JP3291639B2 - Cold rolled steel sheet excellent in workability uniformity and method for producing the same - Google Patents

Cold rolled steel sheet excellent in workability uniformity and method for producing the same

Info

Publication number
JP3291639B2
JP3291639B2 JP30666394A JP30666394A JP3291639B2 JP 3291639 B2 JP3291639 B2 JP 3291639B2 JP 30666394 A JP30666394 A JP 30666394A JP 30666394 A JP30666394 A JP 30666394A JP 3291639 B2 JP3291639 B2 JP 3291639B2
Authority
JP
Japan
Prior art keywords
amount
temperature
steel sheet
cold
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30666394A
Other languages
Japanese (ja)
Other versions
JPH083686A (en
Inventor
夏子 橋本
直樹 吉永
哲 西村
一夫 小山
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27454230&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3291639(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30666394A priority Critical patent/JP3291639B2/en
Publication of JPH083686A publication Critical patent/JPH083686A/en
Application granted granted Critical
Publication of JP3291639B2 publication Critical patent/JP3291639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、コイル内における加工
性のばらつきが極めて少ない冷延鋼板、溶融亜鉛メッキ
鋼板およびその製造方法に関わり、これらの鋼板の用途
は、自動車、家電、建材等である。また、本発明の高強
度鋼板を自動車用として適用した場合には、板厚を軽減
することができるため、燃費の向上をもたらし、近年大
きな問題となっている地球環境問題にも寄与することが
できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold-rolled steel sheet, a hot-dip galvanized steel sheet and a method for producing the same, which have extremely small workability variations in a coil. is there. In addition, when the high-strength steel sheet of the present invention is applied to an automobile, the sheet thickness can be reduced, thereby improving fuel efficiency and contributing to a global environmental problem that has recently become a major problem. it can.

【0002】[0002]

【従来の技術】特開昭58−185752号公報に開示
されているように、極低炭素鋼板は優れた加工性を有す
るため、自動車などの用途に広く用いられている。ま
た、極低炭素鋼の成分や製造方法を規定することによっ
て、加工性をさらに改善するための工夫がなされてき
た。例えば、特開平3−130323号公報、特開平4
−143228号公報および特開平4−116124号
公報では、Tiを添加した極低炭素鋼中のC、Mn、P
等の量を極力低減させることによって優れた加工性を得
られることが開示されている。しかしながら、これらの
発明においては、コイルの幅および長手方向における端
部での歩留りを向上させる観点からの記述はなく、また
本発明のようなTi硫化物を積極的に活用する技術でも
ない。材質のばらつきを低減するという観点からは、特
開平3−170618号公報および特開平4−5222
9号公報記載の技術がある。しかしながら、これらの発
明は、仕上熱延での圧下率を大きくしたり、熱延後の巻
取温度を高める必要があり、熱延工程に大きな負荷をか
けることとなる。
2. Description of the Related Art As disclosed in Japanese Patent Application Laid-Open No. 58-185752, ultra-low carbon steel sheets have excellent workability and are therefore widely used for applications such as automobiles. In addition, devices for further improving the workability have been devised by defining the components and the production method of the ultra-low carbon steel. For example, Japanese Patent Application Laid-Open Nos.
JP-143228 and JP-A-4-116124 disclose that C, Mn, P in ultra-low carbon steel to which Ti is added.
It is disclosed that excellent workability can be obtained by minimizing the amount of such as. However, in these inventions, there is no description from the viewpoint of improving the yield at the ends of the coil in the width direction and the longitudinal direction, and neither is the technology of actively utilizing Ti sulfide as in the present invention. From the viewpoint of reducing the variation in the material, JP-A-3-170618 and JP-A-4-5222
There is a technique described in Japanese Patent Application Laid-Open No. 9-90. However, in these inventions, it is necessary to increase the rolling reduction in the finish hot rolling or to increase the winding temperature after the hot rolling, so that a large load is applied to the hot rolling process.

【0003】本発明の効果は、PやSiで強化した良加
工性高強度冷延鋼板においても同様に発揮されるもので
ある。これらの鋼板に関する技術としては、特開昭59
−31827号公報、特開昭59−38337号公報、
特公昭57−57945号公報、特開昭61−2769
31号公報などに代表されるが、いずれもコイルの幅お
よび長手方向における端部での歩留りを向上させるため
の工夫はなされておらず、また本発明のようなTi硫化
物を積極的に活用する技術でもない。
[0003] The effect of the present invention is similarly exhibited in a good workability high strength cold rolled steel sheet reinforced with P or Si. The technology relating to these steel sheets is disclosed in
-31827, JP-A-59-38337,
JP-B-57-57945, JP-A-61-2770
No. 31, No. 31, etc., none of them has been devised to improve the yield of the coil at the end in the width direction and the longitudinal direction, and also actively utilize Ti sulfide as in the present invention. It is not a technology to do.

【0004】[0004]

【発明が解決しようとする課題】Ti添加またはTi、
Nb添加極低炭素鋼においては、熱延後の高温巻取りに
よってCをTiCあるいはNbCとして析出せしめ、固
溶Cを低減させることにより冷延焼鈍後の材質を確保す
ることが通常の方法となっていた。これは、PやSiで
強化した場合においても同様である。しかしながら、熱
延コイルの幅端部および長手方向の端部においては、巻
取り時および巻取り後の冷却が著しく速く進行するた
め、TiCやNbCの析出が充分でなく、これらの部分
では材質が劣化してしまうという問題があった。従っ
て、実際には熱延板あるいは冷延板の端部は切り捨てら
れることが多く、これが極低炭素鋼の製造コストを上昇
させる原因となっていた。
SUMMARY OF THE INVENTION Ti addition or Ti,
In the case of Nb-added ultra-low carbon steel, it is a common method to precipitate C as TiC or NbC by hot rolling after hot rolling, and to reduce solid solution C to secure the material after cold rolling annealing. I was This is the same also when strengthening with P or Si. However, at the width end and the end in the longitudinal direction of the hot-rolled coil, cooling at the time of winding and after winding proceeds extremely rapidly, so that precipitation of TiC and NbC is not sufficient, and the material at these parts is not sufficient. There was a problem that it deteriorated. Therefore, in practice, the ends of the hot-rolled sheet or the cold-rolled sheet are often cut off, and this has caused an increase in the production cost of the ultra-low carbon steel.

【0005】本発明は、コイルの幅および長手方向端部
における材質劣化が極めて少ない冷延鋼板、溶融亜鉛メ
ッキ鋼板およびその製造方法を提供することを目的とす
るものである。
An object of the present invention is to provide a cold-rolled steel sheet, a hot-dip galvanized steel sheet, and a method for producing the same, in which the deterioration of the material in the width and longitudinal ends of the coil is extremely small.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明者らは、極低炭素鋼中においてSを積極的
に活用するとともに、Ti量とS量との比を最適化する
こと、Mn量を規定することにより特定の析出物を析出
せしめ、さらに微細析出物を低減させることによって加
工性の均一性に優れた冷延鋼板を得ることについて鋭意
検討した。
In order to solve the above-mentioned problems, the present inventors have actively utilized S in ultra-low carbon steel and optimized the ratio between the amount of Ti and the amount of S. The present inventors have made intensive studies to obtain a cold-rolled steel sheet having excellent workability uniformity by precipitating a specific precipitate by defining the amount of Mn and further reducing the fine precipitate.

【0007】その結果、S≧0.004%とし、Ti*
=Ti−3.42NとしたときTi*/S≧1.5と
し、かつMn≦0.11%とすることが有効であること
を見出した。さらに、熱延後の巻取りの後に、全Sのう
ちMnSとして析出するSの割合K=(S% as M
nS)/(全S%)がK≦0.2を満たすことが材質の
均一性を得る上で極めて重要であることが判明した。こ
れは、全S量のうちMnSとして析出する量を極力低減
せしめ、Ti4 2 2 を積極的に析出させることによ
り、仕上熱延までに固溶Cを低減させることができ、こ
れにより熱延後の巻取り時にコイルの端部が急速に冷却
されても、巻取り以前に固溶Cが充分に固定されている
ため、コイル端部で固溶Cが多量に残存したり、微細炭
化物が析出することによる材質の劣化が軽減されるとい
う機構に基づくものと考えられる。
As a result, S ≧ 0.004% and Ti *
= Ti-3.42N, it was found that it is effective to set Ti * / S ≧ 1.5 and Mn ≦ 0.11 %. Further, after winding after hot rolling, the ratio K of S precipitated as MnS in all S is K = (S% as M
It has been found that it is extremely important that (nS) / (total S%) satisfy K ≦ 0.2 in order to obtain uniformity of the material. This is because the amount of MnS precipitated out of the total S amount is reduced as much as possible, and Ti 4 C 2 S 2 is positively precipitated, so that the solute C can be reduced by hot rolling to the finish. Even if the end of the coil is rapidly cooled during winding after hot rolling, the solid solution C is sufficiently fixed before winding, so that a large amount of solid solution C remains at the end of the coil, It is considered to be based on a mechanism in which deterioration of the material due to precipitation of carbides is reduced.

【0008】また、本発明鋼の場合、巻取り前の熱延工
程で多くのCはTi4 2 2 として固定されるので、
熱延の巻取り前にわずかに残存する固溶Cを高温巻取り
によって微細析出物として析出させるよりも、むしろ微
細炭化物の析出を避ける目的で巻取温度を積極的に低温
化させた方が、より良好で均一な材質が得られる場合が
あることも判明した。
Further, in the case of the steel of the present invention, since a large amount of C is fixed as Ti 4 C 2 S 2 in the hot rolling step before winding,
It is better to actively lower the winding temperature in order to avoid the precipitation of fine carbides, rather than depositing the slightly dissolved C before hot rolling as fine precipitates by high temperature winding. It was also found that a better and more uniform material could be obtained.

【0009】本発明は、これらの知見に基づいてなされ
たもので、その要旨とするところは下記のとおりであ
る。 (1)重量%で、C:0.0005〜0.007%、M
n:0.03〜0.11%、Si:0.005〜0.8
%、Al:0.005〜0.1%、P:0.2%以下、
S:0.004〜0.02%、N:0.007%以下、
Ti:0.01〜0.1%かつTi*=Ti−3.42
NとしたときTi*/S≧1.5を満たす範囲で含有
し、残部は鉄および不可避的不純物よりなり、さらに全
S量のうちMnSとして析出するS量の割合K=(S%
as MnS)/(全S%)がK≦0.2であり、
記(1)式で示す炭化物として析出するC量(=C%と
する)が0.0003%以下であることを特徴とする加
工性の均一性に優れた冷延鋼板。 C%=(T−T1−T2)/4+12/93×N1(%)…(1) ここで、T=非水溶媒中で電解抽出することにより得ら
れた全析出物を化学分析し、Tiの化合物として分析さ
れたTi量(%) T1=TiNとして析出するTi量であり、T1=全N
%×3.42(%)で与えられる。 T2=Ti 4 2 2 として析出するTi量であり、抽
出残査中のS量(=Sとする)を分析することにより、
T2=S×3(%)で与えられる。 N1=化学分析によってNbが検出される場合のNb量
(%)
The present invention has been made based on these findings, and the gist thereof is as follows. (1) By weight%, C: 0.0005 to 0.007%, M
n: 0.03-0.11%, Si: 0.005-0.8
%, Al: 0.005 to 0.1%, P: 0.2% or less,
S: 0.004 to 0.02%, N: 0.007% or less,
Ti: 0.01-0.1% and Ti * = Ti-3.42
In the case where N, Ti * / S is contained in a range satisfying 1.5, and the balance is composed of iron and unavoidable impurities. Further, the ratio K = (S%
as MnS) / (total S%) are K ≦ 0.2, below
The amount of C that precipitates as carbides expressed by the above equation (1) (= C% and
) Is 0.0003% or less. C% = (T−T 1 −T 2) / 4 + 12/93 × N 1 (%) (1) where T is obtained by electrolytic extraction in a non-aqueous solvent.
All deposited precipitates were analyzed chemically and analyzed as Ti compounds.
Ti amount (%) T1 = Ti amount precipitated as TiN, T1 = total N
% × 3.42 (%). T2 = Ti amount precipitated as Ti 4 C 2 S 2 ,
By analyzing the amount of S (= S) in the residue check,
T2 = S × 3 (%) N1 = Nb amount when Nb is detected by chemical analysis
(%)

【0010】 ()さらに、Nb:0.002〜0.05%を含有す
ることを特徴とする前記()記載の加工性の均一性に
優れた冷延鋼板。 ()さらに、B:0.0001〜0.0030%を含
有することを特徴とする前記(1)または(2)記載の
加工性の均一性に優れた冷延鋼板。
( 2 ) The cold-rolled steel sheet having excellent workability uniformity according to the above ( 1 ), further containing Nb: 0.002 to 0.05%. ( 3 ) The cold-rolled steel sheet according to the above (1) or (2 ), further comprising B: 0.0001 to 0.0030%.

【0011】 ()前記(1)〜()の何れか1項に記載の成分を
有する鋼を加熱温度≦1200℃、仕上温度≧(Ar3
−100)℃の熱間圧延を施し、室温から800℃の温
度範囲で巻取り、圧下率≧60%の冷間圧延を施し、さ
らに再結晶温度以上で焼鈍することを特徴とする加工性
の均一性に優れた冷延鋼板の製造方法。 ()前記(1)〜()の何れか1項に記載の成分を
有する鋼を加熱温度≦1200℃、仕上温度≧(Ar3
−100)℃の熱間圧延を施し、室温から800℃の温
度範囲で巻取り、次いで圧下率≧60%の冷間圧延を施
した後、ライン内焼鈍炉を有する連続溶融亜鉛メッキラ
インで再結晶温度以上で焼鈍を施し、冷却過程中に亜鉛
メッキを施すことを特徴とする加工性の均一性に優れた
溶融亜鉛メッキ鋼板の製造方法。
( 4 ) A steel having the component according to any one of the above (1) to ( 3 ) is heated at a temperature of 1200 ° C. and a finishing temperature of (Ar 3
-100) ° C hot rolling, winding in a temperature range from room temperature to 800 ° C, cold rolling with a draft of ≧ 60%, and annealing at a recrystallization temperature or higher. Manufacturing method of cold rolled steel sheet with excellent uniformity. ( 5 ) A steel having the component described in any one of (1) to ( 3 ) above is heated at a temperature of ≤1200 ° C. and a finishing temperature ≧ (Ar 3
-100) ° C, rolled in a temperature range from room temperature to 800 ° C, cold rolled with a reduction of ≧ 60%, and re-rolled in a continuous hot-dip galvanizing line with an in-line annealing furnace. A method for producing a hot-dip galvanized steel sheet having excellent workability uniformity, characterized by annealing at a crystal temperature or higher and galvanizing during a cooling process.

