JP4081823B2 - Manufacturing method of steel plate for cans by annealing skipping process - Google Patents

Manufacturing method of steel plate for cans by annealing skipping process Download PDF

Info

Publication number
JP4081823B2
JP4081823B2 JP05144296A JP5144296A JP4081823B2 JP 4081823 B2 JP4081823 B2 JP 4081823B2 JP 05144296 A JP05144296 A JP 05144296A JP 5144296 A JP5144296 A JP 5144296A JP 4081823 B2 JP4081823 B2 JP 4081823B2
Authority
JP
Japan
Prior art keywords
less
rolling
annealing
sheet bar
cans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05144296A
Other languages
Japanese (ja)
Other versions
JPH09241744A (en
Inventor
金晴 奥田
章男 登坂
俊之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP05144296A priority Critical patent/JP4081823B2/en
Publication of JPH09241744A publication Critical patent/JPH09241744A/en
Application granted granted Critical
Publication of JP4081823B2 publication Critical patent/JP4081823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、冷間圧延後の焼鈍を省略した省プロセスの缶用鋼板の製造方法にかかり、特に、耐リジング性、伸びフランジ性などの加工性に優れ、しかも材質均一性にも優れる、極薄ぶりき原板やティンフリースチールなどとして用いて好適な缶用鋼板の製造方法に関するものである。
【0002】
【従来の技術】
飲料缶および、18リットル缶、ペール缶などの容器缶は、その製法(工程)から2ピース缶と3ピース缶に大別される。2ピ−ス缶は、錫めっきやクロムめっき、化成処理、塗油などの処理を施した表面処理鋼板に、浅絞り加工、DWI(Drawn and Wall Ironed) 加工、DRD(Drawn and Redrawn) 加工などの加工を施して、缶底と缶胴を一体成形し、これに蓋を取り付けた2部品からなる缶である。また、3ピース缶は表面処理鋼板を円筒状または角筒状に曲げた後、端部同士を接合して缶胴を形成したのち、これに天蓋と底蓋を取り付けた3部品からなる缶である。
【0003】
このようにしてできた缶のコストは、それに占める素材コストの割合が高いために、鋼板のコスト削減への要求は強い。
これに応える有力な方法が、従来の箱焼鈍に代わり、生産効率が高く、歩留りや表面品質にすぐれた連続焼鈍を採用する、例えば特公昭63ー10213号公報のような技術であった。また、これに改善を加え、ロックウエル硬さ(HR30T) の値をもって表される調質度でT2(50-56) 程度の軟質な缶用鋼板の製造技術が開発されてきた。さらに、軟質な鋼板を連続焼鈍で製造するための技術も開発され、例えば特公平1−52452号公報のごとく、素材として極低炭素鋼を適用するとともに、焼鈍後の加工硬化の組合せにより、種々の硬さの缶用鋼板を作りわける技術が提案されている。
【0004】
この種の缶用鋼板においても、より一層のコストダウンの要求があり、これに応えるために、新たな製造技術の開発に向けての努力も図られてきた。コストダウンの1手法として、使用する鋼板の板厚の減少と上蓋の縮径(ネックイン)成形の強化の動きがある。これらの手法に適用される材料にはさらに厳しい特性が要求され、上記従来プロセス以外の方法では、良好な加工性を有する缶用鋼板を製造することができなかった。
一層のコストダウンを目指す他の技術として、特開平4ー280926号公報には、極低炭素鋼を素材としてα域で仕上げ熱延を施した後、自己焼鈍させて結晶粒を成長させ、その後冷間圧延を施すことにより、以後の焼鈍および調質圧延を省略する省プロセス工程による製造方法が開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、この方法で製造した鋼板は、α域熱延の特有のリジング(加工時に発生する筋状の欠陥)が発生し、また伸びフランジ性があまり良くないといった問題があった。
そこで本発明の目的は、上記の従来技術が抱えていた問題を解決し、焼鈍を行わない、省プロセス化した低コストの製造工程で、耐リジング性および伸びフランジ性などの加工性に優れる缶用鋼板を製造する技術を提案することにある。
また、本発明の他の目的は、この省プロセス工程で、材質均一性にも優れる缶用鋼板を安定して製造する技術を提案することにある。
【0006】
【問題を解決するための手段】
本発明者らは、上記の目的を達成するために、まず、缶用鋼板として必要な特性について検討し次のように結論した。
1)自動車などの用いられる深絞り用鋼板と異なり、高いr値は必須条件ではない。
2)r値の面内異方性(Δr)はいずれも小さい方が望ましい。
3)リジングのような変形の不均一性が生じないことが望ましい。
4)微細な組織が変形の均一面で望ましい。
5)製造された鋼板は、必ずしも箱焼鈍材(低炭素アルミキルド鋼)のような完全非時効である必要はないが、通常の連続焼鈍材(低炭素アルミキルド鋼)では製缶工程およびその後の2次、3次の工程で不具合を生じるので時効しないのが望ましい。
6)通常の引張試験で得られるような延性でなく、それらより1桁から2桁程度速い歪速度で局部延性を有することが望ましい。
缶用鋼板としての上記特性を支配する、鋼組成および製造条件などの冶金的な検討を行い、本発明を想到するにいたった。すなわち、本発明の要旨構成は次のとおりである。
【0007】
(1)C:0.0030wt%以下、Si:0.02wt%以下、Mn:0.05〜0.5wt%、P:0.02wt%以下、S:0.02wt%以下、solAl:0.1wt%以下、N:0.0030wt%以下を含有し、残部はFeおよび不可避的不純物よりなる組成の鋼スラブを粗圧延し、得られたシートバーを先行するシートバーと接合し、次いで終了温度がAr−50℃以上となるように、仕上げ圧延を行い、640〜750℃の温度範囲で巻き取り、スケール除去後、40〜90%の圧下率で冷間圧延した後、200〜300℃で5秒以上の加熱保持熱処理を施すことを特徴とする冷間圧延後の再結晶焼鈍を省略した缶用鋼板の製造方法。
【0008】
(2)C:0.0030wt%以下、Si:0.02wt%以下、Mn:0.05〜0.5wt%、P:0.02wt%以下、S:0.02wt%以下、solAl:0.1wt%以下、N:0.0030wt%以下を含有し、残部はFeおよび不可避的不純物よりなる組成の鋼スラブを粗圧延し、得られたシートバーを先行するシートバーと接合し、次いで終了温度がAr−50℃未満となるように、潤滑下で、仕上げ圧延を行い、600〜750℃の温度範囲で巻き取り自己焼鈍させ、スケール除去後、40〜90%の圧下率で冷間圧延した後、200〜300℃で5秒以上の加熱保持熱処理を施すことを特徴とする冷間圧延後の再結晶焼鈍を省略した缶用鋼板の製造方法。
【0009】
(3)C:0.0030wt%以下、Si:0.02wt%以下、Mn:0.05〜0.5wt%、P:0.02wt%以下、S:0.02wt%以下、solAl:0.1wt%以下、N:0.0030wt%以下を含み、かつNb:0.002〜0.02wt%、Ti:0.001〜0.02wt%の1種または2種を含有し、残部はFeおよび不可避的不純物よりなる組成の鋼スラブを粗圧延し、得られたシートバーを先行するシートバーと接合し、次いで終了温度がAr−50℃以上となるように、仕上げ圧延を行い、640〜750℃の温度範囲で巻き取り、スケール除去後、40〜90%の圧下率で冷間圧延した後、200〜300℃で5秒以上の加熱保持熱処理を施すことを特徴とする冷間圧延後の再結晶焼鈍を省略した缶用鋼板の製造方法。
【0010】
