以上である結晶粒の面積率が過大となり、破断伸びが不足している。比較例のNo.12は、連続焼鈍の均熱温度が高すぎるため、比較例のNo.13は、連続焼鈍の均熱時間が長すぎるため、いずれも展伸度が5.0以上である結晶粒の面積率が過小となり、破断伸びが不足している。比較例のNo.14は、二次冷間圧延率が大きすぎるため、加工硬化が過大となり、破断伸びが不足している。   On the other hand, No. 6 of the comparative example has too much C content, so the workability is impaired by secondary cold rolling and the elongation at break is insufficient. Since No. 7 of the comparative example does not contain B, the weld heat affected zone is extremely soft, and cracking occurs in the flange processing. No. 8 in the comparative example is too low for the slab reheating temperature, and No. 9 in the comparative example is too high in the coiling temperature. ing. No. 10 of the comparative example has insufficient tensile strength because the N content is too small. In Comparative Example No. 11, the soaking temperature of continuous annealing is too low, so that the area ratio of crystal grains having an extension degree of 5.0 or more is excessive, and the elongation at break is insufficient. Comparative Example No. 12 has a soaking temperature of continuous annealing that is too high, and Comparative Example No. 13 has a soaking time of continuous annealing that is too long. The area ratio is too small, and the elongation at break is insufficient. In Comparative Example No. 14, the secondary cold rolling rate is too large, so the work hardening is excessive and the elongation at break is insufficient.

本発明の缶用鋼板は、520MPa以上の引張強度、7%以上の破断伸びを有し、薄い板厚にて得ることが可能である。そのため、缶蓋、缶底、3ピース缶胴等を低コストにて製造するための材料として最適である。   The steel plate for cans of the present invention has a tensile strength of 520 MPa or more, a breaking elongation of 7% or more, and can be obtained with a thin plate thickness. Therefore, it is optimal as a material for manufacturing can lids, can bottoms, 3-piece can bodies, etc. at low cost.

Claims (2)

質量%で、C:0.001%以上0.080%以下、Si:0.003%以上0.100%以下、Mn:0.10%以上0.80%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0050%以上0.0150%以下、B:0.0002%以上0.0050%以下を含有し、残部はFeおよび不可避的不純物からなり、
さらに、圧延方向断面において、結晶粒の展伸度が5.0以上である結晶粒を面積率にして0.01〜1.00%含むことを特徴とする高強度高加工性缶用鋼板。
In mass%, C: 0.001% to 0.080%, Si: 0.003% to 0.100%, Mn: 0.10% to 0.80%, P: 0.001% to 0.100%, S: 0.001% to 0.020%, Al : 0.005% or more and 0.100% or less, N: 0.0050% or more and 0.0150% or less, B: 0.0002% or more and 0.0050% or less, and the balance consists of Fe and inevitable impurities,
Furthermore, the steel sheet for high-strength and high-workability cans characterized by containing 0.01 to 1.00% in terms of area ratio of crystal grains having a degree of elongation of crystal grains of 5.0 or more in the cross section in the rolling direction.
質量%で、C:0.001%以上0.080%以下、Si:0.003%以上0.100%以下、Mn:0.10%以上0.80%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0050%以上0.0150%以下、B:0.0002%以上0.0050%以下を含有し、残部はFeおよび不可避的不純物からなる鋼を、連続鋳造によりスラブとし、スラブ再加熱温度を1200℃以上として熱間圧延を行った後に650℃未満の温度で巻き取り、次いで、一次冷間圧延を行い、引き続き、均熱温度680〜760℃、均熱時間10〜20秒で連続焼鈍を行い、次いで、20%以下の圧延率で二次冷間圧延を行うことを特徴とする高強度高加工性缶用鋼板の製造方法。   In mass%, C: 0.001% to 0.080%, Si: 0.003% to 0.100%, Mn: 0.10% to 0.80%, P: 0.001% to 0.100%, S: 0.001% to 0.020%, Al : 0.005% or more and 0.100% or less, N: 0.0050% or more and 0.0150% or less, B: 0.0002% or more and 0.0050% or less, with the balance being steel made of Fe and inevitable impurities, made into a slab by continuous casting, and slab reheated After hot rolling at a temperature of 1200 ° C. or higher, winding at a temperature of less than 650 ° C., followed by primary cold rolling, and continuously with a soaking temperature of 680 to 760 ° C. and a soaking time of 10 to 20 seconds. A method for producing a steel plate for a high-strength, high-workability can, characterized by performing annealing and then performing secondary cold rolling at a rolling rate of 20% or less.
JP2011166110A 2011-07-29 2011-07-29 High-strength, high-formability steel plate for cans and method for producing the same Active JP5810714B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011166110A JP5810714B2 (en) 2011-07-29 2011-07-29 High-strength, high-formability steel plate for cans and method for producing the same
CN201280037600.4A CN103717770B (en) 2011-07-29 2012-07-27 High-strength high-processability steel plate for tanks and manufacture method thereof
TW101127171A TWI460029B (en) 2011-07-29 2012-07-27 High tensile strength and high formability steel sheet for can and its production method
PCT/JP2012/004790 WO2013018334A1 (en) 2011-07-29 2012-07-27 High-strength high-processability steel sheet for cans and method for producing same
MYPI2013004743A MY167901A (en) 2011-07-29 2012-07-27 Steel sheet for cans having high strength and high formability and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011166110A JP5810714B2 (en) 2011-07-29 2011-07-29 High-strength, high-formability steel plate for cans and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013028842A true JP2013028842A (en) 2013-02-07
JP5810714B2 JP5810714B2 (en) 2015-11-11

Family

ID=47628885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011166110A Active JP5810714B2 (en) 2011-07-29 2011-07-29 High-strength, high-formability steel plate for cans and method for producing the same

Country Status (5)

Country Link
JP (1) JP5810714B2 (en)
CN (1) CN103717770B (en)
MY (1) MY167901A (en)
TW (1) TWI460029B (en)
WO (1) WO2013018334A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100598A (en) * 2011-10-20 2013-05-23 Jfe Steel Corp Steel sheet for high-strength can excellent in flange processibility, and method for production thereof
JP2014208894A (en) * 2013-03-28 2014-11-06 Jfeスチール株式会社 Steel sheet for can excellent in processability and surface roughing resistance and manufacturing method therefor
WO2016157878A1 (en) * 2015-03-31 2016-10-06 Jfeスチール株式会社 Steel sheet for cans and method for manufacturing steel sheet for cans
KR20170052660A (en) 2014-10-10 2017-05-12 제이에프이 스틸 가부시키가이샤 Steel plate for cap and method for producing same
KR20170070184A (en) 2014-11-28 2017-06-21 제이에프이 스틸 가부시키가이샤 Steel sheet for crown cap, manufacturing method therefor, and crown cap
JP6191807B1 (en) * 2016-02-29 2017-09-06 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
KR20170104586A (en) 2015-02-26 2017-09-15 제이에프이 스틸 가부시키가이샤 Steel sheet for crown caps, method for producing steel sheet for crown caps, and crown cap
WO2018061787A1 (en) 2016-09-29 2018-04-05 Jfeスチール株式会社 Steel sheet for crown caps, production method therefor, and crown cap

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6019719B2 (en) * 2012-05-02 2016-11-02 Jfeスチール株式会社 Manufacturing method of high strength and high ductility steel sheet
CN106605006B (en) * 2014-08-29 2018-11-06 杰富意钢铁株式会社 Steel plate for tanks and its manufacturing method
MY176614A (en) * 2014-11-12 2020-08-18 Jfe Steel Corp Steel sheet for cans and method for manufacturing steel sheet for cans
EP3663427B1 (en) * 2017-07-31 2021-01-20 JFE Steel Corporation Steel sheet for crown cap, crown cap, and method for producing steel sheet for crown cap
KR102549938B1 (en) * 2019-03-29 2023-06-30 제이에프이 스틸 가부시키가이샤 Steel sheet for cans and its manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263143A (en) * 1992-01-30 1993-10-12 Nippon Steel Corp Production of steel sheet for soft vessel having non-aging characteristic and degree of refining of t-3 or below
JPH05271755A (en) * 1992-03-25 1993-10-19 Nippon Steel Corp Manufacture of nonaging extra thin steel sheet for soft vessel by continuous annealing
JP2001107186A (en) * 1999-08-05 2001-04-17 Kawasaki Steel Corp High strength steel sheet for can and its producing method
JP2007204800A (en) * 2006-01-31 2007-08-16 Jfe Steel Kk Steel sheet for soft can and its production method
JP2008163390A (en) * 2006-12-28 2008-07-17 Nippon Steel Corp Steel sheet for irregularly-shaped can
WO2008133175A1 (en) * 2007-04-18 2008-11-06 Nippon Steel Corporation Flexible tin-plated steel sheet and process for producing the same
JP2010180423A (en) * 2009-02-03 2010-08-19 Jfe Steel Corp Steel sheet having high workability for can and manufacturing method therefor
JP2011042816A (en) * 2009-08-19 2011-03-03 Jfe Steel Corp Steel sheet for high workability three-piece welded can, and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2730942B1 (en) * 1995-02-24 1997-05-16 Lorraine Laminage PROCESS FOR THE PREPARATION OF A SHEET OR A STEEL STRIP FOR THE PRODUCTION OF A BOX AND SHEET OR STEEL STRIP OBTAINED BY THIS PROCESS
JPH08246060A (en) * 1995-03-10 1996-09-24 Kawasaki Steel Corp Production of steel sheet for can
JP3931455B2 (en) * 1998-11-25 2007-06-13 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
CN101275196B (en) * 2007-03-27 2010-09-08 宝山钢铁股份有限公司 Steel for seamless tin and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263143A (en) * 1992-01-30 1993-10-12 Nippon Steel Corp Production of steel sheet for soft vessel having non-aging characteristic and degree of refining of t-3 or below
JPH05271755A (en) * 1992-03-25 1993-10-19 Nippon Steel Corp Manufacture of nonaging extra thin steel sheet for soft vessel by continuous annealing
JP2001107186A (en) * 1999-08-05 2001-04-17 Kawasaki Steel Corp High strength steel sheet for can and its producing method
JP2007204800A (en) * 2006-01-31 2007-08-16 Jfe Steel Kk Steel sheet for soft can and its production method
JP2008163390A (en) * 2006-12-28 2008-07-17 Nippon Steel Corp Steel sheet for irregularly-shaped can
WO2008133175A1 (en) * 2007-04-18 2008-11-06 Nippon Steel Corporation Flexible tin-plated steel sheet and process for producing the same
JP2010180423A (en) * 2009-02-03 2010-08-19 Jfe Steel Corp Steel sheet having high workability for can and manufacturing method therefor
JP2011042816A (en) * 2009-08-19 2011-03-03 Jfe Steel Corp Steel sheet for high workability three-piece welded can, and method for producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100598A (en) * 2011-10-20 2013-05-23 Jfe Steel Corp Steel sheet for high-strength can excellent in flange processibility, and method for production thereof
JP2014208894A (en) * 2013-03-28 2014-11-06 Jfeスチール株式会社 Steel sheet for can excellent in processability and surface roughing resistance and manufacturing method therefor
KR20170052660A (en) 2014-10-10 2017-05-12 제이에프이 스틸 가부시키가이샤 Steel plate for cap and method for producing same
KR20170070184A (en) 2014-11-28 2017-06-21 제이에프이 스틸 가부시키가이샤 Steel sheet for crown cap, manufacturing method therefor, and crown cap
KR20170104586A (en) 2015-02-26 2017-09-15 제이에프이 스틸 가부시키가이샤 Steel sheet for crown caps, method for producing steel sheet for crown caps, and crown cap
US10655199B2 (en) 2015-02-26 2020-05-19 Jfe Steel Corporation Steel sheet for crown cap, method for manufacturing steel sheet for crown cap, and crown cap
WO2016157878A1 (en) * 2015-03-31 2016-10-06 Jfeスチール株式会社 Steel sheet for cans and method for manufacturing steel sheet for cans
JP6028884B1 (en) * 2015-03-31 2016-11-24 Jfeスチール株式会社 Steel plate for cans and method for producing steel plate for cans
JP6191807B1 (en) * 2016-02-29 2017-09-06 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
WO2017150066A1 (en) * 2016-02-29 2017-09-08 Jfeスチール株式会社 Steel sheet for cans and manufacturing method therefor
US10941456B2 (en) 2016-02-29 2021-03-09 Jfe Steel Corporation Steel sheet for can and method for manufacturing the same
WO2018061787A1 (en) 2016-09-29 2018-04-05 Jfeスチール株式会社 Steel sheet for crown caps, production method therefor, and crown cap

Also Published As

Publication number Publication date
TW201313348A (en) 2013-04-01
JP5810714B2 (en) 2015-11-11
CN103717770A (en) 2014-04-09
MY167901A (en) 2018-09-26
WO2013018334A1 (en) 2013-02-07
CN103717770B (en) 2016-04-13
TWI460029B (en) 2014-11-11

Similar Documents

Publication Publication Date Title
JP5810714B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JP5794004B2 (en) Steel sheet for high strength can excellent in flange workability and manufacturing method thereof
JP5018843B2 (en) Steel plate for high workability 3-piece welded can and manufacturing method thereof
JP4957843B2 (en) Steel plate for can and manufacturing method thereof
WO2009116680A1 (en) High-strength metal sheet for use in cans, and manufacturing method therefor
JP5463677B2 (en) DR steel sheet for high workability 3-piece can and manufacturing method thereof
WO2013183274A1 (en) Three-piece can and method for producing same
JP5672907B2 (en) Steel sheet for high strength and high workability can and method for producing
JP5884161B2 (en) Steel plate for cans and method for producing steel plate for cans
JP6198011B2 (en) Manufacturing method of steel plate for hard container
WO2012073914A1 (en) Steel sheet for can, and process for producing same
JP5540580B2 (en) Steel sheet for high strength and high workability can and method for producing
JP6019719B2 (en) Manufacturing method of high strength and high ductility steel sheet
JP5803660B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JP2015151620A (en) Steel sheet for can and production method of steel sheet for can
JP6060603B2 (en) High strength steel plate for cans with excellent flange workability and manufacturing method thereof
JP5849666B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JP4276388B2 (en) Thin steel plate for high-strength welding cans excellent in flange formability and method for producing the same
JP5803510B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
KR102587650B1 (en) Steel sheet for cans and method of producing same
JP2010007138A (en) Steel sheet forming less ear to be deep-drawn, and method of manufacturing therefor
JP2015193885A (en) Steel sheet for can lid and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150831

R150 Certificate of patent or registration of utility model

Ref document number: 5810714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250