【0012】()亜鉛メッキを施した後、400〜6
00℃の温度範囲で合金化処理を行うことを特徴とする
前記()記載の加工性の均一性に優れた溶融亜鉛メッ
キ鋼板の製造方法。
( 6 ) After galvanizing, 400 to 6
( 8 ) The method for producing a hot-dip galvanized steel sheet having excellent workability uniformity according to ( 5 ), wherein the alloying treatment is performed in a temperature range of 00 ° C.

【0013】[0013]

【作用】本発明における冷延鋼板およびその製造方法
は、TiやNbを添加した極低炭素鋼、あるいはそれを
PやSiで強化したものをベースとして、S量、Mn
量、Ti量と特定の硫化物の量を限定し、熱延後の巻取
り以前にCを充分に析出させることによってコイルの長
手方向および幅方向の加工性の均一性に優れた高強度冷
延鋼板を提供するものである。以下にその限定理由を述
べる。
The cold-rolled steel sheet and the method of manufacturing the same according to the present invention are based on ultra-low carbon steel to which Ti or Nb is added, or steel reinforced with P or Si.
The amount of Ti, the amount of specific sulfide and the amount of specific sulfide are limited, and C is sufficiently precipitated before winding after hot rolling, so that high-strength cooling with excellent workability uniformity in the longitudinal and width directions of the coil. This is to provide a rolled steel sheet. The reasons for the limitation are described below.

【0014】まず、化学成分の限定理由について説明す
る。Cは、その量が増加するに従い、それを固定するた
めのTi、Nb等の炭化物形成元素量を増大させねばな
らないことから、コスト上昇を招き、また熱延コイルの
端部において固溶Cが残存したり、TiC、NbC等の
微細炭化物が粒内に数多く析出するため、粒成長性を妨
げ、加工性を劣化させる。従って、C量は0.007%
以下とするが、好ましくは0.003%以下がよい。一
方、真空脱ガス処理コストの観点からは、C量の下限は
0.0005%とする。
First, the reasons for limiting the chemical components will be described. As the amount of C increases, the amount of carbide forming elements such as Ti and Nb for fixing the C must be increased, so that the cost is increased, and solid solution C is formed at the end of the hot-rolled coil. Since a large amount of fine carbides such as TiC and NbC precipitate in the grains, they hinder the grain growth and deteriorate the workability. Therefore, the C content is 0.007%
Or less, but preferably 0.003% or less. On the other hand, from the viewpoint of the vacuum degassing cost, the lower limit of the C content is 0.0005%.

【0015】Siは安価な高強度化元素として有効であ
るので、目的とする強度レベルに応じて活用する。ただ
し、その量が0.8%を超えるとYPが急激に上昇し、
伸びが低下し、メッキ性を著しく損なうので、上限を
0.8%とする。溶融亜鉛メッキ用としては、メッキ性
の観点から、Si量は0.3%以下とすることが好まし
い。高強度(TSで350MPa以上)を必要としない
場合には、0.1%以下がさらに好ましい。Si量の下
限は、製鋼コスト上の理由から、0.005%とする。
Since Si is effective as an inexpensive element for increasing the strength, it is utilized according to the desired strength level. However, if the amount exceeds 0.8%, YP sharply increases,
Since the elongation is reduced and the plating property is significantly impaired, the upper limit is made 0.8%. For hot-dip galvanizing, the amount of Si is preferably 0.3% or less from the viewpoint of plating properties. When high strength (350 MPa or more in TS) is not required, 0.1% or less is more preferable. The lower limit of the amount of Si is set to 0.005% for reasons of steelmaking costs.

【0016】Mnは本発明において最も重要な元素の1
つである。すなわち、Mn量が0.11%を超えるとM
nSの析出量が増加し、結果として、Ti4 2 2
析出量が低下するため、たとえ高温巻取りを行ったとし
ても熱延コイルの端部では、冷却速度が速く、固溶Cが
多量に残存したり、微細炭化物が多数析出して、著しく
材質を劣化させる。従って、Mn量は0.11%以下と
し、さらに好ましくは0.10%未満がよい。一方、M
n量を0.03%未満としても格別の効果は得られず、
また製鋼コストの上昇を招くので、下限を0.03%と
する。
Mn is one of the most important elements in the present invention.
One. That is, when the amount of Mn exceeds 0.11 %, M
Since the precipitation amount of nS increases, and as a result, the precipitation amount of Ti 4 C 2 S 2 decreases, the cooling rate is high at the end of the hot-rolled coil even if high-temperature winding is performed, and the solid solution C Is left in a large amount or a large number of fine carbides are precipitated, thereby significantly deteriorating the material. Therefore, the Mn content is set to 0.11 % or less, and more preferably less than 0.10%. On the other hand, M
Even if the amount of n is less than 0.03%, no particular effect is obtained,
In addition, the lower limit is set to 0.03% because steelmaking costs are increased.

【0017】PもSiと同様に安価な高強度化元素とし
て目的とする強度レベルに応じて積極的に活用する。し
かし、P量が0.2%超では熱間あるいは冷間加工時の
割れの原因となり、2次加工性も著しく劣化させる。ま
た、溶融亜鉛メッキの合金化速度が著しく遅滞化される
ため、0.2%を上限とする。以上の観点から、より好
ましくは、0.08%以下がよい。また、高い強度を必
要としない場合には、0.03%以下がさらに好まし
い。
P is also actively used as an inexpensive and high-strength element like Si in accordance with the desired strength level. However, if the P content exceeds 0.2%, it causes cracks during hot or cold working, and the secondary workability is also significantly deteriorated. Further, since the alloying speed of hot-dip galvanizing is significantly slowed, the upper limit is 0.2%. From the above viewpoints, more preferably, the content is 0.08% or less. When high strength is not required, the content is more preferably 0.03% or less.

【0018】Sは本発明において極めて重要な元素であ
り、その添加量を0.004〜0.02%とする。S量
が0.004%未満になるとTi4 2 2 の析出量が
充分ではなく、低温で巻取った際にはもちろんのこと、
たとえ高温で巻取ってもコイルの端部では固溶Cが多量
に残存したり、TiCやNbCの微細な析出により焼鈍
時の粒成長性が阻害され、加工性が著しく劣化する。一
方、S量が0.02%超では、熱間割れが生じ易くな
り、またTi4 2 2 の析出よりもMnSやTiSが
多く析出するため同様の問題が生じ、加工性の均一性が
確保されない。なお、S量は0.004〜0.012%
がより好ましい範囲である。
S is an extremely important element in the present invention, and the amount of S is set to 0.004 to 0.02%. When the amount of S is less than 0.004%, the amount of Ti 4 C 2 S 2 deposited is not sufficient, and when wound at a low temperature, of course,
Even if the coil is wound at a high temperature, a large amount of solid solution C remains at the end of the coil, and fine growth of TiC or NbC impairs the grain growth during annealing and significantly deteriorates workability. On the other hand, if the S content exceeds 0.02%, hot cracking is likely to occur, and the same problem occurs because MnS and TiS precipitate more than Ti 4 C 2 S 2 precipitates, resulting in uniform workability. Is not secured. In addition, S amount is 0.004-0.012%
Is a more preferable range.

【0019】ところで、SはTi量との関係が重要であ
り、Ti*=Ti−3.42NとしたときTi*/S≧
1.5とする。Ti*/Sが1.5未満ではTi4 2
2の析出が充分でなく、TiSやMnSが多く析出す
るので熱延後の巻取りの前にCを析出させることが困難
となる。従って、熱延コイルの端部では、巻取温度を高
めても多量の固溶Cが残存したり、微細炭化物が析出し
たりして極端な材質劣化を招く。Ti*/Sは2超とす
ることが好ましく、より一層の効果が望まれる場合には
3以上とすることが好ましい。
The relationship between S and the amount of Ti is important. When Ti * = Ti−3.42N, Ti * / S ≧
1.5. If Ti * / S is less than 1.5, Ti 4 C 2
Since the precipitation of S 2 is not sufficient and a large amount of TiS and MnS are precipitated, it is difficult to precipitate C before winding after hot rolling. Therefore, at the end of the hot-rolled coil, even if the winding temperature is increased, a large amount of solid solution C remains or fine carbides precipitate, resulting in extreme deterioration of the material. Ti * / S is preferably more than 2, and if more effect is desired, it is preferably 3 or more.

【0020】Alは脱酸剤として少なくとも0.005
%を添加する必要がある。しかし、Al量が0.1%を
超えるとコストアップとなるばかりか介在物の増加を招
き、加工性を劣化させる。NはCと同様にその増加とと
もにTi、Al等の窒化物形成元素を増量させねばなら
ないためコスト高となり、また析出物の増加により延性
の劣化を招くので少ないほど望ましい。従って、N量は
0.007%以下とするが、好ましくは0.003%以
下がよい。
Al is at least 0.005 as a deoxidizing agent.
% Must be added. However, when the amount of Al exceeds 0.1%, not only the cost is increased but also the number of inclusions is increased, and the workability is deteriorated. Similar to C, N increases the amount of nitride-forming elements such as Ti and Al together with the increase in N, resulting in an increase in cost. In addition, an increase in precipitates causes deterioration of ductility, so a smaller N is desirable. Therefore, the N content is set to 0.007% or less, and preferably 0.003% or less.

【0021】Tiは0.01〜0.1%添加する。Ti
量が0.01%未満ではTi4 22 を巻取りの前に
析出させることができず、また0.1%を超える量を添
加してもCを固定する効果が飽和するばかりかプレス成
形時のメッキ層の耐剥離性を確保することが困難にな
る。Ti4 2 2 を充分に析出させるという観点から
は、Ti量は0.025%超添加することが好ましい。
Ti is added in an amount of 0.01 to 0.1%. Ti
If the amount is less than 0.01%, Ti 4 C 2 S 2 cannot be precipitated before winding, and even if an amount exceeding 0.1% is added, not only the effect of fixing C is saturated but also. It becomes difficult to ensure the peel resistance of the plating layer during press molding. From the viewpoint of sufficiently precipitating Ti 4 C 2 S 2 , it is preferable to add the Ti content in excess of 0.025%.

【0022】また、コイル端部での材質を確保するため
には、全S量のうちMnSとして析出するS量の割合K
=(S% as MnS)/(全S%)がK≦0.2で
なければならない。さらには、K<0.15とすること
が望ましい。この(S% as MnS)は、次のよう
にして求められる。すなわち、硫化物が溶解しないよう
な溶媒(例えば非水溶媒)によって析出物を電解抽出す
る。得られた抽出残査を化学分析に供し、Mn量を測定
(=X(g)とする)する。このときサンプル全体の電
解量をY(g)とすると、(S% as MnS)=X
/Y×32/55×100(%)となる。
Further, in order to secure the material at the coil end, the ratio of the amount of S precipitated as MnS to the total amount of S
= (S% as MnS) / (total S%) must be K ≦ 0.2. Further, it is desirable that K <0.15. This (S% as MnS) is obtained as follows. That is, the precipitate is electrolytically extracted with a solvent that does not dissolve the sulfide (for example, a non-aqueous solvent). The obtained extraction residue is subjected to chemical analysis, and the amount of Mn is measured (= X (g)). At this time, assuming that the electrolysis amount of the entire sample is Y (g), (S% as MnS) = X
/ Y × 32/55 × 100 (%).

【0023】Nbは熱延板を細粒化し、かつCを固着さ
せる効果を持ち、深絞り性を向上させるので、必要に応
じて0.002〜0.05%の範囲で添加する。添加量
が0.002%未満では加工性を向上させる効果はわず
かである。一方、Nbが0.05%超となると深絞り性
の向上効果は飽和し、延性が著しく劣化する。Bは粒界
を強化して2次加工性を良好にするので、必要に応じて
0.0001〜0.0030%添加する。B量が0.0
001%未満ではその効果は乏しく、また0.003%
超添加してもその効果は飽和し、延性が劣化する。
Nb has an effect of making the hot-rolled sheet finer and fixing C, and improves the deep drawability. Therefore, Nb is added in the range of 0.002 to 0.05% as necessary. If the addition amount is less than 0.002%, the effect of improving workability is slight. On the other hand, when Nb exceeds 0.05%, the effect of improving the deep drawability is saturated, and the ductility is significantly deteriorated. Since B strengthens the grain boundary and improves the secondary workability, B is added in an amount of 0.0001 to 0.0030% as necessary. B amount is 0.0
Below 001%, the effect is poor, and 0.003%
Even if added excessively, the effect is saturated and ductility is deteriorated.

【0024】炭化物として析出するC量が0.0003
%より増えると、微細析出物が増加し、焼鈍中の結晶粒
の成長が抑制されてr値が低下するため、炭化物として
析出するC量を0.0003%以下にする。このような
観点から、直径10nm以下の炭化物として析出するC
量は0.0001%以下であることが望ましく、また2
0nm以下の炭化物として析出するC量は0.0002
%以下であることが好ましい。炭化物として析出するC
量(=C%とする)は、非水溶媒中で電解抽出すること
により得られた全析出物を化学分析し、Tiの化合物と
して分析されたTi量(=T%とする)からTiNとし
て析出するTi量(=T1%とする)およびTi4 C2
S2 として析出するTi量(=T2%とする)を差し引
いたTi量により算出される。また、同化学分析によっ
てNbが検出される場合には、その量(=N1%とす
る)も加算する。従って、C=(T−T1−T2)/4
+12/93×N1となる。ここで、T1はT1=全N
%×3.42で与えられ、T2は抽出残査中のS量(=
Sとする)を分析することにより、T2=S×3で与え
られる。
The amount of carbon precipitated as carbides is 0.0003.
%, The amount of fine precipitates increases, the growth of crystal grains during annealing is suppressed, and the r value decreases. Therefore, the amount of C precipitated as carbide is set to 0.0003% or less. From such a viewpoint, C precipitated as a carbide having a diameter of 10 nm or less.
The amount is desirably 0.0001% or less.
The amount of C precipitated as carbide of 0 nm or less is 0.0002.
% Is preferable. C precipitated as carbide
The amount (= C%) is determined by performing a chemical analysis of all the precipitates obtained by electrolytic extraction in a non-aqueous solvent, and converting the amount of Ti (= T%) analyzed as a Ti compound into TiN. Ti amount to be deposited (= T1%) and Ti4 C2
It is calculated from the Ti amount obtained by subtracting the Ti amount (= T2%) precipitated as S2. If Nb is detected by the same chemical analysis, the amount (= N1%) is also added. Therefore, C = (T−T1−T2) / 4
+ 12/93 × N1. Here, T1 is T1 = all N
% × 3.42, and T2 is the amount of S in the extraction residue (=
S) is given by T2 = S × 3.

