JP5464223B2 - Surface-treated steel sheet for welding can and manufacturing method thereof - Google Patents
Surface-treated steel sheet for welding can and manufacturing method thereof Download PDFInfo
- Publication number
- JP5464223B2 JP5464223B2 JP2012051202A JP2012051202A JP5464223B2 JP 5464223 B2 JP5464223 B2 JP 5464223B2 JP 2012051202 A JP2012051202 A JP 2012051202A JP 2012051202 A JP2012051202 A JP 2012051202A JP 5464223 B2 JP5464223 B2 JP 5464223B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- flange
- elongation
- temperature
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、抵抗シーム溶接によって飲料缶等に使われるネックイン溶接缶胴において、ネックイン加工に次いでフランジ加工を行う工程での耐フランジ割れ性に優れた溶接缶用表面処理鋼板及びその製造方法に関するものである。 The present invention relates to a surface-treated steel sheet for a welding can excellent in flange crack resistance in a step of performing flange processing subsequent to neck-in processing in a neck-in welding can body used for beverage cans and the like by resistance seam welding, and a method for producing the same It is about.
缶胴の接合方法の中で抵抗シーム溶接法は従来の半田付け、樹脂接着付けより鋼板歩留りが優れており果汁、コーヒー等の飲料缶や非食缶のエアゾール缶等に広く用いられている。抵抗シーム溶接法は缶胴のサイドシーム部を鋼板が発する電気抵抗熱で溶融し圧着するものである。サイドシーム部が圧着された後は缶蓋をつけるために缶胴両端部を直径方向外側に向かって張り出す。これをフランジ加工と称すが、その際に張り出し先端が割れる加工不良を生じることがある。この割れをフランジ割れと称し、それを抑える鋼板特性を耐フランジ割れ性と称す。フランジ割れ原因には缶胴の接合強度不足、鋼板の延性不足があり、前者の接合強度不足を生じる鋼板因子は溶接部近傍の組織変化であり、後者の延性不足を生じる鋼板因子は内包された介在物や析出物などである。 Among the can body joining methods, the resistance seam welding method has a steel plate yield superior to conventional soldering and resin bonding, and is widely used in beverage cans such as fruit juice and coffee, and aerosol cans for non-food cans. In the resistance seam welding method, the side seam portion of the can body is melted and crimped by electric resistance heat generated by the steel plate. After the side seam portion is pressure-bonded, both ends of the can body are projected outward in the diameter direction in order to attach the can lid. This is referred to as flange processing, and there may be a processing failure in which the protruding tip breaks at that time. This crack is called flange cracking, and the steel sheet characteristic that suppresses this cracking is called flange cracking resistance. Causes of flange cracking include insufficient bonding strength of the can body and insufficient ductility of the steel sheet. The former steel sheet factor causing insufficient bonding strength is a structural change in the vicinity of the weld, and the latter steel sheet factor causing insufficient ductility is included. Inclusions and precipitates.
最近では蓋材に高価なアルミニウムを使うことが多くなり、鋼板の使用量を節減する目的から缶蓋の径を小さくすることが常態化しており、その手段として缶胴の両端を直径方向内側に絞り込むネックイン加工が一回ないしは複数回行われるようになった。ネックイン加工は、フランジ加工に先立つ加工なので缶胴両端には強い加工歪みが加わり、全伸びや均一伸びで表される鋼板延性が不足してフランジ割れの新たな原因となっている。さらに省資源の観点から鋼板の薄肉化が進展しており、その手段として熱延し、冷延し、連続焼鈍を選択して鋼板強度を増し、再度冷延してさらに強化を進める二回冷延法が行われている。二回冷延法はダブルレデュースと称され2CRと略称されるが、ネックイン加工同様に鋼板に強い加工歪みを付加するため、これも新たなフランジ割れ原因となっている。 Recently, expensive aluminum is often used for the lid material, and it has become normal to reduce the diameter of the can lid for the purpose of reducing the amount of steel sheet used. Neck-in processing to narrow down has been performed once or multiple times. Since the neck-in process is a process prior to the flange process, a strong processing strain is applied to both ends of the can body, and the steel sheet ductility expressed by total elongation and uniform elongation is insufficient, which is a new cause of flange cracking. Further, from the viewpoint of resource saving, the thinning of steel sheets is progressing, and as a means of doing so, it is hot-rolled, cold-rolled, continuous annealing is selected to increase the steel sheet strength, and cold-rolled again to further strengthen. The law is being extended. The double cold rolling method is referred to as double reduction and abbreviated as 2CR. However, it also causes a strong processing strain on the steel plate as in the case of neck-in processing, which also causes a new flange crack.
これらの問題を解決する方法がすでにいくつか提案されている。例えば鋼板の薄肉化による割れの抑制と鋼板強度確保の観点から、特にDHCR製法の製造条件を適正化することにより微細フェライト組織および固溶N量を制御する技術が、特許文献1に開示されている。しかし特許文献1には、ネックイン加工によって既に加工硬化が加えられた鋼板におけるフランジ加工については何も言及されておらず、この場合に問題となる鋼中の介在物の影響については考慮されていない。加えて微細フェライト組織および固溶N量を制御するためにDHCR製法が必須であり製造技術的な制約がある。 Several methods have already been proposed to solve these problems. For example, Patent Document 1 discloses a technique for controlling the fine ferrite structure and the amount of solute N by optimizing the manufacturing conditions of the DHCR manufacturing method from the viewpoint of suppressing cracking due to thinning of the steel sheet and securing the strength of the steel sheet. Yes. However, Patent Document 1 does not mention anything about the flange processing in a steel plate that has already undergone work hardening by neck-in processing, and the influence of inclusions in the steel, which is a problem in this case, is considered. Absent. In addition, in order to control the fine ferrite structure and the amount of solute N, the DHCR manufacturing method is indispensable and there are restrictions on the manufacturing technology.
また新たな割れ因子である加工歪みの抑制には、連続焼鈍を選択しても鋼板が強化されない製法が開示されている。例えば特許文献2の開示技術は、鋼板の化学成分のうちAl含有量[Al]%と窒素含有量[N]%に[Al]/[N]≧15なる関係を持たせれば連続焼鈍法を使っても調質度T−3以下の軟質鋼板が得られるとしている。しかし、特許文献2の方法は調質度T−3以下という極めて軟質な鋼板の製造方法であり、省資源の観点から進められている鋼板の薄肉化での、鋼板強度確保という目的は満たすことができない。加えてOA処理によって再結晶粒内のセメンタイト析出物が成長し粗大化するため本発明を構成する[φ]/[t]≦0.01なる要件を作り難い課題がある。 In addition, a manufacturing method in which the steel sheet is not strengthened even when continuous annealing is selected is disclosed in order to suppress the processing strain that is a new cracking factor. For example, the disclosed technology of Patent Document 2 is a continuous annealing method if the Al content [Al]% and the nitrogen content [N]% of the chemical components of the steel sheet have a relationship of [Al] / [N] ≧ 15. It is said that a soft steel sheet having a tempering degree T-3 or less can be obtained even if it is used. However, the method of Patent Document 2 is a method for producing a very soft steel sheet having a tempering degree of T-3 or less, and satisfies the purpose of securing the steel sheet strength by thinning the steel sheet being promoted from the viewpoint of resource saving. I can't. In addition, since the cementite precipitates in the recrystallized grains grow and become coarse due to the OA treatment, there is a problem that it is difficult to make the requirement [φ] / [t] ≦ 0.01 constituting the present invention.
介在物によるフランジ割れ、また薄肉化における鋼板強度低下に対して座屈強度に優れた製法が特許文献3に開示されている。特許文献3では、ドーム状に加工された缶底部の座屈強度に優れた薄肉化深絞りしごき缶用鋼板を得るための、Al/N、焼鈍均熱温度、焼鈍均熱時間を規定しているが、フランジ加工のように伸びが加工の主要因となる場合は考慮されておらず、特許文献1、特許文献2と同様、薄肉化によるフランジ割れ発生の主要な要因となる介在物粒径のサイズ、鋼板の全伸びにおける均一伸びの割合についても言及されていない。 Patent Document 3 discloses a manufacturing method excellent in buckling strength against flange cracking due to inclusions and a reduction in steel plate strength due to thinning. Patent Document 3 specifies Al / N, annealing soaking temperature, and annealing soaking time to obtain a steel plate for thinned deep-drawn ironing cans with excellent buckling strength at the bottom of the can processed into a dome shape. However, the case where elongation is the main factor of machining as in flange processing is not taken into account, and, as in Patent Document 1 and Patent Document 2, the inclusion particle size that is the main factor in generating flange cracks due to thinning No mention is made of the size of the steel sheet and the proportion of uniform elongation in the total elongation of the steel sheet.
そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、溶接製缶に当ってネックイン加工後のフランジ加工の工程でフランジ割れを起こさず、特に薄肉化を進める上で優れた溶接缶用表面処理鋼板及びその製造方法を提供することを目的とする。 Therefore, the present invention has been devised in view of the above-mentioned problems, and the object of the present invention is not to cause flange cracking in the flange processing step after neck-in processing by hitting a welded can, It aims at providing the surface treatment steel plate for welding cans which was excellent in advancing thickness reduction, and its manufacturing method.
上記課題を解決するために、本発明者らはネックイン加工後にフランジ加工を施して割れた缶の欠陥部を詳細に観察した。その結果、フランジ割れは溶接部近傍で生じておりほぼ同位置で割れていることを確認した。本発明で称す溶接部とは溶接缶製胴時の電気抵抗熱と通電部を介した加圧により鋼板組織と機械特性値が強化された部分であり、溶接部近傍とは母材の厚みを有しつつ電気抵抗熱を限定的に受けた熱影響部(以下、HAZと略す)と見做される部分である。それに対して溶接熱の影響を受けていない大半の部分を母材と称す。この溶接部近傍=HAZにフランジ割れが生じやすい理由は母材部分よりも板厚が厚い溶接部と熱影響を受けず軟化しない母材との間にあって比較的軟質であるために応力集中しやすいためと考えられる。つまり形状的に大きな変化があり比較的軟質であればそこに応力が集中して割れるのである。従って耐フランジ割れ性を有する鋼板とはHAZ強度≧母材強度の関係を製缶終了まで維持できるものと考えられる。本発明者らはその製法を鋭意検討した結果、化学成分の[C]量範囲を0.02〜0.06%に限定し、かつ[Al]量と[N]量が[Al]/[N]が4未満又は7超とすることで、4〜7にならないよう制御した鋼板に優れた耐フランジ割れ性を見出した。その鋼板で溶接缶を試作し母材材質を調べたところ[均一伸び]と[全伸び]に[均一伸び]/[全伸び]≧0.8なる関係があり、かつ溶接缶胴の板厚[t]と内包する炭化物平均粒径[φ]に[φ]/[t]≦0.01なる関係を有していることを知見した。溶接缶の場合、胴部の板厚は素材となる表面処理鋼板の板厚と等しい。このような成分を有する鋼板は母材強度がHAZ強度に比べ軟質かつ均一であるため、応力集中が起り難く母材が容易に張り出し加工される特性を有していた。また本発明の[C]量、[Al]量、[N]量を組合せた鋼板を伸び率1〜37%で調質圧延し、さらにネックイン加工を一回ないしは複数回行ってもHAZ強度≧母材強度の関係が維持されることを確認した。 In order to solve the above-mentioned problems, the present inventors have observed in detail the defect portion of the can that has been cracked by performing flange processing after neck-in processing. As a result, it was confirmed that the flange crack occurred in the vicinity of the weld and was cracked at substantially the same position. The welded part referred to in the present invention is a part in which the steel sheet structure and mechanical property values are reinforced by the electric resistance heat and pressure applied through the current-carrying part at the time of making the weld can, and the vicinity of the welded part is the thickness of the base material. It is a part that is regarded as a heat-affected zone (hereinafter abbreviated as HAZ) that has limited resistance to electrical resistance heat. On the other hand, most parts not affected by welding heat are called base materials. The reason why flange cracks are likely to occur in the vicinity of the weld zone = HAZ is between the weld zone where the plate thickness is thicker than the base material portion and the base material that is not affected by heat and does not soften, and is relatively soft, so stress concentration tends to occur. This is probably because of this. In other words, if there is a large change in shape and it is relatively soft, stress concentrates there and cracks. Therefore, it is considered that the steel plate having flange cracking resistance can maintain the relationship of HAZ strength ≧ base material strength until the end of can making. As a result of intensive studies on the production method, the inventors of the present invention limited the [C] amount range of the chemical component to 0.02 to 0.06%, and the [Al] amount and [N] amount are [Al] / [[ N] was less than 4 or more than 7, and it was found that the steel sheet controlled so as not to become 4 to 7 had excellent flange crack resistance. A prototype of the weld can was made of the steel plate and the base material was examined. There was a relationship of [Uniform Elongation] and [Total Elongation] [Uniform Elongation] / [Total Elongation] ≧ 0.8, and the thickness of the weld can body It has been found that there is a relationship [φ] / [t] ≦ 0.01 between [t] and the included carbide average particle size [φ]. In the case of a welded can, the plate thickness of the body is equal to the plate thickness of the surface-treated steel plate that is the material. A steel plate having such a component has a property that the base material has a softer and more uniform strength than the HAZ strength, so that stress concentration hardly occurs and the base material is easily stretched. Further, the steel sheet combining the [C] amount, [Al] amount, and [N] amount of the present invention is temper-rolled at an elongation of 1 to 37%, and the HAZ strength is obtained even if neck-in processing is performed once or multiple times. ≥ It was confirmed that the relationship of the base metal strength was maintained.
すなわち本発明は質量%で、C:0.02〜0.06%、Si:0.0001〜0.020%、Mn:0.10〜0.60%、P:0.0001〜0.02%、S:0.0001〜0.02%、トータルAl:0.010〜0.100%、N:0.002〜0.006%を含有し、残部Feおよび不可避的不純物からなる化学成分を有し、Al含有量[Al]%と窒素含有量[N]%に[Al]/[N]が4未満又は7超の鋼片を、1150〜1250℃に加熱し、Ar3変態点以上の温度で板厚2.0〜3.0mmに熱間圧延し、450〜650℃の温度で巻き取り、酸洗し、伸び率85〜95%で一次冷間圧延し、600〜660℃の温度で連続焼鈍し、伸び率1〜37%で調質圧延し、容器用表面処理を施した後、溶接缶胴となした鋼板の[均一伸び]と[全伸び]に[均一伸び]/[全伸び]≧0.8なる関係と溶接缶胴の板厚[t]と内包する炭化物平均粒径[φ]に[φ]/[t]≦0.01なる関係を有していることを特徴とするHR30T換算で62から85の硬度かつ板厚0.1〜0.4mmのネックイン加工に次ぐフランジ加工での耐フランジ割れ性に優れた溶接缶用表面処理鋼板である。本発明によればネック成形性に優れた薄肉化溶接缶用鋼板が提供されるのみならず、缶のコストダウンや省資源化の市場要請に応えられる種々の強度レベルのゲージダウン鋼板を提供することが可能である。 That is, the present invention is mass%, C: 0.02 to 0.06%, Si: 0.0001 to 0.020%, Mn: 0.10 to 0.60%, P: 0.0001 to 0.02. %, S: 0.0001 to 0.02%, Total Al: 0.010 to 0.100%, N: 0.002 to 0.006%, and a chemical component comprising the balance Fe and inevitable impurities A steel piece having an Al content of [Al]% and a nitrogen content of [N]% of [Al] / [N] of less than 4 or more than 7 and heated to 1150 to 1250 ° C. Hot rolled to a plate thickness of 2.0 to 3.0 mm at a temperature, wound at a temperature of 450 to 650 ° C., pickled, primary cold rolled at an elongation of 85 to 95%, and a temperature of 600 to 660 ° C. Steel that has been continuously annealed with, temper rolled at an elongation of 1 to 37%, surface treatment for containers, and then turned into a welded can body [Uniform Elongation] and [Total Elongation] to [Uniform Elongation] / [Total Elongation] ≧ 0.8, Welding Can Body Thickness [t] and Encapsulated Carbide Average Particle Size [φ] to [φ] /[T]≦0.01, characterized by having a hardness of 62 to 85 in terms of HR30T, and a flange resistance in flange processing following neck-in processing with a plate thickness of 0.1 to 0.4 mm. It is a surface-treated steel sheet for welding cans with excellent cracking properties . According to the present invention, not only a steel plate for a thinned welding can excellent in neck formability is provided, but also a gauge down steel plate having various strength levels that can meet market demands for cost reduction and resource saving of the can. It is possible.
上述した構成からなる、本発明を適用した溶接缶用表面処理鋼板によれば、板厚0.1〜0.4mmの鋼板を容易に低コストで製造できる利点があり、一般に使用される溶接機で製缶が可能であり、ネック成形およびフランジ成形等の加工性に優れて省資源であり、省エネルギーであるため、その経済的な価値は極めて高い。 According to the surface-treated steel sheet for welding cans to which the present invention is applied, having the above-described configuration, there is an advantage that a steel sheet having a thickness of 0.1 to 0.4 mm can be easily manufactured at low cost, and a commonly used welding machine Cans can be made, has excellent workability such as neck molding and flange molding, is resource-saving and energy-saving, so its economic value is extremely high.
以下、本発明について詳細に説明する。本発明においては質量%でC:0.02〜0.06%、Si:0.0001〜0.020%、Mn:0.10〜0.60%、P:0.0001〜0.02%、S:0.0001〜0.02%、トータルAl:0.010〜0.100%、N:0.002〜0.006%を含有し、残部Feおよび不可避的不純物からなる化学成分を有し、Al含有量[Al]%と窒素含有量[N]%に[Al]/[N]が4未満又は7超とすることで、それが4〜7なる関係を除いた連続鋳造鋼片を用いる。以下、各成分の組成は、全質量に対する質量%で表すこととし、その質量%を表すときには単に%と記載して表すこととする。 Hereinafter, the present invention will be described in detail. In the present invention, C: 0.02 to 0.06%, Si: 0.0001 to 0.020%, Mn: 0.10 to 0.60%, P: 0.0001 to 0.02% by mass% , S: 0.0001 to 0.02%, Total Al: 0.010 to 0.100%, N: 0.002 to 0.006%, and has a chemical component consisting of the balance Fe and inevitable impurities. In addition, the continuous cast steel slab in which the Al content [Al]% and the nitrogen content [N]% [Al] / [N] is less than 4 or more than 7 so that the relationship of 4 to 7 is eliminated. Is used. Hereinafter, the composition of each component is expressed by mass% with respect to the total mass, and when the mass% is expressed, it is simply expressed as%.
[C:0.02〜0.06%]
Cは本発明において重要な元素のひとつである。母材の強度とHAZの耐フランジ割れ性を確保するためにその量は厳格に管理されなければならない。含有量が0.02%未満では強度を確保することが困難であるばかりでなく、0.0001〜0.02%未満の領域ではわずかな添加量の変化が大きな強度ばらつきとなり溶接缶の安定製造を阻害する。一方、含有量が0.06%超では母材が硬質化し過ぎてフランジ加工性を劣化させ、また熱延後の巻き取り段階で炭化物析出に偏りが生じてフランジ割れ起因となる。さらに溶接時の電気抵抗熱によって溶接部やHAZにオーステナイト相を生じて硬質相が析出しフランジ割れ起因となる。上述の理由からCの下限は0.02%、好ましくは0.025%、より好ましく0.03%であり、Cの上限は0.06%、好ましくは0.05%、より好ましく0.04%である。
[C: 0.02 to 0.06%]
C is one of the important elements in the present invention. In order to ensure the strength of the base material and the HAZ flange crack resistance, the amount must be strictly controlled. If the content is less than 0.02%, not only is it difficult to ensure the strength, but in the region of 0.0001 to less than 0.02%, a slight change in the added amount causes a large variation in strength, and stable production of welded cans. Inhibits. On the other hand, if the content exceeds 0.06%, the base material becomes too hard and the flange workability is deteriorated, and the carbide precipitation is biased at the winding stage after hot rolling, resulting in flange cracking. Furthermore, the austenite phase is generated in the welded part and the HAZ by the electric resistance heat at the time of welding, and the hard phase is precipitated to cause flange cracking. For the above reasons, the lower limit of C is 0.02%, preferably 0.025%, more preferably 0.03%, and the upper limit of C is 0.06%, preferably 0.05%, more preferably 0.04%. %.
[Si:0.0001〜0.020%]
Siは缶用鋼板の耐食性に有害な元素であるが0.020%以下であれば実用缶の流通期間内に問題を生じることがない。確実な耐食性保証には0.010%以下が望ましい。Siの下限については特に規定する必要はなく、含有量を可及的に低減させることが好ましいが低減させるために要するコストの観点から0.0001%を下限とする。上述の理由からSiの下限は0.0001%であり、Siの上限は0.020%、好ましくは0.010%、より好ましくは0.005%である。
[Si: 0.0001 to 0.020%]
Si is an element harmful to the corrosion resistance of the steel plate for cans, but if it is 0.020% or less, no problem occurs during the distribution period of the practical cans. For ensuring corrosion resistance, 0.010% or less is desirable. The lower limit of Si does not need to be specified in particular, and it is preferable to reduce the content as much as possible, but 0.0001% is set as the lower limit from the viewpoint of the cost required for the reduction. For the above reasons, the lower limit of Si is 0.0001%, and the upper limit of Si is 0.020%, preferably 0.010%, more preferably 0.005%.
[Mn:0.10〜0.60%]
MnはCと同様に鋼板強度を確保するために使用される。しかしその含有量が0.10%未満では強化が認められず、その含有量が0.60%を超えると著しく合金コストが上がり商用鋼板としての魅力を失うので0.10〜0.60%とする。上述の理由からMnの下限は0.10%、好ましくは0.20%、より好ましくは0.30%であり、Mnの上限は0.60%、好ましくは0.50%、より好ましくは0.40%である。
[Mn: 0.10 to 0.60%]
Mn is used to secure the strength of the steel sheet in the same manner as C. However, if the content is less than 0.10%, strengthening is not recognized, and if the content exceeds 0.60%, the alloy cost is remarkably increased and the attractiveness as a commercial steel sheet is lost, so it is 0.10 to 0.60%. To do. For the above reasons, the lower limit of Mn is 0.10%, preferably 0.20%, more preferably 0.30%, and the upper limit of Mn is 0.60%, preferably 0.50%, more preferably 0. 40%.
[P:0.0001〜0.02%]
Pは結晶粒を微細化し母材の変形抵抗を増してHAZへの応力集中を助長する働きがある。またSi同様に耐食性に有害な元素でもあり上限を0.02%とした。Pの下限については特に規定する必要はなく、含有量を可及的に低減させることが望ましいが低減させるために要するコストの観点から0.0001%を下限とする。上述の理由からPの下限は0.0001%であり、Pの上限は0.02%、好ましくは0.010%、より好ましくは0.005%である。
[P: 0.0001 to 0.02%]
P has the function of refining crystal grains and increasing the deformation resistance of the base material to promote stress concentration on the HAZ. It is also an element harmful to corrosion resistance like Si, and the upper limit was made 0.02%. The lower limit of P need not be specified in particular, and it is desirable to reduce the content as much as possible, but 0.0001% is set as the lower limit from the viewpoint of the cost required for the reduction. For the above reasons, the lower limit of P is 0.0001%, and the upper limit of P is 0.02%, preferably 0.010%, more preferably 0.005%.
[S:0.0001〜0.02%]
Sは熱延中に赤熱脆性を起こしS起因疵を発生する元素であり、Si、P同様に耐食性に有害な元素である。赤熱脆性はMn/S≧8で疵解消ができるのでSの上限を0.02%とする。下限については特に規定する必要はなく、含有量を可及的に低減させることが望ましいが低減させるために要するコストの観点から0.0001%を下限とする。上述の理由からSの下限は0.0001%であり、Sの上限は0.02%、好ましくは0.010%、より好ましくは0.005%である。
[S: 0.0001 to 0.02%]
S is an element which causes red brittleness during hot rolling and generates S-induced soot, and is an element harmful to corrosion resistance like Si and P. Since red heat brittleness can be eliminated when Mn / S ≧ 8, the upper limit of S is made 0.02%. The lower limit is not particularly specified, and it is desirable to reduce the content as much as possible, but 0.0001% is set as the lower limit from the viewpoint of the cost required for the reduction. For the above reasons, the lower limit of S is 0.0001%, and the upper limit of S is 0.02%, preferably 0.010%, more preferably 0.005%.
[トータルAl:0.010〜0.100%]
AlはNと共に本発明の重要な元素であり、Alは脱酸と鋼中のNをAlNとして固定するために添加する。特に熱延巻き取り時にNを窒化アルミニウム(以下、AlNと略す)として析出させないと連続焼鈍時に極微細なAlNが析出して再結晶を遅延させ、母材強度がHAZより高まりフランジ割れを生じる。一方、A1点近傍の高温巻き取りでAlN析出を促進すると粗大AlN等が多数析出してフランジ割れ起点となるほか母材強度や延性に偏りが生じてフランジ割れを助長する。本発明者らはこれらの不都合なAlN状態とならない巻き取り温度域でフランジ割れを生じない好ましい[Al]量、[N]量バランスを検討した。その結果、[N]量が20〜60ppmにあって[Al]/[N]が4〜7の場合にフランジ割れが生じやすいことを知見した。本発明者らが発見したフランジ割れ誘発域は、冶金的メカニズムは明らかでないが、AlN析出に好ましい熱延巻き取り温度450〜650℃にありながら特異的にAlN析出し難く連続焼鈍時に極微細なAlNが析出して再結晶を遅延させ、母材強度がHAZより高まりフランジ割れを誘発する領域と考えられる。またAlは介在物によるフランジ割れを抑制する上でその量を厳格に管理しなければならない。製鋼で混入する介在物は粗大AlN同様にフランジ割れ原因になるので0.010%以上を脱酸剤として溶鋼に添加し介在物を除くことが重要である。一方、Al量の増大はコスト高や母材の硬質化を招くのでその上限を0.100%とする。上述の理由からAlの下限は0.010%、好ましくは0.030%、より好ましく0.050%であり、Alの上限は0.100%、好ましくは0.080%、より好ましく0.060%である。
[Total Al: 0.010 to 0.100%]
Al is an important element of the present invention together with N, and Al is added to deoxidize and fix N in steel as AlN. In particular, when N is not precipitated as aluminum nitride (hereinafter abbreviated as AlN) during hot rolling, ultrafine AlN is precipitated during continuous annealing, recrystallization is delayed, the base material strength is higher than HAZ, and flange cracking occurs. On the other hand, when AlN precipitation is promoted by high-temperature winding in the vicinity of the A1 point, a large amount of coarse AlN or the like is precipitated and becomes a flange crack starting point, and the base material strength or ductility is biased to promote flange cracking. The present inventors examined a preferable balance of [Al] and [N] that do not cause flange cracking in the winding temperature range where the inconvenient AlN state does not occur. As a result, it was found that flange cracking is likely to occur when the [N] amount is 20 to 60 ppm and [Al] / [N] is 4 to 7. Although the metallurgical mechanism is not clear, the flange crack induction region discovered by the present inventors is difficult to specifically precipitate AlN while being at a hot rolling coiling temperature of 450 to 650 ° C. preferable for AlN precipitation, and is extremely fine during continuous annealing. It is considered that AlN precipitates and delays recrystallization, and the strength of the base metal is higher than that of HAZ and induces flange cracking. In addition, the amount of Al must be strictly controlled to suppress flange cracking due to inclusions. Inclusions mixed in steelmaking cause flange cracking like coarse AlN, so it is important to add 0.010% or more to the molten steel as a deoxidizer to remove inclusions. On the other hand, an increase in the amount of Al leads to high costs and hardening of the base material, so the upper limit is made 0.100%. For the above reasons, the lower limit of Al is 0.010%, preferably 0.030%, more preferably 0.050%, and the upper limit of Al is 0.100%, preferably 0.080%, more preferably 0.060%. %.
[N:0.002〜0.006%]
NはAlで述べたように本発明の重要な元素であり、かつ固溶強化によってHR30T換算で62から85の硬度に鋼板強度を制御する上で不可欠な元素である。固溶強化効果は0.002%以上を添加すれば安定して得られる。一方、0.006%を超えて添加すると連続鋳造時の鋼片割れ起因となり、熱延巻取り時に粗大AlN析出を促進してフランジ割れ起点を作る等の不具合を生じるので上限を0.006%とする。上述の理由からNの下限は0.002%、好ましくは0.003%、より好ましく0.004%であり、Nの上限は0.006%、好ましくは0.0055%、より好ましく0.005%である。
[N: 0.002 to 0.006%]
N is an important element of the present invention as described in Al, and is an indispensable element for controlling the steel sheet strength to a hardness of 62 to 85 in terms of HR30T by solid solution strengthening. The solid solution strengthening effect can be stably obtained by adding 0.002% or more. On the other hand, if added over 0.006%, it causes steel slab cracking during continuous casting, and causes problems such as the formation of flange crack starting points by promoting coarse AlN precipitation during hot rolling, so the upper limit is 0.006%. To do. For the above reasons, the lower limit of N is 0.002%, preferably 0.003%, more preferably 0.004%, and the upper limit of N is 0.006%, preferably 0.0055%, more preferably 0.005. %.
[[Al]/[N]が4未満又は7超]
フランジ割れを生じない範囲について、後述する実施例に示すように、実験的な検討をした結果、[Al]/[N]が4以上であり7以下の場合には、フランジ割れが生じやすくなってしまうことが分かった。このため本発明では、フランジ割れが生じにくい範囲として、[Al]/[N]を4未満又は7超に限定している。
[[Al] / [N] is less than 4 or more than 7]
As a result of an experimental study on the range where flange cracking does not occur, as shown in the examples described later, when [Al] / [N] is 4 or more and 7 or less, flange cracking is likely to occur. I found out. For this reason, in the present invention, [Al] / [N] is limited to less than 4 or more than 7 as a range in which flange cracking hardly occurs.
また、本発明では上記化学成分の鋼片を熱間圧延し、酸洗し、冷間圧延し、連続焼鈍した後、伸び率が1〜37%の調質圧延を施す。 In the present invention, the steel slabs having the above chemical components are hot-rolled, pickled, cold-rolled and continuously annealed, and then subjected to temper rolling with an elongation of 1 to 37%.
[上記化学成分を有するスラブの加熱温度:1150〜1250℃]
熱間圧延は精錬後に高温の鋼片となしたままAr3変態点未満に冷却することなく施す形態や一旦鋼片をAr3変態点未満〜常温まで冷却した後、再加熱して施す形態のどちらを採ってもよいがAr3変態点未満で熱間圧延すると鋼板が混粒組織となり母材強度の均一性を損なうので熱間圧延前の上記化学成分を有するスラブの加熱温度は1150℃以上が好ましく、1250℃を超えて高温になるとスケール生成が増加し歩留り低下が大きくなるので上限を1250℃とする。
[Heating temperature of slab having the above chemical components: 1150 to 1250 ° C.]
Hot rolling is either a form in which the steel slab is cooled to below the Ar3 transformation point while it becomes a high-temperature steel slab after refining, or a form in which the steel slab is once cooled from below the Ar3 transformation point to room temperature and then reheated. Although it may be taken, since the steel sheet becomes a mixed grain structure when hot rolling below the Ar3 transformation point and the uniformity of the base material strength is impaired, the heating temperature of the slab having the above chemical components before hot rolling is preferably 1150 ° C or higher, When the temperature is higher than 1250 ° C., scale generation increases and yield reduction increases, so the upper limit is set to 1250 ° C.
熱間圧延は常温大気中で施されるため空気や圧延ロールへの抜熱が極めて大きく、鋼板全長をAr3変態点以上で熱間圧延するには下限の板厚が2.0mm以上が好ましい。また薄肉化する場合に3.0mmを超えると冷間圧延負荷が大きくなり圧延中の破断が生じやすくなるので上限を3.0mmとする。 Since hot rolling is performed in air at normal temperature, the heat removal from the air and rolling roll is extremely large, and in order to hot-roll the entire length of the steel sheet at the Ar3 transformation point or more, the lower limit sheet thickness is preferably 2.0 mm or more. When the thickness is reduced to 3.0 mm, the cold rolling load increases and breakage during rolling tends to occur, so the upper limit is set to 3.0 mm.
熱間圧延で最も温度管理が厳密な工程が仕上げ圧延で、その温度がAr3変態点以上であれば熱延鋼板が均一整粒化して母材の結晶粒径ばらつきや母材強度、延性の偏りを抑制することができる。熱延鋼板のAr3変態点は使用する鋼材の化学成分などによって異なるため実機操業などから実験的に求めてよい。 Finishing rolling is the process with the strictest temperature control in hot rolling, and if the temperature is higher than the Ar3 transformation point, the hot rolled steel sheet is uniformly sized, resulting in variations in the crystal grain size of the base material, uneven base material strength, and ductility. Can be suppressed. Since the Ar3 transformation point of a hot-rolled steel sheet varies depending on the chemical composition of the steel material used, it may be obtained experimentally from actual machine operation.
[巻取り温度:450〜650℃]
巻取り温度制御は水冷で行われるため鋼板端部と中央部の温度ばらつきが生じやすく、ばらつきが最小化する巻取り温度範囲を限定する必要がある。強い冷却を施し450℃未満とする低温巻取りは鋼板温度ばらつきが最小化する好ましい条件であるがNをAlNとして析出させない条件でありHAZ強度≧母材強度の関係を損なうので下限を450℃とする。一方、650℃超の高温巻取りではAlN析出が促進されて粗大AlN等が多数析出しフランジ割れ起点となるほか母材強度や延性に偏りが生じてフランジ割れを助長するので上限を650℃とする。
[Winding temperature: 450-650 ° C.]
Since the coiling temperature control is performed by water cooling, the temperature variation between the end and the center of the steel plate is likely to occur, and it is necessary to limit the coiling temperature range in which the variation is minimized. Low temperature winding with strong cooling to less than 450 ° C. is a preferable condition for minimizing steel plate temperature variation, but is a condition in which N is not precipitated as AlN, and the relationship of HAZ strength ≧ base material strength is impaired, so the lower limit is 450 ° C. To do. On the other hand, high temperature winding above 650 ° C. promotes AlN precipitation, and a large amount of coarse AlN precipitates to become the starting point of flange cracking. In addition, the base material strength and ductility are biased to promote flange cracking, so the upper limit is 650 ° C. To do.
[冷間圧延伸び率:85〜95%]
連続焼鈍で再結晶後に均質整粒組織が安定して得られる圧延率を適用する。圧延率は低いほど再結晶組織を構成する結晶粒を粗大かつ混粒にする。下限は85%以上で、かつ一般的な冷間圧延機能力上限に相当する95%を上限とすることが好ましい。
[Cold rolling elongation: 85-95%]
The rolling rate at which a uniform sized structure is stably obtained after recrystallization by continuous annealing is applied. The lower the rolling rate, the larger and coarser the crystal grains constituting the recrystallized structure. The lower limit is preferably 85% or more, and the upper limit is preferably 95% corresponding to a general cold rolling functional force upper limit.
[連続焼鈍温度:600〜660℃]
ネック加工後に安定した耐フランジ割れ性を付与するためにはコイル全体を均一に再結晶処理ができる連続焼鈍を適用することが好ましい。連続焼鈍温度を600℃未満にすると完全には再結晶せず母材が硬質化する。また660℃超にすると連続焼鈍炉内で鋼板絞りや破断が発生しやすくなる。従って連続焼鈍時の下限温度を600℃とし、上限を660℃とする。なお焼鈍時間は再結晶組織の均一性を損なわない15秒以上とし、60秒を超えても均一性向上は僅かなため生産性を考慮して60秒以下が好ましい。
[Continuous annealing temperature: 600 to 660 ° C.]
In order to provide stable flange cracking resistance after neck processing, it is preferable to apply continuous annealing that can uniformly recrystallize the entire coil. When the continuous annealing temperature is less than 600 ° C., the base material is hardened without being completely recrystallized. Moreover, when it exceeds 660 degreeC, it will become easy to generate | occur | produce drawing and a fracture | rupture in a continuous annealing furnace. Accordingly, the lower limit temperature during continuous annealing is set to 600 ° C., and the upper limit is set to 660 ° C. The annealing time is 15 seconds or longer that does not impair the uniformity of the recrystallized structure, and even if it exceeds 60 seconds, the improvement in uniformity is slight.
[調質圧延伸び率:1〜37%]
連続焼鈍後、調質圧延を行う。調質圧延の目的は加工強化による母材の強度調整と薄肉化を容易にすることである。薄肉化の調整は伸び率1〜37%の範囲が好ましい。伸び率が1%未満では鋼板の加工強化が弱くHR30T換算で62から85の硬度を得ることが困難になるためである。一方、伸び率が37%を超えると母材の延性が無くなり、加工に対応できる可塑性を失ってネック加工、フランジ加工で座屈しわや割れが多発するためである。上述の理由から調質圧延の下限は1%、好ましくは3%、より好ましく6%であり、調質圧延の上限は37%、好ましくは25%、より好ましく10%である。
[Temper rolling elongation: 1-37%]
After continuous annealing, temper rolling is performed. The purpose of temper rolling is to facilitate strength adjustment and thinning of the base metal by strengthening the work. The adjustment of thinning is preferably in the range of 1 to 37% elongation. This is because if the elongation is less than 1%, the steel sheet has poor work strengthening and it is difficult to obtain a hardness of 62 to 85 in terms of HR30T. On the other hand, if the elongation exceeds 37%, the base material loses its ductility, loses the plasticity that can be processed, and causes frequent buckling and cracking in neck processing and flange processing. For the above reasons, the lower limit of temper rolling is 1%, preferably 3%, more preferably 6%, and the upper limit of temper rolling is 37%, preferably 25%, more preferably 10%.
[製品板厚:0.1〜0.4mm]
調質圧延された鋼板の最終板厚は薄肉化による溶接缶の軽量化、省資源の観点から0.4mm以下である。好ましくは0.3mm以下、より好ましく0.15mm以下である。このような方法で得られた鋼板は切板、コイル、鋼箔として用いられる。表面処理の種類は特に限定されるものはなく、電解クロム酸処理鋼板(ティンフリースチール)、錫メッキ鋼板、薄錫メッキ鋼板、Niメッキ鋼板あるいはそれらを組み合わせた複合メッキ鋼板を適用することができる。化成処理にはクロム水和酸化物、あるいは上層がクロム水和酸化物層で下層が金属クロム層からなる2層構造を持つ電解クロム酸処理被膜あるいはZr、P、Ti、フェノール樹脂、シランカップリング剤等を少なくとも1種以上含む処理液で電解処理あるいは塗布処理を行うことにより生成される化成処理被膜等を用いることもできる。
[Product thickness: 0.1 to 0.4 mm]
The final thickness of the temper-rolled steel sheet is 0.4 mm or less from the viewpoint of reducing the weight of the welding can by reducing the thickness and saving resources. Preferably it is 0.3 mm or less, More preferably, it is 0.15 mm or less. The steel plate obtained by such a method is used as a cut plate, a coil, or a steel foil. The type of surface treatment is not particularly limited, and an electrolytic chromate-treated steel sheet (tin-free steel), a tin-plated steel sheet, a thin tin-plated steel sheet, a Ni-plated steel sheet, or a composite-plated steel sheet combining them can be applied. . For chemical conversion treatment, chromium hydrated oxide, or electrolytic chromic acid-treated film with a two-layer structure consisting of a chromium hydrated oxide layer on the upper layer and a metal chromium layer on the lower layer, or Zr, P, Ti, phenol resin, silane coupling It is also possible to use a chemical conversion film produced by performing electrolytic treatment or coating treatment with a treatment liquid containing at least one agent or the like.
[溶接缶胴母材の均一伸び/全伸び≧0.8]
フランジ割れ原因には缶胴の接合強度不足、鋼板の延性不足がある。後者の延性不足の鋼板は溶接缶製胴時の電気抵抗熱と通電部の加圧を受けても容易にラップが潰れず板厚が厚い溶接部を形成する。加えて延性不足の鋼板は硬質であるため溶接缶の母材も硬質である。板厚の厚い溶接部と硬質な母材との間にあって加熱軟化したHAZは応力が集中しやすく割れやすい。つまり形状的に大きな変化があり母材より軟質なHAZであればそこに応力が集中して割れるのである。本発明者らは溶接ラップ部の潰れやすさを鋼板で見極めるため延性の指標である全伸び値、均一伸び値との関係を調査した。その結果、溶接缶胴となした鋼板の[均一伸び]と[全伸び]に[均一伸び]/[全伸び]≧0.8なる関係があれば溶接部が容易に潰れ、フランジ割れが出難いことを見出した。
[Uniform elongation of welded can body base material / total elongation ≧ 0.8]
The cause of the flange cracking is insufficient bonding strength of the can body and insufficient ductility of the steel plate. The latter ductility-deficient steel sheet does not easily collapse even when subjected to electrical resistance heat and pressurization of the current-carrying part at the time of making the weld can, thereby forming a thick welded part. In addition, since the steel sheet with insufficient ductility is hard, the base material of the weld can is also hard. The HAZ that is between the welded portion having a thick plate thickness and the hard base material and has been softened by heating tends to concentrate stress and to be easily cracked. That is, if the HAZ has a large change in shape and is softer than the base material, stress concentrates and cracks there. The present inventors investigated the relationship between the total elongation value and the uniform elongation value, which are indicators of ductility, in order to determine the ease of crushing of the weld lap with a steel plate. As a result, if there is a relationship of [uniform elongation] / [total elongation] ≧ 0.8 between [uniform elongation] and [total elongation] of the steel plate used as the welded can body, the welded part easily collapses and flange cracks appear. I found it difficult.
全伸びと均一伸びを支配する冶金因子は多くあり、かつ相互に影響するため非常に複雑なためメカニズム解明ができているとは言い難いが、本発明の範囲内で制御された鋼板であれば本発明の好ましい効果を確実に得られる。 There are many metallurgical factors governing total elongation and uniform elongation, and it is difficult to say that the mechanism has been elucidated because it is very complex because it affects each other, but if it is a steel plate controlled within the scope of the present invention The preferable effect of the present invention can be obtained with certainty.
[溶接缶胴の板厚tと内包する炭化物平均粒径φがφ/t≦0.01]
ネックイン加工で付加される缶胴両端の強い加工歪み、さらに省資源の観点から鋼板の薄肉化に使われる調質圧延で付加される強い加工歪みは鋼板の全伸びや均一伸び値を小さくしてフランジ割れ原因となる。フランジ割れはHAZの延性を超えるほどの加工によって生じる延性破断の1形態であり、その破断面には必ず起点となった介在物、析出物が存在している。本発明者らはそれらの不純物の種類と大きさと溶接缶胴の厚みの関係を調査した。その結果、主たる不純物は炭化物であり、溶接缶同の板厚[t]と内包する炭化物平均粒径[φ]に[φ]/[t]≦0.01なる関係があればHAZはフランジ加工に耐えてフランジ割れが出難いことを見出した。溶接缶胴の板厚は素材となる表面処理鋼板の板厚と等しい。炭化物平均粒径は、鋼板の200μm×200μm視野中に存在する炭化物粒を大きい方から10個取り出し、長径の長さを測り平均したものである。炭化物はCを主に本発明成分のほとんどが影響して形成されるものであり、固溶状態にあるもの、炭化物の土台となる析出物を形成するもの、その量と種類は多様であり非常に複雑なためメカニズム解明ができているとは言い難いが、本発明の範囲内で制御された鋼板であれば本発明の好ましい効果を確実に得られる。
[The thickness t of the weld can body and the average carbide particle diameter φ included is φ / t ≦ 0.01]
Strong processing strain at both ends of the can body added by neck-in processing, as well as strong processing strain added by temper rolling used for thinning the steel plate from the viewpoint of resource saving, reduce the total elongation and uniform elongation values of the steel plate. Cause cracking of the flange. Flange cracking is a form of ductile fracture that occurs by processing that exceeds the ductility of HAZ, and inclusions and precipitates that always serve as starting points are present on the fracture surface. The present inventors investigated the relationship between the type and size of these impurities and the thickness of the welded can body. As a result, the main impurity is carbide, and if there is a relationship [φ] / [t] ≦ 0.01 between the plate thickness [t] of the weld can and the average carbide particle size [φ] included, the HAZ is flange processed. It was found that the flange cracking was difficult to withstand. The plate thickness of the welded can body is equal to the plate thickness of the surface-treated steel plate as the material. The carbide average particle diameter is obtained by taking 10 carbide grains present in the 200 μm × 200 μm field of view of the steel plate from the larger one, measuring the length of the long diameter, and averaging. Carbides are formed mainly by the influence of most of the components of the present invention on C. Those that are in a solid solution state, those that form precipitates that form the basis of carbides, and their amounts and types are very diverse. However, it is difficult to say that the mechanism has been elucidated due to its complexity, but the steel plate controlled within the scope of the present invention can surely obtain the preferable effects of the present invention.
以下に実施例を説明する。以下の表1および表2に示すNo.1〜43の化学成分の鋼を連続鋳造して得られた鋼片を2.5mmまで熱間圧延後、酸洗し、タンデム式6段冷間圧延機にて0.22mmまで圧延した。これらNo.1〜43の化学成分のうち、No.1〜12は、本発明において規定した範囲の成分を満たし、かつ製造条件も本発明の範囲に含まれる本発明例であり、No13〜43は、上述した本発明において規定した範囲の成分(特にN、Al/N)から逸脱するものか、或いは製造条件(巻取温度)が本発明の範囲から逸脱する比較例である。ちなみに、本発明の成分を逸脱する条件には下線を示す。 Examples will be described below. No. shown in Table 1 and Table 2 below. Steel pieces obtained by continuous casting of steels having chemical components 1 to 43 were hot-rolled to 2.5 mm, pickled, and rolled to 0.22 mm with a tandem six-high cold rolling mill. These No. Among the chemical components 1 to 43, No. 1 Nos. 1 to 12 are examples of the present invention satisfying the components in the range defined in the present invention and the production conditions are also included in the scope of the present invention. Nos. 13 to 43 are components in the range defined in the present invention described above (particularly N, Al / N), or a comparative example in which the manufacturing conditions (winding temperature) deviate from the scope of the present invention. Incidentally, the condition deviating from the components of the present invention is underlined.
この鋼板を連続焼鈍後、0.20mmまで調質圧延し、錫メッキを施した。次いで溶接のためのニスよけ部分を除いて鋼板を塗装し焼付け乾燥し、缶胴寸法に切断し、スードロニック溶接機FBB−1080を使用して溶接缶胴と成した。その後、缶胴ダイネッカーで2段ネックイン加工を施し、フランジ加工し、耐フランジ割れ性を評価した。フランジ加工率は商用缶より大きくとり、2段ネックイン加工缶内径[d]とフランジ外径[D]とした[D]/[d]をフランジ加工率と定め、その条件が1.25となるように加工した。フランジ割れ缶数はそれぞれの供試材を溶接機で1万缶製造し、ネックインとフランジ加工を連続して施し、出来た缶のフランジ割れを1缶毎に目視観察して集計した。フランジ割れ発生率は([フランジ割れ缶数]/1万缶)×100(%)で算出した。すでに一般に使用されている溶接缶用錫メッキ鋼板の中で最もフランジ割れの生じやすい板厚0.15mmぶりき鋼板を予め同様の方法で評価したところフランジ割れ発生率が0.05%であった。これを実用上限値として本発明鋼板、比較鋼板の耐フランジ割れ性を評価した。 The steel sheet was subjected to temper rolling to 0.20 mm after continuous annealing and tin plating. Next, the steel sheet was coated, baked and dried except for the varnish portion for welding, cut into can body dimensions, and formed into a welded can body using a Suderonic welder FBB-1080. Thereafter, a two-stage neck-in process was performed with a can body dynecker, flanged, and flange cracking resistance was evaluated. The flange processing rate is larger than that of commercial cans, and the two-stage neck-in processing inner diameter [d] and flange outer diameter [D] are defined as [D] / [d] as the flange processing rate, and the condition is 1.25. It processed so that it might become. The number of flange cracking cans was obtained by producing 10,000 cans of each test material with a welding machine, applying neck-in and flange processing in succession, and visually observing the flange cracks of the resulting cans for each can. The flange crack occurrence rate was calculated by ([number of flange cracking cans] / 10,000 cans) × 100 (%). When a 0.15 mm thick steel plate that is most prone to flange cracking among tin-plated steel plates for welding cans already in general use was evaluated in advance by the same method, the flange crack occurrence rate was 0.05%. . With this as the practical upper limit, the flange crack resistance of the steel sheet of the present invention and the comparative steel sheet was evaluated.
表1および表2に示すNo.1〜43で本発明を満たす鋼板例はフランジ割れ発生率が0.05%以下であり商用鋼板相当の優れた加工性を有しており、一方、本発明と異なる比較例の製造条件の鋼板例は0.05%超のフランジ割れ発生率を有しており商用鋼板として使用不可能な特性であった。図1は横軸を[N]量、縦軸に[Al]質量%/[N]質量%比として、フランジ割れ発生率が0.05%未満を○、0.05%超を×として表示した。 No. shown in Table 1 and Table 2. The steel sheet examples 1 to 43 satisfying the present invention have a flange crack occurrence rate of 0.05% or less, and have excellent workability equivalent to that of commercial steel sheets. The example had a flange crack generation rate of more than 0.05%, and was a characteristic that could not be used as a commercial steel sheet. In FIG. 1, the horizontal axis indicates [N] amount, the vertical axis indicates [Al] mass% / [N] mass% ratio, and the flange crack occurrence rate is expressed as ○ when less than 0.05%, and × when more than 0.05%. did.
この図1に示すように、横軸[N]量が0.002〜0.006の範囲であり、縦軸[Al]質量%/[N]質量%比が4未満又は7超とすることにより、フランジ割れが0.5%未満とすることができることが示されていた。これに対して、横軸[N]量が0.002〜0.006の範囲を逸脱した場合、又は横軸[N]量が0.002〜0.006の範囲であっても縦軸[Al]質量%/[N]質量%比が4〜7の範囲にある場合には、フランジ割れが0.5%を超えることが示されていた。 As shown in FIG. 1, the horizontal axis [N] amount is in the range of 0.002 to 0.006, and the vertical axis [Al] mass% / [N] mass% ratio is less than 4 or more than 7. Has shown that the flange cracking can be less than 0.5%. In contrast, when the horizontal axis [N] amount deviates from the range of 0.002 to 0.006, or even when the horizontal axis [N] amount is within the range of 0.002 to 0.006, the vertical axis [N] When the ratio of Al] mass% / [N] mass% is in the range of 4-7, it has been shown that flange cracking exceeds 0.5%.
以上の図1の傾向より、本発明では、Nについて0.002〜0.006%とし、[Al]/[N]を4未満又は7超としている。
From the above tendency of FIG. 1, in the present invention, N is 0.002 to 0.006%, and [Al] / [N] is less than 4 or more than 7.
Claims (2)
C:0.02〜0.06%、
Si:0.0001〜0.020%、
Mn:0.10〜0.60%、
P:0.0001〜0.02%、
S:0.0001〜0.02%、
トータルAl:0.010〜0.100%、
N:0.002〜0.006%、
を含有し、残部がFeおよび不可避的不純物であって、Al含有量[Al]%と窒素含有量[N]%が[Al]/[N]が4未満又は7超となる化学成分を有し、かつ[均一伸び]と[全伸び]に[均一伸び]/[全伸び]≧0.8なる関係と、板厚[t]と内包する炭化物平均粒径[φ]に[φ]/[t]≦0.01なる関係を有していることを特徴とする、HR30T換算で62から85の硬度でかつ板厚0.1〜0.4mmのネックイン加工に次ぐフランジ加工での耐フランジ割れ性に優れた溶接缶用表面処理鋼板。 % By mass
C: 0.02 to 0.06%,
Si: 0.0001 to 0.020%,
Mn: 0.10 to 0.60%,
P: 0.0001 to 0.02%,
S: 0.0001 to 0.02%,
Total Al: 0.010-0.100%
N: 0.002 to 0.006%,
The balance is Fe and inevitable impurities, and the Al content [Al]% and the nitrogen content [N]% have a chemical component in which [Al] / [N] is less than 4 or more than 7. And [Uniform Elongation] and [Total Elongation] to [Uniform Elongation] / [Total Elongation] ≧ 0.8, and the thickness [t] and the included carbide average particle size [φ] to [φ] / [T] ≦ 0.01, characterized by having a hardness of 62 to 85 in terms of HR30T and resistance to flange processing following neck-in processing with a plate thickness of 0.1 to 0.4 mm. Surface-treated steel sheet for welding cans with excellent flange cracking properties .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012051202A JP5464223B2 (en) | 2012-03-08 | 2012-03-08 | Surface-treated steel sheet for welding can and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012051202A JP5464223B2 (en) | 2012-03-08 | 2012-03-08 | Surface-treated steel sheet for welding can and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013185211A JP2013185211A (en) | 2013-09-19 |
JP5464223B2 true JP5464223B2 (en) | 2014-04-09 |
Family
ID=49386912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012051202A Active JP5464223B2 (en) | 2012-03-08 | 2012-03-08 | Surface-treated steel sheet for welding can and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5464223B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3185557B2 (en) * | 1994-09-06 | 2001-07-11 | 日本鋼管株式会社 | Method for manufacturing soft tinplate and soft TFS steel sheet |
JP3726371B2 (en) * | 1996-08-30 | 2005-12-14 | Jfeスチール株式会社 | Steel plate for cans with high age-hardening properties and excellent material stability and method for producing the same |
JP2003183738A (en) * | 2001-12-13 | 2003-07-03 | Jfe Engineering Kk | Method for manufacturing steel sheet for thinning deep- drawn and ironed can, superior in strength and workability |
JP2007197742A (en) * | 2006-01-24 | 2007-08-09 | Nippon Steel Corp | Cold rolled steel sheet for welded can, and its manufacturing method |
JP4634959B2 (en) * | 2006-04-24 | 2011-02-16 | 新日本製鐵株式会社 | Ultra-thin steel plate and manufacturing method thereof |
JP5000452B2 (en) * | 2007-10-18 | 2012-08-15 | 新日本製鐵株式会社 | Steel plate for 3-piece can with high strength and excellent expand formability and manufacturing method thereof |
-
2012
- 2012-03-08 JP JP2012051202A patent/JP5464223B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013185211A (en) | 2013-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5794004B2 (en) | Steel sheet for high strength can excellent in flange workability and manufacturing method thereof | |
JP5135868B2 (en) | Steel plate for can and manufacturing method thereof | |
TWI460029B (en) | High tensile strength and high formability steel sheet for can and its production method | |
JP5018843B2 (en) | Steel plate for high workability 3-piece welded can and manufacturing method thereof | |
JP5854134B2 (en) | 3-piece can body and manufacturing method thereof | |
JP2005504891A (en) | Steel plate for container and method for producing the same | |
JP3852210B2 (en) | Steel plate for modified 3-piece can and manufacturing method thereof | |
JP2023507810A (en) | Tin-plated base plate for processing and method for producing the same | |
JP5672907B2 (en) | Steel sheet for high strength and high workability can and method for producing | |
JP4630268B2 (en) | Steel plate for profile can | |
JP5803660B2 (en) | High-strength, high-formability steel plate for cans and method for producing the same | |
JP5463720B2 (en) | Cold rolled steel sheet for can steel sheet, steel sheet for can and manufacturing method thereof | |
JP4276388B2 (en) | Thin steel plate for high-strength welding cans excellent in flange formability and method for producing the same | |
JP5464223B2 (en) | Surface-treated steel sheet for welding can and manufacturing method thereof | |
JP6060603B2 (en) | High strength steel plate for cans with excellent flange workability and manufacturing method thereof | |
JP5849666B2 (en) | High-strength, high-formability steel plate for cans and method for producing the same | |
JP5974999B2 (en) | Steel plate for high strength can | |
JP5803510B2 (en) | High-strength, high-formability steel plate for cans and method for producing the same | |
JP4296944B2 (en) | Cold-rolled steel sheet with excellent weldability and secondary work brittleness resistance | |
JP3324074B2 (en) | High strength and high ductility steel plate for container and method of manufacturing the same | |
JP3351284B2 (en) | Manufacturing method of ultra-thin steel sheet for welded can with excellent neck formability | |
JP3434905B2 (en) | Manufacturing method of steel plate for welding can | |
WO2023062153A1 (en) | Method for producing high-strength tinplate and tinplate produced therewith | |
JPH0762448A (en) | Manufacture of ultra thin steel sheet for vessel | |
JPH03249133A (en) | Production of steel sheet for welded can excellent in blank layout property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130917 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131028 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140106 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5464223 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |