JP2013133483A - High-strength high-processability steel sheet for can, and method for manufacturing the same - Google Patents

High-strength high-processability steel sheet for can, and method for manufacturing the same Download PDF

Info

Publication number
JP2013133483A
JP2013133483A JP2011282864A JP2011282864A JP2013133483A JP 2013133483 A JP2013133483 A JP 2013133483A JP 2011282864 A JP2011282864 A JP 2011282864A JP 2011282864 A JP2011282864 A JP 2011282864A JP 2013133483 A JP2013133483 A JP 2013133483A
Authority
JP
Japan
Prior art keywords
less
strength
rolling
steel plate
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011282864A
Other languages
Japanese (ja)
Other versions
JP5803660B2 (en
Inventor
Masaki Tada
雅毅 多田
Katsumi Kojima
克己 小島
Yusuke Nakagawa
祐介 中川
Takumi Tanaka
田中  匠
Yoichi Tobiyama
洋一 飛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011282864A priority Critical patent/JP5803660B2/en
Publication of JP2013133483A publication Critical patent/JP2013133483A/en
Application granted granted Critical
Publication of JP5803660B2 publication Critical patent/JP5803660B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high-strength high-processability steel sheet for a can, which has a tensile strength of 550 MPa or more and a total elongation of 10% or more, and to provide a method for producing the steel sheet.SOLUTION: A high-strength high-processability steel sheet for a can includes, by mass, 0.020-0.100% of C, 0.100% or less of Si, 0.10-0.80% of Mn, more than 0.10% and 0.30% or less of P, 0.001-0.020% of S, 0.005-0.100% of Al, more than 0.0250% and 0.0350% or less of N, and the remainder comprising Fe and inevitable impurities, and has the elongation rate of crystal grains of 2.00 or less, the tensile strength of 550 MPa or more, and the total elongation of 10% or more.

Description

本発明は、高強度であり、かつ、高い加工性を有する缶用鋼板およびその製造方法に関するものである。   The present invention relates to a steel plate for cans having high strength and high workability, and a method for producing the same.

飲料缶や食缶に用いられる鋼板のうち、蓋や底、3ピース缶の胴、絞り缶などには、DR(Double−Reduce)材と呼ばれる鋼板が用いられる場合がある。焼鈍の後に再度冷間圧延を行うDR材は、圧延率の小さい調質圧延のみを行うSR(Single−Reduce)材に比べて板厚を薄くすることが容易であり、薄い鋼板を用いることにより製缶コストを低減することが可能となる。   Among steel plates used for beverage cans and food cans, steel plates called DR (Double-Reduce) materials may be used for lids, bottoms, three-piece can bodies, drawn cans, and the like. The DR material that is cold-rolled again after annealing is easier to reduce the plate thickness than the SR (Single-Reduce) material that performs only temper rolling with a small rolling rate. By using a thin steel plate The can manufacturing cost can be reduced.

DR材を製造するDR法は焼鈍後に冷間圧延を施すことで加工硬化が生じるため、薄くて硬い鋼板を製造することができる。しかし、その反面、DR法により製造されたDR材は延性に乏しいため、SR材に比べて加工性が劣る。   In the DR method for producing the DR material, work hardening occurs by performing cold rolling after annealing, so that a thin and hard steel plate can be produced. However, on the other hand, the DR material manufactured by the DR method is poor in ductility and therefore has poor workability compared to the SR material.

また、飲料缶、食缶の蓋としては、EOE(Easy Open End)方式が広く使用されている。EOE方式で蓋を製造するに際しては、タブを取り付けるためのリベットを張り出し加工および絞り加工によって成形する必要があり、この加工に要求される材料の延性は、引張試験における約10%の伸びに相当する。   In addition, as a lid for beverage cans and food cans, an EOE (Easy Open End) system is widely used. When manufacturing a lid by the EOE method, it is necessary to form a rivet for attaching a tab by an extension process and a drawing process, and the ductility of the material required for this process corresponds to an elongation of about 10% in a tensile test. To do.

また、3ピース飲料缶の胴材は、筒状に成形された後、蓋や底を巻き締めるために両端にフランジ加工を施される。そのため、この際の缶胴端部にも約10%の伸びが要求される。   In addition, the body of the three-piece beverage can is formed into a cylindrical shape, and then flanged at both ends in order to tighten the lid and the bottom. Therefore, the end of the can body at this time is required to have an elongation of about 10%.

一方で、製缶素材としての鋼板は板厚に応じた強度が必要とされ、DR材の場合は薄くすることによる缶強度を確保するために、約550MPa以上の引張強度が必要とされる。   On the other hand, a steel plate as a can-making material is required to have a strength corresponding to the plate thickness, and in the case of a DR material, a tensile strength of about 550 MPa or more is required to ensure the strength of the can by reducing the thickness.

従来用いられてきたDR材では、上記のような延性と強度を両立することは困難であり、EOE方式の蓋や飲料缶の胴材にはSR材が用いられてきた。しかし、現在、コスト低減の観点から、EOE方式の蓋や飲料缶の胴材に対してDR材を適用する要求が高まっている。さらに、DR材を2ピース缶胴に用いる要求も出ている。   Conventionally used DR materials are difficult to achieve both the above-described ductility and strength, and SR materials have been used for EOE lids and beverage can body materials. However, at present, from the viewpoint of cost reduction, there is an increasing demand for applying DR materials to EOE-type lids and beverage can body materials. Furthermore, the request | requirement which uses DR material for a 2 piece can body has also come out.

これらを受けて、特許文献1には、質量%で、C:0.02%超0.10%以下、Si:0.10%以下、Mn:1.5%以下、P:0.20%以下、S:0.20%以下、Al:0.10%以下、N:0.0120〜0.0250%を含有し、かつ該Nのうち固溶Nとして0.0100%以上を含み、残部がFeおよび不可避的不純物からなる低炭材を用い、スラブ抽出温度を1200℃以上としてスラブ鋳造時に生じたAlNを分解させ、熱延コイルを650℃以下で巻き取りAlNの析出を抑制させることにより、冷延鋼板の固溶N量の絶対量を一定以上確保し、さらに、塗装焼付処理後の時効硬化によって、2次冷間圧延することなく、あるいは低圧下率の2次冷間圧延を行うことにより、生産性を高くした高強度缶用鋼板および製造方法が開示されている。   In view of these, in Patent Document 1, in mass%, C: more than 0.02% and 0.10% or less, Si: 0.10% or less, Mn: 1.5% or less, P: 0.20% Hereinafter, S: 0.20% or less, Al: 0.10% or less, N: 0.0120-0.0250% is contained, and 0.0100% or more is included as the solid solution N in the N, and the balance By using a low carbon material consisting of Fe and inevitable impurities, decomposing AlN generated during slab casting at a slab extraction temperature of 1200 ° C. or higher, and winding a hot rolled coil at 650 ° C. or lower to suppress precipitation of AlN The absolute amount of the solute N of the cold-rolled steel sheet is ensured to a certain level or more, and the secondary cold rolling is performed at the low pressure rate without secondary cold rolling by age hardening after the coating baking process. Steel plate for high-strength can with high productivity and manufacturing The law has been disclosed.

特許文献2には、P成分を用いて硬質化することで2回目の冷間圧延での圧下率を低くすることを可能とし、引張強度TSが500MPa以上で、かつ板幅方向と圧延方向の耐力差が40MPa以下であり、さらに、加工性に優れた容器用鋼板とその製造方法が開示されている。   In Patent Document 2, it is possible to lower the rolling reduction in the second cold rolling by hardening using P component, the tensile strength TS is 500 MPa or more, and the sheet width direction and the rolling direction are A steel plate for containers having a proof stress difference of 40 MPa or less and excellent workability and a method for producing the same are disclosed.

特開2009−263788号公報JP 2009-263788 A 特開2009−263789号公報JP 2009-263789 A

しかしながら、上記従来技術は、いずれも以下のような問題点を抱えている。   However, each of the above conventional techniques has the following problems.

特許文献1に記載の製造方法では、Nが0.0120〜0.0250%と低いため、二次冷間圧延が5〜10%未満の低圧下率では、550MPa以上の十分な強度が得られず、高強度化に対応することが難しい。また、固溶N量を0.0100%以上確保するために、スラブ抽出温度を1200℃以上としてスラブ鋳造時に生じたAlNを分解させる必要があり、高温に加熱するための昇熱時間が余分にかかり、スケール欠陥などが発生し安定して製造することが出来ない。   In the production method described in Patent Document 1, since N is as low as 0.0120 to 0.0250%, a sufficient strength of 550 MPa or more is obtained at a low pressure reduction rate of secondary cold rolling of less than 5 to 10%. Therefore, it is difficult to cope with higher strength. In addition, in order to secure a solid solution N amount of 0.0100% or more, it is necessary to decompose AlN generated during slab casting at a slab extraction temperature of 1200 ° C. or more, and an extra heating time for heating to a high temperature is required. Therefore, scale defects etc. occur and it cannot be manufactured stably.

特許文献2に記載の製造方法では、Pが0.1%以下と低いため、二次冷間圧延が5〜10%未満の低圧下率では、十分な強度が得られず、高強度化に対応することが難しい。   In the production method described in Patent Document 2, since P is as low as 0.1% or less, sufficient strength cannot be obtained at a low-pressure reduction rate of secondary cold rolling of less than 5 to 10%, and high strength is achieved. It is difficult to respond.

本発明は、かかる事情に鑑みてなされたもので、引張強度が550MPa以上の強度を有し、かつ全伸びが10%以上であり、強度および加工性に優れた缶用鋼板およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances. A steel plate for cans having a tensile strength of 550 MPa or more, a total elongation of 10% or more, and excellent strength and workability, and a method for producing the same. The purpose is to provide.

本発明者らは、上記課題を解決するために鋭意研究を行った。その結果、以下の知見を得た。   The inventors of the present invention have intensively studied to solve the above problems. As a result, the following knowledge was obtained.

高強度材で加工性を確保するには、適切な量のCを添加して強度を付与しつつ、適切な量のNおよびPを添加し、二次冷間圧延率を適切な範囲に制御して加工硬化させることで、強度と加工性とを両立することが可能である。   To ensure workability with a high-strength material, an appropriate amount of C is added to impart strength, while an appropriate amount of N and P is added to control the secondary cold rolling rate within an appropriate range. Thus, it is possible to achieve both strength and workability by work hardening.

また、熱間圧延後の巻き取り温度が高いと、析出するセメンタイトが粗大となり、局部伸びが低下するため、巻き取り温度も適切な温度範囲に制御する必要がある。   Moreover, when the coiling temperature after hot rolling is high, the cementite that precipitates becomes coarse, and the local elongation decreases. Therefore, the coiling temperature needs to be controlled within an appropriate temperature range.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]質量%で、C:0.020%以上0.100%以下、Si:0.100%以下、Mn:0.10%以上0.80%以下、P:0.10%超え0.30%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0250%超え0.0350%以下を含有し、残部がFeおよび不可避的不純物からなり、結晶粒の展伸度が2.00以下であり、引張強度が550MPa以上で、全伸びが10%以上であることを特徴とする高強度高加工性缶用鋼板。
[2]質量%で、C:0.020%以上0.100%以下、Si:0.100%以下、Mn:0.10%以上0.80%以下、P:0.10%超え0.30%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0250%超え0.0350%以下を含有し、残部がFeおよび不可避的不純物からなる鋼を連続鋳造によりスラブとし、Ar3変態点以上の仕上げ温度で熱間圧延を行った後に650℃以下の温度で巻き取り、次いで、80%以上の圧延率で一次冷間圧延を行い、さらに5%以上10%未満の圧延率で二次冷間圧延を行うことを特徴とする高強度高加工性缶用鋼板の製造方法。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。また、本発明の高強度高加工性缶用鋼板において、高強度とは引張強度(TS)550MPa以上、高加工性とは全伸び10%以上をいう。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] By mass%, C: 0.020% to 0.100%, Si: 0.100% or less, Mn: 0.10% to 0.80%, P: more than 0.10% 30% or less, S: 0.001% or more and 0.020% or less, Al: 0.005% or more and 0.100% or less, N: 0.0250% to 0.0350% or less, with the balance being Fe and A steel plate for a high-strength, high-workability can, comprising unavoidable impurities, having a crystal grain extension of 2.00 or less, a tensile strength of 550 MPa or more, and a total elongation of 10% or more.
[2] By mass%, C: 0.020% to 0.100%, Si: 0.100% or less, Mn: 0.10% to 0.80%, P: more than 0.10% 30% or less, S: 0.001% or more and 0.020% or less, Al: 0.005% or more and 0.100% or less, N: 0.0250% to 0.0350% or less, with the balance being Fe and Steel consisting of inevitable impurities is made into a slab by continuous casting, hot rolled at a finishing temperature not lower than the Ar3 transformation point, wound up at a temperature of 650 ° C or lower, and then primary cold rolled at a rolling rate of 80% or higher. And, further, secondary cold rolling is performed at a rolling rate of 5% or more and less than 10%.
In addition, in this specification,% which shows the component of steel is mass% altogether. In the steel sheet for high strength and high workability cans of the present invention, high strength means a tensile strength (TS) of 550 MPa or more, and high workability means a total elongation of 10% or more.

本発明によれば、引張強度が550MPa以上でかつ全伸びが10%以上の高強度高加工性缶用鋼板を得ることができる。その結果、鋼板の加工性向上により、EOE方式で蓋を製造する際のリベット加工時や3ピース缶のフランジ加工時に割れを生じず、板厚の薄いDR材による製缶が可能となり、缶用鋼板の大幅な薄肉化が達成される。また、製造条件を適切な範囲に制御して加工硬化させるため、生産安定性にも優れる。   According to the present invention, it is possible to obtain a high-strength and highly workable steel plate for cans having a tensile strength of 550 MPa or more and a total elongation of 10% or more. As a result, by improving the workability of the steel plate, cracks do not occur during rivet processing when manufacturing a lid by the EOE method or flange processing of a three-piece can, and cans can be made with a thin DR material. A significant reduction in the thickness of the steel sheet is achieved. In addition, since the production conditions are controlled to be within an appropriate range and cured, the production stability is also excellent.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の缶用鋼板は、引張強度が550MPa以上でかつ全伸びが10%以上の高強度高加工性缶用鋼板である。そして、このような鋼板は、0.020%以上0.100%以下のCを含有し、0.0250%超え0.0350%以下のNを含有し、0.10%超え0.30%以下のPを含有する鋼を用いてその他の成分も本願請求の範囲とすることで、可能となる。また、熱間圧延後の巻き取り温度および二次冷間圧延率を適正な条件に設定することにより、製造することが可能となる。   The steel plate for cans of the present invention is a high-strength, high-workability steel plate for cans having a tensile strength of 550 MPa or more and a total elongation of 10% or more. And such a steel plate contains 0.020% or more and 0.100% or less of C, contains 0.0250% or more and 0.0350% or less of N, and exceeds 0.10% or more and 0.30% or less. Other components can be made within the scope of claims of the present invention using steel containing P. Moreover, it becomes possible to manufacture by setting the coiling temperature after the hot rolling and the secondary cold rolling rate to appropriate conditions.

本発明の缶用鋼板の成分組成について説明する。   The component composition of the steel plate for cans of this invention is demonstrated.

C:0.020%以上0.100%以下
本発明において、重要な要件である。Cは、二次冷間圧延率を抑えて伸びを確保する一方、含有量を高めとすることで高強度化に寄与する。C量が0.100%を超えると過剰に硬質となり、加工性を確保したまま二次冷間圧延で薄い鋼板を製造することが不可能となる。したがって、C量の上限は0.100%とする。一方、C量が0.020%未満であると、鋼板の薄肉化による顕著な経済効果を得るために必要な引張強度550MPa以上が得られない。したがって、C量の下限は0.020%とする。
C: 0.020% or more and 0.100% or less This is an important requirement in the present invention. C suppresses the secondary cold rolling rate and ensures elongation, while increasing the content contributes to high strength. If the amount of C exceeds 0.100%, it becomes excessively hard, and it becomes impossible to produce a thin steel plate by secondary cold rolling while ensuring workability. Therefore, the upper limit of the C amount is 0.100%. On the other hand, if the C content is less than 0.020%, a tensile strength of 550 MPa or more necessary for obtaining a remarkable economic effect due to the thinning of the steel sheet cannot be obtained. Therefore, the lower limit of the C amount is 0.020%.

Si:0.100%以下
Si量が0.100%を超えると、表面処理性の低下、耐食性の劣化等の問題を引き起こすので、上限は0.100%とする。
Si: 0.100% or less If the amount of Si exceeds 0.100%, problems such as deterioration of surface treatment properties and deterioration of corrosion resistance are caused, so the upper limit is made 0.100%.

Mn:0.10%以上0.80%以下
Mnは、Sによる熱間圧延中の赤熱脆性を防止し、結晶粒を微細化する作用を有し、望ましい材質を確保する上で必要な元素である。さらに、薄肉化した材料で缶強度確保のため必要とされる強度を得るためにも必要な元素である。このような効果を得るためには、Mn量の下限は0.10%とする。一方、Mnを多量に添加し過ぎると、耐食性が劣化し、また鋼板が過剰に硬質化するので、上限は0.80%とする。
Mn: 0.10% or more and 0.80% or less Mn is an element necessary to prevent red heat embrittlement during hot rolling due to S and to refine crystal grains and to secure a desirable material. is there. Furthermore, it is an element necessary for obtaining the strength required for securing the strength of the can with the thinned material. In order to obtain such an effect, the lower limit of the amount of Mn is 0.10%. On the other hand, if Mn is added in a large amount, the corrosion resistance deteriorates and the steel sheet becomes excessively hardened, so the upper limit is made 0.80%.

P:0.10%超え0.30%以下
Pは、鋼を硬質化させ、加工性を悪化させると同時に、耐食性をも悪化させる有害な元素である。そのため、上限は0.30%とする。一方、P量が0.10%以下では、引張強度550MPa以上を得ることが出来ない。そのため、下限は0.10%とする。
P: More than 0.10% and 0.30% or less P is a harmful element that hardens steel and deteriorates workability, and at the same time deteriorates corrosion resistance. Therefore, the upper limit is made 0.30%. On the other hand, if the P content is 0.10% or less, a tensile strength of 550 MPa or more cannot be obtained. Therefore, the lower limit is made 0.10%.

S:0.001%以上0.020%以下
Sは、鋼中で介在物として存在し、延性の低下、耐食性の劣化をもたらす有害な元素である。そのため、上限は0.020%とする。一方、S量を0.001%未満とするには脱硫コストが過大となる。よって、下限は0.001%とする。
S: 0.001% or more and 0.020% or less S exists as an inclusion in steel, and is a harmful element that causes reduction in ductility and deterioration in corrosion resistance. Therefore, the upper limit is made 0.020%. On the other hand, desulfurization cost becomes excessive to make the S amount less than 0.001%. Therefore, the lower limit is made 0.001%.

Al:0.005%以上0.100%以下
Alは、製鋼時の脱酸材として必要な元素である。Alが少ないと、脱酸が不十分となり、介在物が増加し、加工性が劣化する。Al量が0.005%以上であれば十分に脱酸が行われている。したがって、下限0.005%とする。一方、Al量が0.100%を超えると、アルミナクラスターなどに起因する表面欠陥の発生頻度が増加する。したがって、上限は0.100%とする。
Al: 0.005% or more and 0.100% or less Al is an element necessary as a deoxidizer during steelmaking. When there is little Al, deoxidation will become inadequate, an inclusion will increase and workability will deteriorate. If the amount of Al is 0.005% or more, deoxidation is sufficiently performed. Therefore, the lower limit is made 0.005%. On the other hand, when the Al content exceeds 0.100%, the occurrence frequency of surface defects due to alumina clusters and the like increases. Therefore, the upper limit is made 0.100%.

N:0.0250%超え0.0350%以下
Nは多量に添加すると、熱間延性が劣化し、連続鋳造においてスラブの割れが発生する。よって、上限は0.0350%とする。なお、N量が0.0250%以下では引張強度550MPa以上が得られない。このため、下限は0.0250%とする。
N: 0.0250% to 0.0350% or less When N is added in a large amount, the hot ductility deteriorates and cracking of the slab occurs in continuous casting. Therefore, the upper limit is 0.0350%. Note that when the N content is 0.0250% or less, a tensile strength of 550 MPa or more cannot be obtained. Therefore, the lower limit is 0.0250%.

残部はFeおよび不可避的不純物とする。   The balance is Fe and inevitable impurities.

次に、本発明の缶用鋼板の機械的性質について説明する。   Next, the mechanical properties of the steel plate for cans of the present invention will be described.

引張強度は550MPa以上とする。引張強度が550MPa未満であると、製缶素材としての鋼板の強度を確保するために、顕著な経済効果が得られるほど鋼板を薄くすることができない。よって、引張強度は550MPa以上とする。   The tensile strength is 550 MPa or more. If the tensile strength is less than 550 MPa, the steel plate cannot be thinned so that a remarkable economic effect is obtained in order to secure the strength of the steel plate as a can-making material. Therefore, the tensile strength is set to 550 MPa or more.

全伸び(破断伸び)は10%以上とする。全伸びが10%未満であると、例えばEOE方式に適用した場合のリベット加工の際に割れを生じる。例えば、3ピース缶胴に適用した場合のフランジ加工の際に割れを生じる。したがって、全伸びは10%以上とする。   The total elongation (breaking elongation) is 10% or more. If the total elongation is less than 10%, for example, cracking occurs during rivet processing when applied to the EOE method. For example, cracking occurs during flange processing when applied to a three-piece can body. Therefore, the total elongation is 10% or more.

上記引張強度および上記全伸びは「JIS Z 2241」に示される金属材料引張試験方法により測定することができる。   The tensile strength and the total elongation can be measured by a metallic material tensile test method described in “JIS Z 2241”.

次に、本発明の缶用鋼板の結晶粒について説明する。   Next, the crystal grain of the steel plate for cans of this invention is demonstrated.

圧延方向断面における結晶粒の展伸度は2.00以下とする。展伸度とは、「JIS G 0202」に示されるように、加工によってフェライト結晶粒が展伸された度合いを表す値である。圧延方向断面における結晶粒の展伸度が2.00を超えると、フランジ加工性やネック加工性に重要な圧延直角方向の伸びが不足する。   The elongation of the crystal grains in the cross section in the rolling direction is 2.00 or less. The degree of extension is a value that represents the degree to which the ferrite crystal grains have been extended by processing, as shown in “JIS G 0202”. When the elongation of the crystal grains in the cross section in the rolling direction exceeds 2.00, elongation in the direction perpendicular to the rolling, which is important for flange workability and neck workability, is insufficient.

また、圧延方向断面における平均結晶粒径は5μm以上が好ましい。本発明の缶用鋼板の最終的な機械的性質には結晶粒の状態が影響する。圧延方向断面における平均結晶粒径が5μm未満であると、鋼板の伸びが不足し、加工性を損なう場合がある。   The average crystal grain size in the cross section in the rolling direction is preferably 5 μm or more. The final mechanical properties of the steel plate for cans of the present invention are affected by the state of crystal grains. When the average crystal grain size in the cross section in the rolling direction is less than 5 μm, the elongation of the steel sheet is insufficient, and the workability may be impaired.

なお、上記圧延方向断面における結晶粒の展伸度および上記圧延方向断面における平均結晶粒径は、「JIS G 0551」に示される結晶粒度の顕微鏡試験方法により測定することができる。   The elongation of crystal grains in the cross section in the rolling direction and the average crystal grain size in the cross section in the rolling direction can be measured by a crystal grain size microscopic test method described in “JIS G 0551”.

また、圧延方向断面における結晶粒の展伸度および上記圧延方向断面における平均結晶粒径は、DR率により、調整することができる。   Further, the elongation of crystal grains in the cross section in the rolling direction and the average crystal grain size in the cross section in the rolling direction can be adjusted by the DR ratio.

次に、本発明の缶用鋼板の製造方法について説明する。   Next, the manufacturing method of the steel plate for cans of this invention is demonstrated.

本発明の高強度高加工性缶用鋼板は、連続鋳造によって製造された上記組成からなる鋼スラブを用い、Ar3変態点以上の仕上げ温度で熱間圧延を行った後に650℃以下の温度で巻き取り、次いで、80%以上の圧延率で一次冷間圧延を行い、次いで、5%以上10%未満の圧延率で二次冷間圧延を行うことで製造される。   The steel sheet for a high-strength, high-workability can of the present invention uses a steel slab having the above composition manufactured by continuous casting, and is rolled at a temperature of 650 ° C. or lower after hot rolling at a finishing temperature not lower than the Ar3 transformation point. Then, primary cold rolling is performed at a rolling rate of 80% or more, and then secondary cold rolling is performed at a rolling rate of 5% or more and less than 10%.

通常は一回の冷間圧延のみでは顕著な経済効果が得られるような薄い板厚とすることは困難である。すなわち、一回の冷間圧延で薄い板厚を得るには圧延機への負荷が過大となり、設備能力によっては困難である。例えば、最終板厚を0.14mmとする場合には、熱間圧延後の板厚を1.8mmとすると、92.2%と大きな一次冷間圧延率が必要となる。また、冷間圧延後の板厚を小さくするために熱間圧延の段階で通常よりも薄く圧延することも考えられるが、熱間圧延の圧延率を大きくすると、圧延中の鋼板の温度低下が大きくなり、所定の仕上げ圧延温度が得られなくなる。さらに、焼鈍前の板厚を小さくすると、連続焼鈍を施す場合は、焼鈍中に鋼板の破断や変形等のトラブルが生じる可能性が大きくなる。これらの理由により、本発明においては焼鈍後に二回目の冷間圧延を施し、極薄の鋼板を得ることが好ましい。   Normally, it is difficult to achieve a thin plate thickness that provides a remarkable economic effect by only one cold rolling. That is, in order to obtain a thin plate thickness by one cold rolling, the load on the rolling mill is excessive, and it is difficult depending on the equipment capacity. For example, when the final thickness is 0.14 mm, the primary cold rolling rate as large as 92.2% is required when the thickness after hot rolling is 1.8 mm. In order to reduce the sheet thickness after cold rolling, it is conceivable that rolling is performed thinner than usual in the hot rolling stage, but if the rolling rate of hot rolling is increased, the temperature of the steel sheet during rolling is decreased. A predetermined finish rolling temperature cannot be obtained. Furthermore, if the plate thickness before annealing is reduced, when continuous annealing is performed, the possibility of troubles such as breakage and deformation of the steel plate during annealing increases. For these reasons, in the present invention, it is preferable to perform a second cold rolling after annealing to obtain an ultrathin steel plate.

仕上げ温度:Ar3変態点以上
仕上げ温度がAr3変態点未満であると、熱延時にフェライトが生成し熱延板の組織が粗大化して、製品の強度の低下などに影響がでる。よって、仕上げ温度はAr3変態点以上であることが好ましい。
Finishing temperature: When the finishing temperature is not lower than the Ar3 transformation point and lower than the Ar3 transformation point, ferrite is produced during hot rolling, the hot rolled sheet is coarsened, and the strength of the product is lowered. Therefore, the finishing temperature is preferably not less than the Ar3 transformation point.

巻き取り温度:650℃以下
熱間圧延後の巻き取り温度が650℃超えであると、形成するパーライト組織が粗大となり、これが脆性破壊の起点となるために局部伸びが低下して10%以上の全伸びが得られない。よって、熱間圧延後の巻き取り温度は650℃以下とする。
Winding temperature: 650 ° C. or less When the coiling temperature after hot rolling exceeds 650 ° C., the pearlite structure to be formed becomes coarse, and this becomes the starting point of brittle fracture. The total elongation cannot be obtained. Therefore, the coiling temperature after hot rolling is set to 650 ° C. or less.

一次冷間圧延率:80%以上
一次冷間圧延率が小さい場合、最終的に極薄の鋼板を得るために熱間圧延と二次冷間圧延の圧延率を大きくする必要がある。熱間圧延率を大きくすることは上述の理由から好ましくなく、二次冷間圧延率は後述する理由により制限する必要がある。以上の理由により、一次冷間圧延率を80%未満とすると極薄の鋼板の製造が困難となるため、一次冷間圧延率は80%以上とする。
Primary cold rolling rate: 80% or more When the primary cold rolling rate is small, it is necessary to increase the rolling rate of hot rolling and secondary cold rolling in order to finally obtain a very thin steel plate. Increasing the hot rolling rate is not preferable for the above-described reason, and the secondary cold rolling rate needs to be limited for the reason described later. For the above reasons, if the primary cold rolling rate is less than 80%, it is difficult to produce an ultrathin steel sheet, and therefore the primary cold rolling rate is set to 80% or more.

焼鈍条件は特に限定しないが、焼鈍により再結晶が完了する必要がある。製造コストの観点から連続焼鈍法を用いるのが好ましい。   The annealing conditions are not particularly limited, but recrystallization needs to be completed by annealing. From the viewpoint of production cost, it is preferable to use a continuous annealing method.

二次冷間圧延率:5%以上10%未満
二次冷間圧延率は10%未満とする。二次冷間圧延率を10%以上とすると、二次冷間圧延による加工硬化が過大となり、10%以上の全伸びが得られなくなる。一方、二次冷間圧延率が5%未満の場合は、圧延中に鋼板のスリップが起こるなどの圧延の不具合が発生する。よって、5%以上とする。
Secondary cold rolling rate: 5% or more and less than 10% The secondary cold rolling rate is less than 10%. If the secondary cold rolling rate is 10% or more, work hardening by secondary cold rolling becomes excessive, and a total elongation of 10% or more cannot be obtained. On the other hand, when the secondary cold rolling rate is less than 5%, rolling defects such as steel sheet slipping during rolling occur. Therefore, it is 5% or more.

二次冷間圧延以降は、めっき等の工程を常法通り行い、缶用鋼板として仕上げる。   After the secondary cold rolling, steps such as plating are performed as usual, and finished as a steel plate for cans.

表1に示す成分組成を含有し、残部がFe及び不可避的不純物からなる鋼を実機転炉で溶製し、連続鋳造法により鋼スラブを得た。得られた鋼スラブを1210℃で再加熱した後、Ar3変態点以上の仕上げ温度で熱間圧延し、表2に示す条件で一次冷間圧延を施した。熱間圧延の仕上げ圧延温度は890℃とし、圧延後には酸洗を施している。次いで、均熱温度680℃、均熱時間20秒の連続焼鈍および表2に示す条件で二次冷間圧延を施した。得られた鋼板にSnめっきを両面に連続的に施して、片面Sn付着量2.8g/mのぶりきを得た。 Steel containing the component composition shown in Table 1 and the balance being Fe and inevitable impurities was melted in an actual converter, and a steel slab was obtained by a continuous casting method. The obtained steel slab was reheated at 1210 ° C., and then hot-rolled at a finishing temperature not lower than the Ar3 transformation point, and subjected to primary cold rolling under the conditions shown in Table 2. The finish rolling temperature of hot rolling is 890 ° C., and pickling is performed after rolling. Subsequently, the secondary cold rolling was performed under the conditions shown in Table 2 and continuous annealing at a soaking temperature of 680 ° C. and a soaking time of 20 seconds. The obtained steel plate was continuously subjected to Sn plating on both surfaces to obtain a tin plate having a single-side Sn adhesion amount of 2.8 g / m 2 .

Figure 2013133483
Figure 2013133483

以上により得られためっき鋼板(ぶりき)に対して、210℃、10分の塗装焼付け相当の熱処理を行った後、引張試験を行った。引張試験は、JIS5号サイズの引張試験片を用いて、引張速度10mm/minで引張強度(破断強度)および全伸び(破断伸び)を測定した。   The plated steel sheet (cover) obtained as described above was subjected to a heat treatment equivalent to baking at 210 ° C. for 10 minutes, and then subjected to a tensile test. In the tensile test, tensile strength (breaking strength) and total elongation (breaking elongation) were measured at a tensile speed of 10 mm / min using a JIS No. 5 size tensile test piece.

また、めっき鋼板のサンプルを採取し、圧延方向断面における、平均結晶粒径および結晶粒の展伸度を測定した。圧延方向断面における平均結晶粒径および結晶粒の展伸度は、鋼板の垂直断面を研磨しナイタルエッチングにより粒界を現出させた上で、「JIS G 0551」に記載の直線試験線による切断法により測定した。   Moreover, the sample of the plated steel plate was extract | collected and the average crystal grain diameter and the expansion degree of the crystal grain in the cross section of a rolling direction were measured. The average crystal grain size and the elongation of crystal grains in the cross section in the rolling direction are determined by the linear test line described in “JIS G 0551” after polishing the vertical section of the steel sheet and revealing the grain boundary by night etching. It was measured by the cutting method.

耐圧強度の測定は、0.182mmのサンプルを63mmΦの蓋に成形したのち、63mmΦの溶接缶胴に巻締めて取り付け、缶内部に圧縮空気を導入し、缶蓋が変形したときの圧力を測定した。内部の圧力が0.2MPaの時に缶蓋が変形しなかったものを○、0.2MPa未満で缶蓋が変形したものを×とした。加工性は、JIS 7729に規定された試験機を用いて、JIS Z 2247に規定された方法で試験を実施した。エリクセン値(貫通割れ発生時の成形高さ)が6mm以上を○、6mm未満を×とした。   The pressure strength is measured by molding a 0.182mm sample into a 63mmΦ lid, then winding it around a 63mmΦ welded can body, introducing compressed air into the can, and measuring the pressure when the can lid is deformed. did. The case where the can lid did not deform when the internal pressure was 0.2 MPa was marked with ◯, and the case where the can lid was deformed when less than 0.2 MPa was marked with x. The workability was tested by a method specified in JIS Z 2247 using a test machine specified in JIS 7729. The Erichsen value (molding height when through cracks occurred) was 6 mm or more, and less than 6 mm was x.

以上により得られた結果を、製造条件と併せて、表2に示す。   The results obtained above are shown in Table 2 together with the production conditions.

Figure 2013133483
Figure 2013133483

表1および2より、本発明例であるNo.7は耐圧強度に優れており、極薄の缶用鋼板として必要な引張強度550MPa以上を達成している。また、加工性にも優れており、蓋や3ピース缶胴の加工に必要な10%以上の全伸びを有している。   From Tables 1 and 2, No. No. 7 is excellent in pressure resistance, and has achieved a tensile strength of 550 MPa or more required as an extremely thin steel plate for cans. Moreover, it is excellent in workability and has a total elongation of 10% or more necessary for processing of a lid or a three-piece can body.

一方、比較例のNo.1は、C含有量が少なすぎるため、引張強度が不足している。No.2は、C含有量が多すぎるため、全伸びが不足している。No.3は、P含有量が少なすぎるため、引張強度が不足している。No.4は、P含有量が多すぎるため、全伸びが不足している。No.5は、N含有量が少なすぎるため、引張強度が不足している。No.6は、N含有量が多すぎるため、全伸びが不足している。比較例のNo.8は、巻き取り温度が高すぎるため、平均結晶粒径が大きく、固溶Cがカーバイドとして析出し軟質化するため、引張強度が不足している。比較例のNo.9は、二次冷間圧延率が大きすぎるため、展伸度が大きく、加工による硬化のため、全伸びが不足している。   On the other hand, no. No. 1 has insufficient tensile strength because the C content is too small. No. Since 2 has too much C content, total elongation is insufficient. No. No. 3 has insufficient tensile strength because the P content is too small. No. No. 4 is insufficient in total elongation because the P content is too large. No. No. 5 has insufficient tensile strength because the N content is too small. No. Since No. 6 has too much N content, total elongation is insufficient. Comparative Example No. In No. 8, since the winding temperature is too high, the average crystal grain size is large, and the solid solution C precipitates as carbide and softens, so that the tensile strength is insufficient. Comparative Example No. No. 9 has a large degree of spread because the secondary cold rolling rate is too large, and the total elongation is insufficient due to hardening by processing.

本発明の缶用鋼板は、550MPa以上の引張強度、10%以上の全伸びを有し、薄い板厚にて得ることが可能である。そのため、缶蓋、缶底、3ピース缶胴、2ピース缶胴等の材料として最適である。   The steel plate for cans of the present invention has a tensile strength of 550 MPa or more, a total elongation of 10% or more, and can be obtained with a thin plate thickness. Therefore, it is optimal as a material for can lids, can bottoms, 3-piece can bodies, 2-piece can bodies, and the like.

Claims (2)

質量%で、C:0.020%以上0.100%以下、Si:0.100%以下、Mn:0.10%以上0.80%以下、P:0.10%超え0.30%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0250%超え0.0350%以下を含有し、残部がFeおよび不可避的不純物からなり、結晶粒の展伸度が2.00以下であり、引張強度が550MPa以上で、全伸びが10%以上であることを特徴とする高強度高加工性缶用鋼板。   In mass%, C: 0.020% or more and 0.100% or less, Si: 0.100% or less, Mn: 0.10% or more and 0.80% or less, P: more than 0.10% and 0.30% or less , S: 0.001% or more and 0.020% or less, Al: 0.005% or more and 0.100% or less, N: 0.0250% or more and 0.0350% or less, with the balance being Fe and inevitable impurities A high-strength, high-workability steel plate for cans, characterized in that the elongation of crystal grains is 2.00 or less, the tensile strength is 550 MPa or more, and the total elongation is 10% or more. 質量%で、C:0.020%以上0.100%以下、Si:0.100%以下、Mn:0.10%以上0.80%以下、P:0.10%超え0.30%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0250%超え0.0350%以下を含有し、残部がFeおよび不可避的不純物からなる鋼を連続鋳造によりスラブとし、Ar3変態点以上の仕上げ温度で熱間圧延を行った後に650℃以下の温度で巻き取り、次いで、80%以上の圧延率で一次冷間圧延を行い、さらに5%以上10%未満の圧延率で二次冷間圧延を行うことを特徴とする高強度高加工性缶用鋼板の製造方法。   In mass%, C: 0.020% or more and 0.100% or less, Si: 0.100% or less, Mn: 0.10% or more and 0.80% or less, P: more than 0.10% and 0.30% or less , S: 0.001% or more and 0.020% or less, Al: 0.005% or more and 0.100% or less, N: 0.0250% or more and 0.0350% or less, with the balance being Fe and inevitable impurities The steel consisting of is made into a slab by continuous casting, after hot rolling at a finishing temperature of Ar3 transformation point or higher, after winding at a temperature of 650 ℃ or less, then primary cold rolling at a rolling rate of 80% or more, Furthermore, secondary cold rolling is performed at a rolling rate of 5% or more and less than 10%, and a method for producing a steel plate for a high-strength, high-workability can.
JP2011282864A 2011-12-26 2011-12-26 High-strength, high-formability steel plate for cans and method for producing the same Active JP5803660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011282864A JP5803660B2 (en) 2011-12-26 2011-12-26 High-strength, high-formability steel plate for cans and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011282864A JP5803660B2 (en) 2011-12-26 2011-12-26 High-strength, high-formability steel plate for cans and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013133483A true JP2013133483A (en) 2013-07-08
JP5803660B2 JP5803660B2 (en) 2015-11-04

Family

ID=48910389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011282864A Active JP5803660B2 (en) 2011-12-26 2011-12-26 High-strength, high-formability steel plate for cans and method for producing the same

Country Status (1)

Country Link
JP (1) JP5803660B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166653A1 (en) * 2014-04-30 2015-11-05 Jfeスチール株式会社 High strength steel sheet for container, and method for producing same
JPWO2016067514A1 (en) * 2014-10-28 2017-04-27 Jfeスチール株式会社 Steel plate for 2-piece can and manufacturing method thereof
KR101748689B1 (en) 2014-04-30 2017-06-19 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and production method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637336A (en) * 1986-06-27 1988-01-13 Nippon Steel Corp Production of extra-thin steel sheet for welded can having excellent flanging property
WO2009123356A1 (en) * 2008-04-03 2009-10-08 Jfeスチール株式会社 High-strength steel plate for a can and method for manufacturing said high-strength steel plate
WO2009125876A1 (en) * 2008-04-11 2009-10-15 Jfeスチール株式会社 High-strength steel sheet for container and process for production thereof
WO2010113333A1 (en) * 2009-04-02 2010-10-07 Jfeスチール株式会社 Steel sheet for high‑strength container and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637336A (en) * 1986-06-27 1988-01-13 Nippon Steel Corp Production of extra-thin steel sheet for welded can having excellent flanging property
WO2009123356A1 (en) * 2008-04-03 2009-10-08 Jfeスチール株式会社 High-strength steel plate for a can and method for manufacturing said high-strength steel plate
WO2009125876A1 (en) * 2008-04-11 2009-10-15 Jfeスチール株式会社 High-strength steel sheet for container and process for production thereof
WO2010113333A1 (en) * 2009-04-02 2010-10-07 Jfeスチール株式会社 Steel sheet for high‑strength container and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166653A1 (en) * 2014-04-30 2015-11-05 Jfeスチール株式会社 High strength steel sheet for container, and method for producing same
JP5858208B1 (en) * 2014-04-30 2016-02-10 Jfeスチール株式会社 Steel plate for high-strength container and manufacturing method thereof
EP3138935A4 (en) * 2014-04-30 2017-05-31 JFE Steel Corporation High strength steel sheet for container, and method for producing same
KR101748689B1 (en) 2014-04-30 2017-06-19 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and production method therefor
AU2015254790B2 (en) * 2014-04-30 2017-08-31 Jfe Steel Corporation High strength steel sheet for container, and method for producing same
KR101806064B1 (en) 2014-04-30 2017-12-06 제이에프이 스틸 가부시키가이샤 High-strength steel sheet for containers and method for producing the same
US10415111B2 (en) 2014-04-30 2019-09-17 Jfe Steel Corporation High-strength steel sheet for containers and method for producing the same
JPWO2016067514A1 (en) * 2014-10-28 2017-04-27 Jfeスチール株式会社 Steel plate for 2-piece can and manufacturing method thereof

Also Published As

Publication number Publication date
JP5803660B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
JP5858208B1 (en) Steel plate for high-strength container and manufacturing method thereof
JP5453884B2 (en) Steel plate for high-strength container and manufacturing method thereof
KR101390263B1 (en) Highly processable steel sheet for three-piece welded can and method for producing same
JP5939368B1 (en) Steel plate for can and manufacturing method thereof
JP4957843B2 (en) Steel plate for can and manufacturing method thereof
WO2016157878A1 (en) Steel sheet for cans and method for manufacturing steel sheet for cans
JP5854134B2 (en) 3-piece can body and manufacturing method thereof
TWI479031B (en) Steel sheet for bottom of aerosol cans with high resistance to pressure and high formability and method for manufacturing the same
JP5803660B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JP5672907B2 (en) Steel sheet for high strength and high workability can and method for producing
JP6123735B2 (en) Crown steel sheet, method for producing the same, and crown
JP6601571B2 (en) Crown steel plate, method for producing the same, and crown
WO2012073914A1 (en) Steel sheet for can, and process for producing same
JP5540580B2 (en) Steel sheet for high strength and high workability can and method for producing
JP2008163390A (en) Steel sheet for irregularly-shaped can
KR101996353B1 (en) Steel sheet for can lid and method for producing the same
TW201636433A (en) Steel sheet for crown cap, manufacturing method therefor, and crown cap
JP5803510B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JP5849666B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JP2013147744A (en) Steel sheet for aerosol can bottom and method for producing the same
JP2015193885A (en) Steel sheet for can lid and manufacturing method therefor
WO2019026739A1 (en) Steel sheet for crown cap, crown cap, and method for manufacturing steel sheet for crown cap
TW201837201A (en) Steel sheet, method for producing same, crown cap, and drawn and redrawn (drd) can

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R150 Certificate of patent or registration of utility model

Ref document number: 5803660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250