【0025】上記成分を得るための原料は特に限定しな
いが、鉄鉱石を原料として、高炉、転炉により成分を調
製する方法以外にスクラップを原料としてもよいし、こ
れを電炉で溶製してもよい。スクラップを原料の全部ま
たは一部として使用する際には、Cu、Cr、Ni、S
n、Sb、Zn、Pb、Mo等の元素を含有してもよ
い。
The raw material for obtaining the above components is not particularly limited, but scrap may be used as a raw material in addition to the method of preparing the components using a blast furnace and a converter using iron ore as a raw material. Is also good. When scrap is used as all or a part of the raw material, Cu, Cr, Ni, S
Elements such as n, Sb, Zn, Pb, and Mo may be contained.

【0026】次に製造プロセスに関する限定理由を述べ
る。熱間圧延に供するスラブは、特に限定するものでは
ない。すなわち、連続鋳造スラブや薄スラブキャスター
で製造したものなどであればよい。また、鋳造後に直ち
に熱間圧延を行う、連続鋳造−直接圧延(CC−DR)
のようなプロセスにも適合する。
Next, the reasons for limitation on the manufacturing process will be described. The slab to be subjected to hot rolling is not particularly limited. That is, it may be any as long as it is manufactured using a continuous cast slab or a thin slab caster. Continuous casting-direct rolling (CC-DR), in which hot rolling is performed immediately after casting.
Also suitable for processes such as

【0027】熱間圧延における加熱温度は、Ti4 2
2 の析出量をなるべく増やすために、1200℃以下
とすることが必須である。この観点からは、好ましくは
1150℃以下がよい。熱間圧延における仕上温度は、
プレス成形性を確保するために(Ar3 −100)℃以
上とする必要がある。また、熱間圧延は、粗圧延終了後
にバー接合して連続的に仕上熱延を行っても構わない。
The heating temperature in the hot rolling is Ti 4 C 2
In order to increase the amount of S 2 deposited as much as possible, it is essential that the temperature be 1200 ° C. or lower. In this respect, the temperature is preferably 1150 ° C. or lower. The finishing temperature in hot rolling is
In order to ensure press formability, the temperature must be (Ar 3 -100) ° C. or higher. In the hot rolling, after the rough rolling, the bars may be joined and finish hot rolling may be continuously performed.

【0028】本発明は、熱延後の巻取温度が低くても加
工性を確保できるという特徴を有する。すなわち、本発
明によれば、Cの多くは、熱延の加熱時〜熱延後の冷却
までの過程でTi4 2 2 として析出しており、高温
巻取りしても大きく材質が向上することはない。従っ
て、巻取りは操業上適当な温度で行えばよく、室温から
800℃の範囲で行う。室温未満で巻取ることは過剰な
設備が必要となるばかりで特段の効果もない。また、8
00℃超となると熱延板の結晶粒が粗大化したり、表面
の酸化スケールが厚くなり、酸洗コストの上昇を招くの
で800℃を上限とする。本発明鋼の場合、巻取温度が
高いと、わずかに残存していた固溶Cが微細炭化物とし
て析出したり、Pの化合物が析出したりして、材質がむ
しろ劣化する傾向にある。従って、巻取りは650℃以
下の温度で行うことが好ましい。これらの有害な化合物
の析出を完全に避けるためには、500℃以下の温度で
巻取ることがさらに好ましい。さらに、巻取り後に室温
付近まで温度が下がる時間を短縮するためには、100
℃以下で巻取ることが好ましい。このような低温巻取り
化によって、製造コストの削減が計れることは言うまで
もない。
The present invention is characterized in that workability can be ensured even when the winding temperature after hot rolling is low. That is, according to the present invention, most of C is precipitated as Ti 4 C 2 S 2 in the process from the time of heating of hot rolling to the cooling after hot rolling, and the material is greatly improved even when wound at high temperature. I will not do it. Therefore, the winding may be performed at a temperature suitable for operation, and is performed in a range of room temperature to 800 ° C. Winding below room temperature only requires excessive equipment and has no particular effect. Also, 8
If the temperature exceeds 00 ° C., the crystal grains of the hot-rolled sheet become coarse, the oxide scale on the surface becomes thick, and the pickling cost increases. In the case of the steel of the present invention, if the winding temperature is high, the slightly dissolved solid solution C tends to precipitate as fine carbides, or the compound of P precipitates, and the material tends to be rather deteriorated. Therefore, the winding is preferably performed at a temperature of 650 ° C. or less. In order to completely avoid the precipitation of these harmful compounds, it is more preferable to wind at a temperature of 500 ° C. or lower. Furthermore, in order to reduce the time required for the temperature to drop to around room temperature after winding, 100
It is preferred that the film be wound at a temperature of not more than ° C. Needless to say, such low-temperature winding can reduce the manufacturing cost.

【0029】冷間圧延の圧下率は、深絞り性を確保する
という観点から60%以上とする。連続焼鈍における焼
鈍温度は、加工性を確保するために、再結晶温度以上と
する。連続溶融亜鉛メッキラインにおける再結晶焼鈍温
度も同様の理由で再結晶温度以上とする。溶融亜鉛メッ
キは、メッキ性、メッキ密着性の観点から420〜50
0℃がよい。その後の合金化処理温度は、低過ぎると合
金化反応が遅過ぎて生産性を損なうばかりか耐食性、溶
接性が劣悪になり、高過ぎると耐メッキ剥離性が劣化す
るので、400〜600℃で行うのが好ましい。より密
着性の優れたメッキ層を得るためには、480〜550
℃の範囲で合金化を行うのがよい。
The rolling reduction of the cold rolling is set to 60% or more from the viewpoint of securing deep drawability. The annealing temperature in the continuous annealing is equal to or higher than the recrystallization temperature in order to secure workability. The recrystallization annealing temperature in the continuous hot-dip galvanizing line is equal to or higher than the recrystallization temperature for the same reason. Hot-dip galvanizing is performed from 420 to 50 from the viewpoint of plating properties and plating adhesion.
0 ° C is good. If the subsequent alloying treatment temperature is too low, not only the alloying reaction is too slow and impairs the productivity but also the corrosion resistance and the weldability deteriorate, and if it is too high, the plating peeling resistance deteriorates. It is preferred to do so. In order to obtain a plating layer having more excellent adhesion, it is necessary to use 480 to 550.
Alloying is preferably performed in the range of ° C.

【0030】連続焼鈍や連続溶融亜鉛メッキラインにお
ける加熱速度は特に限定するものではなく、通常の速度
でもよいし、1000℃/s以上の超急速加熱を行って
もよい。なお、溶融亜鉛メッキ以外にも電気メッキ等種
々の表面処理を施してもよい。
The heating rate in the continuous annealing or continuous hot-dip galvanizing line is not particularly limited, and may be an ordinary rate or ultra-rapid heating at 1000 ° C./s or more. Various surface treatments such as electroplating may be performed in addition to hot-dip galvanizing.

【0031】[0031]

【実施例】以下に本発明を実施例をもって詳細に述べ
る。 (実施例1)表1、表2(表1のつづき−1)、表3
(表1のつづき−2)および表4(表1のつづき−3)
に示す化学成分を有するTi添加極低炭素鋼およびT
i、Nb添加極低炭素鋼を転炉にて出鋼し、連続鋳造機
にてスラブとした後、表5、表7(表5のつづき−
2)、表10(表5のつづき−5)および表13(表5
のつづき−8)に示したような条件で熱間圧延を行い、
その後種々の巻取温度でコイルに巻取った。このコイル
の長手方向中心部から試料を切り出し、以下のような処
理を行った。すなわち、実験室にて酸洗後0.8mmま
で冷間圧延を行い、連続焼鈍相当の熱処理を施した。焼
鈍条件は表5、表8(表5のつづき−3)、表11(表
5のつづき−6)および表14(表5のつづき−9)に
示す。その後、表6(表5のつづき−1)、表9(表5
のつづき−4)、表12(表5のつづき−7)および表
15(表5のつづき−10)に示した圧下率で調質圧延
を行い、引張試験に供した。ここで、引張試験および平
均ランクフォード値(以下r値)の測定は、JIS5号
試験片を用いて行った。なお、r値は伸び15%で評価
し、圧延方向(L方向)、圧延方向に垂直な方向(C方
向)および圧延方向に対して45°方向(D方向)の値
を測定し、下式により算出した。
The present invention will be described in detail below with reference to examples. (Example 1) Table 1, Table 2 (continuation of Table 1-1), Table 3
(Continued in Table 1-2) and Table 4 (Continued in Table 1-3)
Ti-added ultra-low carbon steel having the chemical composition shown in
After tapping i, Nb-added ultra-low carbon steel in a converter and making it into a slab with a continuous casting machine, Tables 5 and 7 (continuation of Table 5-
2), Table 10 (continuation of Table 5-5) and Table 13 (Table 5
Hot rolling is performed under the conditions shown in -8).
Thereafter, it was wound around a coil at various winding temperatures. A sample was cut out from the center of the coil in the longitudinal direction, and the following processing was performed. That is, cold rolling was performed to 0.8 mm after pickling in a laboratory, and heat treatment equivalent to continuous annealing was performed. The annealing conditions are shown in Table 5, Table 8 (continuation of Table 5-3), Table 11 (continuation of Table 5-6), and Table 14 (continuation of Table 5-9). Thereafter, Table 6 (continuation of Table 5-1) and Table 9 (Table 5)
(Continued-4), Table 12 (Continued in Table 5-7) and Table 15 (Continued in Table 5-10), temper rolling was performed and subjected to a tensile test. Here, the tensile test and the measurement of the average Rankford value (hereinafter, r value) were performed using JIS No. 5 test pieces. The r value was evaluated at an elongation of 15%, and the values in the rolling direction (L direction), the direction perpendicular to the rolling direction (C direction), and the direction at 45 ° to the rolling direction (D direction) were measured. Was calculated by

【0032】r=(rL +2rD +rC )/4 試験結果を表6、表9、表12および表15にまとめて
示す。
R = (r L + 2r D + r C ) / 4 The test results are summarized in Tables 6, 9, 12, and 15.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【表5】 [Table 5]

【0038】[0038]

【表6】 [Table 6]

【0039】[0039]

【表7】 [Table 7]

【0040】[0040]

【表8】 [Table 8]

【0041】[0041]

【表9】 [Table 9]

【0042】[0042]

【表10】 [Table 10]

【0043】[0043]

【表11】 [Table 11]

【0044】[0044]

【表12】 [Table 12]

【0045】[0045]

【表13】 [Table 13]

【0046】[0046]

【表14】 [Table 14]

【0047】[0047]

【表15】 [Table 15]

【0048】表5〜表15から明らかなように、本発明
の成分を有する鋼では、800℃以下の温度で巻取るこ
とによって、優れた材質が得られることが分かる。特に
巻取温度が低くなり、炭化物として析出するC量が0.
0003%以下になると、極めて優れた材質が得られ
る。これに対して比較鋼では、低温巻き取りでは材質が
劣悪となることが明らかとなった。
As is evident from Tables 5 to 15, it is understood that the steel having the components of the present invention can obtain excellent materials by winding at a temperature of 800 ° C. or less. In particular, the winding temperature is lowered, and the amount of carbon precipitated as carbide is reduced to 0.1.
When the content is 0003% or less, an extremely excellent material can be obtained. On the other hand, in the comparative steel, it became clear that the material was inferior in low-temperature winding.

【0049】(実施例2) 表16および表18(表16のつづき−2)に示したよ
うな条件で製造した表1〜表4の鋼No.1、3、6、
11、12、13、14、24、25、28、33、3
5、38、39の冷延鋼板(熱延で4mm厚にした後、
冷延で0.8mm厚としたもの)を用いて冷延コイル長
手方向における材質特性を調査した。
(Example 2) Steel Nos. Of Tables 1 to 4 manufactured under the conditions shown in Tables 16 and 18 (continuation-2 of Table 16). 1, 3, 6,
11, 12, 13, 14, 24, 25, 28, 33, 3
5, 38, 39 cold rolled steel sheets (after hot rolling to 4 mm thickness,
The material properties in the longitudinal direction of the cold-rolled coil were examined using a cold-rolled coil having a thickness of 0.8 mm).

【0050】試験結果を表17(表16のつづき−1)
および表19(表16のつづき−3)にまとめて示す。
The test results are shown in Table 17 (continued in Table 16-1).
And Table 19 (continuation-3 in Table 16).

【0051】[0051]

【表16】 [Table 16]

【0052】[0052]

【表17】 [Table 17]

【0053】[0053]

【表18】 [Table 18]

【0054】[0054]

【表19】 [Table 19]

【0055】表16〜表19から明らかなように、本発
明の範囲によって製造された鋼は、コイルの中央部はも
ちろんのこと、その端部10mにおいても優れた特性を
示している。これに対して比較鋼の場合には、コイル端
部になるにつれて材質が著しく劣化し、また低温巻取り
の場合には、コイル全長で材質が劣悪になった。この傾
向が端部になるほど顕著になるのは明白である。
As is evident from Tables 16 to 19, the steels manufactured according to the scope of the present invention show excellent properties not only at the center of the coil but also at the end 10 m. On the other hand, in the case of the comparative steel, the material deteriorated remarkably toward the coil end, and in the case of low-temperature winding, the material became poor over the entire length of the coil. It is clear that this tendency becomes more pronounced at the ends.

【0056】(実施例3) 表1〜表4の試料11、22、34(実機出鋼スラブ)
を用いて冷延焼鈍後の材質特性に及ぼす熱延加熱温度の
影響について調査した。すなわち、スラブを実機にて1
000〜1300℃に加熱し、仕上温度940℃で、板
厚が4.0mmとなるような熱間圧延を行った。ランア
ウトテーブルでの平均冷却速度は20℃/sであり、そ
の後690℃でコイルに巻取った。なお、コイルの全長
は約200mであった。同コイルより実施例1と同様の
位置からサンプルを切り出し、酸洗後0.8mmまで冷
間圧延を行い、続いて実験室において連続焼鈍相当の熱
処理を施した。焼鈍条件は、焼鈍温度:790℃、均
熱:50s、冷却速度:室温まで60℃/sとした。そ
の後、1.0%の圧下率で調質圧延を行い、引張試験に
供した。
Example 3 Samples 11, 22, and 34 of Tables 1 to 4 (actual machined slabs)
The effect of hot-rolling heating temperature on the material properties after cold-rolling annealing was investigated using JIS. In other words, the slab is
The sheet was heated to 000 to 1300 ° C., and hot-rolled at a finishing temperature of 940 ° C. to a thickness of 4.0 mm. The average cooling rate at the run-out table was 20 ° C./s, after which the coil was wound at 690 ° C. The total length of the coil was about 200 m. A sample was cut out from the same coil from the same position as in Example 1, cold-rolled to 0.8 mm after pickling, and then subjected to a heat treatment equivalent to continuous annealing in a laboratory. The annealing conditions were as follows: annealing temperature: 790 ° C., soaking: 50 s, cooling rate: 60 ° C./s up to room temperature. Thereafter, temper rolling was performed at a rolling reduction of 1.0%, and subjected to a tensile test.

【0057】試験結果を表20および表21(表20の
つづき)にまとめて示す。
The test results are summarized in Tables 20 and 21 (continuation of Table 20).

【0058】[0058]

【表20】 [Table 20]

【0059】[0059]

【表21】 [Table 21]

【0060】表20および表21から明らかなように、
本発明の範囲によって製造された鋼は、熱延コイルの中
央部はもちろんのこと、その端部においても冷延焼鈍後
の材質が優れている。これに対して、加熱温度が120
0℃超の場合には、コイル端部において冷延焼鈍後の材
質が著しく劣化した。 (実施例4) 表1〜表4中の鋼No.5、10、11、12、22、
24、42を用いて表22に示した条件で熱間圧延を施
し、引き続き実機にて酸洗し、圧下率80%の冷間圧延
を行い、ライン内焼鈍方式の連続溶融亜鉛メッキライン
に通板した。このときのメッキ条件を表22に示す。同
様に表22に示された圧延率で調質圧延を施した後、機
械的性質、メッキ密着性を評価した。得られた結果を表
23(表22のつづき)に示す。
As is clear from Tables 20 and 21,
The steel produced according to the scope of the present invention is excellent not only in the center of the hot-rolled coil but also in the end thereof after cold rolling annealing. On the other hand, when the heating temperature is 120
When the temperature is higher than 0 ° C., the material after cold rolling annealing at the coil end portion is significantly deteriorated. (Example 4) The steel No. in Tables 1 to 4 was used. 5, 10, 11, 12, 22,
24 and 42, hot rolling was performed under the conditions shown in Table 22, followed by pickling with an actual machine, cold rolling at a rolling reduction of 80%, and passing through a continuous galvanizing line using an in-line annealing method. Planned. Table 22 shows the plating conditions at this time. Similarly, after temper rolling at a rolling rate shown in Table 22, mechanical properties and plating adhesion were evaluated. The results obtained are shown in Table 23 (continued from Table 22).

【0061】ここで、メッキ密着性は180℃密着曲げ
を行い、亜鉛皮膜の剥離状況を曲げ加工部に粘着テープ
を接着した後、これを剥がしてテープに付着した剥離メ
ッキ量から判定した。評価は、下記の5段階とした。 1:剥離大、2:剥離中、3:剥離小、4:剥離微量、
5:剥離なし
Here, the plating adhesion was determined by performing 180 ° contact bending and the peeling state of the zinc film from the amount of peel plating adhered to the tape after peeling off the adhesive tape after bonding the adhesive tape to the bent portion. The evaluation was based on the following five levels. 1: Large peeling, 2: During peeling, 3: Small peeling, 4: Trace amount of peeling,
5: No peeling

【0062】[0062]

【表22】 [Table 22]

【0063】[0063]

【表23】 [Table 23]

【0064】表22および表23から明らかなように、
本発明の範囲によって製造された合金化溶融亜鉛メッキ
鋼板はコイルの部位に関わらず優れた特性を示してい
る。これに対して比較鋼では、コイルの部位による加工
性のばらつきが大きかった。
As is clear from Tables 22 and 23,
The alloyed hot-dip galvanized steel sheet manufactured according to the scope of the present invention has excellent properties regardless of the coil position. On the other hand, in the comparative steel, the variation in workability depending on the portion of the coil was large.

【0065】[0065]

【発明の効果】以上のように本発明によれば、熱延後の
巻取温度を低温化することができ、しかもコイルの長手
方向および幅方向に均一に優れた材質が得られ、従来切
捨てられていたコイル端部を製品とすることができる。
また、本発明の高強度鋼板を自動車用として適用した場
合には、板厚を軽減することができるため、燃費の向上
をもたらし、近年大きな問題となっている地球環境問題
にも貢献し得るので、その価値は大きい。
As described above, according to the present invention, it is possible to lower the winding temperature after hot rolling, and to obtain a superior material uniformly in the longitudinal and width directions of the coil. The coil end that has been set can be used as a product.
Further, when the high-strength steel sheet of the present invention is applied to an automobile, the thickness can be reduced, thereby improving fuel efficiency and contributing to a global environmental problem that has recently become a major problem. , Its value is great.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C23C 2/28 C23C 2/28 (72)発明者 小山 一夫 千葉県富津市新富20−1 新日本製鐵株 式会社技術開発本部内 (72)発明者 高橋 学 千葉県富津市新富20−1 新日本製鐵株 式会社技術開発本部内 (56)参考文献 特開 平2−194126(JP,A) 特開 平1−230748(JP,A) 特開 平5−195148(JP,A) 特開 平1−191748(JP,A) 特開 平7−18336(JP,A) 特開 平3−170618(JP,A) 特開 平1−123058(JP,A) 特開 昭50−137816(JP,A) 特開 平7−26330(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 9/46 - 9/48 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI C23C 2/28 C23C 2/28 (72) Inventor Kazuo Koyama 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Inside the headquarters (72) Inventor Manabu Takahashi 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Headquarters (56) References JP-A-2-194126 (JP, A) JP-A-1-230748 (JP, A) JP-A-5-195148 (JP, A) JP-A-1-191748 (JP, A) JP-A-7-18336 (JP, A) JP-A-3-170618 (JP, A) JP-A-1-13058 (JP, A) JP-A-50-137816 (JP, A) JP-A-7-26330 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38 / 00-38/60 C21D 9/46-9/48

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C:0.0005〜0.00
7%、Mn:0.03〜0.11%、Si:0.005
〜0.8%、Al:0.005〜0.1%、P:0.2
%以下、S:0.004〜0.02%、N:0.007
%以下、Ti:0.01〜0.1%かつTi*=Ti−
3.42NとしたときTi*/S≧1.5を満たす範囲
で含有し、残部は鉄および不可避的不純物よりなり、さ
らに全S量のうちMnSとして析出するS量の割合K=
(S% as MnS)/(全S%)がK≦0.2であ
り、下記(1)式で示す炭化物として析出するC量(=
C%とする)が0.0003%以下であることを特徴と
する加工性の均一性に優れた冷延鋼板。 C%=(T−T1−T2)/4+12/93×N1(%)…(1) ここで、T=非水溶媒中で電解抽出することにより得ら
れた全析出物を化学分析し、Tiの化合物として分析さ
れたTi量(%) T1=TiNとして析出するTi量であり、T1=全N
%×3.42(%)で与えられる。 T2=Ti 4 2 2 として析出するTi量であり、抽
出残査中のS量(=Sとする)を分析することにより、
T2=S×3(%)で与えられる。 N1=化学分析によってNbが検出される場合のNb量
(%)
C: 0.0005 to 0.00% by weight
7%, Mn: 0.03-0.11%, Si: 0.005
-0.8%, Al: 0.005-0.1%, P: 0.2
%, S: 0.004 to 0.02%, N: 0.007
% Or less, Ti: 0.01 to 0.1% and Ti * = Ti−
When it is set to 3.42 N, Ti is contained in a range satisfying Ti * / S ≧ 1.5, and the balance is composed of iron and unavoidable impurities. Further, the ratio of the amount of S precipitated as MnS to the total S amount K =
(S% as MnS) / (total S%) is K ≦ 0.2, and the amount of C precipitated as carbides represented by the following formula (1) (=
C%) is 0.0003% or less. C% = (T−T 1 −T 2) / 4 + 12/93 × N 1 (%) (1) where T is obtained by electrolytic extraction in a non-aqueous solvent.
All deposited precipitates were analyzed chemically and analyzed as Ti compounds.
Ti amount (%) T1 = Ti amount precipitated as TiN, T1 = total N
% × 3.42 (%). T2 = Ti amount precipitated as Ti 4 C 2 S 2 ,
By analyzing the amount of S (= S) in the residue check,
T2 = S × 3 (%) N1 = Nb amount when Nb is detected by chemical analysis
(%)
【請求項2】 さらに、Nb:0.002〜0.05%
を含有することを特徴とする請求項記載の加工性の均
一性に優れた冷延鋼板。
2. Nb: 0.002 to 0.05%
The cold-rolled steel sheet according to claim 1 , wherein the cold-rolled steel sheet has excellent workability uniformity.
【請求項3】 さらに、B:0.0001〜0.003
0%を含有することを特徴とする請求項1または2記載
の加工性の均一性に優れた冷延鋼板。
3. B: 0.0001 to 0.003
The cold-rolled steel sheet having excellent workability uniformity according to claim 1 or 2, which contains 0%.
【請求項4】 請求項1〜の何れか1項に記載の成分
を有する鋼を加熱温度≦1200℃、仕上温度≧(Ar
3 −100)℃の熱間圧延を施し、室温から800℃の
温度範囲で巻取り、圧下率≧60%の冷間圧延を施し、
さらに再結晶温度以上で焼鈍することを特徴とする加工
性の均一性に優れた冷延鋼板の製造方法。
4. The method of claim 1 heating temperature ≦ 1200 ° C. The steel having a component according to any one of 3, finishing temperature ≧ (Ar
3 -100) subjected to hot rolling ° C., winding, a rolling reduction ≧ 60% cold rolling performed in a temperature range of 800 ° C. from room temperature,
A method for producing a cold-rolled steel sheet having excellent workability uniformity, further comprising annealing at a recrystallization temperature or higher.
【請求項5】 請求項1〜の何れか1項に記載の成分
を有する鋼を加熱温度≦1200℃、仕上温度≧(Ar
3 −100)℃の熱間圧延を施し、室温から800℃の
温度範囲で巻取り、次いで圧下率≧60%の冷間圧延を
施した後、ライン内焼鈍炉を有する連続溶融亜鉛メッキ
ラインで再結晶温度以上で焼鈍を施し、冷却過程中に亜
鉛メッキを施すことを特徴とする加工性の均一性に優れ
た溶融亜鉛メッキ鋼板の製造方法。
5. A method according to claim 1 heating temperature ≦ 1200 ° C. The steel having a component according to any one of 3, finishing temperature ≧ (Ar
3 -100) subjected to hot rolling ° C., coiling at a temperature range of 800 ° C. from room temperature, and then was subjected to rolling reduction ≧ 60% cold rolling, a continuous galvanizing line having a line within the annealing furnace A method for producing a hot-dip galvanized steel sheet having excellent workability uniformity, characterized by annealing at a recrystallization temperature or higher and galvanizing during a cooling process.
【請求項6】 亜鉛メッキを施した後、400〜600
℃の温度範囲で合金化処理を行うことを特徴とする請求
記載の加工性の均一性に優れた溶融亜鉛メッキ鋼板
の製造方法。
6. After galvanizing, 400-600.
The method for producing a hot-dip galvanized steel sheet having excellent workability uniformity according to claim 5 , wherein the alloying treatment is performed in a temperature range of ° C.
JP30666394A 1994-01-21 1994-12-09 Cold rolled steel sheet excellent in workability uniformity and method for producing the same Expired - Fee Related JP3291639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30666394A JP3291639B2 (en) 1994-01-21 1994-12-09 Cold rolled steel sheet excellent in workability uniformity and method for producing the same

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP510394 1994-01-21
JP2934594 1994-02-28
JP6-85134 1994-04-22
JP8513494 1994-04-22
JP6-5103 1994-04-22
JP6-29345 1994-04-22
JP30666394A JP3291639B2 (en) 1994-01-21 1994-12-09 Cold rolled steel sheet excellent in workability uniformity and method for producing the same

Publications (2)

Publication Number Publication Date
JPH083686A JPH083686A (en) 1996-01-09
JP3291639B2 true JP3291639B2 (en) 2002-06-10

Family

ID=27454230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30666394A Expired - Fee Related JP3291639B2 (en) 1994-01-21 1994-12-09 Cold rolled steel sheet excellent in workability uniformity and method for producing the same

Country Status (1)

Country Link
JP (1) JP3291639B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818879B2 (en) * 2006-10-31 2011-11-16 新日本製鐵株式会社 Method for producing cold-rolled steel sheet with excellent ductility and room temperature aging resistance
CN109852878B (en) * 2017-11-30 2021-05-14 宝山钢铁股份有限公司 Non-oriented electrical steel sheet having excellent magnetic properties and method for manufacturing the same

Also Published As

Publication number Publication date
JPH083686A (en) 1996-01-09

Similar Documents

Publication Publication Date Title
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
US5954896A (en) Cold rolled steel sheet and galvanized steel sheet having improved homogeneity in workability and process for producing same
JP6402830B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
CN110777290A (en) Hot-dip galvanized aluminum-magnesium high-strength steel, preparation method and application
JP2576894B2 (en) Hot-dip galvanized high-tensile cold-rolled steel sheet excellent in press formability and method for producing the same
JP3449003B2 (en) Steel plate for cans and manufacturing method thereof
JP3291639B2 (en) Cold rolled steel sheet excellent in workability uniformity and method for producing the same
JP3719025B2 (en) Cold-rolled steel sheet for deep drawing with excellent fatigue resistance
JP3023875B2 (en) Method for producing hot-dip galvanized steel sheet with excellent surface properties
JP3347152B2 (en) Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion
JP2004137554A (en) Steel sheet having excellent workability, and production method therefor
JPH06122940A (en) Cold rolled steel sheet and galvanized cold rolled steel sheet having excellent baking hardenability and also cold monaging property and production thereof
JP2003003216A (en) Method for producing high strength galvanized steel sheet having excellent deep drawability and secondary working brittleness resistance
JPH06116650A (en) Production of cold rolled steel sheet or hot dip galvanized cold rolled steel sheet excellent in baking hardenability and non-aging characteristic
JP3293015B2 (en) Cold rolled steel sheet with excellent workability uniformity
JPH0657337A (en) Production of high strength galvannealed steel sheet excellent in formability
JP2755014B2 (en) Method for producing high-strength cold-rolled steel sheet for deep drawing with excellent secondary work brittleness resistance
JP3834100B2 (en) Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability uniformity
CN111868286B (en) Steel plate
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
JP2827740B2 (en) Method for producing steel sheet with excellent fatigue characteristics and deep drawability
JPH08283909A (en) Cold rolled steel sheet excellent in uniformity of workability and its production
JPH075971B2 (en) Method for producing alloy electroplated steel sheet for deep drawing with excellent impact peel resistance after painting
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics
KR100210866B1 (en) Cold rolled steel sheet and hot-dipped galvanized steel sheet excellent in uniform workability and process for producing the sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080329

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120329

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130329

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130329

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130329

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130329

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130329

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140329

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees