JP4276388B2 - Thin steel plate for high-strength welding cans excellent in flange formability and method for producing the same - Google Patents

Thin steel plate for high-strength welding cans excellent in flange formability and method for producing the same Download PDF

Info

Publication number
JP4276388B2
JP4276388B2 JP2001104772A JP2001104772A JP4276388B2 JP 4276388 B2 JP4276388 B2 JP 4276388B2 JP 2001104772 A JP2001104772 A JP 2001104772A JP 2001104772 A JP2001104772 A JP 2001104772A JP 4276388 B2 JP4276388 B2 JP 4276388B2
Authority
JP
Japan
Prior art keywords
less
solid solution
strength
flange
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001104772A
Other languages
Japanese (ja)
Other versions
JP2002294399A (en
Inventor
隆 日比野
七雄 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001104772A priority Critical patent/JP4276388B2/en
Publication of JP2002294399A publication Critical patent/JP2002294399A/en
Application granted granted Critical
Publication of JP4276388B2 publication Critical patent/JP4276388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、フランジ成形性に優れた高強度溶接缶用薄鋼板およびその製造方法に関するものである。
【0002】
【従来の技術】
鋼製の容器において、天蓋、円筒状の胴、底蓋からなる、いわゆる3ピース缶があるが、その胴部の成形は、薄鋼鈑を円筒状に成形したのち、半田付け、樹脂接着による方法および溶接による方法で行われている。その中で、接合代が少なく素材歩留り向上に有利でかつ製缶速度が速い溶接による方法が近年の主流である。
【0003】
胴材においては、この溶接による胴成形後、天蓋、底蓋を捲き締めるためのフランジ加工を施すが、この胴材のフランジ部の形成時に溶接部近傍の熱影響部(以下HAZ部と称す)で、フランジ加工歪みが集中することに起因する局部的なくびれ(以下ネッキングと称す)やネッキングが長じてフランジ割れが生じやすくなる欠点がある。
【0004】
フランジ割れ、ネッキングを生じる要因として、HAZ部が原因でフランジ加工時に当該部が局部的にくびれしてネッキング、さらにはフランジ割れとなることが溶接缶製造における最大の問題点である。
【0005】
近年、省資源および素材コスト低減の観点から缶用素材の板厚は薄くなっており、それに伴って缶体の強度を確保するため鋼板はより高強度化(降伏強度≧450Mpa)しているが、このような鋼板として、熱延鋼板を冷間圧延後、焼鈍し、調質圧延段階で従来のシングルレデュース鋼鈑よりも高い調質圧延率で再度冷延を行う2回冷延法により製造した鋼板、いわゆるダブルレデュース鋼板(以下、単にDR、DR鋼板と称す)が用いられるのが主流となっている。
【0006】
しかしながら、このDR鋼板は、溶接後フランジ加工でフランジ割れを起こす傾向が強い。その原因は、DRによる冷延歪によって高強度を生じていた母材が溶接熱によってHAZ部の冷延歪みが開放され減少し、軟化するといういわゆる歪み取り焼鈍効果等によりHAZ部が局部的に軟化し、高強度な母材および溶接の熱にて高質化した溶接点とに強度差が生ずる。この局部軟化したHAZ部に、フランジ加工による張出し歪みが集中することにより一方的な変形によるくびれが生じ、フランジ割れに至ると考えられる。
【0007】
特に、連続焼鈍材は箱焼鈍材に比べてフランジ割れの発生率が高い。しかし、箱焼鈍材は連続焼鈍材に比較して、その製造に長時間の焼鈍を要することや材料特性に不均一が生じやすい等の欠点があるため、生産性および品質向上の観点から、目下、連続焼鈍材への製法転換が種々研究されている。
【0008】
そして、この連続焼鈍材の難点を克服するフランジ加工性に優れた溶接缶薄鋼板の製造方法に関しては、特開昭60−24327号公報の発明が提案されている。
【0009】
特開昭60−24327号公報の発明は、熱間圧延の仕上温度を800〜600℃として、通常の仕上温度よりも低い温度域で仕上圧延を行い、冷延、焼鈍後の結晶粒を大きくして、溶接時のHAZ部軟化の防止、粗大粒化の防止を行い、加えて固溶C量を少なくすることで軟化の抑制を図りフランジ加工性を向上する方法である。
【0010】
この発明は、焼鈍後の結晶粒径を大きくし、固溶Cを低減することで、溶接熱によるHAZ部再結晶の遅滞、つまり再結晶温度の高温化現象を利用することにより溶接時の軟化抑制を図り、フランジ加工性の向上を図るものである。
【0011】
ところが、かかる方法では、高強度が必要な現状素材製造において、結晶粒径が大きくなるほど鋼板の所要強度を得るためにDR率を上げて強度を確保せねばならず、鋼板の冷延蓄積歪みが増加して再結晶温度が低温化し、HAZ部の軟化の進行および母材との強度差が大きくなり、加工歪みのHAZ部への集中を促進させる。さらに粗粒化によって結晶粒界が脆化して、フランジ加工性劣化につながる等、フランジ加工性の改善には不十分な物である。
【0012】
従来の公知技術には、溶接熱によるHAZ部軟化のみを抑制し、フランジ加工による歪みの集中を緩和するという着想があるが、溶接作業は鋼の融着を生じるほどの高温の溶接熱を利用するものであるからHAZ部の軟化は避けようがなく、HAZ部の熱変化のみの抑制によってネッキング、割れ防止を図るという考えには根本的な改善策とはなりえない。
【0013】
【発明が解決しようとする課題】
そこで本発明は、箱焼鈍法による溶接缶用薄鋼板と同等またはそれ以上の伸びを持ち、かつ、HAZ軟化を抑制してフランジ割れが生じない連続焼鈍法による高強度溶接缶用薄鋼板およびその製造方法を提供することを課題とする。
【0014】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するにあたり研究を重ねた結果、鋼成分のほか、熱延仕上げ温度、焼鈍条件、過時効処理条件、二次冷間圧延率などを適正化すること、特に固溶Cおよび固溶Nの量を適正範囲に限定することにより、フランジ加工性が向上することを知見し、本発明を完成するに至った。
【0015】
本発明の要旨は、下記の通りである。
(1) mass %で、C:0.04%超0.08%以下、
Si:0.02%以下、Mn:1.0%以下
P:0.04%以下、S:0.05%以下
Al:0.1%以下、N:0.005〜0.02%以下を含有し、
かつ、鋼板中に固溶するCおよび固溶Nの合計が、50ppm≦固溶C+固溶N≦200ppm、かつ鋼板中の固溶Cが50ppm以下かつ、鋼板中の固溶Nが50ppm以上の範囲からなり、残部をFeおよび不可避不純物からなることを特徴とするフランジ成形性に優れた高強度溶接缶用薄鋼板。
(2)上記(1)に記載の高強度溶接缶用薄鋼板において、さらに
Nb:0.003 〜0.3 %
Ti:0.003 〜0.3 %
B:0.004 〜0.020 %
Cu:0.5 %以下
Ni:0.5 %以下
Cr:0.5 %以下
Mo:0.5 %以下
より選ばれた1種または2種以上の元素を含むことを特徴とするフランジ成形性に優れた高強度溶接缶用薄鋼板。
(3)上記(1)または(2)に記載の連続鋳造鋼片を素材とし、巻取り温度を600℃以下にて熱間圧延して熱延鋼板となし、酸洗、冷間圧延を経たのち、均熱を再結晶温度以上の連続焼鈍工程後、300〜550℃の範囲で1〜5分間の過時効処理を施し、二次冷間圧延を圧下率5%以上20%以下とすることを特徴とするフランジ成形性に優れた高強度溶接缶用薄鋼板の製造方法。
【0016】
本発明に至った技術思想について以下に述べる。
現在使用されている箱焼鈍材は連続焼鈍材よりもフランジ割れが少ない。その点を考慮し、フランジ割れの改善手段について、詳細な検討を行った結果、二点の特徴と解決手段を見出した。
【0017】
第一に箱焼鈍材のHAZ部軟化が連続焼鈍材よりも小さい点が考えられる。連続焼鈍材でHAZ部の軟化を抑制する手段としては、焼鈍後の固溶C状態を微細セメンタイトとして析出させておき、それを核としてDRでの冷延歪を微細化することにて、溶接熱での再結晶時に、結晶粒径の粗大化を抑制することにて達成される。この結晶粒径の粗大化の抑制にて、HAZ部軟化の減少が達成されるのである。なお、微細セメンタイトの析出の手段としては、適正な過時効処理にて達成され、結果的に固溶Cの減少という形で検出できる。
【0018】
第二に箱焼鈍材の伸び値が連続焼鈍材よりも大きい点が考えられる。即ち、箱焼鈍材においてもHAZ部軟化はあるが、それがフランジ割れに進展しないのは、溶接部以外の缶端円周部の伸びが大きいため、フランジ加工時に缶円周全域も同時に変形してHAZ部への応力集中が緩和されるためと考えられる。よって、母材の延性を大きくすることにより、HAZ部への応力集中が緩和されるということである。従って、連続焼鈍材においても母材の伸びを大きくすれば良いことになるが、従来材では伸びの向上と強度上昇は相反する特性であり、必要量の強度を確保するためには、DR率を上げねばならず、それに伴って伸びが低下してしまうのがこれまでの技術の常識であった。ところが本発明において、固溶Nを十分に確保して、時効硬化を利用して強度を確保することにより、DR率の低減ができ、伸びも低下させずに必要量が確保できる点を知見した。
【0019】
上記2点、すなわち固溶Cの低減および固溶Nの残存という2点の技術思想の複合効果により、フランジ成形性の向上が確認され、本発明を完成させるに至ったのである。
【0020】
【発明の実施の形態】
本発明では、優れたフランジ成形性を有する高強度薄鋼鈑における固溶C低減かつ、固溶N残留型の連続焼鈍DR圧延材について検討した。その結果、本発明の好ましい実施形態について説明する。
【0021】
C:0.04%超0.08%以下
鋼成分として、C量が過多になると硬質化により延性が著しく低下し、製缶加工性の低下やDR後に所定の伸びを確保できず、また、固溶C低減の観点からも過度の添加は好ましくない。よってその上限を0.08%とする。C量が0.04%以下では必要強度を確保するためのDR率が増加し、結果的に伸びが低下してフランジ割れの発生率が増加する。
【0022】
Al:0.1以下
Al量が多い場合には焼鈍加熱時にAlNとして析出し、焼鈍板の再結晶粒成長が抑制され、不均一な組織となるほか、強度確保に必要な固溶N量の減少を招く等の問題を生じるので、Al量の上限を0.1 %とした。固溶Nの確保という観点からは、0.02〜0.07%とするのが望ましい。
【0023】
N:0.005〜0.02%以下
Nは、固溶強化効果による鋼板強度の増加に必要な元素であり、この効果は、0.005 %以上の添加によって安定して得られる。なお、Nが0.02%を超えて添加されると製品を著しく硬質化し、製缶加工性全般を阻害する。また、連続鋳造時のスラブ割れなどの発生も引き起こすので、上限を0.02%とする。なお、製造工程全体を考慮した強度確保という観点からすれば、0.005 〜0.012 %の範囲で含有させるのが好ましい。
【0024】
固溶Cは内部摩擦法、固溶Nは、鋼中の全N量から、析出N(臭素エステルによる溶解法で測定)を差し引いて求める。固溶C+固溶Nの値が、50ppm以上ないと十分な固溶強化量および時効硬化量を確保できず、製缶後の缶体強度が不足する危険性がある。一方、200ppmを超えて含有すると時効が進行した際に伸びが低下し、良好なフランジ加工性が得られない。したがって、固溶Cおよび固溶Nの合計が、50ppm≦固溶C+固溶N≦200ppmの範囲で含有させる。なお、HAZ軟化防止の観点より固溶Cは50ppm以下であることが好ましく、その場合、時効硬化性確保の観点より固溶Nが50ppm以上であることが好ましい。
【0025】
Si:0.02%以下
Siは、その量が0.02%を超えると、表面処理性の低下、耐食性の劣化等の問題を引き起こすので、上限を0.02%とする。なお、特に優れた耐食性が必要な場合には0.03%以下とするのが好ましい。
【0026】
Mn:1.0%以下
Mnは、結晶粒を微細化するほか、Sによる熱間割れを防止する上で有効な元素であり、含有するS量に応じて添加するのが望ましい。過度の添加は、耐食性を悪化させ、鋼板の硬質化による冷間圧延性を悪化させるので、その上限を1.0%とする。なお、より良好な耐蝕性と成形性を必要とする場合には0.3%以下の範囲で添加するのが望ましい。
【0027】
P:0.04%以下
Pは、鋼を硬質化させ、フランジ加工性やネック加工性を悪化させると同時に、耐食性をも悪化させる有害な元素であるため、その上限を0.04%とする。なお、これらの特性が特に重要視される場合には、0.02 %以下とするのが好ましい。
【0028】
S:0.05%以下
Sは、鋼中に介在物として存在し、延性を減少、耐食性の劣化をもたらす元素であるので、その上限を0.05%とする。なお、特に良好な加工性が要求される用途においては0.005%以下とすることが望ましい。
【0029】
Nb:0.003〜0.3%
Nbは、鋼組織を微細化し、伸びフランジ成形性などを改善するとともに、肌荒れの防止にも有効な元素である。このような効果が発揮されるのは、0.003%以上の添加が必要であるが、0.3%を超えて添加すると、必要以上に硬質化する。従って、Nb添加量は0.003〜0.3%とするが、材質上さらに好ましいのは0.01%以下の範囲である。
【0030】
Ti:0.003〜0.3%
Tiも、Nbとほぼ同様に、組織微細化の効果を有する。この効果を得るためには0.003%以上の添加が必要であるが、0.3%を超えて添加すると表面欠陥の発生が顕著となる。したがって、Tiは0.003〜0.3%、好ましくは0.02%以下の範囲で添加できる。
【0031】
B:0.0004〜0.020%
Bは、組織の微細化と時効性の調整制御に有効な元素であるがNと結合し析出物となる。このような効果は0.0004%以上の添加で発揮されるが、0.020%を超えて添加するとNの効果を減少させるとともに鋼鈑の面内異方性が増加して好ましくない。したがって、Bは0.0004〜0.020%の範囲で添加できる。
【0032】
Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、Mo:0.5%以下
これらの元素は、いずれも鋼板強度を高める作用を有し、必要に応じて添加する。しかし、0.5%を超えて添加した場合には、冷間圧延性を悪化させ、かつ、鋼鈑を必要以上に硬質化し、製缶加工性を悪化させるので、0.5%以下の範囲で添加できる。
【0033】
V:0.3%以下、Zr :0.5%以下、Ca :0.01%以下
これらの元素は、ほぼ類似の材質改善作用を有し、必要に応じて添加する。しかし、VとZr は0.3%、Caは0.01%を超えて添加してもその効果が飽和する。
【0034】
本発明の製造方法では、重量%で、C:0.04%超0.08%以下、Al:0.1%以下、N:0.005〜0.02%以下を含有する連続鋳造鋼片を素材とし、これを1050℃以上に加熱して、巻取り温度を600℃以下にて熱間圧延して熱延鋼板となし、酸洗、冷間圧延を経たのち、均熱を再結晶温度以上の連続焼鈍工程後、過時効処理を施すものである。この鋼成分、加熱温度、連続焼鈍法の条件により鋼板中に必要量の固溶Cおよび固溶Nを残留させることが可能となる。そして、伸び率5%以上20%以下の二回冷延(DR)仕上を施すことにより所定の鋼鈑を得るものである。
【0035】
ここで言う過時効処理とは、主に固溶Cの低減を目的とし、一般の焼鈍処理に比較して、低温、長時間での熱処理を言う。過時効処理は連続焼鈍に続けて行う場合は300〜550℃で1〜5分間の均熱処理を行う。300℃未満では固溶Cが安定的に低減できず、550℃を超えると結晶粒が粗大化する。また、1分未満では固溶Cが低減できず、5分を超える処理を行うには炉長の長大化を招く。なお、連続焼鈍に続けて行う過時効処理においては、再加熱過時効処理と呼ばれる焼鈍の冷却終了温度を約250℃とし、再度上記過時効処理温度まで再加熱する処理方法を用いてもよい。
【0036】
また、過時効処理は箱焼鈍で実施しても良い。温度と効果は連続焼鈍同様であるが、時間は2〜10時間での熱処理を行う。この場合、2時間未満では固溶Cが安定的に低減できず、10時間を超える処理は経済的に得策でない。
【0037】
二次冷間圧延の目的は、加工強化により素材の強度増加をはかり、また板厚を減少させて表面粗度等を調整するためである。二次冷間圧延の圧下率が20%を超える加工を行うと必要以上の高強度化にて、製缶加工性を低下させると共に、延性が悪化し、本発明の目的であるフランジ加工性が確保できない。したがって、二次冷間圧延の圧下率は20%以下、好ましくは15%以下であり、さらにプレス成形性が要求されるような用途では10%以下にするのが望ましい。なお、圧下率の下限は必要強度確保の点および表面粗度管理などから決定されるが、5%以上を付与することが望ましい。
【0038】
【実施例】
以下に本発明の実施例を比較例と対比して説明する。
表1に示す成分及び製造条件で0.18mmの板厚の溶接缶用鋼板を製造した。そして、得られた鋼板の特性及びフランジ加工性を表1に示した。
フランジ加工性の評価は、上記鋼鈑を55mmφの円筒形に成形、溶接した後、フランジ部外径70mmφにフランジ加工を施し、溶接部近傍の割れの発生有無を評価した。
表1中のNo.1〜No.7は本発明の例であり、固溶Cと固溶Nの範囲が適正量に保たれ、強度も確保できている。
なお、No.8〜No.12は比較例であり、固溶Cと固溶Nの範囲が適正量を逸脱している場合や、強度も不備なものがある。
【0039】
即ち、表1から明らかなようにNo.1〜No.7の本発明の鋼板は、フランジ割れが発生せず良好なフランジ加工性を有していることを示しており、No.8〜No.10の本発明の範囲を逸脱したものはフランジ割れが発生している。
【0040】
【表1】

Figure 0004276388
【0041】
【発明の効果】
以上説明したように、本発明では固溶C、固溶N量を適正量に制御することによりHAZ部軟化を抑制すると共に、母材の伸びを十分に確保することにより、高強度溶接缶用薄鋼鈑において、優れたフランジ加工性を得られるようになったことは、省資源、省エネルギーに大きく寄与するところであり、その経済的効果は非常に大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin steel plate for a high-strength weld can excellent in flange formability and a method for producing the same.
[0002]
[Prior art]
In steel containers, there are so-called three-piece cans consisting of a canopy, a cylindrical barrel, and a bottom lid. The barrel is formed by forming a thin steel rod into a cylindrical shape, and then soldering and resin bonding. The method and the method by welding are performed. Among them, a method using welding, which has a small joining allowance and is advantageous for improving the material yield and has a high can-making speed, is the mainstream in recent years.
[0003]
In the body, after forming the body by welding, flange processing for tightening the canopy and the bottom cover is performed. When forming the flange portion of the body, a heat-affected zone in the vicinity of the welded portion (hereinafter referred to as HAZ portion) is formed. Thus, there is a drawback that the local necking (hereinafter referred to as necking) and necking due to the concentration of the flange processing distortion become long and the flange cracking is likely to occur.
[0004]
As a factor causing flange cracking and necking, the biggest problem in manufacturing a welded can is that the HAZ part is locally constricted during flange processing to cause necking and further flange cracking.
[0005]
In recent years, the plate thickness of can materials has been reduced from the viewpoint of resource saving and material cost reduction, and accordingly, the strength of steel plates has been increased (yield strength ≧ 450 Mpa) in order to ensure the strength of the can body. Such a steel sheet is manufactured by a double cold rolling method in which a hot rolled steel sheet is cold-rolled and then annealed and cold-rolled again at a temper rolling stage at a higher temper rolling rate than a conventional single-reduction steel plate. It is the mainstream to use a so-called double-reduced steel plate (hereinafter simply referred to as DR, DR steel plate).
[0006]
However, this DR steel sheet has a strong tendency to cause flange cracking during post-weld flanging. The cause is that the HAZ part is locally localized due to the so-called strain relief annealing effect in which the base metal that has been high in strength due to the cold-rolling strain due to DR is released and reduced by welding heat, and the cold-rolling strain of the HAZ part is reduced. There is a difference in strength between the softened and high-strength base metal and the weld point that has been improved by the heat of welding. It is considered that constriction due to unidirectional deformation occurs due to concentration of the overhang strain due to flange processing in the locally softened HAZ portion, resulting in flange cracking.
[0007]
In particular, the continuous annealing material has a higher incidence of flange cracking than the box annealing material. However, compared with continuous annealed materials, box annealed materials have drawbacks such as requiring a long annealing time and non-uniformity in material properties, so from the viewpoint of productivity and quality improvement, Various researches have been conducted on conversion of the manufacturing method to continuous annealing materials.
[0008]
And the invention of Unexamined-Japanese-Patent No. 60-24327 is proposed regarding the manufacturing method of the welded can thin steel plate excellent in the flange workability which overcomes the difficulty of this continuous annealing material.
[0009]
In the invention of Japanese Patent Laid-Open No. 60-24327, the hot rolling finish temperature is 800 to 600 ° C., the finish rolling is performed in a temperature range lower than the normal finish temperature, and the crystal grains after cold rolling and annealing are enlarged. In this method, the HAZ part is prevented from being softened at the time of welding, and coarse particles are prevented from being added. In addition, the amount of solid solution C is reduced to suppress softening and improve the flange workability.
[0010]
This invention increases the crystal grain size after annealing and reduces the solid solution C, thereby utilizing the delay in the HAZ recrystallization due to welding heat, that is, increasing the recrystallization temperature, thereby softening during welding. This is intended to suppress the flange workability.
[0011]
However, with this method, in the production of current materials that require high strength, the DR ratio must be increased to obtain the required strength of the steel sheet as the crystal grain size increases, and the cold rolled accumulated strain of the steel sheet must be ensured. The recrystallization temperature is increased and the recrystallization temperature is lowered, the progress of softening of the HAZ portion and the strength difference from the base material are increased, and the concentration of processing strain on the HAZ portion is promoted. Furthermore, the grain boundaries become brittle due to coarsening, leading to deterioration of flange workability, which is insufficient for improving the flange workability.
[0012]
Conventionally known technology has the idea of suppressing only the HAZ softening due to welding heat and mitigating the concentration of distortion due to flange processing, but the welding work uses high-temperature welding heat that causes steel fusion. Therefore, the softening of the HAZ part is inevitable, and the idea of preventing necking and cracking by suppressing only the thermal change of the HAZ part cannot be a fundamental improvement measure.
[0013]
[Problems to be solved by the invention]
Accordingly, the present invention provides a steel sheet for high-strength welding cans by a continuous annealing method that has an elongation equal to or greater than that of a steel sheet for welding cans by a box annealing method and that does not cause flange cracking by suppressing HAZ softening. It is an object to provide a manufacturing method.
[0014]
[Means for Solving the Problems]
As a result of repeated research in solving the above-mentioned problems, the present inventors have optimized the hot rolling finishing temperature, annealing conditions, overaging treatment conditions, secondary cold rolling rate, etc., in addition to the steel components, In particular, the inventors have found that flange workability is improved by limiting the amounts of solute C and solute N to an appropriate range, and have completed the present invention.
[0015]
The gist of the present invention is as follows.
(1) In mass%, C: more than 0.04% and 0.08% or less,
Si: 0.02% or less, Mn: 1.0% or less, P: 0.04% or less, S: 0.05% or less, Al: 0.1% or less, N: 0.005 to 0.02% or less Contains,
And the total of C and solid solution N dissolved in the steel sheet is 50 ppm ≦ solid solution C + solid solution N ≦ 200 ppm, the solid solution C in the steel sheet is 50 ppm or less, and the solid solution N in the steel sheet is 50 ppm or more. A thin steel plate for a high-strength weld can excellent in flange formability, characterized by comprising a range and the balance being Fe and inevitable impurities.
(2) In the thin steel sheet for high-strength welding cans as described in (1) above, Nb: 0.003 to 0.3%
Ti: 0.003 to 0.3%
B: 0.004 to 0.020%
Cu: 0.5% or less Ni: 0.5% or less Cr: 0.5% or less Mo: 0.5% or less
A thin steel plate for a high-strength weld can excellent in flange formability characterized by containing one or more elements selected from more.
(3) Using the continuously cast steel slab described in (1) or (2) above as a raw material, hot rolling was performed at a coiling temperature of 600 ° C. or less to form a hot-rolled steel sheet, and pickling and cold rolling were performed. After that, after the continuous annealing process at the recrystallization temperature or higher, perform an overaging treatment for 1 to 5 minutes in the range of 300 to 550 ° C., and make the secondary cold rolling 5% or more and 20% or less. The manufacturing method of the thin steel plate for high strength welding cans which was excellent in the flange formability characterized by this.
[0016]
The technical idea that led to the present invention will be described below.
Currently used box annealed materials have fewer flange cracks than continuous annealed materials. Considering this point, as a result of a detailed study of the means for improving flange cracking, two features and solutions were found.
[0017]
First, it is conceivable that the HAZ part softening of the box annealing material is smaller than that of the continuous annealing material. As a means to suppress the softening of the HAZ part with a continuously annealed material, the solid solution C state after annealing is precipitated as fine cementite, and by using it as a nucleus, the cold rolling strain in the DR is refined, and welding is performed. This is achieved by suppressing the coarsening of the crystal grain size during recrystallization with heat. By suppressing the coarsening of the crystal grain size, a reduction in the softening of the HAZ part is achieved. In addition, as a means of precipitation of fine cementite, it is achieved by an appropriate overaging treatment, and as a result, it can be detected in the form of a decrease in solid solution C.
[0018]
Secondly, it is considered that the elongation value of the box annealing material is larger than that of the continuous annealing material. That is, although the HAZ softening is also present in the box annealed material, it does not progress to flange cracking because the can end circumferential portion other than the welded portion has a large elongation, so that the entire region of the can circumference is also deformed simultaneously during flange processing. This is considered to be because stress concentration on the HAZ portion is alleviated. Therefore, by increasing the ductility of the base material, stress concentration on the HAZ part is alleviated. Therefore, it is only necessary to increase the elongation of the base material even in the continuous annealing material. However, in the conventional material, the improvement in the elongation and the increase in the strength are contradictory properties, and in order to ensure the necessary amount of strength, the DR ratio It has been common sense in the technology so far that the growth has decreased and the growth has been reduced accordingly. However, in the present invention, it was found that the DR ratio can be reduced by securing sufficient solid solution N and age strength is used to secure the required amount without reducing elongation. .
[0019]
Improvement of flange formability was confirmed by the combined effect of the above-mentioned two points, namely, the reduction of the solid solution C and the remaining of the solid solution N, and the present invention was completed.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the solid solution C reduction and the solid solution N residual type continuous annealing DR rolled material in the high strength thin steel sheet having excellent flange formability were studied. As a result, a preferred embodiment of the present invention will be described.
[0021]
C: More than 0.04% and 0.08% or less As a steel component, if the amount of C is excessive, the ductility is remarkably reduced due to hardening, and a predetermined elongation cannot be secured after reduction in can-making processability or DR, Excessive addition is not preferable from the viewpoint of reducing solid solution C. Therefore, the upper limit is made 0.08%. If the C content is 0.04% or less, the DR rate for securing the required strength increases, and as a result, the elongation decreases and the incidence of flange cracking increases.
[0022]
Al: 0.1 or less When there is a large amount of Al, it precipitates as AlN during annealing and heating, and the recrystallized grain growth of the annealed plate is suppressed, resulting in a non-uniform structure, and the amount of solute N necessary to ensure strength Since this causes problems such as reduction, the upper limit of Al content is set to 0.1%. From the viewpoint of securing solid solution N, it is desirable that the content be 0.02 to 0.07%.
[0023]
N: 0.005 to 0.02% or less N is an element necessary for increasing the strength of the steel sheet by the solid solution strengthening effect, and this effect can be stably obtained by adding 0.005% or more. If N is added in excess of 0.02%, the product will be remarkably hardened and the overall processability of can manufacturing will be hindered. In addition, it causes slab cracking during continuous casting, so the upper limit is made 0.02%. From the viewpoint of securing strength in consideration of the entire manufacturing process, it is preferable to contain it in the range of 0.005 to 0.012%.
[0024]
Solid solution C is obtained by the internal friction method, and solid solution N is obtained by subtracting the precipitation N (measured by the dissolution method using bromine ester) from the total N amount in the steel. If the value of solid solution C + solid solution N is not more than 50 ppm, sufficient solid solution strengthening amount and age-hardening amount cannot be secured, and there is a risk that the strength of the can body after canning is insufficient. On the other hand, if the content exceeds 200 ppm, the elongation decreases when aging progresses, and good flange workability cannot be obtained. Therefore, the total of solid solution C and solid solution N is contained in the range of 50 ppm ≦ solid solution C + solid solution N ≦ 200 ppm. In addition, it is preferable that solid solution C is 50 ppm or less from a viewpoint of HAZ softening prevention, and it is preferable that solid solution N is 50 ppm or more from a viewpoint of ensuring age-hardening property in that case.
[0025]
Si: 0.02% or less
If the amount of Si exceeds 0.02%, problems such as deterioration of surface treatment property and deterioration of corrosion resistance are caused, so the upper limit is made 0.02%. When particularly excellent corrosion resistance is required, the content is preferably 0.03% or less.
[0026]
Mn: 1.0% or less
Mn is an element that is effective in making crystal grains fine and preventing hot cracking due to S, and is preferably added according to the amount of S contained. Excessive addition deteriorates the corrosion resistance and deteriorates the cold rolling property due to hardening of the steel sheet, so the upper limit is made 1.0%. In addition, when better corrosion resistance and moldability are required, it is desirable to add in the range of 0.3% or less.
[0027]
P: 0.04% or less P is a harmful element that hardens steel, deteriorates flange workability and neck workability, and at the same time deteriorates corrosion resistance. Therefore, the upper limit is set to 0.04%. . If these characteristics are particularly important, the content is preferably 0.02% or less.
[0028]
S: 0.05% or less S is an element which exists as an inclusion in steel and reduces ductility and causes deterioration of corrosion resistance. Therefore, the upper limit is made 0.05%. In applications where particularly good workability is required, the content is preferably 0.005% or less.
[0029]
Nb: 0.003-0.3%
Nb is an element that is effective in making the steel structure finer, improving stretch flangeability, and preventing rough skin. It is necessary to add 0.003% or more for such an effect to be exerted, but if added over 0.3%, it becomes harder than necessary. Therefore, the amount of Nb added is set to 0.003 to 0.3%, but the range of 0.01% or less is more preferable in terms of the material.
[0030]
Ti: 0.003-0.3%
Ti also has the effect of refining the structure, just like Nb. In order to obtain this effect, 0.003% or more must be added. However, if it exceeds 0.3%, surface defects are prominent. Therefore, Ti can be added in a range of 0.003 to 0.3%, preferably 0.02% or less.
[0031]
B: 0.0004 to 0.020%
B is an element effective for refinement of the structure and adjustment control of aging, but is combined with N to be a precipitate. Such an effect is exhibited by addition of 0.0004% or more. However, addition over 0.020% is not preferable because the effect of N is reduced and the in-plane anisotropy of the steel sheet is increased. Therefore, B can be added in the range of 0.0004 to 0.020%.
[0032]
Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Mo: 0.5% or less All of these elements have the effect of increasing the strength of the steel sheet, and if necessary Add. However, if added over 0.5%, the cold rolling property is deteriorated, and the steel sheet is hardened more than necessary, and the can-making processability is deteriorated. Can be added.
[0033]
V: 0.3% or less, Zr: 0.5% or less, Ca: 0.01% or less These elements have almost similar material improving effects, and are added as necessary. However, the effect is saturated even if V and Zr are added in an amount exceeding 0.3% and Ca is added in an amount exceeding 0.01%.
[0034]
In the production method of the present invention, continuous cast steel pieces containing C: more than 0.04% and 0.08% or less, Al: 0.1% or less, and N: 0.005 to 0.02% or less by weight. The material is heated to 1050 ° C or higher, hot rolled at a coiling temperature of 600 ° C or lower to form a hot-rolled steel sheet, subjected to pickling and cold rolling, and soaking is performed at the recrystallization temperature. After the above-described continuous annealing process, an overaging treatment is performed. The required amount of solute C and solute N can be left in the steel sheet depending on the steel components, heating temperature and continuous annealing conditions. And a predetermined steel plate is obtained by giving twice cold rolling (DR) finish of elongation rate 5% or more and 20% or less.
[0035]
The term “overaging treatment” as used herein mainly refers to heat treatment at a low temperature for a long time as compared with a general annealing treatment for the purpose of reducing solute C. When the overaging treatment is performed after the continuous annealing, a soaking treatment is performed at 300 to 550 ° C. for 1 to 5 minutes. If it is less than 300 degreeC, the solid solution C cannot be reduced stably, but if it exceeds 550 degreeC, a crystal grain will coarsen. In addition, if it is less than 1 minute, the solid solution C cannot be reduced, and in order to perform a treatment exceeding 5 minutes, the furnace length is increased. In the overaging treatment performed after the continuous annealing, a treatment method called reheating overaging treatment with an annealing cooling end temperature of about 250 ° C. and reheating up to the overaging treatment temperature may be used.
[0036]
The overaging treatment may be performed by box annealing. The temperature and effect are the same as in the continuous annealing, but the heat treatment is performed for 2 to 10 hours. In this case, the solid solution C cannot be stably reduced in less than 2 hours, and the treatment in excess of 10 hours is not economically advantageous.
[0037]
The purpose of secondary cold rolling is to increase the strength of the material by strengthening the work, and to reduce the plate thickness and adjust the surface roughness and the like. When the rolling reduction of the secondary cold rolling exceeds 20%, the can workability is lowered and the ductility is deteriorated, and the flange workability which is the object of the present invention is reduced by increasing the strength more than necessary. It cannot be secured. Therefore, the rolling reduction of secondary cold rolling is 20% or less, preferably 15% or less, and it is desirable to make it 10% or less in applications where press formability is required. The lower limit of the rolling reduction is determined from the viewpoint of securing the required strength and the surface roughness management, but it is desirable to give 5% or more.
[0038]
【Example】
Examples of the present invention will be described below in comparison with comparative examples.
A steel plate for a welding can having a thickness of 0.18 mm was manufactured using the components and manufacturing conditions shown in Table 1. And the characteristic and flange workability of the obtained steel plate are shown in Table 1.
For evaluation of flange workability, the steel plate was formed into a 55 mmφ cylindrical shape and welded, and then flanged to a flange portion outer diameter of 70 mmφ to evaluate the presence or absence of cracks in the vicinity of the weld.
No. in Table 1 1-No. 7 is an example of the present invention, the range of the solid solution C and the solid solution N is kept at an appropriate amount, and the strength can be secured.
In addition, No. 8-No. No. 12 is a comparative example, and there are cases where the range of the solid solution C and the solid solution N deviates from an appropriate amount, and the strength is insufficient.
[0039]
That is, as apparent from Table 1, No. 1-No. No. 7 shows that the steel plate of the present invention has no flange cracking and has good flange workability. 8-No. In the case of 10 out of the scope of the present invention, a flange crack occurred.
[0040]
[Table 1]
Figure 0004276388
[0041]
【The invention's effect】
As described above, in the present invention, the amount of solid solution C and solid solution N is controlled to an appropriate amount to suppress softening of the HAZ part, and by ensuring sufficient elongation of the base material, The ability to obtain excellent flange workability in thin steel plates greatly contributes to resource saving and energy saving, and its economic effect is very large.

Claims (3)

mass%で、C:0.04%超0.08%以下、
Si:0.02%以下、Mn:1.0%以下
P:0.04%以下、S:0.05%以下
Al:0.1%以下、N:0.005〜0.02%以下を含有し、
かつ、鋼板中に固溶するCおよび固溶Nの合計が、50ppm≦固溶C+固溶N≦200ppm、かつ鋼板中の固溶Cが50ppm以下かつ、鋼板中の固溶Nが50ppm以上の範囲からなり、残部をFeおよび不可避不純物からなることを特徴とするフランジ成形性に優れた高強度溶接缶用薄鋼板。
mass%, C: more than 0.04% and 0.08% or less,
Si: 0.02% or less, Mn: 1.0% or less, P: 0.04% or less, S: 0.05% or less, Al: 0.1% or less, N: 0.005 to 0.02% or less Contains,
And the total of C and solid solution N dissolved in the steel sheet is 50 ppm ≦ solid solution C + solid solution N ≦ 200 ppm, the solid solution C in the steel sheet is 50 ppm or less, and the solid solution N in the steel sheet is 50 ppm or more. A thin steel plate for a high-strength weld can excellent in flange formability, characterized by comprising a range and the balance being Fe and inevitable impurities.
請求項1に記載の高強度溶接缶用薄鋼板において、さらに
Nb:0.003 〜0.3 %
Ti:0.003 〜0.3 %
B :0.004 〜0.020 %
Cu:0.5 %以下
Ni:0.5 %以下
Cr:0.5 %以下
Mo:0.5 %以下
より選ばれた1種または2種以上の元素を含むことを特徴とするフランジ成形性に優れた高強度溶接缶用薄鋼板。
The thin steel plate for high-strength weld cans according to claim 1, further comprising Nb: 0.003 to 0.3%.
Ti: 0.003 to 0.3%
B: 0.004 to 0.020%
Cu: 0.5% or less Ni: 0.5% or less Cr: 0.5% or less Mo: 0.5% or less
A thin steel plate for a high-strength weld can excellent in flange formability characterized by containing one or more elements selected from more.
請求項1または2に記載の連続鋳造鋼片を素材とし、巻取り温度を600℃以下にて熱間圧延して熱延鋼板となし、酸洗、冷間圧延を経たのち、均熱を再結晶温度以上の連続焼鈍工程後、300〜550℃の範囲で1〜5分間の過時効処理を施し、二次冷間圧延を圧下率5%以上20%以下とすることを特徴とするフランジ成形性に優れた高強度溶接缶用薄鋼板の製造方法。Using the continuous cast steel slab according to claim 1 or 2 as a raw material, hot rolling at a coiling temperature of 600 ° C. or less to form a hot-rolled steel sheet, pickling and cold rolling, and then reheating soaking. After the continuous annealing process at a temperature equal to or higher than the crystal temperature, an overaging treatment is performed in the range of 300 to 550 ° C. for 1 to 5 minutes , and the secondary cold rolling is performed at a reduction rate of 5% to 20%. A method for producing thin steel sheets for high-strength welded cans with excellent properties.
JP2001104772A 2001-04-03 2001-04-03 Thin steel plate for high-strength welding cans excellent in flange formability and method for producing the same Expired - Fee Related JP4276388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001104772A JP4276388B2 (en) 2001-04-03 2001-04-03 Thin steel plate for high-strength welding cans excellent in flange formability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001104772A JP4276388B2 (en) 2001-04-03 2001-04-03 Thin steel plate for high-strength welding cans excellent in flange formability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002294399A JP2002294399A (en) 2002-10-09
JP4276388B2 true JP4276388B2 (en) 2009-06-10

Family

ID=18957583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001104772A Expired - Fee Related JP4276388B2 (en) 2001-04-03 2001-04-03 Thin steel plate for high-strength welding cans excellent in flange formability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4276388B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183274A1 (en) 2012-06-06 2013-12-12 Jfeスチール株式会社 Three-piece can and method for producing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4546922B2 (en) * 2005-12-28 2010-09-22 新日本製鐵株式会社 Continuously annealed DR steel sheet for 3-piece welded can and method for producing the same
TW200827460A (en) * 2006-08-11 2008-07-01 Nippon Steel Corp DR steel sheet and manufacturing method thereof
MX2016014060A (en) 2014-04-30 2017-02-14 Jfe Steel Corp High-strength steel sheet and production method therefor.
CN110205565B (en) * 2019-06-01 2021-08-24 东莞市东莞理工科技创新研究院 Dispersion nanometer strengthened 690 steel and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183274A1 (en) 2012-06-06 2013-12-12 Jfeスチール株式会社 Three-piece can and method for producing same
KR20150004375A (en) 2012-06-06 2015-01-12 제이에프이 스틸 가부시키가이샤 Three-piece can and method for producing same
US9669961B2 (en) 2012-06-06 2017-06-06 Jfe Steel Corporation Three-piece can and method of manufacturing the same

Also Published As

Publication number Publication date
JP2002294399A (en) 2002-10-09

Similar Documents

Publication Publication Date Title
JP5135868B2 (en) Steel plate for can and manufacturing method thereof
CN103649353B (en) Steel plate for tanks and manufacture method thereof
JP4525450B2 (en) High strength and high ductility steel sheet for cans and method for producing the same
JP5018843B2 (en) Steel plate for high workability 3-piece welded can and manufacturing method thereof
JP5526483B2 (en) Steel plate for high-strength can and manufacturing method thereof
JP5076544B2 (en) Manufacturing method of steel sheet for cans
JP4853325B2 (en) Thin wall cold-rolled steel sheet for drums and method for producing the same
JP4268521B2 (en) Steel plate for container and method for producing the same
JP3852210B2 (en) Steel plate for modified 3-piece can and manufacturing method thereof
JP2023507810A (en) Tin-plated base plate for processing and method for producing the same
JP4276388B2 (en) Thin steel plate for high-strength welding cans excellent in flange formability and method for producing the same
JP4779737B2 (en) Manufacturing method of steel sheet for ultra thin can and steel sheet for ultra thin can
JP6019719B2 (en) Manufacturing method of high strength and high ductility steel sheet
JP4677914B2 (en) Steel plate for soft can and method for producing the same
JP6060603B2 (en) High strength steel plate for cans with excellent flange workability and manufacturing method thereof
JPH0756055B2 (en) Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability
JP5463720B2 (en) Cold rolled steel sheet for can steel sheet, steel sheet for can and manufacturing method thereof
JP3573389B2 (en) Double cold rolled steel plate for weld can with easy flange forming and method of manufacturing the same
JP5803510B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JP4959061B2 (en) Ferritic stainless steel sheet with excellent overhanging property and method for producing the same
JPH08218146A (en) Steel sheet for welded can excellent in flange workability and neck formability and production thereof
JP4283574B2 (en) Steel plate for high age-hardening containers with excellent canability and method for producing the same
JP5464223B2 (en) Surface-treated steel sheet for welding can and manufacturing method thereof
JPH059492B2 (en)
JPH05311325A (en) High strength hot rolled steel plate excellent in dc butt seam weldability and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R151 Written notification of patent or utility model registration

Ref document number: 4276388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees