JP3449003B2 - Steel plate for cans and manufacturing method thereof - Google Patents

Steel plate for cans and manufacturing method thereof

Info

Publication number
JP3449003B2
JP3449003B2 JP31704994A JP31704994A JP3449003B2 JP 3449003 B2 JP3449003 B2 JP 3449003B2 JP 31704994 A JP31704994 A JP 31704994A JP 31704994 A JP31704994 A JP 31704994A JP 3449003 B2 JP3449003 B2 JP 3449003B2
Authority
JP
Japan
Prior art keywords
less
rolling
steel sheet
cans
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31704994A
Other languages
Japanese (ja)
Other versions
JPH08176735A (en
Inventor
章男 登坂
昌利 荒谷
俊之 加藤
覚 佐藤
久々湊英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP31704994A priority Critical patent/JP3449003B2/en
Publication of JPH08176735A publication Critical patent/JPH08176735A/en
Application granted granted Critical
Publication of JP3449003B2 publication Critical patent/JP3449003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主としてぶりき(電気
錫めっき)を施して使用される缶用鋼板、とくにDI
(Drawn and Wall Ironed )缶用に用いて好適な鋼板お
よびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel plate for a can, which is mainly used after being tin-plated (electrotin plating), particularly DI.
(Drawn and Wall Ironed) The present invention relates to a steel sheet suitable for use in a can and a manufacturing method thereof.

【0002】[0002]

【従来の技術】DI缶用の鋼板は、特に軟質であること
が要求されるために、従来、主として低炭素鋼を素材と
して、箱焼鈍法で製造されていた。しかし、箱焼鈍法は
生産効率が低いうえ、種々の表面欠陥を慢性的に発生す
るという本質的な間題を抱えていた。これらの問題を解
決するために、連続焼鈍法による製造が種々検討されて
きた。しかしながら、通常の低炭アルミキルド鋼に連続
焼鈍法を適用して製造した鋼板は、鋼板の軟質化に限界
があり、また時効性を低下させることも困難であるた
め、ゲージダウン(鋼板板厚の減少)を図り、缶体の
「ボトム耐圧強度」が要求される場合には有利である
が、高速での連続製缶性(以下、単に「高速連続製缶
性」と略記する)の点では不利であった。
2. Description of the Related Art Steel sheets for DI cans are required to be particularly soft, so that they have been conventionally manufactured mainly by using a low carbon steel as a raw material by a box annealing method. However, the box annealing method has a low production efficiency and has an essential problem that various surface defects are chronically generated. In order to solve these problems, various manufacturing methods by continuous annealing have been studied. However, a steel sheet manufactured by applying a continuous annealing method to a normal low carbon aluminum killed steel has a limit in softening the steel sheet, and it is also difficult to reduce the aging property. It is advantageous when "bottom pressure resistance" of the can is required, but in terms of continuous high-speed can manufacturing (hereinafter simply referred to as "high-speed continuous can manufacturing"). It was a disadvantage.

【0003】この解決策としての提案が、例えば特開平
2−118027号公報に、極低炭素鋼を素材として、
冷間圧延、連続焼鈍を行った後、15〜45%の圧下率
範囲で調質圧延して鋼板を強化する方法が開示されてい
る。
A proposal as a solution to this problem is disclosed in, for example, Japanese Unexamined Patent Publication No. 2-118027, in which ultra low carbon steel is used as a material.
Cold rolling, after the continuous sintering blunt, a method of enhancing the steel sheet to temper rolling at a reduction ratio range of 15% to 45% is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この方
法によって製造した場合、高速連続製缶性はある程度改
善されるものの、未だ十分な域に達していないのみなら
ず、ボトム耐圧強度の極度の低下が懸念されるために缶
底部の形状を工夫するなどの必要があった。
However, in the case of manufacturing by this method, although the high-speed continuous can-making property is improved to some extent, not only has it not yet reached a sufficient range, but also the bottom compressive strength is extremely lowered. Because of concern, it was necessary to devise the shape of the bottom of the can.

【0005】そこで、本発明の目的は、ゲージダウンに
対応できる、十分なボトム耐圧強度を有するとともに、
従来にない高速連続製缶性をも備えた鋼板とその製造方
法を提案することにある。さらに、本発明の目的は、上
記のボトム耐圧強度および高速連続製缶性に加えて、加
工性とくにr値の面内異方性(以下、「Δr」と略記す
る)が小さい鋼板とその製造方法を提案することにあ
る。
Therefore, an object of the present invention is to have sufficient bottom withstand pressure strength that can cope with gauge down, and
It is to propose a steel sheet having a high-speed continuous can-making property that has never been seen and a method for manufacturing the same. Further, an object of the present invention is to provide a steel sheet having a small workability, in particular, an in-plane anisotropy of r value (hereinafter abbreviated as “Δr”) and its production in addition to the above bottom pressure resistance and high-speed continuous can-making property. To propose a method.

【0006】[0006]

【課題を解決するための手段】発明者らは、上記のボト
ム耐圧強度および高速連続製缶性、あるいはさらに、Δ
rなどの特性について、素材の加工硬化挙動に注目して
詳細な研究を行った。その結果、強度を要求される部位
と加工性を要求される部位が製缶工程において受ける加
工履歴が違うことから、一見矛盾する各々の特性が、鋼
の成分組成とくにC、Nbの含有量を適正に制御したう
え、熱間圧延、冷間圧延および焼鈍などの各製造条件の
適正化を図って組織を制御することにより、ともに飛躍
的に改善されることを見出し本発明を完成するに到っ
た。
The inventors of the present invention have found that the above bottom pressure resistance and high-speed continuous can-making property, or further, Δ
Regarding the characteristics such as r, a detailed study was conducted focusing on the work hardening behavior of the material. As a result, the parts that require strength and the parts that require workability have different processing histories in the can making process. Therefore, each seemingly contradictory property is related to the composition of steel, especially the contents of C and Nb. By controlling appropriately and controlling the structure by optimizing each manufacturing condition such as hot rolling, cold rolling, and annealing, it was found that both are dramatically improved, and the present invention has been completed. It was.

【0007】すなわち、本発明の要旨構成は次のとおり
である。 (1) C:0.0005〜0.0030wt%、Si:0.20wt%以下、Mn:
0.05〜0.60wt%、 P:0.100 wt%以下、S:0.010
wt%以下、 Al:0.100 wt%以下、N:0.0050wt%以
下、 Nb:0.003 〜0.020 wt%を含み、上記Cおよび
Nbは、原子比にしてNb/C:0.70〜1.70の関係を満して
含有し、残部はFeおよび不可避的不純物からなり、しか
もフェライト平均粒径が15μm以下であることを特徴
とする缶用鋼板。
That is, the gist of the present invention is as follows. (1) C: 0.0005 to 0.0030 wt%, Si: 0.20 wt% or less, Mn:
0.05 to 0.60 wt%, P: 0.100 wt% or less, S: 0.010
wt% or less, Al: 0.100 wt% or less, N: 0.0050 wt% or less, Nb: 0.003 to 0.020 wt%, including the above C and
Nb is contained in an atomic ratio of Nb / C: 0.70 to 1.70, the balance is Fe and inevitable impurities, and the average ferrite grain size is 15 μm or less. steel sheet.

【0008】(2) C:0.0005〜0.0030wt%、Si:0.20wt
%以下、Mn:0.05〜0.60wt%、 P:0.100 wt%以
下、S:0.010 wt%以下、 Al:0.100 wt%以下、
N:0.0050wt%以下、 Nb:0.003 〜0.020 wt%を含
み、かつNi:0.05〜0.50wt%、 Cr:0.05〜0.50wt%
およびCu:0.05〜0.50wt%のうちから選ばれるいずれか
1種または2種以上を含み、上記CおよびNbは、原子比
にしてNb/C:0.70〜1.70の関係を満して含有し、残部
はFeおよび不可避的不純物からなり、しかもフェライト
平均粒径が15μm以下であることを特徴とする缶用鋼
板。
(2) C: 0.0005 to 0.0030 wt%, Si: 0.20 wt
%, Mn: 0.05 to 0.60 wt%, P: 0.100 wt% or less, S: 0.010 wt% or less, Al: 0.100 wt% or less,
N: 0.0050 wt% or less, Nb: 0.003 to 0.020 wt% included, Ni: 0.05 to 0.50 wt%, Cr: 0.05 to 0.50 wt%
And Cu: containing one or more selected from 0.05 to 0.50 wt%, and the above C and Nb are contained in an atomic ratio of Nb / C: 0.70 to 1.70. A steel sheet for a can, characterized in that the balance consists of Fe and unavoidable impurities, and has an average ferrite grain size of 15 μm or less.

【0009】(3) C:0.0005〜0.0030wt%、Si:0.20wt
%以下、Mn:0.05〜0.60wt%、 P:0.100 wt%以
下、S:0.010 wt%以下、 Al:0.100 wt%以下、
N:0.0050wt%以下、 Nb:0.003 〜0.020 wt%を含
み、上記CおよびNbは、原子比にしてNb/C:0.70〜1.
70の関係を満して含有し、残部はFeおよび不可避的不純
物からなる鋼スラブを加熱後、熱間粗圧延を経て、(Ar3
変態点−30℃) 〜(Ar3+100 ℃) の温度範囲で熱間仕上
げ圧延し、続いて、前記仕上げ圧延後 0.5 sec以内に水
冷を開始し、30℃/sec 以上の速度で冷却した後、680
〜580 ℃の温度範囲で巻き取り、さらに酸洗を経て、83
%以上の圧下率で冷間圧延を行い、その後、再結晶温度
〜800 ℃の温度範囲で焼鈍し、15%以下の圧下率で調質
圧延することを特徴とする缶用鋼板の製造方法。
(3) C: 0.0005 to 0.0030 wt%, Si: 0.20 wt
%, Mn: 0.05 to 0.60 wt%, P: 0.100 wt% or less, S: 0.010 wt% or less, Al: 0.100 wt% or less,
N: 0.0050 wt% or less, Nb: 0.003 to 0.020 wt% are included, and the above C and Nb have an atomic ratio of Nb / C: 0.70 to 1.
After the steel slab containing 70% of the content and the balance of Fe and inevitable impurities is heated, it is subjected to hot rough rolling and (Ar 3
After hot finish rolling in the temperature range of (transformation point −30 ° C.) to (Ar 3 + 100 ° C.), and then water cooling is started within 0.5 sec after the finish rolling, and after cooling at a rate of 30 ° C./sec or more. , 680
It is wound up in the temperature range of ~ 580 ℃, pickled, and then 83
A method for manufacturing a steel sheet for cans, comprising cold rolling at a rolling reduction of not less than%, annealing at a recrystallization temperature to 800 ° C, and temper rolling at a rolling reduction of not more than 15%.

【0010】(4) C:0.0005〜0.0030wt%、Si:0.20wt
%以下、Mn:0.05〜0.60wt%、 P:0.100 wt%以
下、S:0.010 wt%以下、 Al:0.100 wt%以下、
N:0.0050wt%以下、 Nb:0.003 〜0.020 wt%を含
み、かつNi:0.05〜0.50wt%、 Cr:0.05〜0.50wt%
およびCu:0.05〜0.50wt%のうちから選ばれるいずれか
1種または2種以上を含み、上記CおよびNbは、原子比
にしてNb/C:0.70〜1.70の関係を満して含有し、残部
はFeおよび不可避的不純物からなる鋼スラブを加熱後、
熱間粗圧延を経て、(Ar3変態点−30℃) 〜(Ar3+100
℃) の温度範囲で熱間仕上げ圧延し、続いて、前記仕上
げ圧延後 0.5 sec以内に水冷を開始し、30℃/sec 以上
の速度で冷却した後、680 〜580 ℃の温度範囲で巻き取
り、さらに酸洗を経て、83%以上の圧下率で冷間圧延を
行い、その後、再結晶温度〜800 ℃の温度範囲で焼鈍
し、15%以下の圧下率で調質圧延することを特徴とする
缶用鋼板の製造方法。
(4) C: 0.0005 to 0.0030 wt%, Si: 0.20 wt
%, Mn: 0.05 to 0.60 wt%, P: 0.100 wt% or less, S: 0.010 wt% or less, Al: 0.100 wt% or less,
N: 0.0050 wt% or less, Nb: 0.003 to 0.020 wt% included, Ni: 0.05 to 0.50 wt%, Cr: 0.05 to 0.50 wt%
And Cu: containing one or more selected from 0.05 to 0.50 wt%, and the above C and Nb are contained in an atomic ratio of Nb / C: 0.70 to 1.70. After heating the steel slab, the balance of which is Fe and unavoidable impurities,
After hot rough rolling, (Ar 3 transformation point −30 ° C.) to (Ar 3 +100
Hot finish rolling in the temperature range of ℃), then start water cooling within 0.5 sec after the finish rolling, cool at a rate of 30 ℃ / sec or more, and wind in the temperature range of 680 to 580 ℃. After further pickling, cold rolling is performed at a reduction rate of 83% or more, then annealing is performed at a temperature range of recrystallization temperature to 800 ° C, and temper rolling is performed at a reduction rate of 15% or less. Of manufacturing steel sheet for cans.

【0011】[0011]

【作用】以下に、本発明における各限定理由について、
成分組成から順に述べる。 C:0.0005〜0.0030wt% C量は、伸びおよびr値の向上の観点から低減すること
が望ましいが、0.0005wt%未満では粒径の著しい粗大化
によって加工後の表面に肌荒れ、いわゆるオレンジピー
ル現象が顕在化して外観不良のトラブルをまねく危険性
がある。一方、0.0030wt%を超えると、r値が低下傾向
を示す上、耐時効性の劣化が顕著になり、単純にボトム
耐圧強度を向上させるには有利であるが、高速連続製缶
性には不利となる。したがってCの含有量は、0.0005〜
0.0030wt%、好ましくは0.0005〜0.0025wt%とする。
The function of each limitation in the present invention will be described below.
It will be described in order from the component composition. C: 0.0005 to 0.0030 wt% It is desirable to reduce the C content from the viewpoint of improving elongation and r-value, but if it is less than 0.0005 wt%, the surface after processing is roughened due to the remarkable coarsening of the grain size, a so-called orange peel phenomenon. There is a risk that it will become apparent and cause troubles with poor appearance. On the other hand, if it exceeds 0.0030 wt%, the r value tends to decrease and the deterioration of aging resistance becomes remarkable, which is advantageous for simply improving the bottom pressure resistance strength, but for high-speed continuous can-making property. It will be a disadvantage. Therefore, the content of C is 0.0005-
The amount is 0.0030 wt%, preferably 0.0005 to 0.0025 wt%.

【0012】Si:0.20wt%以下 Siは、強化能が大きく、脱酸効果も期待できるが、0.20
wt%を超えて含有すると、表面処理性の劣化が顕著にな
るため、0.20wt%以下、より好ましくは0.10wt%以下と
する。
Si: 0.20 wt% or less Si has a large strengthening ability and is expected to have a deoxidizing effect.
If it is contained in excess of wt%, the surface treatment property is significantly deteriorated, so the content is set to 0.20 wt% or less, more preferably 0.10 wt% or less.

【0013】Mn:0.05〜0.60wt% Mnは、鋼の赤熱脆性を防止するために、不可避的に混入
するS量に応じて含有する必要があり、少なくとも0.05
wt%以上添加することで赤熱脆性を防止できる。また、
Mnは、熱間圧延時のAr3 変態点を低下させ、熱延仕上げ
温度の規制の緩和に有利であるほか、固溶強化による強
度向上作用を有する。また、Mnは、特に組織の均一・微
細化に著効をもたらす。しかしながら、Mn含有量が0.60
wt%を超えると、過度の硬化が生じ、r値の劣化が顕著
になる。したがって、Mn添加量は、0.05〜0.60wt%、好
ましくは0.10〜0.50wt%とする。
Mn: 0.05 to 0.60 wt% Mn must be contained according to the amount of S inevitably mixed in, in order to prevent red hot embrittlement of the steel, and at least 0.05.
Red hot brittleness can be prevented by adding more than wt%. Also,
Mn lowers the Ar 3 transformation point during hot rolling, is advantageous for relaxing restrictions on the hot rolling finish temperature, and has the effect of improving strength by solid solution strengthening. In addition, Mn is particularly effective in making the structure uniform and fine. However, the Mn content is 0.60
If it exceeds wt%, excessive hardening occurs and the r value deteriorates significantly. Therefore, the amount of Mn added is 0.05 to 0.60 wt%, preferably 0.10 to 0.50 wt%.

【0014】P:0.100 wt%以下、 Pは、Siと同様に固溶強化能が大きいため、強度上昇の
ために有効な元素であるが、多量の含有は、耐食性の劣
化や材料の脆化などをまねく上、再結晶温度の上昇をま
ねくことから、0.100 wt%以下に限定する。なお、0.02
0 wt%以下とすることが好ましい。
P: 0.100 wt% or less, P is an element effective for increasing strength because it has a large solid solution strengthening ability like Si, but a large amount of P deteriorates corrosion resistance and embrittles the material. In addition, it limits the recrystallization temperature to 0.100 wt% or less. Note that 0.02
It is preferably 0 wt% or less.

【0015】S:0.010 wt%以下 S量は、鋼中の介在物を増加させ、加工性を劣化させる
有害な元素であり、固定に必要なMn添加量の増大、熱延
仕上げ温度の規制強化等の不利を招くため、0.010 wt%
以下、望ましくは、0.005 wt%以下にする必要がある。
S: 0.010 wt% or less S content is a harmful element that increases inclusions in the steel and deteriorates workability. The amount of Mn added necessary for fixing is increased, and the regulation of hot rolling finish temperature is strengthened. 0.010 wt%
Hereafter, it is desirable that the content be 0.005 wt% or less.

【0016】Al:0.100 wt%以下 Alは、鋼の脱酸材として添加する元素である。しかし、
0.100 wt%を超えて添加すると、表面性状の劣化を招
き、表面処理性を害するので0.100 wt%以下の範囲で添
加する必要がある。とくに下限を設けないが、鋼中介在
物の残留を防止するためには0.005 wt%以上の添加量が
好ましい。さらに、組織の細粒化、N固定の安定化のた
めには0.020 〜0.080 wt%とするのがより好ましい。
Al: 0.100 wt% or less Al is an element added as a deoxidizing agent for steel. But,
If it is added in excess of 0.100 wt%, the surface properties will be deteriorated and the surface treatment will be impaired, so it is necessary to add it in the range of 0.100 wt% or less. Although there is no particular lower limit, an addition amount of 0.005 wt% or more is preferable in order to prevent inclusions from remaining in the steel. Further, 0.020 to 0.080 wt% is more preferable for making the structure finer and stabilizing N fixing.

【0017】N:0.0050wt%以下 Nは、加工性を阻害する有害な元素であるが、いたずら
に少なくすることは、鋼の溶製コストの上昇を招く。本
発明ではAlを添加するので、Nの上限は0.0050wt%まで
許容できる。したがって、Nは、0.0050wt%以下に制限
するが、操業の安定性を考慮すれば、0.0050wt%以下に
するのが好ましい。
N: 0.0050 wt% or less N is a harmful element that hinders workability, but an unnecessarily small amount causes an increase in steel melting cost. Since Al is added in the present invention, the upper limit of N can be up to 0.0050 wt%. Therefore, N is limited to 0.0050 wt% or less, but it is preferably 0.0050 wt% or less in consideration of the stability of operation.

【0018】Nb:0.003 〜0.020 wt% Nbは、鋼板の面内異方性の改善および結晶粒の細粒化に
有効な元素であり、また詳細な機構は不明であるが、D
I成形時の負荷を低下させる元素でもある。このような
効果を得るためには少なくとも0.003 wt%以上の添加が
必要である。しかし、0.020 wt%を超えて添加すると、
これらの効果が飽和し、コスト上昇を招くことのほか、
再結晶温度の上昇にもつながるので上限は0.020 wt%と
する。
Nb: 0.003 to 0.020 wt% Nb is an element effective in improving the in-plane anisotropy of the steel sheet and making the crystal grains finer, and the detailed mechanism is unknown, but D
It is also an element that reduces the load during I molding. In order to obtain such effects, it is necessary to add at least 0.003 wt% or more. However, if added over 0.020 wt%,
In addition to the saturation of these effects and higher costs,
The upper limit is set to 0.020 wt% because it will also increase the recrystallization temperature.

【0019】Nb/C:0.70〜1.70 NbとCは、上記範囲のほかに、原子比Nb/Cにして0.70
〜1.70を満足する必要がある。すなわち、Nb/Cが、0.
70未満では、詳細な機構は不明であるが、DI成形時の
負荷を低下させる効果がみられず、一方、1.70を超える
とΔrが増加し深絞り成形時に耳発生が大きくなる。し
たがって、原子比Nb/Cは0.70〜1.70の範囲、好ましく
は1.00〜1.50の範囲とする。
Nb / C: 0.70 to 1.70 Nb and C have an atomic ratio of Nb / C of 0.70 in addition to the above range.
Need to satisfy ~ 1.70. That is, Nb / C is 0.
If it is less than 70, the detailed mechanism is unclear, but the effect of reducing the load during DI molding is not observed, while if it exceeds 1.70, Δr increases and ears become large during deep drawing. Therefore, the atomic ratio Nb / C is in the range of 0.70 to 1.70, preferably 1.00 to 1.50.

【0020】また、本発明においては、上記基本成分に
加え、Ni、CrおよびCuのいずれか少なくとも1種を、そ
れぞれ0.05〜0.50wt%の範囲で添加することが可能であ
る。 Ni:0.05〜0.50wt%、Cr:0.05〜0.50wt%、Cu:0.05〜
0.50wt%:Ni、CrおよびCuはいずれも、組織の細粒化作
用を有するとともに、熱間圧延時のAr3 変態点を低下さ
せ、熱延仕上げ温度の規制の緩和に有利である。また、
これらの元素は固溶強化能が比較的小さいために、鋼板
の強度をいたずらに高めて高速連続製缶性を低下させる
弊害が少ない、これらの効果は、単独添加または複合添
加に係わりなく、それぞれ、0.05wt%以上の添加で得ら
れるが、0.50wt%を超えて添加しても効果が飽和し、い
たずらにコストの上昇ををまねくため、0.50wt%以下に
限定する。なお、これらの元素は単独に添加しても、2
元素以上を複合添加してもその効果は同様に発揮され
る。
In the present invention, it is possible to add at least one of Ni, Cr and Cu in the range of 0.05 to 0.50 wt% in addition to the above basic components. Ni: 0.05 to 0.50 wt%, Cr: 0.05 to 0.50 wt%, Cu: 0.05 to
0.50 wt%: Ni, Cr and Cu all have a grain refining function of the structure, lower the Ar 3 transformation point during hot rolling, and are advantageous in relaxing restrictions on the hot rolling finishing temperature. Also,
Since these elements have a relatively small solid solution strengthening ability, they have little adverse effect of unnecessarily increasing the strength of the steel sheet and lowering the high-speed continuous can-making property.These effects are independent of single addition or composite addition, respectively. , 0.05 wt% or more, but even if added over 0.50 wt%, the effect is saturated and the cost is unnecessarily increased, so the content is limited to 0.50 wt% or less. Even if these elements are added alone, 2
Even if the elements or more are added together, the same effect is exhibited.

【0021】フェライト平均粒径:15μm以下 フェライト平均粒径を小さくすると、理由は明らかでは
ないが、高速連続製缶時に、その負荷を大きく高めるこ
となく、ボトム耐圧強度を受け持つ部分のように比較的
低い加工率にとどまる部位の強度を増加させることがで
きる。このような高速連続製缶性は、焼鈍ままの状態で
極めて低い時効指数を示す場合に特に顕著になる。この
効果が発揮されるのはフェライト平均粒径が15μm以
下の場合、望ましくは12μm以下の場合であって、さ
らに、均一な整粒組織であることが望ましい。なお、上
記フェライト平均粒径による効果が顕著に得られる時効
指数(AI)は、焼鈍ままの状態でのAI値が、0.5kgf
/mm2以下、望ましくは0.2kgf/mm2以下である。
Ferrite average particle size: 15 μm or less If the ferrite average particle size is reduced, the reason is not clear, but during high-speed continuous can manufacturing, the load is not significantly increased and the bottom compressive strength is relatively large. It is possible to increase the strength of the portion that remains at a low processing rate. Such high-speed continuous can-making property becomes particularly remarkable when the as-annealed state exhibits an extremely low aging index. This effect is exhibited when the average ferrite grain size is 15 μm or less, preferably 12 μm or less, and it is desirable that the grain size control is uniform. The aging index (AI) at which the effect of the average ferrite grain size is remarkably obtained is 0.5 kgf when the AI value in the as-annealed state is 0.5 kgf.
/ mm 2 or less, preferably 0.2 kgf / mm 2 or less.

【0022】本発明に従う缶用鋼板は、上記の化学組成
と製造条件の最適化された組合せによってはじめて得ら
れる。次に、製造方法の限定理由について説明する。 ・熱間仕上げ圧延温度:(Ar3変態点−30℃) 〜(Ar3+10
0 ℃) (Ar3変態点−30℃) 未満では、最終的に得られる組織が
粗大化するために、強度の低下に加えて耐肌荒れ性の低
下、さらにいわゆる「リジング」現象が発現し、外観不
良をきたす危険性が大きくなる。一方、仕上げ圧延温度
が(Ar3+100 ℃) を超える温度になった場合には、熱延
ロールの損傷が大きくなり、製造に大きな障害となるの
みならず、鋼板自体の表面性状も乱れるようになる。さ
らに、鋼板組織が粗大化し、面内異方性が増大する傾向
がみられる。したがって、熱間仕上げ圧延温度は、r値
に代表される加工性を良好にするために(Ar3変態点−30
℃) 〜(Ar3+100 ℃) とすることが必要である。なお、
好ましい温度範囲は(Ar3変態点−20℃) 〜(Ar3+50℃)
である。
The steel sheet for a can according to the present invention can be obtained only by an optimized combination of the above chemical composition and manufacturing conditions. Next, the reasons for limiting the manufacturing method will be described.・ Hot finish rolling temperature: (Ar 3 transformation point -30 ° C) ~ (Ar 3 +10
(0 ° C) (Ar 3 transformation point -30 ° C), the finally obtained structure becomes coarse, so that in addition to the decrease in strength, the resistance to roughening of the surface is decreased, and a so-called "ridging" phenomenon appears. The risk of causing a poor appearance increases. On the other hand, if the finish rolling temperature exceeds (Ar 3 +100 ° C), the damage of the hot rolling roll will be large, which will not only be a major obstacle to the production, but also the surface properties of the steel sheet itself Become. Furthermore, the steel sheet structure tends to become coarse and the in-plane anisotropy tends to increase. Therefore, the hot finish rolling temperature is (Ar 3 transformation point −30 in order to improve workability represented by r value.
℃)-(Ar 3 +100 ℃) is necessary. In addition,
The preferred temperature range is (Ar 3 transformation point -20 ° C) to (Ar 3 + 50 ° C)
Is.

【0023】・水冷開始:仕上げ圧延後 0.5 sec以内 仕上げ圧延終了後は、鋼板の組織の粗大化を防止するた
めに速やかに冷却を開始する必要がある。本発明鋼にお
いてはNbを添加しているため、組織の粗大化は抑制され
る傾向にある。しかし、仕上げ圧延後から水冷開始まで
の経過時間が0.5secを超えると、組織の粗大化、混粒化
が顕著となり好ましくない。この経過時間は0.2sec以下
とすることにより、さらに良好な結果が得られる。
Start of water cooling: Within 0.5 sec after finishing rolling After finishing rolling, it is necessary to start cooling immediately in order to prevent coarsening of the structure of the steel sheet. Since Nb is added to the steel of the present invention, coarsening of the structure tends to be suppressed. However, if the elapsed time from the finish rolling to the start of water cooling exceeds 0.5 sec, the structure becomes coarse and the grains become conspicuous, which is not preferable. Even better results can be obtained by setting the elapsed time to 0.2 sec or less.

【0024】・冷却速度:30℃/sec 以上 上記の冷却開始までの時間とともに、冷却速度の制御も
重要な要件であり、平均冷却速度で概ね30℃/sec以上
の冷却速度とすることで、最終的に均一微細な組織を有
する冷延焼鈍板が得られる。なお、好ましい冷却速度は
40℃/sec 以上である。本発明の対象とする極薄鋼板に
おいては、母板の厚みも薄く、高速の圧延が困難である
ため、連続的に圧延する手法は有効である。
Cooling rate: 30 ° C./sec or more It is an important requirement to control the cooling rate along with the time until the above cooling starts. By setting the average cooling rate to about 30 ° C./sec or more, Finally, a cold rolled annealed plate having a uniform fine structure is obtained. The preferable cooling rate is
40 ℃ / sec or more. In the ultra-thin steel sheet targeted by the present invention, the thickness of the mother plate is thin and high-speed rolling is difficult, so the method of continuous rolling is effective.

【0025】・巻き取り温度:680 〜580 ℃ 巻取り温度の制御も鋼板の組織制御のうえから重要であ
る。巻取り温度が680℃を超える場合は最終的な鋼板の
組織の微細、均一化が達成されない。また、580 ℃未満
では、恐らくNbC の折出状態が変化するためと推定され
るが、焼鈍ままの状態で時効指数を 0.5kgf/mm2 以下に
することができず、優れた高速連続製缶性を得ることが
困難になる。なお、望ましい巻き取り温度範囲は、平均
r値の向上の観点から、680 〜620℃である。
Winding temperature: 680 to 580 ° C. Control of the winding temperature is also important for controlling the structure of the steel sheet. If the winding temperature exceeds 680 ° C, the final microstructure and uniformity of the steel sheet cannot be achieved. Also, it is presumed that if the temperature is lower than 580 ° C, the state of NbC deposition may change, but the aging index could not be reduced to 0.5 kgf / mm 2 or less in the as-annealed state, and excellent high-speed continuous can manufacturing It becomes difficult to obtain sex. The desirable winding temperature range is 680 to 620 ° C from the viewpoint of improving the average r value.

【0026】・冷間圧延の圧下率:83%以上 冷延圧下率は、83%未満では良好なr値、Δr値が得ら
れなくなるので、83%以上とする必要がある。この冷延
圧下率の上限については特にもうける必要がないが、操
業の困難さの増大を回避するためにはおおむね98%以
下とすることが好ましい。
Cold rolling reduction: 83% or more If the cold rolling reduction is less than 83%, good r value and Δr value cannot be obtained, so it is necessary to set it to 83% or more. The upper limit of the cold rolling reduction is not particularly required, but it is preferably 98% or less in order to avoid increase in the difficulty of operation.

【0027】・焼鈍温度:再結晶温度〜800 ℃ 焼鈍温度は鋼板の延性の向上、r値等の成形性の改善を
はかるために、少なくとも再結晶温度以上の温度での焼
鈍は必要である。この再結晶温度は鋼板の加工熱履歴に
依存するが、本発明に従う成分組成では720 〜750 ℃程
度であり、これ以上の温度で焼鈍する必要がある。一
方、800 ℃を超える温度で焼鈍を行うと操業が困難化す
ることに加え、組織の粗大化がおこり、高速連続製缶性
は改善されるが、缶体としての強度、特にボトム耐圧強
度の劣化が顕著となる。
Annealing temperature: recrystallization temperature to 800 ° C. The annealing temperature is required to be at least the recrystallization temperature or higher in order to improve the ductility of the steel sheet and the formability such as r value. This recrystallization temperature depends on the working heat history of the steel sheet, but is 720 to 750 ° C. in the component composition according to the present invention, and it is necessary to anneal at a temperature higher than this. On the other hand, if annealing is performed at a temperature higher than 800 ° C, the operation becomes difficult, and the structure becomes coarse, which improves the high-speed continuous can-making property. Degradation becomes remarkable.

【0028】・調質圧延の圧下率:15%以下 焼鈍後の調質圧延は目標とする缶体の強度および素材の
降伏応力によって設定されるが、15%を超えて調質圧延
をおこなった場合には素材の降伏応力の増加が顕著とな
り、成形時の形状不良を生ずる危険性が増加するばかり
でなく、△rの劣化にもつながり、顕著な耳(イヤリン
グ)の発生をもたらす。なお、鋼板の成形性の観点か
ら、10%以下にするのが好ましい。
· Rolling reduction of temper rolling: 15% or less The temper rolling after annealing is set according to the target strength of the can body and the yield stress of the raw material, but the temper rolling was performed beyond 15%. In this case, the yield stress of the material is remarkably increased, which not only increases the risk of causing a defective shape at the time of molding, but also leads to deterioration of Δr, which causes remarkable earing. From the viewpoint of the formability of the steel sheet, it is preferably 10% or less.

【0029】本発明による効果は、鋼板の厚みが薄くな
るにしたがって顕著になるので、板厚が0.30mm以下、望
ましくは0.240 mm以下の場合に有利に適用でき、効果も
発揮できる。また、上記の鋼板はそのまま、あるいはこ
の鋼板を原板として表面処理を施してから、製缶工程へ
供される。なお、表面処理としては、通常の電気すずめ
っき、クロムめっきおよびその他のめっき処理、各種の
塗装処理が有利に適合する。
Since the effect of the present invention becomes more remarkable as the thickness of the steel sheet becomes thinner, it can be advantageously applied and the effect can be exhibited when the sheet thickness is 0.30 mm or less, preferably 0.240 mm or less. Further, the above steel sheet is used as it is or after being subjected to a surface treatment using this steel sheet as an original plate, to the can making process. As the surface treatment, usual electric tin plating, chrome plating and other plating treatments, and various coating treatments are advantageously suitable.

【0030】[0030]

【実施例】【Example】

・実施例1 表1に示す成分組成の鋼を転炉にて溶製して得たスラブ
を1250℃に再加熱して860 〜950 ℃の温度範囲で熱間仕
上げ圧延を終了した。ここで、仕上げ圧延温度は、各々
の鋼組成に応じて、(Ar3変態点−30℃)〜(Ar3変態
点+100 ℃)の範囲に収まるように制御した。仕上げ圧
延終了後、0.5 sec 以内に35℃/sec の速度で冷却し、
620 ℃で巻取った。その後、酸洗を経て、圧下率:88%
の冷間圧延を施して0.23mmの冷延鋼板とした。これらの
各冷延鋼板を連続焼鈍炉にて760 ℃×20 secで焼鈍した
のち、25℃/sec の冷却速度で350 ℃まで冷却し、圧下
率:1〜3%の調質圧延を施した。その後、ハロゲンタ
イプの電気錫めっきラインにて♯25錫めっき処理を連続
的に施して、ぶりき板とした。
-Example 1 The slab obtained by smelting the steel of the composition of ingredients shown in Table 1 in the converter was reheated to 1250 ° C, and hot finish rolling was completed in the temperature range of 860-950 ° C. Here, the finish rolling temperature was controlled so as to fall within the range of (Ar 3 transformation point −30 ° C.) to (Ar 3 transformation point + 100 ° C.) according to each steel composition. After finishing rolling, cool at a rate of 35 ° C / sec within 0.5 sec,
It was wound at 620 ° C. Then, after pickling, reduction rate: 88%
Was cold-rolled into a 0.23 mm cold-rolled steel sheet. Each of these cold-rolled steel sheets was annealed in a continuous annealing furnace at 760 ° C x 20 sec, cooled to 350 ° C at a cooling rate of 25 ° C / sec, and temper-rolled at a rolling reduction of 1 to 3%. . After that, # 25 tin plating treatment was continuously performed on a halogen type electric tin plating line to obtain a tin plate.

【0031】[0031]

【表1】 [Table 1]

【0032】表2に、冷延鋼板(めっき原板)につい
て、フェライト平均粒径、焼鈍後かつ調質圧延前のAI
(時効指数)を測定するとともに、引張特性を調査した
結果を示す。なお、フェライト平均粒径はJISG05
52に定める方法に従い測定した。また、引張特性はJ
IS5号引張試験片を用いた試験にて、AI(時効指
数)は、鋼板に7.5 %の予歪みを付与したのち、100 ℃
×30min の時効処理を行い、時効前後の変形応力の変
化量で評価した。
Table 2 shows the average grain size of ferrite, the AI after annealing and before temper rolling of cold-rolled steel sheets (original plating sheets).
(Aging index) is measured and the results of investigation of tensile properties are shown. The average ferrite grain size is JIS G05.
The measurement was carried out according to the method specified in 52. Also, the tensile properties are J
In the test using the IS5 tensile test piece, AI (aging index) was 100 ° C after the steel sheet was prestrained with 7.5% of prestrain.
The aging treatment was performed for 30 minutes, and the change in deformation stress before and after aging was evaluated.

【0033】[0033]

【表2】 [Table 2]

【0034】次に、各めっき板を350 ml缶に製缶し、塗
装焼付処理を行ったのち、ボトム耐圧強度を調査した。
その際の製缶は、最新の高速製缶機(最大製缶速度:5
00缶/分)を用い、350缶/分の速度で、連続50
0缶以上の製缶を行なって高速連続製缶性を評価した。
ここで、ボトム耐圧強度は、缶内に静水圧を負荷し、ボ
トムが座屈する限界圧力にて評価した。高速連続製缶性
の評価項目は 1)成形の負荷、 2)缶表面の性状、 3)
抜け性である。成形負荷は、製缶機に付帯させた荷重検
出器にて製缶に必要な成形荷重を検出するもので、この
成形負荷は金型の磨耗等の実機生産上における障害と対
応し、値が小さいほうが良好な材料といえる。缶表面の
性状は、成形時の発熱により、ぶりき表面のSnが部分的
に溶融することによって発生する表面状況であり、これ
が劣るといわゆる外観不良につながる。抜け性は、DI
加工を終えた缶をパンチより抜き取る時の特性であり、
抜け性が悪いと、いわゆる”ストリッパーリング”で缶
縁を潰す等の不具合を生ずる。かくして得られた缶のボ
トム耐圧強度および高速連続製缶性に関する調査結果
を、表2に併せて示す。
Next, each plated plate was made into a 350 ml can, and after baking treatment, the bottom pressure resistance was investigated.
The cans used at that time were the latest high-speed can-making machines (maximum can-making speed: 5
00 cans / min) at a speed of 350 cans / min and continuous 50
High-speed continuous can-making properties were evaluated by making 0 or more cans.
Here, the bottom compressive strength was evaluated by applying a hydrostatic pressure to the inside of the can and evaluating the limit pressure at which the bottom buckles. The evaluation items for high-speed continuous can manufacturing are 1) molding load, 2) can surface properties, 3)
It is removable. The molding load is a load detector that is attached to the can making machine to detect the molding load required for can making.This molding load corresponds to obstacles in actual machine production, such as die wear, and its value is The smaller the material, the better. The property of the can surface is a surface condition caused by partial melting of Sn on the tinned surface due to heat generated during molding, and if this is inferior, so-called poor appearance will result. Detachability is DI
It is the characteristic when pulling out the processed can from the punch,
Poor detachability causes problems such as crushing the can edge with a so-called "stripper ring". Table 2 also shows the results of an investigation on the bottom pressure resistance and the high-speed continuous can-making property of the thus obtained can.

【0035】表2に示した結果から、本発明法に従って
鋼板を製造すれば、他の特性を犠牲にすることなしに、
十分に高いボトム耐圧強度および高速連続製缶性が得ら
れることがわかる。また、得られた缶を観察したとこ
ろ、本発明に従って得られた缶は、その表面性状および
耐食性は良好であり、さらに途中工程の冷間圧延性も良
好であることを確認した。
From the results shown in Table 2, when the steel sheet was produced according to the method of the present invention, the sacrifice of other properties was achieved without sacrificing other properties.
It can be seen that sufficiently high bottom pressure resistance and high-speed continuous can-making property are obtained. Observation of the obtained can also confirmed that the can obtained according to the present invention had good surface properties and corrosion resistance, and also had good cold rolling property in the intermediate step.

【0036】・実施例2 表3に示す成分組成の鋼(Ar3 :870 ℃) を転炉にて溶
製して得たスラブを1250℃〜1340℃に再加熱し、表4に
示す製造条件のほかは実施例1と同様にして、0.210 mm
の冷延鋼板および錫めっき鋼板を製造した。ここに、冷
延板の再結晶温度は約750 ℃であった。
Example 2 A slab obtained by melting steel (Ar 3 : 870 ° C.) having the composition shown in Table 3 in a converter is reheated to 1250 ° C. to 1340 ° C. 0.210 mm in the same manner as in Example 1 except for the conditions.
Cold-rolled steel sheet and tin-plated steel sheet were manufactured. Here, the recrystallization temperature of the cold-rolled sheet was about 750 ° C.

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】表5に、冷延鋼板(めっき原板)につい
て、実施例1と同様にして、フェライト平均粒径、焼鈍
後かつ調質圧延前のAI(時効指数)を測定した結果お
よびr値、△rを調査した結果を示す。ここで、r値、
Δr値は、鋼板の圧延方向、圧延方向に対して45°の方
向、圧延方向に対して90°の各方向からJIS5号引張
試験片を採取し、この試験片に5〜15%の単軸引張予
歪を与えた時の幅方向ひずみおよび板厚ひずみの比から
各方向のランクフォード値を測定し、次式によって求め
た。 r=(rL +2rD +rT )/4 Δr=(rL −2rD + rT )/2 ただし、rL 、rD およびrT は、それぞれ圧延方向、
圧延方向に対して45°の方向、圧延方向に対して90°の
方向のランクフォード値を表す。なお、鋼板の均一伸び
が小さく上記方法で測定できない場合は、JISG31
35にある固有振動法によって求めた。
Table 5 shows the results of measuring the average grain size of ferrite, the results of measuring the AI (aging index) after annealing and before temper rolling, and the r value, for the cold-rolled steel sheet (plating original sheet) in the same manner as in Example 1. The result of investigating Δr is shown. Where r-value,
The Δr value was obtained by taking JIS No. 5 tensile test pieces from the rolling direction of the steel sheet, the direction of 45 ° with respect to the rolling direction, and the directions of 90 ° with respect to the rolling direction. The Rankford value in each direction was measured from the ratio of the strain in the width direction and the strain in the plate thickness when tensile prestrain was applied, and the value was obtained by the following formula. r = (r L + 2r D + r T ) / 4 Δr = (r L −2r D + r T ) / 2 where r L , r D, and r T are the rolling directions,
It represents the Rankford value in the direction of 45 ° to the rolling direction and 90 ° to the rolling direction. If the uniform elongation of the steel sheet is too small to measure by the above method, JISG31
35 was determined by the natural vibration method.

【0040】[0040]

【表5】 [Table 5]

【0041】次に、各めっき板を350ml缶に製缶し、
塗装焼付処理を行ったのち、ボトム耐圧強度を調査し
た。その際の製缶は、最新の高速製缶機(最大製缶速
度:500缶/分)を用い、400缶/分の速度で、連
続500缶以上の製缶を行なって高速連続製缶性を評価
した。なお、ボトム耐圧強度および高速連続製缶性の評
価は実施例1と同様な方法により行った。かくして得ら
れた缶のボトム耐圧強度および高速連続製缶性に関する
調査結果を、表5に併せて示す。
Next, each plated plate was made into a 350 ml can,
The bottom pressure resistance was investigated after the paint baking process was performed. For the can making at that time, using the latest high-speed can making machine (maximum can making speed: 500 cans / min), at a speed of 400 cans / min, 500 or more cans can be continuously produced, thereby achieving high-speed continuous canning property. Was evaluated. The bottom pressure resistance and the high-speed continuous can-making property were evaluated in the same manner as in Example 1. Table 5 also shows the results of the investigation on the bottom pressure resistance and the high-speed continuous can-making property of the thus obtained cans.

【0042】表5に示す結果から、本発明に従って鋼板
を製造すれば、他の特性を犠牲にすることなしに、十分
に高いボトム耐圧強度および優れた高速連続製缶性が得
られ、また、r値、Δrも優れていることがわかる。ま
た、得られた缶を観察したところ、本発明に従って得ら
れた缶は、その表面性状および耐食性は良好であり、さ
らに途中工程の冷間圧延性も良好であることを確認し
た。
From the results shown in Table 5, when the steel sheet was manufactured according to the present invention, sufficiently high bottom pressure resistance and excellent high-speed continuous can-making property were obtained without sacrificing other properties, and It can be seen that the r value and Δr are also excellent. Observation of the obtained can also confirmed that the can obtained according to the present invention had good surface properties and corrosion resistance, and also had good cold rolling property in the intermediate step.

【0043】[0043]

【発明の効果】本発明によれば、優れた高速連続製缶性
および高いボトム耐圧強度が達成できる。また、本発明
によれば、r値、Δrも良好な特性が得られるので缶成
形時の成形も容易であり、イヤリングも発生しにくい。
したがって、本発明によれば、安定したボトム耐圧強度
および安定した缶胴部強度が得られ、製缶原板の薄肉化
が可能になり、しかも製缶に要するエネルギーが節約で
き、より高能率の製缶が高歩留りで可能となるなど工業
的に大きな効果が享受できる。
According to the present invention, excellent high-speed continuous can-making property and high bottom pressure resistance can be achieved. Further, according to the present invention, since excellent characteristics of r value and Δr can be obtained, molding at the time of can molding is easy, and earrings are less likely to occur.
Therefore, according to the present invention, stable bottom pressure strength and stable can body strength can be obtained, the thickness of the can manufacturing base plate can be reduced, and the energy required for can manufacturing can be saved. Industrially significant effects can be enjoyed, such as the high yield of cans.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 覚 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 千葉製鉄所 内 (72)発明者 久々湊英雄 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 千葉製鉄所 内 (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 9/46 - 9/48 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Satoru Sato 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Chiba Works (72) Hideo Kuminato 1 Kawasaki-cho, Chuo-ku, Chiba, Kawasaki Chiba Steel Works, Ltd. (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00-38/60 C21D 9/46-9/48

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.0005〜0.0030wt%、Si:0.20wt%以
下、Mn:0.05〜0.60wt%、 P:0.100 wt%以下、
S:0.010 wt%以下、 Al:0.100 wt%以下、N:0.
0050wt%以下、 Nb:0.003 〜0.020 wt%を含み、上
記CおよびNbは、原子比にしてNb/C:0.70〜1.70の関
係を満して含有し、残部はFeおよび不可避的不純物から
なり、しかもフェライト平均粒径が15μm以下である
ことを特徴とする缶用鋼板。
1. C: 0.0005 to 0.0030 wt%, Si: 0.20 wt% or less, Mn: 0.05 to 0.60 wt%, P: 0.100 wt% or less,
S: 0.010 wt% or less, Al: 0.100 wt% or less, N: 0.
0050 wt% or less, Nb: 0.003 to 0.020 wt%, the above C and Nb are contained in the atomic ratio of Nb / C: 0.70 to 1.70, and the balance is Fe and inevitable impurities. Moreover, a steel sheet for cans having an average ferrite grain size of 15 μm or less.
【請求項2】C:0.0005〜0.0030wt%、Si:0.20wt%以
下、Mn:0.05〜0.60wt%、 P:0.100 wt%以下、
S:0.010 wt%以下、 Al:0.100 wt%以下、N:0.
0050wt%以下、 Nb:0.003 〜0.020 wt%を含み、か
つNi:0.05〜0.50wt%、 Cr:0.05〜0.50wt%および
Cu:0.05〜0.50wt%のうちから選ばれるいずれか1種ま
たは2種以上を含み、上記CおよびNbは、原子比にして
Nb/C:0.70〜1.70の関係を満して含有し、残部はFeお
よび不可避的不純物からなり、しかもフェライト平均粒
径が15μm以下であることを特徴とする缶用鋼板。
2. C: 0.0005 to 0.0030 wt%, Si: 0.20 wt% or less, Mn: 0.05 to 0.60 wt%, P: 0.100 wt% or less,
S: 0.010 wt% or less, Al: 0.100 wt% or less, N: 0.
0050 wt% or less, Nb: 0.003 to 0.020 wt% and Ni: 0.05 to 0.50 wt%, Cr: 0.05 to 0.50 wt% and
Cu: Includes one or more selected from 0.05 to 0.50 wt%, and the above C and Nb are in atomic ratio.
Nb / C: A steel sheet for cans, which is contained by satisfying the relationship of 0.70 to 1.70, the balance being Fe and inevitable impurities, and having an average ferrite grain size of 15 μm or less.
【請求項3】C:0.0005〜0.0030wt%、Si:0.20wt%以
下、Mn:0.05〜0.60wt%、 P:0.100 wt%以下、
S:0.010 wt%以下、 Al:0.100 wt%以下、N:0.
0050wt%以下、 Nb:0.003 〜0.020 wt%を含み、上
記CおよびNbは、原子比にしてNb/C:0.70〜1.70の関
係を満して含有し、残部はFeおよび不可避的不純物から
なる鋼スラブを加熱後、熱間粗圧延を経て、(Ar3変態点
−30℃) 〜(Ar3+100 ℃) の温度範囲で熱間仕上げ圧延
し、続いて、前記仕上げ圧延後 0.5 sec以内に水冷を開
始し、30℃/sec 以上の速度で冷却した後、680 〜580
℃の温度範囲で巻き取り、さらに酸洗を経て、83%以上
の圧下率で冷間圧延を行い、その後、再結晶温度〜800
℃の温度範囲で焼鈍し、15%以下の圧下率で調質圧延す
ることを特徴とする缶用鋼板の製造方法。
3. C: 0.0005 to 0.0030 wt%, Si: 0.20 wt% or less, Mn: 0.05 to 0.60 wt%, P: 0.100 wt% or less,
S: 0.010 wt% or less, Al: 0.100 wt% or less, N: 0.
0050 wt% or less, Nb: 0.003 to 0.020 wt%, the above C and Nb are contained in the atomic ratio of Nb / C: 0.70 to 1.70, and the balance is Fe and inevitable impurities. After heating the slab, hot rough rolling is performed, and hot finish rolling is performed in the temperature range of (Ar 3 transformation point −30 ° C.) to (Ar 3 + 100 ° C.), followed by water cooling within 0.5 sec after the finish rolling. 680 to 580 after cooling at a rate of 30 ° C / sec or more
Winding in the temperature range of ℃, further pickling, cold rolling at a reduction rate of 83% or more, then recrystallization temperature ~ 800
A method for producing a steel sheet for cans, comprising annealing in a temperature range of ℃, and temper rolling at a rolling reduction of 15% or less.
【請求項4】C:0.0005〜0.0030wt%、Si:0.20wt%以
下、Mn:0.05〜0.60wt%、 P:0.100 wt%以下、
S:0.010 wt%以下、 Al:0.100 wt%以下、N:0.
0050wt%以下、 Nb:0.003 〜0.020 wt%を含み、か
つNi:0.05〜0.50wt%、 Cr:0.05〜0.50wt%および
Cu:0.05〜0.50wt%のうちから選ばれるいずれか1種ま
たは2種以上を含み、上記CおよびNbは、原子比にして
Nb/C:0.70〜1.70の関係を満して含有し、残部はFeお
よび不可避的不純物からなる鋼スラブを加熱後、熱間粗
圧延を経て、(Ar3変態点−30℃) 〜(Ar3+100 ℃) の温
度範囲で熱間仕上げ圧延し、続いて、前記仕上げ圧延後
0.5 sec以内に水冷を開始し、30℃/sec 以上の速度で
冷却した後、680 〜580 ℃の温度範囲で巻き取り、さら
に酸洗を経て、83%以上の圧下率で冷間圧延を行い、そ
の後、再結晶温度〜800 ℃の温度範囲で焼鈍し、15%以
下の圧下率で調質圧延することを特徴とする缶用鋼板の
製造方法。
4. C: 0.0005 to 0.0030 wt%, Si: 0.20 wt% or less, Mn: 0.05 to 0.60 wt%, P: 0.100 wt% or less,
S: 0.010 wt% or less, Al: 0.100 wt% or less, N: 0.
0050 wt% or less, Nb: 0.003 to 0.020 wt% and Ni: 0.05 to 0.50 wt%, Cr: 0.05 to 0.50 wt% and
Cu: Includes one or more selected from 0.05 to 0.50 wt%, and the above C and Nb are in atomic ratio.
After heating a steel slab containing Nb / C: 0.70 to 1.70 with the balance being Fe and unavoidable impurities, after hot rough rolling, (Ar 3 transformation point −30 ° C.) to (Ar Hot rolling in the temperature range of 3 + 100 ℃), and then after the finish rolling
Start water cooling within 0.5 sec, cool at a rate of 30 ° C / sec or more, wind in the temperature range of 680 to 580 ° C, further pickle and cold-roll at a reduction rate of 83% or more. Then, a method for producing a steel sheet for a can, which comprises annealing at a recrystallization temperature to 800 ° C. and temper rolling at a rolling reduction of 15% or less.
JP31704994A 1994-12-20 1994-12-20 Steel plate for cans and manufacturing method thereof Expired - Fee Related JP3449003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31704994A JP3449003B2 (en) 1994-12-20 1994-12-20 Steel plate for cans and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31704994A JP3449003B2 (en) 1994-12-20 1994-12-20 Steel plate for cans and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH08176735A JPH08176735A (en) 1996-07-09
JP3449003B2 true JP3449003B2 (en) 2003-09-22

Family

ID=18083852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31704994A Expired - Fee Related JP3449003B2 (en) 1994-12-20 1994-12-20 Steel plate for cans and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3449003B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10280089A (en) * 1997-04-03 1998-10-20 Kawasaki Steel Corp Steel sheet for two-piece modified can, two-piece modified can body, and their manufacture
CN1101482C (en) * 1998-04-08 2003-02-12 川崎制铁株式会社 Steel sheet for can and manufacturing method thereof
JP4193228B2 (en) * 1998-04-08 2008-12-10 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
ATE388249T1 (en) * 2002-06-25 2008-03-15 Jfe Steel Corp HIGH STRENGTH CATAL ROLLED STEEL SHEET AND PRODUCTION PROCESS THEREFOR
JP4265574B2 (en) * 2005-06-20 2009-05-20 Jfeスチール株式会社 Steel plate for two-piece deformable can and manufacturing method thereof
JP4634959B2 (en) * 2006-04-24 2011-02-16 新日本製鐵株式会社 Ultra-thin steel plate and manufacturing method thereof
JP5423092B2 (en) 2009-03-27 2014-02-19 Jfeスチール株式会社 Steel plate for cans with excellent surface properties after drawing and ironing and method for producing the same
RU2633125C2 (en) * 2012-03-30 2017-10-11 Тата Стил Эймейден Бв Method of production of steel substrate subjected to reduction annealing with coating for packaging applications and product from packing steel produced with it
US9920446B2 (en) * 2012-04-11 2018-03-20 Tata Steel Ijmuiden Bv Polymer coated substrate for packaging applications and a method for producing said coated substrate

Also Published As

Publication number Publication date
JPH08176735A (en) 1996-07-09

Similar Documents

Publication Publication Date Title
JP3449003B2 (en) Steel plate for cans and manufacturing method thereof
JP4062961B2 (en) High tensile hot-rolled steel sheet excellent in mold galling resistance and fatigue resistance and method for producing the same
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JP3390256B2 (en) High-strength and high-workability steel sheet for cans with excellent bake hardenability and aging resistance, and method for producing the same
JP3719025B2 (en) Cold-rolled steel sheet for deep drawing with excellent fatigue resistance
JPH0756055B2 (en) Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability
JP2828793B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability, chemical conversion property, secondary work brittleness resistance and spot weldability, and method for producing the same
JPH09209039A (en) Production of high strength cold rolled steel sheet excellent in deep drawability
JP3299287B2 (en) High strength steel sheet for forming and its manufacturing method
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JPH10280092A (en) Hot dip galvanized steel sheet minimal in age deterioration in press formability and excellent in baking finish hardenability, and its production
JP2948416B2 (en) High strength cold rolled steel sheet and hot dip galvanized steel sheet with excellent deep drawability
JP3288620B2 (en) Steel sheet for double-wound pipe and method for producing the same
JP3043901B2 (en) Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JP3718987B2 (en) Paint bake-hardening cold-rolled steel sheet excellent in aging resistance and method for producing the same
JP3291639B2 (en) Cold rolled steel sheet excellent in workability uniformity and method for producing the same
JP3446001B2 (en) Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability
JP3369619B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in deep drawability and ductility and method for producing hot-dip galvanized steel sheet
JP2808014B2 (en) Manufacturing method of good workability cold rolled steel sheet with excellent bake hardenability
JP3309396B2 (en) High-strength cold-rolled steel sheet for deep drawing having age hardening property excellent in secondary work brittleness resistance and method for producing the same
JP3043883B2 (en) Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability
JP3142975B2 (en) Manufacturing method of high strength cold rolled steel sheet with excellent deep drawability
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JP3273383B2 (en) Cold rolled steel sheet excellent in deep drawability and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees