JP6164273B2 - Steel plate for cans and method for producing steel plate for cans - Google Patents

Steel plate for cans and method for producing steel plate for cans Download PDF

Info

Publication number
JP6164273B2
JP6164273B2 JP2015233306A JP2015233306A JP6164273B2 JP 6164273 B2 JP6164273 B2 JP 6164273B2 JP 2015233306 A JP2015233306 A JP 2015233306A JP 2015233306 A JP2015233306 A JP 2015233306A JP 6164273 B2 JP6164273 B2 JP 6164273B2
Authority
JP
Japan
Prior art keywords
less
cans
rolling
steel plate
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015233306A
Other languages
Japanese (ja)
Other versions
JP2016130361A (en
Inventor
勇人 齋藤
勇人 齋藤
霊玲 楊
霊玲 楊
克己 小島
克己 小島
裕樹 中丸
裕樹 中丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2016130361A publication Critical patent/JP2016130361A/en
Application granted granted Critical
Publication of JP6164273B2 publication Critical patent/JP6164273B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、食缶や飲料缶に用いられる缶容器材料に適した缶用鋼板およびその製造方法に関する。   The present invention relates to a steel plate for cans suitable for can container materials used for food cans and beverage cans and a method for producing the same.

近年における環境負荷低減およびコスト削減の観点から食缶や飲料缶に用いられる鋼板の使用量削減が求められており、2ピース缶、3ピース缶に関わらず鋼板の薄肉化が進行している。これに伴い、製缶、搬送工程および市場におけるハンドリング時に作用する外力による缶体の変形のみならず、内容物の加熱殺菌処理等における缶内部の圧力の増減による缶胴部の座屈変形が問題視されている。さらには薄肉化することで、ネック加工やフランジ加工での割れなどの加工不良が起こりやすくなり、生産性が低下するという課題が顕在化してきている。   In recent years, from the viewpoint of reducing environmental burdens and reducing costs, there has been a demand for a reduction in the amount of steel sheets used for food cans and beverage cans, and thinning of steel sheets is progressing regardless of 2-piece cans and 3-piece cans. Along with this, not only can deformation due to external forces acting during can manufacturing, transportation processes and handling in the market, but also buckling deformation of the can body due to increase / decrease in pressure inside the can during heat sterilization processing etc. of contents Is being viewed. Furthermore, the thinning makes it easy for processing defects such as cracks in neck processing and flange processing to occur, and the problem that productivity decreases has become apparent.

従来、缶体の耐座屈特性を向上させるために鋼板の高強度化が行われてきた。しかし、鋼板の高強度化によって降伏強度(YP)が上昇すると、成形性が低下し、製缶工程において問題となる。すなわち、通常、鋼板の高強度化により成形性は低下し、缶胴部成形後に行われるネック加工、次いで行われるフランジ加工において、ネックしわ及びフランジ割れの発生率が増加するという問題が顕在化しやすくなってしまう。   Conventionally, the strength of steel sheets has been increased in order to improve the buckling resistance of the can body. However, when the yield strength (YP) is increased by increasing the strength of the steel sheet, the formability is lowered, which causes a problem in the can manufacturing process. In other words, the formability of the steel sheet is usually reduced due to the increase in strength of the steel sheet, and the problem that the incidence of neck wrinkles and flange cracks increases in the necking performed after the can body part molding and then in the flange processing performed easily becomes obvious. turn into.

上記を受けて、例えば、特許文献1には、鋼成分は、質量%で、C:0.0016〜0.0050%、Si:0.10%以下、Mn:0.10〜0.80%、P:0.001〜0.020%、S:0.001〜0.020%、Al:0.005〜0.100%、N:0.030%以下、Nb:0.003〜0.030%、B:0.0002〜0.0050%を含有し、残部はFeおよび不可避的不純物からなり、圧延方向の引張強度が400MPa以上、圧延直角方向の引張強度が430MPa以上であり、かつ、圧延方向の破断伸びが15%以上、圧延直角方向の破断伸びが10%以上であることを特徴とする高加工性缶用鋼板が開示されている。   In response to the above, for example, in Patent Document 1, the steel components are in mass%, C: 0.0016 to 0.0050%, Si: 0.10% or less, Mn: 0.10 to 0.80%. P: 0.001-0.020%, S: 0.001-0.020%, Al: 0.005-0.100%, N: 0.030% or less, Nb: 0.003-0. 030%, B: 0.0002-0.0050%, the balance is composed of Fe and inevitable impurities, the tensile strength in the rolling direction is 400 MPa or more, the tensile strength in the direction perpendicular to the rolling is 430 MPa, and A steel sheet for a high workability can is disclosed, wherein the breaking elongation in the rolling direction is 15% or more and the breaking elongation in the direction perpendicular to the rolling is 10% or more.

特許文献2には、質量%で、C:0.0050%以上0.0100%以下、Si:0.050%以下、Mn:0.10%以上1.00%以下、P:0.030%以下、S:0.020%以下、Al:0.010%以上0.100%以下、N:0.0010%以上0.0050%以下、Nb:0.020%以上0.120%以下を含有し、CおよびNbの含有量が下記式(1)を満足し、残部はFeおよび不可避的不純物からなり、圧延方向および/または圧延方向から90°方向のヤング率が220GPa以上であり、調質度がT3〜T4であることを特徴とする缶用鋼板が開示されている。
0.4≦(Nb/C)×(12/93)≦2.5・・・(1)
ただし、Nb、Cは含有量(質量%)を示す。
In Patent Document 2, in mass%, C: 0.0050% or more and 0.0100% or less, Si: 0.050% or less, Mn: 0.10% or more and 1.00% or less, P: 0.030% S: 0.020% or less, Al: 0.010% or more and 0.100% or less, N: 0.0010% or more and 0.0050% or less, Nb: 0.020% or more and 0.120% or less The content of C and Nb satisfies the following formula (1), the balance is Fe and inevitable impurities, the Young's modulus in the 90 ° direction from the rolling direction and / or the rolling direction is 220 GPa or more, and the tempering A steel plate for cans characterized in that the degree is T3 to T4 is disclosed.
0.4 ≦ (Nb / C) × (12/93) ≦ 2.5 (1)
However, Nb and C show content (mass%).

特許文献3には、C:0.01wt%以下と、N:0.04wt%以下とを、それらの合計量につき0.008wt%以上で含み、Mn:0.05wt%以上、2.0wt%以下、Al:0.005wt%以下及びO:0.01wt%以下を含有し、残部は鉄及び不可避的不純物の組成になる鋼片を素材として、Ar変態点以上、950℃以下の温度範囲の仕上げ圧延温度で熱間圧延し、400℃以上600℃以下の温度範囲でコイルに巻取ったのち、酸洗を経て冷間圧延を施し、ついで再結晶温度以上の温度で連続焼鈍を行い、その後圧下率5%以上の調質圧延を施すことを特徴とする高強度缶用鋼板の製造方法が開示されている。 Patent Document 3 includes C: 0.01 wt% or less and N: 0.04 wt% or less in a total amount of 0.008 wt% or more, Mn: 0.05 wt% or more, 2.0 wt% Hereinafter, a steel slab containing Al: 0.005 wt% or less and O: 0.01 wt% or less, with the balance being a composition of iron and inevitable impurities, and a temperature range from Ar 3 transformation point to 950 ° C. After hot rolling at a finish rolling temperature of, wound on a coil in a temperature range of 400 ° C. or higher and 600 ° C. or lower, subjected to cold rolling after pickling, and then subjected to continuous annealing at a temperature higher than the recrystallization temperature, A method for producing a steel plate for high-strength cans is disclosed, which is then subjected to temper rolling with a rolling reduction of 5% or more.

特許文献4には、組成が重量比で、C:0.01%以下、Si:0.2%以下、Mn:0.6〜0.1%、P:0.02%以下、S:0.02%以下、Al:0.005%以下、N:0.03〜0.001%、O:0.003%以下を含有し、残部は実質的にFeよりなる連続鋳造鋼片を用い、熱間圧延、酸洗、冷間圧延及び連続焼鈍を施した後に、さらに調質圧延を施して缶用鋼板を得ることを特徴とする缶用鋼板の製造方法が開示されている。   In Patent Document 4, the composition is by weight, C: 0.01% or less, Si: 0.2% or less, Mn: 0.6 to 0.1%, P: 0.02% or less, S: 0 0.02% or less, Al: 0.005% or less, N: 0.03 to 0.001%, O: 0.003% or less, and the balance is a continuous cast steel slab substantially made of Fe, A method for producing a steel plate for cans is disclosed, wherein after hot rolling, pickling, cold rolling and continuous annealing, temper rolling is further performed to obtain a steel plate for cans.

特開2010−180423号公報JP 2010-180423 A 特開2013−139626号公報JP 2013-139626 A 特開平5−345926号公報JP-A-5-345926 特開平6−116647号公報JP-A-6-116647

しかし、上記特許文献1〜4に開示された技術には下記に示す課題が挙げられる。例えば、特許文献1に開示された技術では、B添加のため、成形性が不十分である、フェライト相の結晶粒径が7〜12μmと比較的大きいためにネック加工時にストレッチャーストレイン起因のしわが出やすいという課題がある。   However, the techniques disclosed in Patent Documents 1 to 4 include the following problems. For example, in the technology disclosed in Patent Document 1, due to the addition of B, the formability is insufficient, and the ferrite phase has a relatively large crystal grain size of 7 to 12 μm. There is a problem that it tends to occur.

特許文献2では、調質度T3〜T4までの硬さしか得られず、さらに薄肉化する場合や、より高い缶体強度が必要な場合など、T4を超える鋼板強度が要求される場合には適用できないという課題がある。   In patent document 2, only the hardness to tempering degree T3-T4 is obtained, and when the steel plate intensity exceeding T4 is requested | required, such as when further thinning or a higher can body strength is required. There is a problem that it cannot be applied.

特許文献3では、Al量が少ないために安定して脱酸することが困難で、介在物が増加することで成形性が低下する課題がある。   In patent document 3, since there is little Al amount, it is difficult to deoxidize stably and there exists a subject that a moldability falls by the inclusion increasing.

特許文献4では、特許文献3と同様に、Al量が少ないために安定して脱酸することが困難で、介在物が増加することで成形性が低下する課題がある。   In patent document 4, similarly to patent document 3, since there is little Al amount, it is difficult to deoxidize stably, and there exists a subject that a moldability falls by the inclusion increasing.

本発明は、かかる事情に鑑みなされたもので、良好な成形性を有し、耐座屈特性に優れた缶用鋼板およびその製造方法を提供することを目的とする。   This invention is made | formed in view of this situation, and it aims at providing the steel plate for cans which has favorable moldability and was excellent in the buckling-proof characteristic, and its manufacturing method.

本発明者らは、前記課題を解決するために鋭意研究を行った。その結果、成分組成、硬さ、圧延直角方向のヤング率を特定の範囲内とすることで優れた缶用鋼板が得られることを見出し、本発明を完成した。   The present inventors have intensively studied to solve the above problems. As a result, the inventors found that an excellent steel plate for cans can be obtained by setting the component composition, hardness, and Young's modulus in the direction perpendicular to the rolling to be in a specific range, and completed the present invention.

前記課題を解決するための第1発明は、質量%で、C:0.0030%超0.0100%以下、Si:0.05%以下、Mn:0.10%以上1.00%以下、P:0.030%以下、S:0.020%以下、Al:0.010%以上0.100%以下、N:0.0050%以下、Nb:0.010%以上0.080%以下を含有し、CおよびNbの含有量が下記式(1)を満足し、残部はFeおよび不可避的不純物からなる成分組成を有し、HR30T硬さが64超で、圧延直角方向のヤング率が230GPa以上であることを特徴とする缶用鋼板である。
0.15≦([Nb]/92.9)/([C]/12)≦1.50 ・・・式(1)
式(1)において[Nb]、[C]はそれぞれNb、Cの含有量(質量%)
1st invention for solving the said subject is the mass%, C: more than 0.0030% 0.0100% or less, Si: 0.05% or less, Mn: 0.10% or more and 1.00% or less, P: 0.030% or less, S: 0.020% or less, Al: 0.010% or more and 0.100% or less, N: 0.0050% or less, Nb: 0.010% or more and 0.080% or less And the content of C and Nb satisfies the following formula (1), the remainder has a component composition composed of Fe and inevitable impurities, the HR30T hardness is more than 64, and the Young's modulus in the direction perpendicular to the rolling is 230 GPa. It is the steel plate for cans characterized by the above.
0.15 ≦ ([Nb] /92.9) / ([C] / 12) ≦ 1.50 (1)
In the formula (1), [Nb] and [C] are the contents (mass%) of Nb and C, respectively.

前記課題を解決するための第2発明は、第1発明に記載の缶用鋼板であって、更に、圧延直角方向の伸びが10%以上であることを特徴とする。   A second invention for solving the above-mentioned problems is the steel plate for cans according to the first invention, wherein the elongation in the direction perpendicular to the rolling is 10% or more.

前記課題を解決するための第3発明は、第1発明又は第2発明に記載の缶用鋼板であって、鋼組織としてフェライト相を含有し、フェライト平均結晶粒径が7.0μm以下であることを特徴とする。   3rd invention for solving the said subject is a steel plate for cans as described in 1st invention or 2nd invention, Comprising: A ferrite phase is contained as steel structure, A ferrite average crystal grain diameter is 7.0 micrometers or less. It is characterized by that.

前記課題を解決するための第4発明は、第1発明〜第3発明のいずれかに記載の缶用鋼板の製造方法であって、第1発明に記載の成分組成を有する鋼スラブを加熱温度1100℃以上で加熱し、熱延仕上げ温度850℃以上950℃以下で熱間圧延した後、巻取り温度500℃以上700℃以下で巻取り、圧下率85%以上で一次冷間圧延し、焼鈍温度700℃以上800℃以下で焼鈍し、圧下率6.0%超20%以下で二次冷間圧延を行うことを特徴とする缶用鋼板の製造方法である。   4th invention for solving the said subject is a manufacturing method of the steel plate for cans in any one of 1st invention-3rd invention, Comprising: Heating temperature of the steel slab which has a component composition as described in 1st invention After heating at 1100 ° C or higher, hot rolling at a hot rolling finish temperature of 850 ° C or higher and 950 ° C or lower, winding at a winding temperature of 500 ° C or higher and 700 ° C or lower, and primary cold rolling at a rolling reduction of 85% or higher, and annealing. A method for producing a steel plate for cans, comprising annealing at a temperature of 700 ° C. to 800 ° C. and performing secondary cold rolling at a rolling reduction of more than 6.0% and not more than 20%.

なお、本発明において、耐座屈特性はパネリング強度及びデント強度により評価される特性である。   In the present invention, the buckling resistance is a characteristic evaluated by paneling strength and dent strength.

本発明の缶用鋼板は良好な成形性を有し、耐座屈特性に優れる。   The steel plate for cans of the present invention has good formability and excellent buckling resistance.

本発明の缶用鋼板を用いれば、外圧に対する缶胴部のパネリング強度が製缶および飲料メーカーが設けている基準値(約0.150MPa)より高く、さらに良好なデント強度を持つ缶体を容易に製造することが出来る。したがって、本発明によれば、食缶や飲料缶等に使用される缶体の剛性が向上し、鋼板の更なる薄肉化が可能になり、省資源化および低コスト化を達成することができ、産業上格段の効果を奏する。   If the steel plate for cans of the present invention is used, the paneling strength of the can body against the external pressure is higher than the reference value (about 0.150 MPa) provided by the can and beverage manufacturers, and a can body having better dent strength can be easily obtained. Can be manufactured. Therefore, according to the present invention, the rigidity of the can used for food cans, beverage cans, and the like is improved, and the steel sheet can be further thinned to achieve resource saving and cost reduction. It has a remarkable industrial effect.

以下、本発明を詳細に説明する。
本発明の缶用鋼板は、質量%で、C:0.0030%超0.0100%以下、Si:0.05%以下、Mn:0.10%以上1.00%以下、P:0.030%以下、S:0.020%以下、Al:0.010%以上0.100%以下、N:0.0050%以下、Nb:0.010%以上0.080%以下を含有し、CおよびNbの含有量が下記式(1)を満足し、残部はFeおよび不可避的不純物からなる成分組成を有し、HR30T硬さが64超で、圧延直角方向のヤング率が230GPa以上である。
0.15≦([Nb]/92.9)/([C]/12)≦1.50 ・・・式(1)
式(1)において[Nb]、[C]はそれぞれNb、Cの含有量(質量%)
そして、本発明の缶用鋼板は、上記成分組成を有する鋼スラブを、加熱温度1100℃以上で加熱し、熱延仕上げ温度850℃以上950℃以下で熱間圧延した後、巻取り温度500℃以上700℃以下で巻取り、圧下率85%以上で一次冷間圧延し、焼鈍温度700℃以上800℃以下で焼鈍し、圧下率6.0%超20%以下で二次冷間圧延を行う製造方法で製造することが好ましい。
Hereinafter, the present invention will be described in detail.
The steel plate for cans of the present invention is, by mass%, C: more than 0.0030% and 0.0100% or less, Si: 0.05% or less, Mn: 0.10% or more and 1.00% or less, P: 0.00. 030% or less, S: 0.020% or less, Al: 0.010% or more and 0.100% or less, N: 0.0050% or less, Nb: 0.010% or more and 0.080% or less, C And the content of Nb satisfies the following formula (1), the balance has a component composition consisting of Fe and inevitable impurities, the HR30T hardness is more than 64, and the Young's modulus in the direction perpendicular to the rolling is 230 GPa or more.
0.15 ≦ ([Nb] /92.9) / ([C] / 12) ≦ 1.50 (1)
In the formula (1), [Nb] and [C] are the contents (mass%) of Nb and C, respectively.
And the steel plate for cans of this invention heats the steel slab which has the said component composition at the heating temperature of 1100 degreeC or more, and hot-rolls at the hot rolling finishing temperature of 850 degreeC or more and 950 degrees C or less, Then, coiling temperature 500 degreeC Winding at 700 ° C. or lower, primary cold rolling at a rolling reduction of 85% or higher, annealing at an annealing temperature of 700 ° C. or higher and 800 ° C. or lower, and performing secondary cold rolling at a rolling reduction of 6.0% or higher and 20% or lower. It is preferable to manufacture by a manufacturing method.

本発明の成分組成について説明する。各成分の含有量について%は質量%を意味する。   The component composition of the present invention will be described. % Means mass% with respect to the content of each component.

C:0.0030%超0.0100%以下
Cは本発明において特に重要な元素である。固溶Cとして存在すること及びNbCのピン止め効果によるフェライト結晶粒径の細粒化により硬度が上昇し、さらに鋼板の集合組織が発達し、圧延直角方向(以下、C方向とも称する。)のヤング率が向上する。また、C自体でもフェライト結晶粒径の微細化にも効果がある。これらの効果を得るためにはC含有量を0.0030%超とする必要がある。特に溶接部の軟化防止やフェライト結晶粒径の細粒化による硬度上昇の観点からは、0.0040%以上とすることが好ましく、0.0050%超とすることがさらに好ましい。一方、0.0100%を超えて含有すると、集合組織の発達が阻害されてヤング率が低下する。さらに、伸びが低下し、その結果成形性が低下するため、上限を0.0100%とする。特にフランジ加工性の向上の観点から0.0080%以下とすることが好ましい。
C: more than 0.0030% and 0.0100% or less C is an especially important element in the present invention. The hardness increases due to the presence of solute C and the refinement of the ferrite crystal grain size due to the pinning effect of NbC, and further the texture of the steel sheet develops, in the direction perpendicular to the rolling direction (hereinafter also referred to as C direction). Young's modulus is improved. C itself is also effective in reducing the ferrite crystal grain size. In order to obtain these effects, the C content needs to exceed 0.0030%. In particular, from the viewpoint of preventing the weld from being softened and increasing the hardness by reducing the ferrite crystal grain size, the content is preferably 0.0040% or more, and more preferably more than 0.0050%. On the other hand, if the content exceeds 0.0100%, the development of the texture is inhibited and the Young's modulus decreases. Furthermore, since elongation decreases and as a result moldability falls, the upper limit is made 0.0100%. In particular, it is preferably 0.0080% or less from the viewpoint of improving the flange workability.

Nb:0.010%以上0.080%以下
Nbは本発明において、Cと共に最も重要な役割を有する元素である。すなわち、NbCを生成して硬さ向上に寄与するだけではなく、ピン止め効果により焼鈍板のフェライト結晶粒径を微細化することでも硬度の上昇に寄与する。同時に熱延板のフェライト結晶粒径微細化により、鋼板の集合組織が発達し、C方向ヤング率が向上する。これらの効果を得るため、Nbは0.010%以上とする必要がある。さらに0.015%以上とすることが好ましい。一方、0.080%を超えると、NbCが粗大化しやすくなり、硬さが低下するのに加え、ピン止め効果が小さくなりフェライト結晶粒径が粗大になることでも硬度が低下する。このため、上限を0.080%とする。好ましくは0.060%以下である。
Nb: 0.010% or more and 0.080% or less Nb is an element having the most important role together with C in the present invention. That is, not only NbC is generated and contributes to the improvement in hardness, but also the refinement of the ferrite crystal grain size of the annealed plate by the pinning effect contributes to the increase in hardness. At the same time, the refinement of the ferrite crystal grain size of the hot-rolled sheet develops a texture of the steel sheet and improves the C-direction Young's modulus. In order to obtain these effects, Nb needs to be 0.010% or more. Furthermore, it is preferable to set it as 0.015% or more. On the other hand, if it exceeds 0.080%, NbC tends to be coarsened and the hardness is lowered. In addition, the pinning effect is reduced and the ferrite crystal grain size is also coarsened, so that the hardness is lowered. For this reason, the upper limit is made 0.080%. Preferably it is 0.060% or less.

0.15≦([Nb]/92.9)/([C]/12)≦1.50([Nb]、[C]はそれぞれNb、Cの含有量(質量%))
本発明において、CおよびNbはそれぞれの含有量を所定の範囲内とすることに加え、バランスを調節することで、硬度、C方向ヤング率、成形性をバランスよく向上させることが出来る。([Nb]/92.9)/([C]/12)が0.15より低い場合、固溶Cが過剰になり、集合組織の発達が阻害されてC方向ヤング率が低下する。加えて、ネック加工時にしわが発生しやすくなり、また、フランジ加工性が低下する。
([Nb]/92.9)/([C]/12)が1.50を超えると、NbCが粗大化し硬さが低下することに加え、ピン止め効果が小さくなることで焼鈍板でのフェライト結晶粒径が粗大化しさらに硬度が低下する。また、固溶Cが著しく低下するため、(001)[1−10]〜(112)[1−10]方位が発達しなくなり、C方向ヤング率が低下する。([Nb]/92.9)/([C]/12)は0.4未満とすることが好ましい。
0.15 ≦ ([Nb] /92.9) / ([C] / 12) ≦ 1.50 ([Nb] and [C] are Nb and C contents (mass%), respectively)
In the present invention, the content of C and Nb can be adjusted within a predetermined range, and by adjusting the balance, the hardness, C-direction Young's modulus, and moldability can be improved in a balanced manner. When ([Nb] /92.9) / ([C] / 12) is lower than 0.15, the solute C becomes excessive, the texture development is inhibited, and the C-direction Young's modulus decreases. In addition, wrinkles are likely to occur during neck processing, and flange workability is reduced.
When ([Nb] /92.9) / ([C] / 12) exceeds 1.50, NbC becomes coarse and the hardness decreases, and in addition, the pinning effect is reduced, resulting in a reduction in the annealing plate. The ferrite crystal grain size becomes coarse and the hardness further decreases. Further, since the solid solution C is remarkably reduced, the (001) [1-10] to (112) [1-10] orientation is not developed, and the C-direction Young's modulus is reduced. ([Nb] /92.9) / ([C] / 12) is preferably less than 0.4.

Si:0.05%以下
Siは多量に添加すると、表面濃化により表面処理性が劣化し、耐食性が低下するため、0.05%以下とする必要がある。好ましくは0.02%以下である。
Si: 0.05% or less When Si is added in a large amount, surface treatment properties are deteriorated due to surface concentration, and the corrosion resistance is lowered. Preferably it is 0.02% or less.

Mn:0.10%以上1.00%以下
Mnは、固溶強化により鋼板の硬さを向上させる効果や、MnSを形成することで、鋼中に含まれるSに起因する熱間延性の低下を防止する効果がある。この効果を得るためには0.10%以上添加が必要である。さらにMnは熱延板のフェライト結晶粒径を微細化し、鋼板の集合組織の発達に寄与することで、C方向ヤング率を向上させる効果がある。この観点からは、0.25%以上とすることが好ましい。さらに好ましくは0.40%以上である。一方、Mnが1.00%を超えると、焼鈍時に集合組織が発達しにくくなりC方向ヤング率が低下するため、上限を1.00%とする。好ましくは0.60%以下である。
Mn: 0.10% or more and 1.00% or less Mn is an effect of improving the hardness of a steel sheet by solid solution strengthening, and a decrease in hot ductility due to S contained in steel by forming MnS. There is an effect to prevent. In order to obtain this effect, addition of 0.10% or more is necessary. Further, Mn has the effect of improving the C-direction Young's modulus by refining the ferrite crystal grain size of the hot-rolled sheet and contributing to the development of the texture of the steel sheet. From this point of view, the content is preferably 0.25% or more. More preferably, it is 0.40% or more. On the other hand, if Mn exceeds 1.00%, the texture does not easily develop during annealing and the C-direction Young's modulus decreases, so the upper limit is made 1.00%. Preferably it is 0.60% or less.

P:0.030%以下
Pは、多量に添加すると過剰な硬質化や中央偏析により成形性が低下したり、耐食性が低下する。このためPの上限は0.030%とする。好ましくは0.020%以下である。一方、硬さを向上させる効果があるため、0.010%以上添加することが好ましい。
P: 0.030% or less When P is added in a large amount, formability is reduced due to excessive hardening or central segregation, and corrosion resistance is reduced. Therefore, the upper limit of P is 0.030%. Preferably it is 0.020% or less. On the other hand, since it has the effect of improving hardness, it is preferable to add 0.010% or more.

S:0.020%以下
Sは、鋼中で硫化物を形成して熱間延性を低下させる。よって、Sの上限は0.020%とする。好ましくは0.015%以下である。一方、孔食を抑制する効果があるため、0.008%以上添加することが好ましい。
S: 0.020% or less S forms sulfides in steel and reduces hot ductility. Therefore, the upper limit of S is 0.020%. Preferably it is 0.015% or less. On the other hand, since it has the effect of suppressing pitting corrosion, it is preferable to add 0.008% or more.

Al:0.010%以上0.100%以下
Alは、脱酸剤として添加される元素である。また、NとAlNを形成することにより、鋼中の固溶Nを減少させ、成形性や耐時効性を向上させる効果を有する。この効果を得るためには0.010%以上の添加が必要である。Nb窒化物が生成すると有効なNb量が低下するため、優先的にAlNを生成させることが好ましく、この観点から0.050%以上とすることが好ましい。Alを過剰に添加しても、上記効果が飽和するだけでなく、アルミナなどの介在物が著しく増加して成形性が低下する。このため、Alの上限は0.100%である。
Al: 0.010% or more and 0.100% or less Al is an element added as a deoxidizer. Moreover, by forming N and AlN, it has the effect of reducing the solid solution N in steel and improving the formability and aging resistance. In order to obtain this effect, 0.010% or more must be added. When Nb nitride is generated, the effective amount of Nb is reduced, so that it is preferable to generate AlN preferentially, and from this point of view, it is preferably 0.050% or more. Even if Al is added excessively, not only the above effect is saturated, but also inclusions such as alumina are remarkably increased and formability is lowered. For this reason, the upper limit of Al is 0.100%.

N:0.0050%以下
NはAlやNb等と結合して窒化物や炭窒化物を形成し、硬度を上昇させる一方で、熱間延性を低下させるため、含有量は少ないほど好ましい。N含有量は少ないほうが好ましいが、0.0010%未満としても、C方向ヤング率への効果が飽和するだけではなく、窒化物による硬度上昇効果が得られなくなるおそれがあるため、下限を0.0010%とすることが好ましい。また、Nが多量に添加されると、鋼板の集合組織の発達が阻害されC方向ヤング率が低下するため、上限を0.0050%とする必要がある。好ましくは、0.0030%未満である。
N: 0.0050% or less N is combined with Al, Nb or the like to form nitrides or carbonitrides, and increases hardness, while decreasing hot ductility. Therefore, the smaller the content, the better. A lower N content is preferable, but even if it is less than 0.0010%, not only the effect on the Young's modulus in the C direction is saturated, but also the effect of increasing the hardness due to nitrides may not be obtained, so the lower limit is set to 0. It is preferable to set it to 0010%. Further, when N is added in a large amount, the development of the texture of the steel sheet is inhibited and the C-direction Young's modulus is lowered, so the upper limit needs to be made 0.0050%. Preferably, it is less than 0.0030%.

成分組成の残部はFeおよび不可避的不純物である。   The balance of the component composition is Fe and inevitable impurities.

次に、本発明の材質特性について説明する。   Next, the material characteristics of the present invention will be described.

HR30T硬さ:64超
缶の落下、自動販売機内の搬送、缶の積み重ね等により荷重を受けた際の塑性変形を防止するためには鋼板を硬質化させることが必要である。このため、ロックウェルスーパーフィシャル硬さ(スケール30T、HR30T)で64超とする必要がある。好ましくは66超である。特に上限は定めないが、過剰に硬さが高いと成形性が低下するおそれがあるため、72以下とすることが好ましい。
HR30T hardness: It is necessary to harden the steel plate in order to prevent plastic deformation when it receives a load due to dropping of over-64 cans, transportation in a vending machine, stacking of cans, and the like. For this reason, Rockwell superficial hardness (scale 30T, HR30T) needs to exceed 64. Preferably it is more than 66. An upper limit is not particularly defined, but if the hardness is excessively high, the moldability may be lowered.

本発明では、JIS Z 2245のロックウェル硬さ試験方法に準拠して、JIS G 3315に規定された位置におけるロックウェルスーパーフィシャル30T硬さ(HR30T)を測定する。   In the present invention, the Rockwell Superficial 30T hardness (HR30T) at the position defined in JIS G 3315 is measured in accordance with the Rockwell hardness test method of JIS Z 2245.

圧延直角方向(C方向)のヤング率:230GPa以上
缶胴周方向が圧延直角方向になる3ピース缶では、C方向のヤング率を向上させることにより、缶胴部のパネリング強度を高めることができる。このため、C方向のヤング率を230GPa以上とする必要がある。好ましくは235GPa以上である。上述の成分組成において、後述の製造方法により、集合組織を発達させて、C方向ヤング率を230GPa以上とすることが好ましい。
Young's modulus in the direction perpendicular to rolling (C direction): 230 GPa or more In a three-piece can in which the circumferential direction of the can body is perpendicular to the rolling direction, the paneling strength of the can body can be increased by improving the Young's modulus in the C direction. . For this reason, the C direction Young's modulus needs to be 230 GPa or more. Preferably it is 235 GPa or more. In the above-described component composition, it is preferable that the texture is developed by the manufacturing method described later so that the C-direction Young's modulus is 230 GPa or more.

本発明では以下の方法によりヤング率を測定する。圧延方向に対して90°方向を長手方向として10×35mmの試験片を切り出し、横振動型の共振周波数測定装置を用いて、American Society for Testing Materialsの基準(C1259)に従い、C方向のヤング率(GPa)を測定する。   In the present invention, Young's modulus is measured by the following method. A 10 × 35 mm test piece with the 90 ° direction as the longitudinal direction with respect to the rolling direction was cut out, and the Young's modulus in the C direction was measured using a lateral vibration type resonance frequency measuring device in accordance with American Society for Testing Materials standard (C1259). (GPa) is measured.

圧延直角方向(C方向)の伸び:10%以上
ネック加工でのしわやフランジ加工でのわれを防止する観点、即ち、成形性向上の観点から、圧延直角方向の伸びを10%以上とすることが好ましい。製缶性を向上する観点からは、15%以上とすることがより好ましい。
Elongation in the direction perpendicular to the rolling direction (C direction): 10% or more From the viewpoint of preventing wrinkling in necking and cracking in flange processing, that is, from the viewpoint of improving formability, the elongation in the direction perpendicular to rolling should be 10% or more. Is preferred. From the viewpoint of improving canability, the content is more preferably 15% or more.

本発明において伸びは以下のように測定する。圧延直角方向を長手にJIS 5号試験片を採取し、JIS Z 2241に準拠して引張試験を行い、伸び(全伸び)を測定する。   In the present invention, the elongation is measured as follows. A JIS No. 5 test piece is taken with the direction perpendicular to the rolling as the longitudinal direction, a tensile test is performed in accordance with JIS Z 2241, and the elongation (total elongation) is measured.

本発明においては、鋼の成分と製造条件を所定の範囲とすることで、良好なHR30T、圧延直角方向のヤング率と圧延直角方向の伸びを得ることが出来る。特に成分としてはC、Nb、並びにCとNbのバランスである([Nb]/92.9)/([C]/12)を所定の範囲とすること重要である。
製造条件としては、特に二次冷間圧延圧下率を6.0%超20%以下とすることが重要である。これらにより64超のHR30T硬さ、230GPa以上の圧延直角方向のヤング率を兼ね備えた鋼板を得ることが出来る。
In the present invention, by setting the steel components and production conditions within a predetermined range, good HR30T, Young's modulus in the direction perpendicular to the rolling, and elongation in the direction perpendicular to the rolling can be obtained. In particular, it is important to set C, Nb, and the balance of C and Nb as components ([Nb] /92.9) / ([C] / 12) within a predetermined range.
As production conditions, it is particularly important that the secondary cold rolling reduction is more than 6.0% and not more than 20%. By these, it is possible to obtain a steel sheet having an HR30T hardness of more than 64 and a Young's modulus in the direction perpendicular to the rolling of 230 GPa or more.

フェライト平均結晶粒径:7.0μm以下
フェライト相の平均結晶粒径を微細にすることで、硬さを向上させることができ、さらにネック加工でのしわの発生を防止することが出来る。このため、缶用鋼板は鋼組織としてフェライト相を含有し、フェライト平均結晶粒径を7.0μm以下とすることが好ましい。硬さ向上の観点からは、フェライト平均結晶粒径を6.0μm未満にすることがより好ましい。
Ferrite average crystal grain size: 7.0 μm or less By making the average crystal grain size of the ferrite phase fine, the hardness can be improved and the generation of wrinkles in necking can be prevented. For this reason, it is preferable that the steel plate for cans contains a ferrite phase as a steel structure, and a ferrite average crystal grain diameter shall be 7.0 micrometers or less. From the viewpoint of improving the hardness, it is more preferable that the ferrite average crystal grain size is less than 6.0 μm.

本発明においてフェライト相の平均結晶粒径は、圧延方向に平行な板厚断面について、JIS G 0551に記載の切断法に準じて求める。   In the present invention, the average crystal grain size of the ferrite phase is determined according to the cutting method described in JIS G 0551 with respect to the plate thickness section parallel to the rolling direction.

本発明の缶用鋼板の鋼組織はフェライト相単相でもよいし、フェライト相及び他の相を含んでもよい。フェライト相及び他の相を含む場合、フェライト相が主相であることが好ましい。そして、前記他の相は面積率の合計で3%以下程度とすることが好ましい。   The steel structure of the steel plate for cans of the present invention may be a single phase of ferrite phase, or may contain a ferrite phase and other phases. When a ferrite phase and other phases are included, the ferrite phase is preferably the main phase. The other phases are preferably about 3% or less in total area ratio.

本発明の缶用鋼板の板厚は特に限定されないが、0.300mm以下が好ましく、0.225mm以下がより好ましい。   Although the plate | board thickness of the steel plate for cans of this invention is not specifically limited, 0.300 mm or less is preferable and 0.225 mm or less is more preferable.

本発明の缶用鋼板は、好ましくは、3ピース缶の製造に使用される。また、本発明の缶用鋼板は、好ましくは、溶接加工を受ける缶の製造に使用される。また、本発明の缶用鋼板は、好ましくは、加熱殺菌処理を受ける缶の製造に使用される。   The steel plate for cans of the present invention is preferably used for the production of 3-piece cans. The steel plate for cans of the present invention is preferably used for the production of cans that undergo welding. Moreover, the steel plate for cans of the present invention is preferably used for production of cans that undergo heat sterilization treatment.

次に本発明の缶用鋼板の製造方法について説明する。本発明の製造方法は、良好な成形性を有し、耐座屈特性に優れる本発明の缶用鋼板の製造に好適である。   Next, the manufacturing method of the steel plate for cans of this invention is demonstrated. The production method of the present invention is suitable for the production of a steel plate for cans of the present invention having good formability and excellent buckling resistance.

本発明の缶用鋼板は、好ましくは、上記成分組成を有する鋼スラブに、加熱温度1100℃以上で加熱し、熱延仕上げ温度850℃以上950℃以下で熱間圧延した後、巻取り温度500℃以上700℃以下で巻取り、圧下率85%以上で一次冷間圧延し、焼鈍温度700℃以上800℃以下で焼鈍し、圧下率6.0%超20%以下で二次冷間圧延を行うことで製造される。   The steel plate for cans of the present invention is preferably heated to a steel slab having the above composition at a heating temperature of 1100 ° C. or higher, hot rolled at a hot rolling finish temperature of 850 ° C. or higher and 950 ° C. or lower, and then a winding temperature of 500 Winding at a temperature of not less than 700 ° C and not more than 700 ° C, primary cold rolling at a rolling reduction of 85% or more, annealing at an annealing temperature of 700 ° C to 800 ° C, and secondary cold rolling at a rolling reduction of more than 6.0% but not more than 20%. Manufactured by doing.

加熱温度:1100℃以上
熱間圧延前の加熱温度が低すぎると、粗大なNbCが残留し、NbCによる析出強化やフェライト結晶粒径の微細化効果による硬度上昇効果が得られないため、下限を1100℃とする。上限は特に規定しないが、加熱温度が高すぎるとスケールが過剰に発生して製品表面の欠陥になるため、上限は1300℃とすることが好ましい。
Heating temperature: 1100 ° C. or more If the heating temperature before hot rolling is too low, coarse NbC remains and the effect of increasing the hardness due to precipitation strengthening by NbC or the effect of refining the ferrite crystal grain size cannot be obtained. 1100 ° C. The upper limit is not particularly defined, but if the heating temperature is too high, excessive scale is generated and defects on the product surface occur, so the upper limit is preferably 1300 ° C.

熱延仕上げ温度:850℃以上950℃以下
熱延仕上げ圧延温度が950℃よりも高くなると、熱延板のフェライト結晶粒径が粗大になり、鋼板の集合組織の発達を阻害し、C方向ヤング率が低下すると共に、焼鈍板のフェライト結晶粒径が粗大になり硬度が低下する。このため、上限を950℃とする。850℃未満となると、Ar変態点以下の圧延となり、粗大粒の生成や加工組織の残存により、集合組織が発達しにくくなりC方向ヤング率が低下するため、下限を850℃とする。好ましい下限は870℃である。
Hot-rolling finishing temperature: 850 ° C. or more and 950 ° C. or less When the hot-rolling finishing rolling temperature is higher than 950 ° C., the ferrite crystal grain size of the hot-rolled sheet becomes coarse and inhibits the development of the texture of the steel sheet. As the rate decreases, the ferrite crystal grain size of the annealed plate becomes coarse and the hardness decreases. For this reason, an upper limit shall be 950 degreeC. When the temperature is lower than 850 ° C., the rolling becomes below the Ar 3 transformation point, and due to the formation of coarse grains and the remaining of the processed structure, the texture does not easily develop and the C-direction Young's modulus decreases, so the lower limit is set to 850 ° C. A preferred lower limit is 870 ° C.

巻取温度:500℃以上700℃以下
巻取温度が700℃を超えると、NbCが粗大化して硬さが低下することに加え、ピン止め効果が小さくなり、焼鈍板のフェライト粒径が粗大になってしまい硬度が低下する。加えて、熱延板のフェライト結晶粒径が粗大になることで鋼板の集合組織の発達は阻害され、C方向ヤング率が低下する。このため、上限を700℃とする。好ましくは630℃以下である。巻取温度が低すぎる場合には、NbCの析出が十分に起こらず析出強化が低下するため、焼鈍板の硬さが低下してしまう。また、固溶Cが過剰となってしまうため、集合組織の発達が阻害されてC方向ヤング率が低下する。このため下限を500℃とする。好ましくは530℃以上である。
Winding temperature: 500 ° C. or more and 700 ° C. or less When the winding temperature exceeds 700 ° C., NbC is coarsened and the hardness is reduced, and the pinning effect is reduced, and the ferrite grain size of the annealed plate is coarse. As a result, the hardness decreases. In addition, when the ferrite crystal grain size of the hot-rolled sheet becomes coarse, the development of the texture of the steel sheet is inhibited, and the C-direction Young's modulus decreases. For this reason, an upper limit shall be 700 degreeC. Preferably it is 630 degrees C or less. When the coiling temperature is too low, the precipitation of NbC does not occur sufficiently and the precipitation strengthening decreases, so the hardness of the annealed plate decreases. Moreover, since the solute C becomes excessive, the development of the texture is inhibited and the C-direction Young's modulus is lowered. For this reason, a lower limit shall be 500 degreeC. Preferably it is 530 degreeC or more.

一次冷間圧延圧下率:85%以上
一次冷間圧延の前に表層スケールを除去する。表層スケールの除去方法は特に限定するものではなく、酸洗や物理的な除去等、各種の常法が適用できるが、酸洗により好適に除去できる。酸洗の場合の条件も特に限定するものではなく、常法により酸洗すればよい。一次冷間圧延の圧下率は、鋼板の集合組織の発達によるC方向ヤング率向上のため85%以上とする。集合組織の発達の観点からより好ましくは87%以上である。圧下率85%未満では、集合組織が十分に発達せず、C方向ヤング率が低下することに加え、フェライト結晶粒径が粗大化して所定の硬度が得られない。
Primary cold rolling reduction ratio: 85% or more The surface scale is removed before the primary cold rolling. The method for removing the surface scale is not particularly limited, and various conventional methods such as pickling and physical removal can be applied, but it can be suitably removed by pickling. The conditions for pickling are not particularly limited, and may be pickled by a conventional method. The reduction ratio of primary cold rolling is set to 85% or more in order to improve the Young's modulus in the C direction due to the development of the texture of the steel sheet. More preferably, it is 87% or more from the viewpoint of texture development. When the rolling reduction is less than 85%, the texture does not develop sufficiently, the C-direction Young's modulus decreases, and the ferrite crystal grain size becomes coarse, so that a predetermined hardness cannot be obtained.

焼鈍温度:700℃以上800℃以下
鋼板の集合組織の制御および成形性の向上の観点から、再結晶温度以上にて焼鈍する。この観点から、焼鈍温度の下限は700℃とする。焼鈍温度が高すぎると、フェライト結晶粒径が粗大となり、また、NbCも粗大化して、硬さが低下するため、焼鈍温度は800℃以下とする。焼鈍方法は限定するものではないが、材質の均一性の観点から連続焼鈍法が好ましい。フェライト結晶粒の成長による集合組織の発達の観点からは10秒以上の均熱をおこなうことが好ましい。
Annealing temperature: 700 ° C. or higher and 800 ° C. or lower Annealing is performed at a recrystallization temperature or higher from the viewpoint of controlling the texture of the steel sheet and improving formability. From this viewpoint, the lower limit of the annealing temperature is 700 ° C. If the annealing temperature is too high, the ferrite crystal grain size becomes coarse, and NbC also becomes coarse and the hardness decreases. Therefore, the annealing temperature is set to 800 ° C. or less. Although the annealing method is not limited, the continuous annealing method is preferable from the viewpoint of material uniformity. From the viewpoint of texture development due to the growth of ferrite crystal grains, it is preferable to perform soaking for 10 seconds or more.

二次冷間圧延圧下率:6.0%超20%以下
焼鈍後の鋼板は、缶体強度を確保するため十分な硬さを備えることが必要である。この観点から、二次圧延率を6.0%超とする。過度な圧下率の二次圧延では、成形性が低下するおそれがあるため、20%以下とすることが好ましい。成形性の観点から15.0%以下とすることがより好ましい。
Secondary cold rolling reduction: More than 6.0% and not more than 20% The steel sheet after annealing needs to have sufficient hardness to ensure the strength of the can body. From this point of view, the secondary rolling rate is set to more than 6.0%. In secondary rolling with an excessive reduction, there is a possibility that formability may be lowered, and therefore, it is preferably 20% or less. From the viewpoint of moldability, it is more preferably 15.0% or less.

以上の他、本発明の缶用鋼板の製造方法は適宜他の工程を含んでもよい。例えば、ラミネート等の樹脂膜被覆工程等がある。   In addition to the above, the method for producing a steel plate for cans of the present invention may include other steps as appropriate. For example, there is a resin film coating process such as laminating.

以下、本発明の実施例を説明する。本発明の技術的範囲は以下の実施例に限定されない。   Examples of the present invention will be described below. The technical scope of the present invention is not limited to the following examples.

表1に示す鋼記号A〜Qの成分を含有し、残部がFeおよび不可避的不純物からなる鋼を溶製し、鋼スラブを得た。表2に示す条件にて、得られた鋼スラブを加熱後、熱間圧延して巻取り、酸洗にてスケールを除去した後、一次冷間圧延し、連続焼鈍炉にて各焼鈍温度にて15秒の均熱をして冷却後、二次冷間圧延を施して、鋼板(鋼板記号1〜29)を得た。以上より得られた鋼板に対して、塗装焼付け相当の熱処理として210℃、20minの熱処理を行った後、以下の方法で特性評価を行った。   Steel slabs were obtained by melting steel containing the components of steel symbols A to Q shown in Table 1, with the balance being Fe and inevitable impurities. Under the conditions shown in Table 2, the obtained steel slab was heated, hot-rolled and wound up, scales were removed by pickling, primary cold-rolled, and each annealing temperature was adjusted in a continuous annealing furnace. After cooling by soaking for 15 seconds, secondary cold rolling was performed to obtain steel plates (steel plate symbols 1 to 29). The steel sheet obtained above was subjected to a heat treatment at 210 ° C. for 20 minutes as a heat treatment corresponding to paint baking, and then the characteristics were evaluated by the following methods.

ヤング率の評価は圧延方向に対して90°方向を長手方向として10×35mmの試験片を切り出し、横振動型の共振周波数測定装置を用いて、American Society for Testing Materialsの基準(C1259)に従い、C方向のヤング率(GPa)を測定した。   The Young's modulus was evaluated by cutting out a 10 × 35 mm test piece with the 90 ° direction as a longitudinal direction with respect to the rolling direction, and using a transverse vibration type resonance frequency measuring device in accordance with American Society for Testing Materials standards (C1259). The Young's modulus (GPa) in the C direction was measured.

JIS Z 2245のロックウェル硬さ試験方法に準拠して、JIS G 3315に規定された位置におけるロックウェルスーパーフィシャル30T硬さ(HR30T)を測定した。   Based on the Rockwell hardness test method of JIS Z 2245, the Rockwell superficial 30T hardness (HR30T) at the position defined in JIS G 3315 was measured.

圧延直角方向を長手にJIS 5号試験片を採取し、JIS Z 2241に準拠して、引張試験を行い、伸び(全伸び)を測定した。   A JIS No. 5 test piece was taken with the direction perpendicular to the rolling as the longitudinal direction, a tensile test was performed in accordance with JIS Z 2241, and the elongation (total elongation) was measured.

フェライト相の平均結晶粒径は、圧延方向に平行な板厚断面について、JIS G 0551に記載の切断法に準じて求めた。   The average crystal grain size of the ferrite phase was determined according to the cutting method described in JIS G 0551 for the plate thickness cross section parallel to the rolling direction.

(成形性の評価並びにパネリング強度及びデント強度の測定)
ネック・フランジ加工性(成形性)と耐座屈特性を評価するため、飲料缶で適用されている3ピース缶と同様の缶体を成形した。即ち、得られた鋼板を用いてシーム溶接によって外径52.8mmの缶胴成形を行い、端部を外径50.4mmまでネックイン加工した後に外径55.4mmまでフランジ加工を行って缶体を形成した。ネック加工時に顕著なしわが発生した、または、フランジ加工部で割れが発生した場合を×、しわの発生がない、かつ、割れの発生がないものを◎、しわの発生が実用上問題ないものであり、かつ、割れが発生しない場合を○と評価した。
(Evaluation of formability and measurement of paneling strength and dent strength)
In order to evaluate the neck / flange processability (formability) and the buckling resistance, a can body similar to a three-piece can applied to a beverage can was formed. That is, a can body having an outer diameter of 52.8 mm was formed by seam welding using the obtained steel plate, and the end portion was necked in to an outer diameter of 50.4 mm, and then flanged to an outer diameter of 55.4 mm. Formed body. X is marked when wrinkles are noticed during neck processing or cracks occur in the flanged part, ◎ when there are no wrinkles and no cracks, and wrinkles are practically not a problem The case where there was a crack and it did not generate was evaluated as ○.

ネック・フランジ加工性が良好な缶体については、蓋を巻き締めた後に、さらに2通りの耐座屈特性(デント強度、パネリング強度)を評価した。   For cans with good neck and flange workability, after buckling the lid, two further buckling resistance properties (dent strength and paneling strength) were evaluated.

デント強度:溶接部の反対側となる缶胴部中央に対して、先端半径5mm、長さ40mmの圧子を、圧子の長さ方向を缶高さ方向と平行にして、その状態で圧子を缶胴部に対して垂直に押込み、押込み量と押込み荷重を測定して、座屈する荷重、即ち、押込み量に対する押込み荷重の傾きが低下し、一定となる直前の荷重を読み取りデント強度とした。板厚tに対して、1224×t−130(N)以上であれば、非常に良好なデント強度であるので◎、1224×t−135(N)以上、1224×t−130(N)未満であれば良好なデント強度であるので○、1224×t−135(N)未満であればデント強度不足のため×とした。   Dento strength: An indenter with a tip radius of 5 mm and a length of 40 mm with respect to the center of the can body opposite to the welded portion, with the indenter length direction parallel to the can height direction, and the indenter in that state The indentation was perpendicular to the body, and the indentation amount and indentation load were measured. The buckling load, that is, the load immediately before the inclination of the indentation load with respect to the indentation amount was reduced, and the load immediately before becoming constant was read as the dent strength. If the thickness t is 1224 × t-130 (N) or more, the dent strength is very good, and ◎, 1224 × t-135 (N) or more and less than 1224 × t-130 (N) If it is less than 1224 × t-135 (N), the dent strength is insufficient.

パネリング強度:缶体を加圧チャンバーの内部に設置し、加圧チャンバー内部の加圧は、空気導入バルブを介して加圧チャンバーに加圧空気を毎秒当たり0.016MPaで導入することで行った。加圧チャンバーの内部の圧力の確認は、圧力ゲージ、圧力センサ、その検出信号を増幅するアンプ、検出信号の表示、データ処理などを行う信号処理装置を介して行った。パネリング強度は座屈に伴う圧力変化点の圧力とした。一般的に、加熱殺菌処理による圧力変化に対して、パネリング強度は0.150MPa以上が必要とされている。これより、パネリング強度が0.155MPa以上のものを◎、パネリング強度が0.150MPa以上0.155MPa未満のものを○、パネリング強度が0.150MPa未満のものを×とした。   Paneling strength: The can body was placed inside the pressurizing chamber, and pressurization inside the pressurizing chamber was performed by introducing pressurized air into the pressurizing chamber at 0.016 MPa per second via an air introduction valve. . The pressure inside the pressurizing chamber was confirmed through a pressure gauge, a pressure sensor, an amplifier that amplifies the detection signal, a signal processing device that performs display of the detection signal, data processing, and the like. The paneling strength was the pressure at the pressure change point accompanying buckling. Generally, the paneling strength is required to be 0.150 MPa or more with respect to the pressure change due to the heat sterilization treatment. From this, a paneling strength of 0.155 MPa or more was marked with ◎, a paneling strength of 0.150 MPa or more and less than 0.155 MPa was marked with ◯, and a paneling strength of less than 0.150 MPa was marked with ×.

結果を表3に示す。本発明例は、いずれもHR30Tが64を超え、C方向ヤング率が230GPa以上であり、成形性と缶体としての耐座屈特性に優れる。一方、比較例では、上記特性のいずれか一つ以上が劣っている。   The results are shown in Table 3. In all of the examples of the present invention, HR30T exceeds 64, the C-direction Young's modulus is 230 GPa or more, and the moldability and the buckling resistance as a can body are excellent. On the other hand, in the comparative example, any one or more of the above characteristics are inferior.

Figure 0006164273
Figure 0006164273

Figure 0006164273
Figure 0006164273

Figure 0006164273
Figure 0006164273

Claims (4)

質量%で、C:0.0030%超0.0100%以下、Si:0.05%以下、Mn:0.10%以上1.00%以下、P:0.030%以下、S:0.020%以下、Al:0.010%以上0.100%以下、N:0.0050%以下、Nb:0.010%以上0.080%以下を含有し、CおよびNbの含有量が下記式(1)を満足し、残部はFeおよび不可避的不純物からなる成分組成を有し、
HR30T硬さが64超で、圧延直角方向のヤング率が230GPa以上であることを特徴とする缶用鋼板。
0.15≦([Nb]/92.9)/([C]/12)≦1.50 ・・・式(1)
式(1)において[Nb]、[C]はそれぞれNb、Cの含有量(質量%)
In mass%, C: more than 0.0030% and 0.0100% or less, Si: 0.05% or less, Mn: 0.10% or more and 1.00% or less, P: 0.030% or less, S: 0.00. 020% or less, Al: 0.010% or more and 0.100% or less, N: 0.0050% or less, Nb: 0.010% or more and 0.080% or less, and the content of C and Nb is the following formula (1) is satisfied, and the balance has a component composition consisting of Fe and inevitable impurities,
A steel plate for cans having an HR30T hardness of more than 64 and a Young's modulus in the direction perpendicular to the rolling of 230 GPa or more.
0.15 ≦ ([Nb] /92.9) / ([C] / 12) ≦ 1.50 (1)
In the formula (1), [Nb] and [C] are the contents (mass%) of Nb and C, respectively.
更に、圧延直角方向の伸びが10%以上であることを特徴とする請求項1に記載の缶用鋼板。   Furthermore, the steel plate for cans according to claim 1, wherein elongation in the direction perpendicular to rolling is 10% or more. 鋼組織としてフェライト相を含有し、フェライト平均結晶粒径が7.0μm以下であることを特徴とする請求項1または2に記載の缶用鋼板。   The steel sheet for cans according to claim 1 or 2, wherein the steel structure contains a ferrite phase and has an average ferrite grain size of 7.0 µm or less. 請求項1〜3のいずれかに記載の缶用鋼板の製造方法であって、請求項1に記載の成分組成を有する鋼スラブを加熱温度1100℃以上で加熱し、熱延仕上げ温度850℃以上950℃以下で熱間圧延した後、巻取り温度500℃以上700℃以下で巻取り、圧下率85%以上で一次冷間圧延し、焼鈍温度700℃以上800℃以下で焼鈍し、圧下率6.0%超20%以下で二次冷間圧延を行うことを特徴とする缶用鋼板の製造方法。   It is a manufacturing method of the steel plate for cans in any one of Claims 1-3, Comprising: The steel slab which has the component composition of Claim 1 is heated with the heating temperature of 1100 degreeC or more, Hot-rolling finishing temperature is 850 degreeC or more. After hot rolling at 950 ° C. or less, winding at a coiling temperature of 500 ° C. or more and 700 ° C. or less, primary cold rolling at a reduction rate of 85% or more, annealing at an annealing temperature of 700 ° C. or more and 800 ° C. or less, and a reduction rate of 6 A method for producing a steel plate for cans, characterized in that secondary cold rolling is performed at more than 0% and not more than 20%.
JP2015233306A 2015-01-09 2015-11-30 Steel plate for cans and method for producing steel plate for cans Active JP6164273B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015002729 2015-01-09
JP2015002729 2015-01-09

Publications (2)

Publication Number Publication Date
JP2016130361A JP2016130361A (en) 2016-07-21
JP6164273B2 true JP6164273B2 (en) 2017-07-19

Family

ID=56414797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015233306A Active JP6164273B2 (en) 2015-01-09 2015-11-30 Steel plate for cans and method for producing steel plate for cans

Country Status (1)

Country Link
JP (1) JP6164273B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102302471B1 (en) 2017-04-19 2021-09-16 닛폰세이테츠 가부시키가이샤 Cold rolled steel sheet for drawing cans and manufacturing method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197523A (en) * 1988-10-28 1990-08-06 Kawasaki Steel Corp Manufacture of steel sheet for can
JPH05255804A (en) * 1992-03-11 1993-10-05 Nippon Steel Corp Cold rolled steel sheet excellent in formability and rigidity and its manufacture
JPH06212353A (en) * 1993-01-11 1994-08-02 Nippon Steel Corp High rigidity steel sheet for vessel and its production
JPH06248339A (en) * 1993-02-26 1994-09-06 Nippon Steel Corp Production of steel sheet for vessel with high rigidity
JPH06248332A (en) * 1993-02-26 1994-09-06 Nippon Steel Corp Production of steel sheet for vessel
JP2676581B2 (en) * 1993-07-14 1997-11-17 東洋鋼鈑株式会社 Steel sheet suitable for thinned deep-drawing can and its manufacturing method
JP2623432B2 (en) * 1993-07-14 1997-06-25 東洋鋼鈑株式会社 Steel sheet suitable for thinned deep-drawing can and its manufacturing method
JPH08218146A (en) * 1995-02-08 1996-08-27 Kawasaki Steel Corp Steel sheet for welded can excellent in flange workability and neck formability and production thereof
JPH1030152A (en) * 1997-04-04 1998-02-03 Toyo Kohan Co Ltd Steel sheet suitable for use in thin deep-drawn can, and its production
JP4867235B2 (en) * 2004-10-26 2012-02-01 ソニー株式会社 Information processing apparatus, information processing method, recording medium, and program
JP5794004B2 (en) * 2011-07-12 2015-10-14 Jfeスチール株式会社 Steel sheet for high strength can excellent in flange workability and manufacturing method thereof
JP6145994B2 (en) * 2011-12-09 2017-06-14 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof

Also Published As

Publication number Publication date
JP2016130361A (en) 2016-07-21

Similar Documents

Publication Publication Date Title
JP5958038B2 (en) Steel plate for cans with high buckling strength of can body against external pressure, excellent formability and surface properties after forming, and method for producing the same
TWI643964B (en) Two-piece can steel plate and manufacturing method thereof
US9005375B2 (en) Steel sheet for can having excellent surface roughening resistance and manufacturing method thereof
JP6052412B2 (en) Steel plate for can and manufacturing method thereof
WO2016157878A1 (en) Steel sheet for cans and method for manufacturing steel sheet for cans
US8557065B2 (en) Steel sheet for cans and method for manufacturing the same
JP5854134B2 (en) 3-piece can body and manufacturing method thereof
JP6288331B2 (en) Steel plate for can and manufacturing method thereof
JP2001335888A (en) Steel sheet for lightweight two-piece can, and its production method
JP6164273B2 (en) Steel plate for cans and method for producing steel plate for cans
KR101805277B1 (en) Steel sheet for three-piece can and method for manufacturing the same
JP5803660B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JP5900711B2 (en) Steel plate for can and manufacturing method thereof
JP5900712B2 (en) Steel plate for can and manufacturing method thereof
JP4810766B2 (en) Manufacturing method of ultra-thin high-strength steel sheet for lightweight 2-piece can
KR101996353B1 (en) Steel sheet for can lid and method for producing the same
WO2018181449A1 (en) Steel sheet, production method therefor, bottle cap, and drd can
JP2007204800A (en) Steel sheet for soft can and its production method
JP2016160438A (en) Steel sheet for can and manufacturing method therefor
TW201837201A (en) Steel sheet, method for producing same, crown cap, and drawn and redrawn (drd) can

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R150 Certificate of patent or registration of utility model

Ref document number: 6164273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250