(4)C:0.0030wt%以下、Si:0.02wt%以下、Mn:0.05〜0.5wt%、P:0.02wt%以下、S:0.02wt%以下、solAl:0.1wt%以下、N:0.0030wt%以下を含み、かつNb:0.002〜0.02wt%、Ti:0.001〜0.02wt%の1種または2種を含有し、残部はFeおよび不可避的不純物よりなる組成の鋼スラブを粗圧延し、得られたシートバーを先行するシートバーと接合し、次いで終了温度がAr−50℃未満となるように、潤滑下で、仕上げ圧延を行い、600〜750℃の温度範囲で巻き取り自己焼鈍させ、スケール除去後、40〜90%の圧下率で冷間圧延した後、200〜300℃で5秒以上の加熱保持熱処理を施すことを特徴とする冷間圧延後の再結晶焼鈍を省略した缶用鋼板の製造方法。
(5)C:0.0030wt%以下、Si:0.02wt%以下、Mn:0.05〜0.5wt%、P:0.02wt%以下、S:0.02wt%以下、solAl:0.1wt%以下、N:0.0030wt%以下を含有し、残部はFeおよび不可避的不純物よりなる組成の鋼スラブを粗圧延し、得られたシートバーを先行するシートバーと接合し、次いで終了温度がAr−50℃以上となるように、仕上げ圧延を行い、640〜750℃の温度範囲で巻き取り、スケール除去後、40〜90%の圧下率で冷間圧延した後、表面処理を行い、その後、200〜300℃で5秒以上の加熱保持熱処理を施すことを特徴とする冷間圧延後の再結晶焼鈍を省略した缶用鋼板の製造方法。
(6)C:0.0030wt%以下、Si:0.02wt%以下、Mn:0.05〜0.5wt%、P:0.02wt%以下、S:0.02wt%以下、solAl:0.1wt%以下、N:0.0030wt%以下を含有し、残部はFeおよび不可避的不純物よりなる組成の鋼スラブを粗圧延し、得られたシートバーを先行するシートバーと接合し、次いで終了温度がAr−50℃未満となるように、潤滑下で、仕上げ圧延を行い、600〜750℃の温度範囲で巻き取り自己焼鈍させ、スケール除去後、40〜90%の圧下率で冷間圧延した後、表面処理を行い、その後、200〜300℃で5秒以上の加熱保持熱処理を施すことを特徴とする冷間圧延後の再結晶焼鈍を省略した缶用鋼板の製造方法。
(7)C:0.0030wt%以下、Si:0.02wt%以下、Mn:0.05〜0.5wt%、P:0.02wt%以下、S:0.02wt%以下、solAl:0.1wt%以下、N:0.0030wt%以下を含み、かつNb:0.002〜0.02wt%、Ti:0.001〜0.02wt%の1種または2種を含有し、残部はFeおよび不可避的不純物よりなる組成の鋼スラブを粗圧延し、得られたシートバーを先行するシートバーと接合し、次いで終了温度がAr−50℃以上となるように、仕上げ圧延を行い、640〜750℃の温度範囲で巻き取り、スケール除去後、40〜90%の圧下率で冷間圧延した後、表面処理を行い、その後、200〜300℃で5秒以上の加熱保持熱処理を施すことを特徴とする冷間圧延後の再結晶焼鈍を省略した缶用鋼板の製造方法。
(8)C:0.0030wt%以下、Si:0.02wt%以下、Mn:0.05〜0.5wt%、P:0.02wt%以下、S:0.02wt%以下、solAl:0.1wt%以下、N:0.0030wt%以下を含み、かつNb:0.002〜0.02wt%、Ti:0.001〜0.02wt%の1種または2種を含有し、残部はFeおよび不可避的不純物よりなる組成の鋼スラブを粗圧延し、得られたシートバーを先行するシートバーと接合し、次いで終了温度がAr−50℃未満となるように、潤滑下で、仕上げ圧延を行い、600〜750℃の温度範囲で巻き取り自己焼鈍させ、スケール除去後、40〜90%の圧下率で冷間圧延した後、表面処理を行い、その後、200〜300℃で5秒以上の加熱保持熱処理を施すことを特徴とする冷間圧延後の再結晶焼鈍を省略した缶用鋼板の製造方法。
(9)表面処理が、錫めっき、クロムめっき、化成処理および塗油のうちのいずれかであることを特徴とする上記(5)〜(8)のいずれかに記載の缶用鋼板の製造方法。
【0011】
10)仕上げ圧延の速度が、最終段の出側速度で1000m/min以上、かつその速度変動量が10%以下である上記(1)〜()のいずれかに記載の缶用鋼板の製造方法。
【0014】
【発明の実施の形態】
r値を向上させるためには、冷間圧延の後に再結晶焼鈍を行うことが必要であるが、さほど大きなr値を必要としなければ、再結晶焼鈍の工程を省くことが可能である。しかし、単に再結晶焼鈍の工程を省略し、冷延→焼鈍→2次圧延工程に従う従来法における冷延ままの鋼板では、延性や伸びフランジ性が缶用鋼板としては不十分なため、特にある程度の絞り性が要求される用途に対してはその要求を満足させることができなかった。また、リジングの抑制や伸びフランジ性の改善のためには、特開平4ー280926号公報で狙ったような、単に結晶粒をできるだけ大きく再結晶させることでは目的を達成できない。
【0015】
そこで、発明者らは、上記課題を解決するため鋭意研究した結果、成分を適性に制御した鋼を用い、熱間圧延工程の加工熱処理条件を最適にすることにより冷間圧延後の焼鈍工程を省略することが可能になること、また、鋼の組織が多少細粒でも、混粒を避け均等に再結晶させることが有効であることを見出した。
そして、このような条件を満たす再結晶粒を得るためには、熱延工程においてシートバーを先行するシートバーと接合してエンドレス状態で仕上げ圧延する、いわゆる「エンドレス圧延」を行うことが極めて有効であることがわかった。
しかも、このエンドレス圧延によれば、コイル内における材質の均一性が改善されるということもわかった。このことは、缶用鋼板の場合には、熱延板の板厚が薄く、仕上げ温度、巻き取り温度をコイル全体にわたって均一に維持することが難しいことさらには、巻き取り後の自己焼鈍により再結晶をコイル全体にわたって行わせることが不可能であるといった、缶用鋼板において製造上のネックになっていた問題も一挙に解決できることを意味し、エンドレス圧延の果たす役割は大きい。
【0016】
以下、本発明において鋼組成および製造条件を上記構成のごとく限定した理由について説明する。
C:0.0030wt%以下
Cは、その含有量が0.0030%を超えると、残存する固溶炭素量が増加することに起因して、缶成形時に必要な十分な局部延性を得ることができず、例えば、製缶の最終工程である巻き締め部の伸びフランジ成形時の割れを生じるため好ましくない。また、これ以上炭素量が多くなると、加工硬化量が大きくなり、材料が高強度化し、口絞り加工時にしわの要因となることや、溶接時に問題となる。さらに、時効劣化の面からも、C量を制限する必要がある
【0017】
Si:0.02wt%以下
Siは、鋼板の表面性状を劣化させる元素であり、添加量が多過ぎると、表面処理鋼板としては望ましくない。そのうえ、鋼を硬化させ、熱間圧延工程を困難にし、また、最終製品としての鋼も硬化させるので望ましくない。以上の理由からSi含有量は0.02wt%以下とする。特に表面性状の要求が厳格な用途では0.010%以下とすることが望ましい。
【0018】
Mn:0.05〜0.50wt%
Mnは、Sによる熱間脆性に起因して生ずる表面割れなどを防止するために有用な元素であり、その効果を得るためには少なくとも0.05wt%必要である。一方、0.50wt%を超えて添加すると、変態点が低下し過ぎて硬質化し、その後の冷間加工性に悪影響を及ぼすとともに製品板の硬質化を招く。したがって、Mn含有量は0.05〜0.50wt%とする。なお、軟質な缶用鋼板を得るためには、0.20%以下にするのが好ましい。
【0019】
P:0.02wt%以下
Pは、耐食性に有害な元素であり、含有量を低減させることにより、耐食性が改善されるが、過度の低減は、製造コストの増加につながる。これらの兼ね合いから、P含有量を0.02wt%以下とした。なお、加工性を顕著に改善するためには、0.010 wt%以下とするのが好ましい。
【0020】
S:0.02wt%以下
Sは、その量が多くなるとMnS等の介在物を増加させ、伸びフランジ性に代表される局部延性を低下させる、また低減することにより全伸びが著しく向上する。そのため、Sの含有量は0.02wt%以下に制限する必要がある。なお、加工性を顕著に改善するためには、0.006 wt%以下かつMn/Sで10以上にすることが好ましい。
【0021】
sol Al:0.10wt%以下
sol Alは、脱酸に必要な元素であるが、0.10wt%を超えると脱酸効果が飽和するだけでなく、介在物が増加し、成形性に悪影響を及ぼす。このためsol Alの含有量は0.10wt%以下とする。なお、安定した製造条件を確保するためには、0.020 〜0.040wt %の範囲にすることが好ましい。
【0022】
N:0.0030wt%以下
Nは、不可避的に鋼中に混入する不純物元素であり、析出物を形成し伸びを低下させる原因となる。また、Nが固溶状態で残存した場合には、鋼を硬質化させる。本発明法による鋼板の強度は十分であり、むしろより軟質なものが望まれる。そのため、N含有量の上限は0.0030wt%とする。なお、加工性の面から0.0020wt%以下にすることが好ましい。
【0023】
上記基本成分の他に、Nb、Tiの1種または2種を添加することにより、鋼の軟質化を図ることができる。
Nb:0.002 〜0.02wt%、Ti:0.001 〜0.02wt%
NbおよびTiは、いずれも炭素の固着により、時効性の低減、鋼の軟質に有用な元素である。これらの効果を得るためには、NbおよびTiの含有量は、少なくともそれぞれ0.002 wt%、および0.001 wt%は必要である。一方、いずれの元素とも0.020 wt%を超えて添加すると、熱延板再結晶粒の均質性が損なわれ、不均一な組織を形成するばかりでなく、熱延時の負荷を大きくする。このため、NbおよびTiの含有量はそれぞれ0.002 〜0.02wt%および0.001 〜0.02wt%とする。なお、加工性を重視する場合には、いずれも0.005 〜0.015wt %の範囲にすることが望ましい。
【0024】
次に、製造条件について、その限定理由を含めて説明する。
(1)熱間圧延
スラブ加熱温度:
スラブ加熱温度は、高過ぎると熱延途中で細かい析出物が析出し、これによるピン止め効果により、熱延板の粒径を細かくする。これにより熱延板は硬質化しやすく、局部変形能を低下させるので好ましくない。そのためスラブ加熱温度は1250℃以下として、析出物を粗大化させ、成形性と軟質化を両立させることが望ましい。好ましくは1100℃以下とし、スラブ加熱時にMnSなどの析出物を粗大に析出させ、熱延後の粒径を比較的大きくする方がよい。
【0025】
エンドレス圧延:
エンドレス圧延は、本発明法の中で特に重要な構成要件である。
従来の薄鋼板の圧延方法では、巻き取り開始まではコイル先端部のバタツキ、これに伴う冷却条件の不均一があるので、ラインスピードを上げることができず、その後コイル巻き取りを開始し、張力がかけられるようになると速度を増加させ生産性を向上させていた。このような従来の方法では、コイルの先端や後端のみではなくコイルの長手方向で、圧延条件とくに圧延速度が大きく変動することを余儀なくする。
【0026】
この現象は、本発明が目指す、焼鈍省略工程における加工性向上にとって著しく不利であって、その解決のためには、圧延速度を一定の範囲内に制御することが重要である。具体的には、仕上げ圧延の出側速度で1000m/min以上、より好ましくは1200m/min以上、かつコイル内での速度変動量が10%以下、より好ましくは5%以下とするのが望ましく、この条件で仕上げ圧延を行うことによって安定した加工性が得られる。また、この圧延速度は、Nb量、圧下量、冷却条件等によっても影響を受けるので、前記適正範囲内でこれらの操業要因を加味して制御すればよい。
【0027】
また、缶用鋼板のように材質の均一性が、コイル長手方向に対して要求される場合に、通常の熱延方法では、コイルの先端部、および後端部で熱延条件(仕上げ温度、冷却サイクル)外れとなる部分が多く発生し、歩留りが低下する。
特に、本発明法が対象とする成分組成のものは変態点が比較的高いため、コイル先端、後端部で変態点(−50℃より下)以下の仕上げとなりやすく、加工組織の残存、異常粒の発生を招きやすいこと、またAr3変態点以下の比較的低温域で圧延を終了した場合に、コイル全体にわたって、自己焼鈍効果によって再結晶を行わしめることが困難になる。このような不利を解消するためにも、エンドレス圧延を行うことが必須である。
以上述べた理由により、材質を均一にさせるためには、エンドレス圧延を行うことが重要である。
【0028】
仕上げ温度:
熱延の仕上げ温度(仕上げ圧延終了温度)は、熱延板の組織、粒径を均一にさせるために、(Ar3変態点−50℃)以上、好ましくはAr3変態点以上となるようにする必要がある。仕上げ温度を変態点以上にすることにより、組織の一層の均一化が期待できるが、加工組織の与える影響とその分率を考慮して、Ar3変態点−50℃までは、許容できる。
また、低コスト化のためにAr3変態点よりさらに低い温度(Ar3変態点−50℃)未満で熱延を行う場合には、潤滑下で圧延を行う、いわゆる温間潤滑圧延を行うこともできる。この場合に、巻き取り後十分な再結晶(自己焼鈍)を行わせることが加工性を得るために重要であるが、そのためには最終パスを強圧下し、具体的には最終パスで20%以上の強圧下を行うことが望ましい。いずれにしても、変態点以下での仕上げにより粗大な組織が残ると、1)リジングが発生し、2)冷間圧延後、板厚方向の材料の硬さの不均一が生じ、製缶時、フランジ割れの原因も引き起こすので、このような組織の生成を避ける必要がある。従って、温間圧延をする際には、油潤滑等による潤滑を施すことにより、均一な圧下を確保しながらエンドレス圧延を行うことが必須である。なお、温間圧延の下限温度は後述する巻取温度を確保できるかぎりはとくに規制しない。
【0029】
巻き取り温度:
巻き取り温度は、自己焼鈍効果による再結晶(Ar3変態点−50℃未満で熱延を行う場合)と粒成長を促すために高いことが望ましく、Ar3変態点−50℃以上で熱延を行う場合で640 ℃以上、またAr3変態点−50℃未満で熱延を行う場合では600 ℃以上の温度が必要である。しかし、750 ℃を超えるとスケール厚みが顕著に増大し、酸洗時の脱スケール性が悪化する。また実操業上からも750 ℃以上で巻き取ることは困難である。このため、巻き取り温度は、(Ar3変態点−50℃)以上で熱延を行う場合には640 〜750 ℃とし、(Ar3変態点−50℃)未満で熱延を行う場合には600 〜750 ℃とする。
【0030】
(2)冷間圧延
酸洗後の冷間圧延は、40〜90%の圧下率でおこなう必要がある。本発明法における熱延母板の粒径は比較的大きいため、40%以上の圧下率で冷間圧延を行わないと材質の不均一を生じる恐れがある。また上限は、用途から考えて強度が十分であるので、局部延性の面から90%とした。ただし、さらに成形性を考慮すると、80%以下とするのが望ましい。
【0031】
(3)冷間圧延後の熱処理本発明法においては、冷間圧延後の鋼板に低温度域での熱処理を施すことにより、軟質化、局部変形能の増加が可能となり、その後の製缶工程で、フランジ成形などの成形がしやすくなる。この場合、熱処理条件としては温度が200℃以上、時間を5秒以上の工程とすることが望ましい。熱処理温度や時間がこれ以下であると、冷間圧延より蓄積された歪が回復せず、軟化しない。そればかりか、鋼中に残存している炭素、窒素により、むしろ硬化が生じる恐れがあるので好ましくない。また、加熱温度が300℃を超えると、再結晶等により過度の軟質化の恐れがあり、また鋼板表面のテンパーカラー、あるいはめっき等の変質の懸念も生じるため、加熱温度の上限を300℃とする。ここで、保持時間は10秒〜30分とするのが望ましい。なお、通常の製缶工程においては、鋼板、必要に応じて表面処理(すずめっき、クロメート処理など)を施した鋼板に、製缶ラインにて塗装焼付け又はフィルムラミネート処理を行った後、製缶加工される。ここで塗装焼付け又はフィルムラミネート処理に際し、200℃以上の温度に5秒以上の時間鋼板が加熱されるため、この工程を上記の低温加熱工程と兼用することができる。
【0032】
【実施例】
表1に示す化学成分の鋼を溶製し、これを表2に示す条件で、粗圧延、仕上げ圧延(エンドレス圧延または比較のための通常圧延)、巻取りを行い、酸洗を経て、同表に示す圧下率にて冷間圧延を行い、さらに一部のものについては210 ℃に加熱し20分間保持する熱処理を施した。
得られた供試材について引張特性、ロックウエル硬さおよびフランジ成形性を調査した。ここに、引張試験はJIS5号試験片により行い、ロックウエル硬さのスケールはHR30Tとした。またフランジ成形性は、通常の条件で#25相当の錫めっきの後、これをロールフォーミング、高速シーム溶接で3ピース缶の缶胴部相当に成形し、これに伸びフランジ加工を施し、割れ発生の有無で判断を行った。また、コイル全長よりサンプルを抽出し各部分での成形性を評価し、その不良率より歩留りを求めた。これらの結果を合わせて表2に示す。
また、表1の鋼Aを用いて、変態点以下の温間でエンドレス熱間圧延を行い、その際に、潤滑条件および仕上げ圧延における最終パスの圧下率を種々変化させた。この素材を冷延圧下率70%で冷延し、さらに一部のものについては210 ℃に加熱し20分間保持する熱処理を施した。得られた供試材について、同様な試験を行った。その結果を製造条件とともに表3に示す。
【0033】
【表1】

Figure 0004081823
【0034】
【表2】
Figure 0004081823
【0035】
【表3】
Figure 0004081823
【0036】
表2、表3から、熱間仕上げ圧延を本発明法に従うエンドレス圧延で行い、所定の温度で巻取ることにより、軟質で局部延性能の高い鋼板が得られることがわかる。また、温間圧延の場合に、特に仕上げ圧延の最終パスを強圧下することは熱延板の自己再結晶に効果的であることがわかる。これらの鋼板組織は、従来工程で焼鈍したものと同等の組織であり、焼鈍工程を省略しても、従来の焼鈍工程を含む工程によって製造したものとほぼ同等の成形性を得ることが可能であることが金属組織のうえからも確認された。
なお、表3のNo. 2〜4は自己再結晶が不十分なためフランジ成形性が悪化した。
【0037】
【発明の効果】
上述したように、本発明方法によれば、焼鈍を行わない低コストの製造工程で、耐リジング性および伸びフランジ性などの加工性に優れる缶用鋼板を製造することが可能となる。
また、本発明方法によれば、この省プロセス工程で、材質均一性が改善され、歩留りが向上するので、品質が安定した缶用鋼板をより一層低コストで製造することが可能になる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a steel plate for a process-saving can that omits annealing after cold rolling, and is particularly excellent in workability such as ridging resistance and stretch flangeability, and excellent in material uniformity. The present invention relates to a method for producing a steel plate for cans suitable for use as a thin plate or tin-free steel.
[0002]
[Prior art]
Beverage cans and container cans such as 18-liter cans and pail cans are roughly classified into two-piece cans and three-piece cans from the manufacturing method (process). 2-piece cans are surface-drawn steel sheets that have undergone tin plating, chrome plating, chemical conversion, oiling, etc., shallow drawing, DWI (Drawn and Wall Ironed) processing, DRD (Drawn and Redrawn) processing, etc. The can bottom is made up of a single piece and the can body is integrally formed, and a lid is attached to the can bottom. A three-piece can is a three-piece can made by bending the surface-treated steel sheet into a cylindrical or rectangular tube shape, joining the ends together to form a can body, and then attaching a canopy and a bottom cover to the can. is there.
[0003]
Since the cost of the can made in this way has a high proportion of the material cost, the demand for reducing the cost of the steel sheet is strong.
A promising method for responding to this is a technique such as Japanese Patent Publication No. 63-10213, which employs continuous annealing, which is high in production efficiency and excellent in yield and surface quality, instead of conventional box annealing. In addition, improvements have been made to the manufacturing technology of steel sheets for cans that are as soft as T2 (50-56) with a refining degree expressed by the value of Rockwell hardness (HR30T). Furthermore, a technique for producing a soft steel sheet by continuous annealing has also been developed. For example, as disclosed in Japanese Patent Publication No. 1-52452, an extremely low carbon steel is applied as a material, and various combinations of work hardening after annealing can be used. A technique for making steel plates for cans of different hardness has been proposed.
[0004]
Even in this type of steel plate for cans, there is a demand for further cost reduction. In order to meet this demand, efforts have been made to develop new manufacturing techniques. One method for reducing the cost is to reduce the thickness of the steel sheet to be used and to strengthen the neck diameter reduction of the upper lid. Even more stringent properties are required for materials applied to these methods, and can steel plates with good workability could not be produced by methods other than the conventional processes described above.
As another technology aiming at further cost reduction, Japanese Patent Application Laid-Open No. 4-280926 discloses that after subjecting an ultra-low carbon steel as a raw material to hot rolling in the α region, it is self-annealed to grow crystal grains. The manufacturing method by the process-saving process which omits subsequent annealing and temper rolling by performing cold rolling is disclosed.
[0005]
[Problems to be solved by the invention]
However, the steel sheet produced by this method has a problem that ridging (striated defects generated during processing) peculiar to α-region hot rolling occurs and stretch flangeability is not so good.
Accordingly, the object of the present invention is to solve the problems of the above-described conventional technology, and to perform canning that is excellent in workability such as ridging resistance and stretch flangeability in a low-cost manufacturing process that does not perform annealing and saves process. The purpose is to propose a technology for manufacturing steel sheets.
Another object of the present invention is to propose a technique for stably producing a steel plate for cans which is excellent in material uniformity in this process-saving process.
[0006]
[Means for solving problems]
In order to achieve the above-mentioned object, the present inventors first examined the characteristics required as a steel plate for cans and concluded as follows.
1) Unlike deep drawing steel sheets used in automobiles, a high r value is not an essential condition.
2) It is desirable that the in-plane anisotropy (Δr) of the r value is small.
3) It is desirable that non-uniform deformation such as ridging does not occur.
4) A fine structure is desirable in terms of uniform deformation.
5) The manufactured steel sheet does not necessarily need to be completely non-aged like a box annealed material (low carbon aluminum killed steel), but in a normal continuous annealed material (low carbon aluminum killed steel), a can-making process and 2 It is desirable not to age because the next and third steps cause problems.
6) It is desirable to have local ductility at a strain rate that is about 1 to 2 orders of magnitude faster than those obtained by normal tensile tests.
The present invention has been conceived by conducting metallurgical studies on the steel composition and production conditions that govern the above-mentioned characteristics as a steel plate for cans. That is, the gist configuration of the present invention is as follows.
[0007]
(1) C: 0.0030 wt% or less, Si: 0.02 wt% or less, Mn: 0.05 to 0.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, solAl: 0. A steel slab containing 1 wt% or less, N: 0.0030 wt% or less, with the balance being Fe and inevitable impurities, is roughly rolled, the obtained sheet bar is joined to the preceding sheet bar, and then the end temperature Is Ar3Finish rolling so as to be −50 ° C. or more, winding in a temperature range of 640 to 750 ° C., removing the scale, and cold rolling at a rolling reduction of 40 to 90%, and then 200 to 300 ° C. for 5 seconds. After the cold rolling characterized by performing the above heat holding heat treatmentRecrystallizationA method for producing steel sheets for cans, in which annealing is omitted.
[0008]
(2) C: 0.0030 wt% or less, Si: 0.02 wt% or less, Mn: 0.05 to 0.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, solAl: 0. A steel slab containing 1 wt% or less, N: 0.0030 wt% or less, with the balance being Fe and inevitable impurities, is roughly rolled, the obtained sheet bar is joined to the preceding sheet bar, and then the end temperature Is Ar3After finishing rolling under lubrication so as to be less than −50 ° C., winding and self-annealing in a temperature range of 600 to 750 ° C., removing the scale, and cold rolling at a rolling reduction of 40 to 90%, After the cold rolling characterized by performing a heat holding heat treatment at 200 to 300 ° C. for 5 seconds or moreRecrystallizationA method for producing steel sheets for cans, in which annealing is omitted.
[0009]
(3) C: 0.0030 wt% or less, Si: 0.02 wt% or less, Mn: 0.05 to 0.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, solAl: 0. 1 wt% or less, N: 0.0030 wt% or less, and Nb: 0.002 to 0.02 wt%, Ti: 0.001 to 0.02 wt%, or one or two of them, with the balance being Fe and A steel slab having a composition composed of inevitable impurities is roughly rolled, and the obtained sheet bar is joined to the preceding sheet bar, and then the end temperature is Ar.3Finish rolling so as to be −50 ° C. or more, winding in a temperature range of 640 to 750 ° C., removing the scale, and cold rolling at a rolling reduction of 40 to 90%, and then 200 to 300 ° C. for 5 seconds. After the cold rolling characterized by performing the above heat holding heat treatmentRecrystallizationA method for producing steel sheets for cans, in which annealing is omitted.
[0010]
(4) C: 0.0030 wt% or less, Si: 0.02 wt% or less, Mn: 0.05 to 0.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, solAl: 0. 1 wt% or less, N: 0.0030 wt% or less, and Nb: 0.002 to 0.02 wt%, Ti: 0.001 to 0.02 wt%, or one or two of them, with the balance being Fe and A steel slab having a composition composed of inevitable impurities is roughly rolled, and the obtained sheet bar is joined to the preceding sheet bar, and then the end temperature is Ar.3After finishing rolling under lubrication so as to be less than −50 ° C., winding and self-annealing in a temperature range of 600 to 750 ° C., removing the scale, and cold rolling at a rolling reduction of 40 to 90%, After the cold rolling characterized by performing a heat holding heat treatment at 200 to 300 ° C. for 5 seconds or moreRecrystallizationA method for producing steel sheets for cans, in which annealing is omitted.
(5) C: 0.0030 wt% or less, Si: 0.02 wt% or less, Mn: 0.05 to 0.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, solAl: 0. A steel slab containing 1 wt% or less, N: 0.0030 wt% or less, with the balance being Fe and inevitable impurities, is roughly rolled, the obtained sheet bar is joined to the preceding sheet bar, and then the end temperature Is Ar3Finish rolling so as to be −50 ° C. or higher, winding in a temperature range of 640 to 750 ° C., removing the scale, cold rolling at a rolling reduction of 40 to 90%, performing surface treatment, After the cold rolling characterized by performing a heat holding heat treatment at 200 to 300 ° C. for 5 seconds or moreRecrystallizationA method for producing steel sheets for cans, in which annealing is omitted.
(6) C: 0.0030 wt% or less, Si: 0.02 wt% or less, Mn: 0.05 to 0.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, solAl: 0. A steel slab containing 1 wt% or less, N: 0.0030 wt% or less, with the balance being Fe and inevitable impurities, is roughly rolled, the obtained sheet bar is joined to the preceding sheet bar, and then the end temperature Is Ar3After finishing rolling under lubrication so as to be less than −50 ° C., winding and self-annealing in a temperature range of 600 to 750 ° C., removing the scale, and cold rolling at a rolling reduction of 40 to 90%, Surface treatment is performed, and then heat holding heat treatment is performed at 200 to 300 ° C. for 5 seconds or more.RecrystallizationA method for producing steel sheets for cans, in which annealing is omitted.
(7) C: 0.0030 wt% or less, Si: 0.02 wt% or less, Mn: 0.05 to 0.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, solAl: 0. 1 wt% or less, N: 0.0030 wt% or less, and Nb: 0.002 to 0.02 wt%, Ti: 0.001 to 0.02 wt%, or one or two of them, with the balance being Fe and A steel slab having a composition composed of inevitable impurities is roughly rolled, and the obtained sheet bar is joined to the preceding sheet bar, and then the end temperature is Ar.3Finish rolling so as to be −50 ° C. or higher, winding in a temperature range of 640 to 750 ° C., removing the scale, cold rolling at a rolling reduction of 40 to 90%, performing surface treatment, After the cold rolling, characterized by performing a heat holding heat treatment at 200 to 300 ° C. for 5 seconds or moreRecrystallizationA method for producing steel sheets for cans, in which annealing is omitted.
(8) C: 0.0030 wt% or less, Si: 0.02 wt% or less, Mn: 0.05 to 0.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, solAl: 0. 1 wt% or less, N: 0.0030 wt% or less, and Nb: 0.002 to 0.02 wt%, Ti: 0.001 to 0.02 wt%, or one or two of them, with the balance being Fe and A steel slab having a composition composed of inevitable impurities is roughly rolled, and the obtained sheet bar is joined to the preceding sheet bar, and then the end temperature is Ar.3After finishing rolling under lubrication so as to be less than −50 ° C., winding and self-annealing in a temperature range of 600 to 750 ° C., removing the scale, and cold rolling at a rolling reduction of 40 to 90%, Surface treatment is performed, and then heat holding heat treatment is performed at 200 to 300 ° C. for 5 seconds or more.RecrystallizationA method for producing steel sheets for cans, in which annealing is omitted.
(9) The method for producing a steel plate for a can according to any one of the above (5) to (8), wherein the surface treatment is any one of tin plating, chromium plating, chemical conversion treatment and oil coating. .
[0011]
(10) The finish rolling speed is 1000 m / min or more at the exit side speed of the final stage, and the speed fluctuation amount is 10% or less.Above (1) to (9The manufacturing method of the steel plate for cans in any one of 2).
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In order to improve the r value, it is necessary to perform recrystallization annealing after cold rolling. However, if a very large r value is not required, the recrystallization annealing step can be omitted. However, the steel sheet as it is cold-rolled in the conventional method according to the cold rolling → annealing → secondary rolling process, which simply omits the recrystallization annealing process, has a particularly low degree of ductility and stretch flangeability as steel sheets for cans. However, it was not possible to satisfy the requirements for applications that require high drawability. Moreover, in order to suppress ridging and improve stretch flangeability, the objective cannot be achieved by simply recrystallizing crystal grains as much as possible, as aimed by JP-A-4-280926.
[0015]
Therefore, as a result of diligent research to solve the above problems, the inventors used steel whose components were appropriately controlled, and optimized the heat treatment conditions of the hot rolling process to perform the annealing process after cold rolling. It has been found that it can be omitted, and even if the structure of the steel is somewhat fine, it is effective to avoid remixing uniformly and avoid remixing.
In order to obtain recrystallized grains satisfying such conditions, it is extremely effective to perform so-called “endless rolling” in which the sheet bar is joined to the preceding sheet bar in the hot rolling process and finish-rolled in an endless state. I found out that
Moreover, it has been found that the endless rolling improves the uniformity of the material in the coil. This is because, in the case of steel plates for cans, the thickness of the hot-rolled plate is thin, and it is difficult to maintain the finishing temperature and the winding temperature uniformly throughout the coil. Endless rolling plays a major role, meaning that it is possible to solve the problem that has become a bottleneck in manufacturing steel plates for cans, such as the inability to cause the entire coil to crystallize.
[0016]
  Hereinafter, the reason why the steel composition and the production conditions are limited as described above in the present invention will be described.
C:0.0030wt% or less
  C is its content0.0030If the amount exceeds 50%, the amount of residual solid solution carbon increases, so that sufficient local ductility necessary at the time of can molding cannot be obtained. This is not preferable because it causes cracking during flange molding. Further, if the amount of carbon is further increased, the work hardening amount increases, the strength of the material increases, which causes wrinkles during squeezing and becomes a problem during welding. Furthermore, it is necessary to limit the amount of C from the viewpoint of aging degradation..
[0017]
Si: 0.02 wt%Less than
  Si is an element that deteriorates the surface properties of the steel sheet, and if the amount added is too large, it is not desirable as a surface-treated steel sheet. Moreover, the steel is hardened, making the hot rolling process difficult, and the steel as the final product is hardened, which is undesirable. For these reasons, the Si content is 0.02 wt% or less. In particular, it is desirable that the content be 0.010% or less in applications where the surface property requirement is strict.
[0018]
Mn: 0.05-0.50wt%
Mn is an element useful for preventing surface cracks caused by hot brittleness due to S, and at least 0.05 wt% is necessary to obtain the effect. On the other hand, if it exceeds 0.50 wt%, the transformation point becomes too low and hardens, adversely affects the cold workability thereafter and hardens the product plate. Therefore, the Mn content is 0.05 to 0.50 wt%. In order to obtain a soft steel plate for cans, the content is preferably 0.20% or less.
[0019]
P: 0.02wt% or less
P is an element harmful to corrosion resistance, and the corrosion resistance is improved by reducing the content, but excessive reduction leads to an increase in production cost. For these reasons, the P content is set to 0.02 wt% or less. In order to significantly improve the workability, it is preferably 0.010 wt% or less.
[0020]
S: 0.02wt% or less
When the amount of S increases, inclusions such as MnS increase, and the local ductility typified by stretch flangeability is reduced, and the total elongation is remarkably improved. Therefore, the S content needs to be limited to 0.02 wt% or less. In order to remarkably improve the workability, it is preferable that the content is 0.006 wt% or less and Mn / S is 10 or more.
[0021]
sol Al: 0.10wt% or less
Although sol Al is an element necessary for deoxidation, when it exceeds 0.10 wt%, not only the deoxidation effect is saturated but also inclusions increase, which adversely affects moldability. Therefore, the content of sol Al is 0.10 wt% or less. In order to secure stable production conditions, it is preferable that the range be 0.020 to 0.040 wt%.
[0022]
N: 0.0030wt% or less
N is an impurity element inevitably mixed in the steel, and forms a precipitate to cause a decrease in elongation. Further, when N remains in a solid solution state, the steel is hardened. The strength of the steel sheet according to the method of the present invention is sufficient, but rather a softer one is desired. Therefore, the upper limit of N content is 0.0030 wt%. In view of workability, the content is preferably 0.0020 wt% or less.
[0023]
By adding one or two of Nb and Ti in addition to the above basic components, the softening of the steel can be achieved.
Nb: 0.002 to 0.02 wt%, Ti: 0.001 to 0.02 wt%
Nb and Ti are elements useful for reducing the aging property and softening the steel due to carbon fixation. In order to obtain these effects, the Nb and Ti contents must be at least 0.002 wt% and 0.001 wt%, respectively. On the other hand, if any element is added in excess of 0.020 wt%, the homogeneity of hot-rolled sheet recrystallized grains is impaired, not only forming a non-uniform structure, but also increasing the load during hot rolling. For this reason, the Nb and Ti contents are 0.002 to 0.02 wt% and 0.001 to 0.02 wt%, respectively. In addition, when emphasizing workability, it is desirable that all be in the range of 0.005 to 0.015 wt%.
[0024]
Next, manufacturing conditions will be described including the reason for limitation.
(1) Hot rolling
Slab heating temperature:
If the slab heating temperature is too high, fine precipitates are deposited in the middle of hot rolling, and the pinning effect thereby makes the grain size of the hot rolled plate fine. As a result, the hot-rolled sheet is easily hardened, and the local deformability is lowered, which is not preferable. Therefore, it is desirable that the slab heating temperature is 1250 ° C. or less, and the precipitates are coarsened to achieve both formability and softening. Preferably, the temperature is set to 1100 ° C. or lower, and precipitates such as MnS are coarsely precipitated during slab heating, and the particle diameter after hot rolling is relatively large.
[0025]
Endless rolling:
Endless rolling is a particularly important component in the method of the present invention.
In the conventional rolling method for thin steel sheets, the coil tip flutters up to the beginning of winding, and the cooling conditions associated therewith are uneven. Therefore, the line speed cannot be increased, and then coil winding starts and tension is increased. When it became possible to increase the speed, the productivity was increased. In such a conventional method, it is unavoidable that the rolling conditions, particularly the rolling speed, vary greatly in the longitudinal direction of the coil as well as in the front and rear ends of the coil.
[0026]
This phenomenon is remarkably disadvantageous for improving the workability in the annealing omitting process aimed at by the present invention. To solve the phenomenon, it is important to control the rolling speed within a certain range. Specifically, it is desirable that the exit rolling speed of finish rolling is 1000 m / min or more, more preferably 1200 m / min or more, and the amount of speed fluctuation in the coil is 10% or less, more preferably 5% or less, Stable workability is obtained by performing finish rolling under these conditions. The rolling speed is also affected by the amount of Nb, the amount of reduction, the cooling conditions, and the like, and may be controlled in consideration of these operating factors within the appropriate range.
[0027]
Further, when the material uniformity is required in the longitudinal direction of the coil as in the case of a steel plate for cans, in the normal hot rolling method, the hot rolling conditions (finishing temperature, (Cooling cycle) Many parts become detached and the yield decreases.
In particular, the component composition targeted by the method of the present invention has a relatively high transformation point, so the coil tip and rear end are likely to have a finish below the transformation point (below −50 ° C.), resulting in residual or abnormal textures. It is easy to invite the generation of grains, and ArThreeWhen rolling is completed in a relatively low temperature region below the transformation point, it becomes difficult to recrystallize the entire coil due to the self-annealing effect. In order to eliminate such disadvantages, it is essential to perform endless rolling.
For the reasons described above, it is important to perform endless rolling in order to make the material uniform.
[0028]
Finishing temperature:
In order to make the structure and grain size of the hot rolled sheet uniform, (Ar)ThreeTransformation point -50 ° C) or higher, preferably ArThreeIt must be above the transformation point. By making the finishing temperature higher than the transformation point, it can be expected that the structure is made more uniform, but considering the influence of the processed structure and its fraction, ArThreeUp to -50 ° C transformation point is acceptable.
In addition, to reduce costs, ArThreeA temperature lower than the transformation point (ArThreeWhen hot rolling is performed at a temperature lower than the transformation point of −50 ° C., so-called warm lubrication rolling, in which rolling is performed under lubrication, can also be performed. In this case, sufficient recrystallization (self-annealing) after winding is important for obtaining workability. For that purpose, the final pass is strongly reduced, specifically, 20% in the final pass. It is desirable to perform the above strong pressure. In any case, if a coarse structure remains after finishing below the transformation point, 1) ridging occurs, and 2) after cold rolling, the material hardness in the sheet thickness direction becomes non-uniform, and cans are made. It also causes the flange cracking, so it is necessary to avoid the formation of such a structure. Accordingly, when performing warm rolling, it is essential to perform endless rolling while ensuring uniform reduction by applying lubrication such as oil lubrication. Note that the lower limit temperature of the warm rolling is not particularly limited as long as the winding temperature described later can be secured.
[0029]
Winding temperature:
The coiling temperature is determined by recrystallization (ArThreeIn order to promote grain growth, it is desirable that Ar is hot-rolled at a transformation point of less than -50 ° C.ThreeWhen hot rolling at a transformation point of -50 ° C or higher, 640 ° C or higher, and ArThreeWhen hot rolling is performed at a transformation point below -50 ° C, a temperature of 600 ° C or higher is required. However, when the temperature exceeds 750 ° C., the scale thickness increases remarkably, and the descalability during pickling deteriorates. In actual operation, it is difficult to wind up at 750 ° C or higher. For this reason, the winding temperature is (ArThreeWhen hot rolling is performed at a transformation point of -50 ° C or higher, the temperature is set to 640 to 750 ° C.ThreeWhen hot rolling is performed below the transformation point (-50 ° C), the temperature is set to 600 to 750 ° C.
[0030]
(2) Cold rolling
Cold rolling after pickling needs to be performed at a rolling reduction of 40 to 90%. Since the grain size of the hot-rolled mother plate in the method of the present invention is relatively large, the material may be non-uniform unless cold rolling is performed at a rolling reduction of 40% or more. The upper limit is 90% from the viewpoint of local ductility because the strength is sufficient in consideration of the application. However, considering moldability further, it is desirable to make it 80% or less.
[0031]
(3) Heat treatment after cold rolling In the method of the present invention, it is possible to soften and increase the local deformability by subjecting the cold-rolled steel plate to a heat treatment in a low temperature range, and a subsequent can manufacturing process. Thus, it becomes easy to perform molding such as flange molding. In this case, as heat treatment conditions, it is desirable that the temperature is 200 ° C. or more and the time is 5 seconds or more. If the heat treatment temperature and time are less than this, the strain accumulated by cold rolling will not be recovered and will not soften. In addition, carbon and nitrogen remaining in the steel are not preferable because there is a risk of hardening. Also, the heating temperature is300If it exceeds ℃, there is a risk of excessive softening due to recrystallization and the like, and there is also a concern of deterioration such as temper color on the surface of the steel sheet or plating.300℃. Here, the holding time is desirably 10 seconds to 30 minutes. In the normal can manufacturing process, steel sheets and steel sheets with surface treatment (tin plating, chromate treatment, etc.) subjected to surface treatment (tin plating, chromate treatment, etc.) are subjected to paint baking or film laminating treatment in a can manufacturing line, and then can manufacturing Processed. Here, during the coating baking or film laminating process, the steel sheet is heated to a temperature of 200 ° C. or higher for a time of 5 seconds or longer, and therefore this step can be combined with the low-temperature heating step.
[0032]
【Example】
Steels having the chemical components shown in Table 1 were melted and subjected to rough rolling, finish rolling (endless rolling or normal rolling for comparison) and winding under the conditions shown in Table 2, followed by pickling. Cold rolling was performed at the rolling reduction shown in the table, and some of the samples were heated to 210 ° C. and held for 20 minutes.
The obtained specimens were examined for tensile properties, Rockwell hardness and flange formability. Here, the tensile test was performed using a JIS No. 5 test piece, and the scale of Rockwell hardness was HR30T. Flange formability is equivalent to # 25 equivalent tin plating under normal conditions, then formed into roll can and high-speed seam welding to form the equivalent of a 3-piece can body, and stretched and flanged to produce cracks. Judgment was made based on the presence or absence of. A sample was extracted from the entire length of the coil, the formability at each part was evaluated, and the yield was determined from the defect rate. These results are shown together in Table 2.
Further, endless hot rolling was performed at a temperature equal to or lower than the transformation point using the steel A shown in Table 1, and at that time, the lubrication conditions and the rolling reduction of the final pass in the finish rolling were variously changed. This material was cold-rolled at a cold rolling reduction rate of 70%, and a part of the material was heat-treated at 210 ° C. and held for 20 minutes. A similar test was performed on the obtained specimen. The results are shown in Table 3 together with the production conditions.
[0033]
[Table 1]
Figure 0004081823
[0034]
[Table 2]
Figure 0004081823
[0035]
[Table 3]
Figure 0004081823
[0036]
From Tables 2 and 3, it can be seen that a hot steel sheet having high local elongation performance can be obtained by performing hot finish rolling by endless rolling according to the method of the present invention and winding at a predetermined temperature. In addition, in the case of warm rolling, it can be seen that it is effective for the self-recrystallization of the hot-rolled sheet to particularly reduce the final pass of the finish rolling. These steel sheet structures are the same structure as those annealed in the conventional process, and even if the annealing process is omitted, it is possible to obtain a formability substantially the same as that manufactured by the process including the conventional annealing process. It was confirmed from the metal structure.
Note that Nos. 2 to 4 in Table 3 deteriorated flange formability due to insufficient self-recrystallization.
[0037]
【The invention's effect】
As described above, according to the method of the present invention, it is possible to produce a steel plate for a can excellent in workability such as ridging resistance and stretch flangeability in a low-cost production process without annealing.
Further, according to the method of the present invention, since the material uniformity is improved and the yield is improved in this process-saving process, a steel plate for cans with stable quality can be produced at a lower cost.

Claims (10)

C:0.0030wt%以下、Si:0.02wt%以下、Mn:0.05〜0.5wt%、P:0.02wt%以下、S:0.02wt%以下、solAl:0.1wt%以下、N:0.0030wt%以下を含有し、残部はFeおよび不可避的不純物よりなる組成の鋼スラブを粗圧延し、得られたシートバーを先行するシートバーと接合し、次いで終了温度がAr−50℃以上となるように、仕上げ圧延を行い、640〜750℃の温度範囲で巻き取り、スケール除去後、40〜90%の圧下率で冷間圧延した後、200〜300℃で5秒以上の加熱保持熱処理を施すことを特徴とする冷間圧延後の再結晶焼鈍を省略した缶用鋼板の製造方法。C: 0.0030 wt% or less, Si: 0.02 wt% or less, Mn: 0.05 to 0.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, solAl: 0.1 wt% or less , N: 0.0030 wt% or less, with the balance being roughly rolled a steel slab composed of Fe and inevitable impurities, joining the obtained sheet bar with the preceding sheet bar, and then finishing temperature Ar 3 Finish rolling so as to be −50 ° C. or more, winding in a temperature range of 640 to 750 ° C., removing the scale, and cold rolling at a rolling reduction of 40 to 90%, and then 200 to 300 ° C. for 5 seconds. The manufacturing method of the steel plate for cans which did the recrystallization annealing after the cold rolling characterized by performing the above heat retention heat processing. C:0.0030wt%以下、Si:0.02wt%以下、Mn:0.05〜0.5wt%、P:0.02wt%以下、S:0.02wt%以下、solAl:0.1wt%以下、N:0.0030wt%以下を含有し、残部はFeおよび不可避的不純物よりなる組成の鋼スラブを粗圧延し、得られたシートバーを先行するシートバーと接合し、次いで終了温度がAr−50℃未満となるように、潤滑下で、仕上げ圧延を行い、600〜750℃の温度範囲で巻き取り自己焼鈍させ、スケール除去後、40〜90%の圧下率で冷間圧延した後、200〜300℃で5秒以上の加熱保持熱処理を施すことを特徴とする冷間圧延後の再結晶焼鈍を省略した缶用鋼板の製造方法。C: 0.0030 wt% or less, Si: 0.02 wt% or less, Mn: 0.05 to 0.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, solAl: 0.1 wt% or less , N: 0.0030 wt% or less, with the balance being roughly rolled a steel slab composed of Fe and inevitable impurities, joining the obtained sheet bar with the preceding sheet bar, and then finishing temperature Ar 3 After finishing rolling under lubrication so as to be less than −50 ° C., winding and self-annealing in a temperature range of 600 to 750 ° C., removing the scale, and cold rolling at a rolling reduction of 40 to 90%, The manufacturing method of the steel plate for cans which omitted the recrystallization annealing after the cold rolling characterized by performing the heat retention heat processing for 5 second or more at 200-300 degreeC. C:0.0030wt%以下、Si:0.02wt%以下、Mn:0.05〜0.5wt%、P:0.02wt%以下、S:0.02wt%以下、solAl:0.1wt%以下、N:0.0030wt%以下を含み、かつNb:0.002〜0.02wt%、Ti:0.001〜0.02wt%の1種または2種を含有し、残部はFeおよび不可避的不純物よりなる組成の鋼スラブを粗圧延し、得られたシートバーを先行するシートバーと接合し、次いで終了温度がAr−50℃以上となるように、仕上げ圧延を行い、640〜750℃の温度範囲で巻き取り、スケール除去後、40〜90%の圧下率で冷間圧延した後、200〜300℃で5秒以上の加熱保持熱処理を施すことを特徴とする冷間圧延後の再結晶焼鈍を省略した缶用鋼板の製造方法。C: 0.0030 wt% or less, Si: 0.02 wt% or less, Mn: 0.05 to 0.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, solAl: 0.1 wt% or less N: 0.0030 wt% or less, Nb: 0.002 to 0.02 wt%, Ti: 0.001 to 0.02 wt%, or one or two of them, the balance being Fe and inevitable impurities The steel slab having the composition is roughly rolled, the obtained sheet bar is joined to the preceding sheet bar, and then finish rolling is performed so that the end temperature is Ar 3 −50 ° C. or higher. Recrystallization after cold rolling, characterized by winding in temperature range, removing scale, cold rolling at a rolling reduction of 40 to 90%, and then performing heat holding heat treatment at 200 to 300 ° C. for 5 seconds or more Steel for cans without annealing The method of production. C:0.0030wt%以下、Si:0.02wt%以下、Mn:0.05〜0.5wt%、P:0.02wt%以下、S:0.02wt%以下、solAl:0.1wt%以下、N:0.0030wt%以下を含み、かつNb:0.002〜0.02wt%、Ti:0.001〜0.02wt%の1種または2種を含有し、残部はFeおよび不可避的不純物よりなる組成の鋼スラブを粗圧延し、得られたシートバーを先行するシートバーと接合し、次いで終了温度がAr−50℃未満となるように、潤滑下で、仕上げ圧延を行い、600〜750℃の温度範囲で巻き取り自己焼鈍させ、スケール除去後、40〜90%の圧下率で冷間圧延した後、200〜300℃で5秒以上の加熱保持熱処理を施すことを特徴とする冷間圧延後の再結晶焼鈍を省略した缶用鋼板の製造方法。C: 0.0030 wt% or less, Si: 0.02 wt% or less, Mn: 0.05 to 0.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, solAl: 0.1 wt% or less N: 0.0030 wt% or less, Nb: 0.002 to 0.02 wt%, Ti: 0.001 to 0.02 wt%, or one or two of them, the balance being Fe and inevitable impurities The steel slab having the composition is roughly rolled, the obtained sheet bar is joined with the preceding sheet bar, and then finish rolling is performed under lubrication so that the end temperature is less than Ar 3 -50 ° C. Winding self-annealing in a temperature range of ˜750 ° C. After scale removal, after cold rolling at a rolling reduction of 40 to 90%, a heat holding heat treatment at 200 to 300 ° C. for 5 seconds or more is performed. recrystallization after cold rolling Method of manufacturing a steel sheet for cans you omit the annealing. C:0.0030wt%以下、Si:0.02wt%以下、Mn:0.05〜0.5wt%、P:0.02wt%以下、S:0.02wt%以下、solAl:0.1wt%以下、N:0.0030wt%以下を含有し、残部はFeおよび不可避的不純物よりなる組成の鋼スラブを粗圧延し、得られたシートバーを先行するシートバーと接合し、次いで終了温度がAr−50℃以上となるように、仕上げ圧延を行い、640〜750℃の温度範囲で巻き取り、スケール除去後、40〜90%の圧下率で冷間圧延した後、表面処理を行い、その後、200〜300℃で5秒以上の加熱保持熱処理を施すことを特徴とする冷間圧延後の再結晶焼鈍を省略した缶用鋼板の製造方法。C: 0.0030 wt% or less, Si: 0.02 wt% or less, Mn: 0.05 to 0.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, solAl: 0.1 wt% or less , N: 0.0030 wt% or less, with the balance being roughly rolled a steel slab composed of Fe and inevitable impurities, joining the obtained sheet bar with the preceding sheet bar, and then finishing temperature Ar 3 Finish rolling so as to be −50 ° C. or higher, winding in a temperature range of 640 to 750 ° C., removing the scale, cold rolling at a rolling reduction of 40 to 90%, performing surface treatment, The manufacturing method of the steel plate for cans which omitted the recrystallization annealing after the cold rolling characterized by performing the heat retention heat processing for 5 second or more at 200-300 degreeC. C:0.0030wt%以下、Si:0.02wt%以下、Mn:0.05〜0.5wt%、P:0.02wt%以下、S:0.02wt%以下、solAl:0.1wt%以下、N:0.0030wt%以下を含有し、残部はFeおよび不可避的不純物よりなる組成の鋼スラブを粗圧延し、得られたシートバーを先行するシートバーと接合し、次いで終了温度がAr−50℃未満となるように、潤滑下で、仕上げ圧延を行い、600〜750℃の温度範囲で巻き取り自己焼鈍させ、スケール除去後、40〜90%の圧下率で冷間圧延した後、表面処理を行い、その後、200〜300℃で5秒以上の加熱保持熱処理を施すことを特徴とする冷間圧延後の再結晶焼鈍を省略した缶用鋼板の製造方法。C: 0.0030 wt% or less, Si: 0.02 wt% or less, Mn: 0.05 to 0.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, solAl: 0.1 wt% or less , N: 0.0030 wt% or less, with the balance being roughly rolled a steel slab composed of Fe and inevitable impurities, joining the obtained sheet bar with the preceding sheet bar, and then finishing temperature Ar 3 After finishing rolling under lubrication so as to be less than −50 ° C., winding and self-annealing in a temperature range of 600 to 750 ° C., removing the scale, and cold rolling at a rolling reduction of 40 to 90%, A method for producing a steel plate for cans, wherein surface treatment is performed, followed by heat-holding heat treatment at 200 to 300 ° C. for 5 seconds or more, wherein recrystallization annealing after cold rolling is omitted. C:0.0030wt%以下、Si:0.02wt%以下、Mn:0.05〜0.5wt%、P:0.02wt%以下、S:0.02wt%以下、solAl:0.1wt%以下、N:0.0030wt%以下を含み、かつNb:0.002〜0.02wt%、Ti:0.001〜0.02wt%の1種または2種を含有し、残部はFeおよび不可避的不純物よりなる組成の鋼スラブを粗圧延し、得られたシートバーを先行するシートバーと接合し、次いで終了温度がAr−50℃以上となるように、仕上げ圧延を行い、640〜750℃の温度範囲で巻き取り、スケール除去後、40〜90%の圧下率で冷間圧延した後、表面処理を行い、その後、200〜300℃で5秒以上の加熱保持熱処理を施すことを特徴とする冷間圧延後の再結晶焼鈍を省略した缶用鋼板の製造方法。C: 0.0030 wt% or less, Si: 0.02 wt% or less, Mn: 0.05 to 0.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, solAl: 0.1 wt% or less N: 0.0030 wt% or less, Nb: 0.002 to 0.02 wt%, Ti: 0.001 to 0.02 wt%, or one or two of them, the balance being Fe and inevitable impurities The steel slab having the composition is roughly rolled, the obtained sheet bar is joined to the preceding sheet bar, and then finish rolling is performed so that the end temperature is Ar 3 −50 ° C. or higher. Winding in the temperature range, removing the scale, cold rolling at a rolling reduction of 40 to 90%, performing a surface treatment, and then performing a heat holding heat treatment at 200 to 300 ° C. for 5 seconds or more. re after cold rolling Method of manufacturing a steel sheet for cans you omit the crystal annealing. C:0.0030wt%以下、Si:0.02wt%以下、Mn:0.05〜0.5wt%、P:0.02wt%以下、S:0.02wt%以下、solAl:0.1wt%以下、N:0.0030wt%以下を含み、かつNb:0.002〜0.02wt%、Ti:0.001〜0.02wt%の1種または2種を含有し、残部はFeおよび不可避的不純物よりなる組成の鋼スラブを粗圧延し、得られたシートバーを先行するシートバーと接合し、次いで終了温度がAr−50℃未満となるように、潤滑下で、仕上げ圧延を行い、600〜750℃の温度範囲で巻き取り自己焼鈍させ、スケール除去後、40〜90%の圧下率で冷間圧延した後、表面処理を行い、その後、200〜300℃で5秒以上の加熱保持熱処理を施すことを特徴とする冷間圧延後の再結晶焼鈍を省略した缶用鋼板の製造方法。C: 0.0030 wt% or less, Si: 0.02 wt% or less, Mn: 0.05 to 0.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, solAl: 0.1 wt% or less N: 0.0030 wt% or less, Nb: 0.002 to 0.02 wt%, Ti: 0.001 to 0.02 wt%, or one or two of them, the balance being Fe and inevitable impurities The steel slab having the composition is roughly rolled, the obtained sheet bar is joined with the preceding sheet bar, and then finish rolling is performed under lubrication so that the end temperature is less than Ar 3 -50 ° C. Winding self-annealing in a temperature range of ˜750 ° C. After removing the scale, after cold rolling at a rolling reduction of 40 to 90%, surface treatment is performed, and then heat holding heat treatment at 200 to 300 ° C. for 5 seconds or more Specially applied Cold preparation method for the omitted steel sheet for cans recrystallization annealing after rolling to. 上記表面処理が、錫めっき、クロムめっき、化成処理および塗油のうちのいずれかであることを特徴とする請求項5〜8のいずれか1項に記載の缶用鋼板の製造方法。The method for producing a steel plate for cans according to any one of claims 5 to 8, wherein the surface treatment is any one of tin plating, chromium plating, chemical conversion treatment and oil coating. 仕上げ圧延の速度が、最終段の出側速度で1000m/min以上、かつその速度変動量が10%以下である請求項1〜9のいずれか1項に記載の缶用鋼板の製造方法。The method for producing a steel plate for a can according to any one of claims 1 to 9, wherein the speed of the finish rolling is 1000 m / min or more at the exit side speed of the final stage, and the speed fluctuation amount is 10% or less.
JP05144296A 1996-03-08 1996-03-08 Manufacturing method of steel plate for cans by annealing skipping process Expired - Fee Related JP4081823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05144296A JP4081823B2 (en) 1996-03-08 1996-03-08 Manufacturing method of steel plate for cans by annealing skipping process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05144296A JP4081823B2 (en) 1996-03-08 1996-03-08 Manufacturing method of steel plate for cans by annealing skipping process

Publications (2)

Publication Number Publication Date
JPH09241744A JPH09241744A (en) 1997-09-16
JP4081823B2 true JP4081823B2 (en) 2008-04-30

Family

ID=12887053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05144296A Expired - Fee Related JP4081823B2 (en) 1996-03-08 1996-03-08 Manufacturing method of steel plate for cans by annealing skipping process

Country Status (1)

Country Link
JP (1) JP4081823B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102006A1 (en) * 2007-02-23 2008-08-28 Corus Staal Bv Packaging steel, method of producing said packaging steel and its use
JP5655300B2 (en) * 2009-03-05 2015-01-21 Jfeスチール株式会社 Cold-rolled steel sheet excellent in bending workability, manufacturing method thereof, and member using the same
CN102002630A (en) * 2010-11-29 2011-04-06 南阳汉冶特钢有限公司 Q345R-Z35 super-thick steel plate resisting HIC (hydrogen induced crack) pressure vessel and production method thereof
CN102041444A (en) * 2010-12-21 2011-05-04 南阳汉冶特钢有限公司 Low-carbon low-silicon high-quality carbon structural steel and production method thereof

Also Published As

Publication number Publication date
JPH09241744A (en) 1997-09-16

Similar Documents

Publication Publication Date Title
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
WO2013008457A1 (en) Steel sheet for can and process for producing same
US20140174609A1 (en) Method for manufacturing a high-strength steel sheet for a can
WO2010119971A1 (en) Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing same
WO2010113333A1 (en) Steel sheet for high‑strength container and manufacturing method thereof
WO2024082755A1 (en) Tin plate and manufacturing method therefor
JP4244486B2 (en) Steel plate for high-strength can and manufacturing method thereof
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JP4284815B2 (en) Steel plate for high-strength can and manufacturing method thereof
WO2010074308A1 (en) Method for manufacturing steel plate for can-making
JP4193228B2 (en) Steel plate for can and manufacturing method thereof
JP3826442B2 (en) Manufacturing method of steel plate for can making with good workability and no rough skin
JP4081823B2 (en) Manufacturing method of steel plate for cans by annealing skipping process
JP4486414B2 (en) Thin steel plate for cans with strong can body strength and good press workability and method for producing the same
JP5316036B2 (en) Mother board for high-strength ultrathin cold-rolled steel sheet and manufacturing method thereof
JP4779737B2 (en) Manufacturing method of steel sheet for ultra thin can and steel sheet for ultra thin can
JP3108330B2 (en) Manufacturing method of steel sheet for high strength cans
JP3596037B2 (en) Manufacturing method of steel plate for can-making
TW201732054A (en) Steel sheet for cans and manufacturing method therefor
JP3700280B2 (en) Manufacturing method of steel plate for cans
JPH07228944A (en) Galvannealed steel sheet and its production
JPH09316543A (en) Production of steel sheet for can, excellent in formability
JP4810766B2 (en) Manufacturing method of ultra-thin high-strength steel sheet for lightweight 2-piece can
JP2003064446A (en) Cold rolled steel sheet and plated cold rolled steel sheet each having excellent strain age hardening characteristic and free from degradation due to room- temperature aging, and manufacturing method of them
JPH08269568A (en) Production of steel sheet for can making excellent in flange formability

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees