JP6274302B2 - Steel plate for 2-piece can and manufacturing method thereof - Google Patents

Steel plate for 2-piece can and manufacturing method thereof Download PDF

Info

Publication number
JP6274302B2
JP6274302B2 JP2016504242A JP2016504242A JP6274302B2 JP 6274302 B2 JP6274302 B2 JP 6274302B2 JP 2016504242 A JP2016504242 A JP 2016504242A JP 2016504242 A JP2016504242 A JP 2016504242A JP 6274302 B2 JP6274302 B2 JP 6274302B2
Authority
JP
Japan
Prior art keywords
less
piece
rolling
hot
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016504242A
Other languages
Japanese (ja)
Other versions
JPWO2016067514A1 (en
Inventor
勇人 齋藤
勇人 齋藤
克己 小島
克己 小島
裕樹 中丸
裕樹 中丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2016067514A1 publication Critical patent/JPWO2016067514A1/en
Application granted granted Critical
Publication of JP6274302B2 publication Critical patent/JP6274302B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0468Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、食品や飲料缶に用いられる缶容器用材料に適した缶用鋼板およびその製造方法に関するものである。特に、本発明は、成形性に優れた2ピース缶用高強度鋼板およびその製造方法に関するものであり、本発明の2ピース缶用高強度鋼板は、缶胴部に加工が施される2ピース異形缶へ好ましく適用できる。   The present invention relates to a steel plate for cans suitable for can container materials used for food and beverage cans and a method for producing the same. In particular, the present invention relates to a two-piece can high-strength steel sheet having excellent formability and a method for producing the same, and the two-piece can high-strength steel sheet according to the present invention is a two-piece machined to the can body. It can be preferably applied to a deformed can.

近年の環境負荷低減およびコスト削減の観点から食缶や飲料缶に用いられる鋼板の使用量削減が求められている。このため、2ピース缶、3ピース缶に関わらず素材となる鋼板の薄肉化が進行している。   From the viewpoint of environmental load reduction and cost reduction in recent years, reduction of the amount of steel sheets used for food cans and beverage cans is required. For this reason, the thickness reduction of the steel plate used as a raw material is progressing irrespective of a 2 piece can and a 3 piece can.

最近、鋼板の薄肉化による缶体強度の低下を補うため、缶胴部にビード加工や幾何学的形状を付与した異形缶とすることが多い。2ピース缶の異形缶(2ピース異形缶という場合がある。)を製造する場合、絞り加工やしごき加工により比較的加工度の高い成形をした後に、缶胴部を加工する。このため、2ピース缶の異形缶の製造に用いる鋼板は、より高い成形性が要求される。一方で、加工度の低い缶底部は、加工硬化による強度上昇が小さい。このため、鋼板を薄肉化した場合、缶底部では、鋼板の強度が不足する傾向にある。特に缶底部の形状が平坦となる陰圧缶の場合は従来のSR(Single Reduce)鋼板以上の強度が必要となる。このため、缶底部には、薄肉化しても高強度化しやすいDR(Double Reduce)鋼板を用いることが有効である。   Recently, in order to compensate for the reduction in the strength of the can body due to the thinning of the steel sheet, the can body is often formed into a deformed can having a bead processing or a geometric shape. In the case of producing a two-piece can deformed can (sometimes referred to as a two-piece can), the can body is processed after forming with a relatively high degree of processing by drawing or ironing. For this reason, the steel plate used for manufacture of the two-piece can deformed can requires higher formability. On the other hand, the strength increase due to work hardening is small at the bottom of the can with a low degree of processing. For this reason, when the steel plate is thinned, the strength of the steel plate tends to be insufficient at the bottom of the can. In particular, in the case of a negative pressure can where the shape of the bottom of the can is flat, a strength higher than that of a conventional SR (Single Reduce) steel plate is required. For this reason, it is effective to use a DR (Double Reduce) steel plate that is easy to increase strength even if it is thinned at the bottom of the can.

DR鋼板は、主に加工硬化により硬質化されているため、一般的に成形性が低くなる。成形性が低くなると、上記の通り、缶胴部にとっては好ましくない。そこで、DR鋼板の成形性を高める技術が検討されている。   Since the DR steel sheet is hardened mainly by work hardening, the formability is generally low. If the moldability is low, it is not preferable for the can body as described above. Therefore, a technique for improving the formability of the DR steel sheet has been studied.

例えば,特許文献1には、質量%で、C:0.001〜0.10%、Mn:0.05〜0.50%、Al:0.015〜0.13%、Si:0.05%以下、P:0.03%以下、S:0.03%以下を含有し、残部がFeおよび不可避的不純物からなり、結晶粒径:6〜30μm、中心線平均粗さ:0.05〜0.6μm、板厚:0.15〜0.30mmの電解クロム酸処理鋼板の両面に厚さ10〜50μmの熱可塑性樹脂を被覆し、その表面に高温揮発性潤滑剤を塗布した乾式絞りしごき加工缶用樹脂被覆鋼板が開示されている。   For example, in Patent Document 1, in mass%, C: 0.001 to 0.10%, Mn: 0.05 to 0.50%, Al: 0.015 to 0.13%, Si: 0.05 %, P: 0.03% or less, S: 0.03% or less, with the balance being Fe and inevitable impurities, crystal grain size: 6-30 μm, centerline average roughness: 0.05- 0.6 μm, plate thickness: 0.15 to 0.30 mm electrolytic chromic acid-treated steel sheet coated on both sides with 10 to 50 μm thick thermoplastic resin, and dry squeezing with high temperature volatile lubricant applied to the surface A resin-coated steel sheet for a processing can is disclosed.

特許文献2には、質量%で、C:0.001〜0.06%、Mn:0.05〜0.50%、Al:0.015〜0.13%、Si:0.05%以下、P:0.03%以下、S:0.03%以下で、残部がFeおよび不可避的不純物からなる熱延板を、酸洗、冷間圧延、連続焼鈍後、圧延率5〜25%で圧延し、中心線平均粗さ:0.05〜0.6μm、板厚:0.15〜0.30mmとし、次いで電解クロム酸処理し、その後その両面に厚さ10〜50μmの熱可塑性樹脂を被覆し、その表面に高温揮発性潤滑剤を塗布することを特徴とする乾式絞りしごき加工缶用樹脂被覆鋼板の製造方法が開示されている。   In Patent Document 2, in mass%, C: 0.001 to 0.06%, Mn: 0.05 to 0.50%, Al: 0.015 to 0.13%, Si: 0.05% or less , P: 0.03% or less, S: 0.03% or less, with the balance being Fe and unavoidable impurities, after pickling, cold rolling, continuous annealing, at a rolling rate of 5-25% Rolled, centerline average roughness: 0.05 to 0.6 μm, plate thickness: 0.15 to 0.30 mm, then treated with electrolytic chromic acid, and then a thermoplastic resin having a thickness of 10 to 50 μm on both sides. A method for producing a resin-coated steel sheet for a dry-type squeezing and ironing can, which is coated and coated with a high-temperature volatile lubricant on the surface thereof, is disclosed.

特許文献3には、質量%で、C:0.02〜0.07%、Si:0.005〜0.05%、Mn:0.1〜1.5%、P:0.04%以下、S:0.02%以下、Al:0.005〜0.1%、N:0.003超〜0.007%、B:0.001〜0.01%を含有し、B/N:0.3〜1.5なる関係を満足し、残部がFeおよび不可避的不純物の鋼組成からなり、圧延方向および板幅方向のうちの少なくとも一方のランクフォード値(r値)が0.8以下であることを特徴とする異型缶用鋼板が開示されている。   In Patent Document 3, in mass%, C: 0.02 to 0.07%, Si: 0.005 to 0.05%, Mn: 0.1 to 1.5%, P: 0.04% or less , S: 0.02% or less, Al: 0.005 to 0.1%, N: more than 0.003 to 0.007%, B: 0.001 to 0.01%, B / N: The relationship of 0.3 to 1.5 is satisfied, the balance is made of a steel composition of Fe and inevitable impurities, and the Rankford value (r value) of at least one of the rolling direction and the sheet width direction is 0.8 or less. A steel sheet for atypical cans is disclosed.

特許第3140929号公報Japanese Patent No. 3140929 特許第2937788号公報Japanese Patent No. 2937788 特許第4630268号公報Japanese Patent No. 4630268

しかし、上記従来技術には下記に示す問題が挙げられる。   However, the above prior art has the following problems.

特許文献1に記載された技術では、ストレート缶を成形する場合に求められる成形性は確保できる。しかし、特許文献1に記載された技術では、缶胴部に加工ビードなどの加工が施される異形缶の成形に求められる成形性を確保できない。   With the technique described in Patent Document 1, the moldability required when molding a straight can can be secured. However, the technique described in Patent Document 1 cannot ensure the formability required for forming a deformed can in which the can body is processed such as a processing bead.

特許文献2に記載された技術でも、特許文献1に記載の技術と同様に、ストレート缶の成形に求められる成形性は確保できる。しかし、特許文献2に記載された技術でも同様に、異形缶の成形に求められる成形性は確保できない。   Even with the technique described in Patent Document 2, as with the technique described in Patent Document 1, the moldability required for forming a straight can can be secured. However, the technique described in Patent Document 2 similarly cannot secure the moldability required for forming a deformed can.

特許文献3に記載された技術は、3ピース缶向けのものである。特許文献3に記載の鋼板は、圧延方向および板幅方向のうち少なくとも一方のr値が0.8以下のため、異方性が大きくなる。異方性が大きいこの鋼板は、絞り加工を含む2ピース缶の成形に求められる成形性を有さない。   The technique described in Patent Document 3 is for a three-piece can. The steel sheet described in Patent Document 3 has a large anisotropy because the r value of at least one of the rolling direction and the sheet width direction is 0.8 or less. This steel plate having large anisotropy does not have the formability required for forming a two-piece can including drawing.

本発明は、かかる事情に鑑みなされたもので、上述した従来技術の問題を解決し、特に、2ピース異形缶の成形に好ましく用いることができる2ピース缶用高強度鋼板およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and solves the problems of the prior art described above, and in particular, provides a high-strength steel sheet for a two-piece can that can be preferably used for forming a two-piece deformed can and a method for manufacturing the same. The purpose is to do.

本発明者らは、上記課題を解決するために鋭意研究を行った。具体的には、缶底に求められる優れた強度と、缶胴に求められる優れた成形性の両立方法を見出すために鋭意研究を行い、その結果、成分組成と、引張強さと、伸びと、降伏伸びと、フェライト粒径を特定の範囲に調整すれば、上記課題を解決できることを見出し、この知見に基づいて本発明を完成するに至った。   The inventors of the present invention have intensively studied to solve the above problems. Specifically, in order to find a method for achieving both excellent strength required for the can bottom and excellent moldability required for the can body, as a result, component composition, tensile strength, elongation, The inventors have found that the above-mentioned problems can be solved by adjusting the yield elongation and the ferrite grain size to a specific range, and the present invention has been completed based on this finding.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)質量%で、C:0.020%以上0.080%以下、Si:0.04%以下、Mn:0.10%以上0.60%以下、P:0.02%以下、S:0.015%以下、Al:0.010%以上0.100%以下、N:0.0005%以上0.0030%以下を含有し、残部はFeおよび不可避的不純物からなり、引張強さが480MPa以上であり、伸びが7%以上であり、降伏伸びが3%以下であり、フェライト粒径が6μm未満であることを特徴とする2ピース缶用高強度鋼板。   (1) By mass%, C: 0.020% or more and 0.080% or less, Si: 0.04% or less, Mn: 0.10% or more and 0.60% or less, P: 0.02% or less, S : 0.015% or less, Al: 0.010% or more and 0.100% or less, N: 0.0005% or more and 0.0030% or less, and the balance is made of Fe and inevitable impurities, and the tensile strength is A high-strength steel sheet for a two-piece can characterized by having 480 MPa or more, elongation of 7% or more, yield elongation of 3% or less, and ferrite grain size of less than 6 μm.

(2)さらに、質量%で、B:0.0001%以上0.0030%以下を含有することを特徴とする(1)に記載の2ピース缶用高強度鋼板。   (2) The high-strength steel sheet for a two-piece can according to (1), further containing, by mass%, B: 0.0001% or more and 0.0030% or less.

(3)(1)又は(2)に記載の2ピース缶用高強度鋼板の製造方法であって、スラブを加熱温度1130℃以上にて加熱する加熱工程と、前記加熱工程後のスラブを、熱延仕上げ温度820〜930℃の条件で熱間圧延する熱間圧延工程と、前記熱間圧延工程で得られた熱延板を巻取り温度640℃以下にて巻取る巻取り工程と、前記巻取り工程後の熱延板を酸洗する酸洗工程と、前記酸洗後の熱延板を圧延率85%以上の条件で一次冷間圧延する一次冷間圧延工程と、前記一次冷間圧延工程で得られた冷延板を、焼鈍温度620℃以上690℃以下の条件で連続焼鈍する連続焼鈍工程と、前記連続焼鈍工程で得られた焼鈍板を、圧延率6〜20%の条件で二次冷間圧延する二次冷間圧延工程とを有することを特徴とする2ピース缶用高強度鋼板の製造方法。   (3) A method for producing a high-strength steel sheet for a two-piece can according to (1) or (2), wherein the slab is heated at a heating temperature of 1130 ° C. or higher, and the slab after the heating step, A hot rolling step of hot rolling under conditions of a hot rolling finishing temperature of 820 to 930 ° C, a winding step of winding the hot rolled sheet obtained in the hot rolling step at a winding temperature of 640 ° C or less, and A pickling process for pickling hot-rolled sheets after the winding process, a primary cold-rolling process for primary cold-rolling the hot-rolled sheets after pickling at a rolling rate of 85% or more, and the primary cold Conditions for a rolling rate of 6 to 20% for a continuous annealing process for continuously annealing a cold-rolled sheet obtained in the rolling process under conditions of an annealing temperature of 620 ° C. or more and 690 ° C. or less, and an annealing plate obtained in the continuous annealing process. High strength for two-piece cans characterized by having a secondary cold rolling step of secondary cold rolling at Method of manufacturing a steel plate.

本発明の2ピース缶用高強度鋼板は、特定の成分組成を有するように調整されるとともに、引張強さが480MPa以上、伸びが7%以上、降伏伸びが3%以下、フェライト粒径が6.0μm未満に調整されている。その結果、本発明の2ピース缶用高強度鋼板は、缶底に求められる優れた強度を有するとともに、缶胴に求められる優れた成形性を有する。したがって、本発明の2ピース缶用高強度鋼板を用いれば、2ピース異形缶を容易に製造することができる。   The high-strength steel sheet for a two-piece can of the present invention is adjusted to have a specific composition, has a tensile strength of 480 MPa or more, an elongation of 7% or more, a yield elongation of 3% or less, and a ferrite grain size of 6 It is adjusted to less than 0.0 μm. As a result, the high-strength steel sheet for a two-piece can of the present invention has excellent strength required for a can bottom and excellent formability required for a can body. Therefore, if the high-strength steel plate for a two-piece can according to the present invention is used, a two-piece modified can can be easily manufactured.

上記の通り、本発明によれば、食缶や飲料缶等の製造に使用される鋼板の薄肉化が可能になり、省資源化および低コスト化を達成することができ、産業上格段の効果を奏する。   As described above, according to the present invention, it is possible to reduce the thickness of a steel plate used for the production of food cans, beverage cans, etc., and it is possible to achieve resource saving and cost reduction. Play.

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.

<2ピース缶用高強度鋼板>
本発明の2ピース缶用高強度鋼板は、質量%で、C:0.020%以上0.080%以下、Si:0.04%以下、Mn:0.10%以上0.60%以下、P:0.02%以下、S:0.015%以下、Al:0.010%以上0.100%以下、N:0.0005%以上0.0030%以下を含有し、残部はFeおよび不可避的不純物からなる成分組成を有する。
<High-strength steel sheet for 2-piece cans>
The high-strength steel sheet for a two-piece can of the present invention is, in mass%, C: 0.020% or more and 0.080% or less, Si: 0.04% or less, Mn: 0.10% or more and 0.60% or less, P: 0.02% or less, S: 0.015% or less, Al: 0.010% or more and 0.100% or less, N: 0.0005% or more and 0.0030% or less, the balance being Fe and inevitable It has a component composition consisting of mechanical impurities.

また、本発明の2ピース缶用高強度鋼板の物性については、引張強さが480MPa以上、伸びが7%以上、降伏伸びが3%以下である。   Moreover, about the physical property of the high strength steel plate for 2 piece cans of this invention, tensile strength is 480 Mpa or more, elongation is 7% or more, and yield elongation is 3% or less.

また、本発明の2ピース缶用高強度鋼板の組織は、フェライト粒径が6μm未満の組織である。   In addition, the structure of the high-strength steel sheet for a two-piece can of the present invention is a structure having a ferrite particle size of less than 6 μm.

以下、本発明の2ピース缶用高強度鋼板について、成分組成、物性、組織の順で説明する。   Hereinafter, the high-strength steel sheet for a two-piece can of the present invention will be described in the order of component composition, physical properties, and structure.

上記の通り、本発明の2ピース缶用高強度鋼板は、質量%で、C:0.020%以上0.080%以下、Si:0.04%以下、Mn:0.10%以上0.60%以下、P:0.02%以下、S:0.015%以下、Al:0.010%以上0.100%以下、N:0.0005%以上0.0030%以下を含有し、残部はFeおよび不可避的不純物からなる。この成分組成を採用する理由は以下の通りである。なお、以下の説明において、各成分の含有量を表す「%」は「質量%」を意味する。   As described above, the high-strength steel sheet for a two-piece can according to the present invention is, in mass%, C: 0.020% or more and 0.080% or less, Si: 0.04% or less, Mn: 0.10% or more and 0.0. 60% or less, P: 0.02% or less, S: 0.015% or less, Al: 0.010% or more and 0.100% or less, N: 0.0005% or more and 0.0030% or less, and the balance Consists of Fe and inevitable impurities. The reason for adopting this component composition is as follows. In the following description, “%” representing the content of each component means “mass%”.

C:0.020%以上0.080%以下
Cは、強度向上に重要な元素である。C含有量を0.020%以上とすることで、引張強さを480MPa以上とすることができる。また、C含有量が0.080%を超えると、伸びが7%未満に低下し、製缶性が低下する。そこで、C含有量の上限を0.080%とする必要がある。また、C含有量が多いほど、フェライト粒径が微細化し、高強度化する。このため、C含有量は0.030%以上にすることが好ましい。また、製缶性の確保の観点からは、C含有量を0.060%以下とすることが好ましい。
C: 0.020% or more and 0.080% or less C is an element important for strength improvement. By setting the C content to 0.020% or more, the tensile strength can be set to 480 MPa or more. Moreover, when C content exceeds 0.080%, elongation will fall to less than 7% and can manufacturing property will fall. Therefore, the upper limit of the C content needs to be 0.080%. Moreover, the larger the C content, the finer the ferrite grain size and the higher the strength. For this reason, the C content is preferably 0.030% or more. Further, from the viewpoint of securing canability, the C content is preferably 0.060% or less.

Si:0.04%以下
Siを多量に含有すると、表面濃化により表面処理性が劣化し、耐食性が低下する。このため、Si含有量を0.04%以下とする必要がある。好ましくは0.03%以下である。
Si: 0.04% or less When a large amount of Si is contained, the surface treatment property deteriorates due to surface concentration, and the corrosion resistance decreases. For this reason, it is necessary to make Si content 0.04% or less. Preferably it is 0.03% or less.

Mn:0.10%以上0.60%以下
Mnは、固溶強化により鋼板の硬度を向上させる効果を有する。また、MnがMnSを形成することで、鋼中に含まれるSに起因する熱間延性の低下を防止できる。これらの効果を得るためにはMn含有量を0.10%以上にすることが必要である。特に、Mnによる固溶強化によりDR圧延での圧延率を低減しても引張強さが確保できるようにするために、Mn含有量を0.30%以上にすることが好ましい。Mn含有量が0.60%を超えると、伸びが著しく低下し、製缶性が低下するため、Mn含有量を0.60%以下とする必要がある。
Mn: 0.10% or more and 0.60% or less Mn has an effect of improving the hardness of the steel sheet by solid solution strengthening. Moreover, since Mn forms MnS, it is possible to prevent a decrease in hot ductility due to S contained in the steel. In order to acquire these effects, it is necessary to make Mn content 0.10% or more. In particular, the Mn content is preferably set to 0.30% or more so that tensile strength can be secured even if the rolling rate in DR rolling is reduced by solid solution strengthening with Mn. If the Mn content exceeds 0.60%, the elongation is remarkably lowered and the can-making ability is lowered. Therefore, the Mn content needs to be 0.60% or less.

P:0.02%以下
Pを多量に含有すると過剰な硬質化や中央偏析より成形性が低下する。また、Pを多量に含有すると耐食性が低下する。そこで、P含有量の上限は0.02%とする。
P: 0.02% or less When a large amount of P is contained, formability is deteriorated due to excessive hardening or central segregation. Further, when P is contained in a large amount, the corrosion resistance is lowered. Therefore, the upper limit of the P content is 0.02%.

S:0.015%以下
Sは、鋼中で硫化物を形成して、熱間延性を低下させる。よって、S含有量の上限は0.015%以下とする。
S: 0.015% or less S forms sulfides in steel and reduces hot ductility. Therefore, the upper limit of the S content is 0.015% or less.

Al:0.010%以上0.100%以下
Alは、NとAlNを形成することにより、鋼中の固溶Nを減少させて、降伏伸びを低下させ、ストレッチャーストレインを抑制する。このため、Al含有量を0.010%以上にする必要がある。降伏伸びを低減して製缶性を向上させる観点から、Al含有量は0.050%以上であることが好ましく、0.060%以上であることがさらに好ましい。また、Al含有量が過剰になるとアルミナが多量に発生して、アルミナが鋼板内に残存して製缶性が低下する。そこで、Al含有量を0.100%以下とする必要がある。好ましくは0.080%以下である。
Al: 0.010% or more and 0.100% or less Al forms N and AlN, thereby reducing solid solution N in the steel, lowering the yield elongation and suppressing stretcher strain. For this reason, it is necessary to make Al content 0.010% or more. From the viewpoint of reducing yield elongation and improving canability, the Al content is preferably 0.050% or more, and more preferably 0.060% or more. Further, when the Al content is excessive, a large amount of alumina is generated, and alumina remains in the steel sheet, resulting in a decrease in canability. Therefore, the Al content needs to be 0.100% or less. Preferably it is 0.080% or less.

N:0.0005%以上0.0030%以下
Nは固溶Nとして存在すると、降伏伸びが増加し、ストレッチャーストレインが発生して、表面外観が不良となり、製缶性が低下する。このため、N含有量を0.0030%以下とする必要がある。好ましくは0.0025%以下である。一方、N含有量を安定して0.0005%未満とするのは難しく、N含有量を0.0005%未満にしようとすると製造コストも上昇する。このため、N含有量の下限は0.0005%とする。
N: 0.0005% or more and 0.0030% or less When N is present as a solid solution N, yield elongation increases, stretcher strain occurs, the surface appearance becomes poor, and the can-making ability decreases. For this reason, N content needs to be 0.0030% or less. Preferably it is 0.0025% or less. On the other hand, it is difficult to stably make the N content less than 0.0005%, and if the N content is made less than 0.0005%, the manufacturing cost also increases. For this reason, the lower limit of the N content is 0.0005%.

本発明の2ピース缶用高強度鋼板は、上記必須成分に加えて、Bを0.0030%以下の範囲で任意成分として含有することが好ましい。   The high-strength steel sheet for a two-piece can of the present invention preferably contains B as an optional component in the range of 0.0030% or less in addition to the above essential components.

B:0.0001〜0.0030%
Bは、NとBNを形成して、固溶Nを減少させて、降伏伸びを低下させる。このため、Bを含有することが好ましく、B添加の効果を得るためには、B含有量は0.0001%以上であることが好ましく、0.0003%以上であることがさらに好ましい。また、Bを過剰に含有しても、上記の効果が飽和するだけではなく、伸びが低下したり、異方性が劣化して製缶性が低下したりする。そこで、B含有量の上限を0.0030%とすることが好ましい。
B: 0.0001 to 0.0030%
B forms N and BN, reduces the solute N, and lowers the yield elongation. For this reason, it is preferable to contain B, and in order to obtain the effect of addition of B, the B content is preferably 0.0001% or more, and more preferably 0.0003% or more. Moreover, even if it contains B excessively, not only said effect will be saturated, but elongation will fall or anisotropy will deteriorate and can-making property will fall. Therefore, the upper limit of the B content is preferably 0.0030%.

なお、上記必須成分、任意成分以外の残部は、Feおよび不可避的不純物である。不可避的不純物としてはCr:0.08%以下,Cu:0.02%以下,Ni:0.02%以下,O:0.006%以下等が挙げられる。   The balance other than the above essential components and optional components is Fe and inevitable impurities. Inevitable impurities include Cr: 0.08% or less, Cu: 0.02% or less, Ni: 0.02% or less, O: 0.006% or less.

次いで、本発明の2ピース缶用高強度鋼板の物性について説明する。上記の通り、本発明の2ピース缶用高強度鋼板は、引張強さが480MPa以上であり、伸びが7%以上であり、降伏伸びが3%以下である。各物性の技術的意義は以下の通りであるが、本発明ではこれらの物性と、上記成分組成と、後述する組織との組み合わせで、缶底に求められる優れた強度と、缶胴に求められる優れた成形性とを両立できる点も重要な技術的意義の1つである。   Next, the physical properties of the high-strength steel sheet for a two-piece can of the present invention will be described. As described above, the high-strength steel sheet for a two-piece can of the present invention has a tensile strength of 480 MPa or more, an elongation of 7% or more, and a yield elongation of 3% or less. The technical significance of each physical property is as follows, but in the present invention, the combination of these physical properties, the above component composition, and the structure described later, the strength required for the can bottom, and the can body are required. One of the important technical significances is that both excellent moldability and compatibility can be achieved.

引張強さ:480MPa以上
缶底部の強度を確保するためには、鋼板の引張強さを480MPa以上とする必要がある。好ましくは490MPa以上である。なお、鋼板の引張強さは、実施例に記載の方法で測定して得られる値を採用する。また、本発明では、通常、引張強さは580MPa以下である。
Tensile strength: 480 MPa or more In order to ensure the strength of the bottom of the can, the tensile strength of the steel plate needs to be 480 MPa or more. Preferably it is 490 MPa or more. In addition, the value obtained by measuring with the method as described in an Example is employ | adopted for the tensile strength of a steel plate. In the present invention, the tensile strength is usually 580 MPa or less.

伸び:7%以上
絞り・しごき加工に加えて、ビードなどの缶胴加工性を確保するためには伸びを7%以上にすることが必要である。好ましくは9%以上である。鋼成分を所定の範囲に含有させ、かつ、後述する製造条件にて、フェライト粒径を微細にすることで、480MPa以上の高強度でありながら、伸びを7%以上にすることが出来、製缶性を確保することが可能となる。なお、鋼板の伸びは、実施例に記載の方法で測定して得られる値を採用する。また、本発明では、通常、伸びは25%以下である。
Elongation: 7% or more In addition to drawing and ironing processing, it is necessary to increase the elongation to 7% or more in order to ensure the processability of can bodies such as beads. Preferably it is 9% or more. By containing the steel components in a predetermined range and making the ferrite grain size finer under the manufacturing conditions described later, the elongation can be increased to 7% or more while being high strength of 480 MPa or more. It becomes possible to ensure canability. In addition, the value obtained by measuring with the method as described in an Example is employ | adopted for the elongation of a steel plate. In the present invention, the elongation is usually 25% or less.

降伏伸び:3%以下
製缶時のストレッチャーストレインを防止するため、降伏伸びを3%以下とする必要がある。好ましくは2%以下である。なお、鋼板の降伏伸びは、実施例に記載の方法で測定して得られる値を採用する。
Yield elongation: 3% or less Yield elongation needs to be 3% or less in order to prevent stretcher strain during canning. Preferably it is 2% or less. In addition, the value obtained by measuring with the method as described in an Example is employ | adopted for the yield elongation of a steel plate.

次いで、本発明の2ピース缶用高強度鋼板の組織について説明する。本発明の2ピース缶用高強度鋼板の組織における、フェライト粒径は6μm未満である。   Next, the structure of the high-strength steel plate for a two-piece can of the present invention will be described. The ferrite grain size in the structure of the high-strength steel sheet for a two-piece can of the present invention is less than 6 μm.

フェライト粒径:6μm未満
鋼板の成分組成を上記のように調整することに加えて、フェライト粒径を微細化することにより、高強度化と伸びのバランスが向上する。このため、フェライト粒径を6.0μm未満とする必要がある。また、フェライト粒径を6.0μm未満に微細化し、降伏伸びを3%以下に低減することで、鋼板に被覆される樹脂と鋼板表面との密着性を向上させる効果もある。この観点からフェライト粒径は5.5μm以下とすることが好ましい。なお、実施例に記載の通り、粒径は平均結晶粒径を意味する。
Ferrite particle size: less than 6 μm In addition to adjusting the component composition of the steel sheet as described above, the balance between increasing strength and elongation is improved by reducing the ferrite particle size. For this reason, it is necessary to make a ferrite particle size less than 6.0 micrometers. Further, by reducing the ferrite grain size to less than 6.0 μm and reducing the yield elongation to 3% or less, there is an effect of improving the adhesion between the resin coated on the steel sheet and the steel sheet surface. From this point of view, the ferrite grain size is preferably 5.5 μm or less. In addition, as described in the Examples, the particle size means an average crystal particle size.

本発明では組織におけるフェライト相の含有量は95vol%以上であることが、伸び向上という理由で好ましい。さらに好ましくは98vol%以上である。フェライト相以外のその他の相としてはセメンタイト、パーライト、マルテンサイト、ベイナイト等が挙げられる。   In the present invention, the content of the ferrite phase in the structure is preferably 95 vol% or more for the reason of improvement in elongation. More preferably, it is 98 vol% or more. Examples of phases other than the ferrite phase include cementite, pearlite, martensite, and bainite.

<2ピース缶用高強度鋼板の製造方法>
本発明の2ピース缶用高強度鋼板の製造方法の一例としては、加熱工程と、熱間圧延工程と、巻取り工程と、酸洗工程と、一次冷間圧延工程と、連続焼鈍工程と、二次冷間圧延工程とを有する製造方法が挙げられる。以下、各工程について説明する。
<Method for producing high-strength steel plate for 2-piece can>
As an example of a method for producing a high-strength steel sheet for a two-piece can of the present invention, a heating step, a hot rolling step, a winding step, a pickling step, a primary cold rolling step, a continuous annealing step, The manufacturing method which has a secondary cold rolling process is mentioned. Hereinafter, each step will be described.

加熱工程
加熱工程とは、スラブを加熱温度1130℃以上に加熱する工程である。熱間圧延前の加熱温度が低すぎると、AlNの一部が未溶解となる。この未溶解は、製缶性を低下させる粗大AlN発生の要因となる。そこで、加熱工程における加熱温度は、1130℃以上とする。好ましくは1150℃以上である。加熱温度の上限は特に規定しないが、加熱温度が高すぎるとスケールが過剰に発生して製品表面の欠陥になる。そこで、加熱温度の上限は1260℃とすることが好ましい。
Heating step The heating step is a step of heating the slab to a heating temperature of 1130 ° C or higher. When the heating temperature before hot rolling is too low, a part of AlN becomes undissolved. This undissolved becomes a cause of generation of coarse AlN that lowers the canability. Therefore, the heating temperature in the heating process is set to 1130 ° C. or higher. Preferably it is 1150 degreeC or more. The upper limit of the heating temperature is not particularly defined, but if the heating temperature is too high, excessive scale is generated, resulting in defects on the product surface. Therefore, the upper limit of the heating temperature is preferably 1260 ° C.

なお、スラブの成分組成が、2ピース缶用高強度鋼板の成分組成となるため、スラブの成分組成は、上記の本発明の2ピース用高強度鋼板の成分組成を満たすように調整される必要がある。   In addition, since the component composition of the slab becomes the component composition of the high-strength steel plate for a two-piece can, the component composition of the slab needs to be adjusted so as to satisfy the component composition of the two-piece high-strength steel plate of the present invention. There is.

熱間圧延工程
熱間圧延工程とは、加熱工程後のスラブを、熱延仕上げ温度820〜930℃の条件で熱間圧延する工程である。熱延仕上げ圧延温度が、930℃よりも高くなると、熱延板におけるフェライトの粒径が粗大になって、焼鈍板のフェライト粒径が粗大になり、引張強さが低下し、引張強さと伸びのバランスも悪くなる。このため、熱延仕上げ温度の上限を930℃とする。また、熱延仕上げ温度が820℃未満となると、引張特性の異方性が大きくなり、製缶性が低下する。そこで、熱延仕上げ温度の下限は820℃とする。好ましい下限は860℃である。
Hot rolling step The hot rolling step is a step of hot rolling the slab after the heating step under conditions of a hot rolling finishing temperature of 820 to 930 ° C. When the hot rolling finish rolling temperature is higher than 930 ° C., the ferrite grain size in the hot rolled sheet becomes coarse, the ferrite grain size in the annealed sheet becomes coarse, the tensile strength decreases, and the tensile strength and elongation. The balance will also worsen. For this reason, the upper limit of the hot rolling finishing temperature is set to 930 ° C. On the other hand, when the hot rolling finishing temperature is less than 820 ° C., the anisotropy of the tensile properties increases, and the can-making property is lowered. Therefore, the lower limit of the hot rolling finishing temperature is 820 ° C. A preferred lower limit is 860 ° C.

巻取り工程
巻取り工程とは、熱間圧延工程で得られた熱延板を巻取り温度640℃以下にて巻取る工程である。巻取温度が640℃を超えると、熱延板におけるフェライトの粒径が粗大になって、焼鈍板のフェライト粒径が粗大になり、引張強さが低下し、引張強さと伸びのバランスも悪くなる。このため、巻取り温度の上限を640℃とする。巻取り温度の下限は特に定めないが、巻取り中にAlNを生成させて、固溶N量を減少させ、降伏伸びを低減させる観点から、巻取り温度を570℃以上とすることが好ましい。
Winding process The winding process is a process in which the hot-rolled sheet obtained in the hot rolling process is wound at a winding temperature of 640 ° C or lower. When the coiling temperature exceeds 640 ° C., the ferrite grain size in the hot rolled sheet becomes coarse, the ferrite grain size in the annealed sheet becomes coarse, the tensile strength decreases, and the balance between tensile strength and elongation is poor. Become. For this reason, the upper limit of coiling temperature shall be 640 degreeC. Although the lower limit of the coiling temperature is not particularly defined, it is preferable to set the coiling temperature to 570 ° C. or higher from the viewpoint of generating AlN during winding, reducing the amount of dissolved N, and reducing yield elongation.

酸洗工程
酸洗工程とは、巻取り工程後の熱延板を酸洗する工程である。酸洗条件は表層スケールが除去できればよく、特に条件は規定しない。常法により、酸洗することができる。
Pickling process The pickling process is a process of pickling the hot-rolled sheet after the winding process. The pickling conditions are not particularly limited as long as the surface scale can be removed. Pickling can be performed by a conventional method.

一次冷間圧延工程
一次冷間圧延工程とは、上記酸洗後の熱延板を圧延率85%以上の条件で一次冷間圧延する工程である。一次冷間圧延の圧延率は、焼鈍後のフェライト粒径を微細化させ、引張強さと成形性のバランスを向上させるために85%以上とする必要がある。一次冷間圧延における圧延率が大きくなりすぎると、引張特性の異方性が大となり、製缶性が低下する場合がある。このため、一次冷間圧延の圧延率は90%以下とすることが好ましい。
Primary cold rolling process The primary cold rolling process is a process in which the hot-rolled sheet after the pickling is subjected to primary cold rolling under conditions of a rolling rate of 85% or more. The rolling ratio of primary cold rolling needs to be 85% or more in order to refine the ferrite grain size after annealing and improve the balance between tensile strength and formability. If the rolling ratio in the primary cold rolling becomes too large, the anisotropy of tensile properties becomes large, and the can-making ability may be lowered. For this reason, it is preferable that the rolling rate of primary cold rolling shall be 90% or less.

連続焼鈍工程
連続焼鈍工程とは、一次冷間圧延工程で得られた冷延板を、焼鈍温度620℃以上690℃以下の条件で連続焼鈍する工程である。成形性の確保のため、焼鈍中に十分に再結晶させる必要があるため、焼鈍温度を620℃以上とする必要がある。また、焼鈍温度が高すぎると、フェライト粒径が粗大化するため、焼鈍温度は690℃以下とする必要がある。焼鈍方法は限定するものではないが、材質の均一性の観点から連続焼鈍法が好ましい。
Continuous annealing step The continuous annealing step is a step of continuously annealing the cold-rolled sheet obtained in the primary cold rolling step under conditions of an annealing temperature of 620 ° C or higher and 690 ° C or lower. In order to ensure formability, it is necessary to sufficiently recrystallize during annealing, so the annealing temperature needs to be 620 ° C. or higher. Further, if the annealing temperature is too high, the ferrite grain size becomes coarse, so the annealing temperature needs to be 690 ° C. or less. Although the annealing method is not limited, the continuous annealing method is preferable from the viewpoint of material uniformity.

二次冷間圧延工程
二次冷間圧延工程とは、連続焼鈍工程で得られた焼鈍板を、圧延率6〜20%の条件で二次冷間圧延する工程である。焼鈍板は、二次冷間圧延により高強度化され、かつ薄肉化される。高強度化を十分に図るためには、圧延率を6%以上とする必要がある。また、二次冷間圧延によって、降伏伸びが低減する。また、二次冷間圧延における圧延率が高すぎると、成形性が劣化する。そこで、圧延率は20%以下とする必要がある。特に成形性が要求される場合には、圧延率を15%以下とすることが好ましい。
Secondary cold rolling step The secondary cold rolling step is a step of secondary cold rolling the annealed sheet obtained in the continuous annealing step under the condition of a rolling rate of 6 to 20%. The annealed plate is strengthened and thinned by secondary cold rolling. In order to sufficiently increase the strength, the rolling rate needs to be 6% or more. Moreover, yield elongation reduces by secondary cold rolling. Moreover, if the rolling rate in the secondary cold rolling is too high, the formability deteriorates. Therefore, the rolling rate needs to be 20% or less. In particular, when formability is required, the rolling rate is preferably 15% or less.

以上により、本発明の2ピース缶用高強度鋼板が得られる。鋼板の表面処理としてSnめっき、Niめっき、Crめっき等を施してもよく、さらに化成処理やラミネート等の有機皮膜を施してもよい。   By the above, the high strength steel plate for 2 piece cans of this invention is obtained. As the surface treatment of the steel sheet, Sn plating, Ni plating, Cr plating or the like may be applied, and further an organic film such as chemical conversion treatment or lamination may be applied.

表1に示す鋼記号A〜Kの成分を含有し、残部がFe及び不可避的不純物からなる鋼を溶製し、鋼スラブを得た。得られた鋼スラブを表2に示す条件にて、加熱後、熱間圧延し、巻取り、酸洗にてスケールを除去した後、一次冷間圧延し、連続焼鈍炉にて各焼鈍温度にて15sの焼鈍し、表2に示す二次圧延率にてDR圧延(二次冷間圧延)し、板厚0.17〜0.19mmの鋼板(鋼板記号No1〜18)を得た。上記鋼板に対して、表面処理としてクロムめっき(ティンフリー)処理を施した後、有機皮膜を被覆したラミネート鋼板を作製した。   A steel slab was obtained by melting steel containing components of steel symbols A to K shown in Table 1, with the balance being Fe and inevitable impurities. The obtained steel slab was heated under the conditions shown in Table 2 and then hot-rolled, wound, removed the scale by pickling, then primary cold-rolled, and each annealing temperature was adjusted in a continuous annealing furnace. The steel sheet was annealed for 15 s and subjected to DR rolling (secondary cold rolling) at the secondary rolling rate shown in Table 2 to obtain steel plates (steel plate symbols No. 1 to 18) having a thickness of 0.17 to 0.19 mm. The steel plate was subjected to chromium plating (tin-free) treatment as a surface treatment, and then a laminated steel plate coated with an organic film was produced.

Figure 0006274302
Figure 0006274302

Figure 0006274302
Figure 0006274302

引張強さ、伸び、降伏伸び
上記ラミネート鋼板から、濃硫酸にて有機被覆を除去した後、圧延向からJIS5号引張試験片を採取しJIS Z 2241に従い、引張強さ、伸び(全伸び)、降伏伸びを評価した。
Tensile Strength, Elongation, Yield Elongation After removing the organic coating with concentrated sulfuric acid from the laminated steel sheet, a JIS No. 5 tensile test piece was taken from the rolling direction, and in accordance with JIS Z 2241, tensile strength, elongation (total elongation), Yield elongation was evaluated.

フェライト粒径
圧延方向断面に埋め込み、研磨後、ナイタールにて腐食して粒界を現出したのち、JIS G 0551に従い、切断法にて平均結晶粒径を測定し、フェライト粒径を評価した。
Ferrite grain size After embedding in the cross section in the rolling direction, polishing, and corroding with nital to reveal grain boundaries, the average grain size was measured by a cutting method in accordance with JIS G 0551 to evaluate the ferrite grain size.

製缶評価
製缶性を評価するため、上記のラミネート鋼板を円形に打抜いた後、深絞り加工、しごき加工等を施して、円筒形に製缶した後、缶胴部の高さ中央および上下15mmの計3箇所に缶周方向にビード加工を行い、飲料缶で適用されている2ピース缶と同様の缶体を成形した。製缶時に破胴が無く、ストレッチャーストレインがほとんど見えないものを「◎」、破胴は無いが軽微なストレインストレッチャーが認められるものを「○」、破胴ないしストレインストレッチャーの顕著なものを「×」とした。
Evaluation of can manufacturing In order to evaluate the can manufacturing performance, after punching the above laminated steel sheet into a circular shape, deep drawing, ironing, etc. were performed to make a cylindrical shape. Bead processing was performed in the can circumferential direction at a total of three places of 15 mm in the vertical direction, and a can body similar to a two-piece can applied in a beverage can was formed. "◎" if there is no destructuring and almost no visible stretcher strain when making cans, "○" if there is no destructuring but a slight strain stretcher is recognized Was marked “x”.

結果を表3に示す。本発明例は、いずれも引張強さが480MPa以上で、伸びが7%以上、降伏伸びが3%以下、フェライト粒径が6.0μm未満であり、優れた成形性と強度を有する。一方、比較例では、上記特性のいずれか一つ以上が劣っている。例えば、鋼板記号No9、11、13、17は製缶評価が「○」ではあるが、鋼板の引張強さが低く、缶底部にとっては、十分な強度ではない。   The results are shown in Table 3. In each of the examples of the present invention, the tensile strength is 480 MPa or more, the elongation is 7% or more, the yield elongation is 3% or less, and the ferrite particle size is less than 6.0 μm, and has excellent moldability and strength. On the other hand, in the comparative example, any one or more of the above characteristics are inferior. For example, steel plate symbols No. 9, 11, 13, and 17 have a can evaluation of “◯”, but the tensile strength of the steel plate is low, and it is not sufficient for the bottom of the can.

Figure 0006274302
Figure 0006274302

Claims (2)

質量%で、C:0.038%以上0.080%以下、Si:0.04%以下、Mn:0.30%以上0.60%以下、P:0.02%以下、S:0.015%以下、Al:0.010%以上0.080%以下、N:0.0005%以上0.0030%以下を含有し、残部はFeおよび不可避的不純物からなり、
引張強さが480MPa以上であり、
伸びが7%以上であり、
降伏伸びが3%以下であり、
フェライト粒径が6μm未満であることを特徴とする2ピース缶用鋼板。
In mass%, C: 0.038% to 0.080%, Si: 0.04% or less, Mn: 0.30 % to 0.60%, P: 0.02% or less, S: 0.00. 015% or less, Al: 0.010% or more and 0.080 % or less, N: 0.0005% or more and 0.0030% or less, with the balance being Fe and inevitable impurities,
The tensile strength is 480 MPa or more,
Elongation is 7% or more,
Yield elongation is 3% or less,
A steel plate for a two-piece can having a ferrite grain size of less than 6 μm.
請求項1に記載の2ピース缶用鋼板の製造方法であって、
スラブを加熱温度1130℃以上にて加熱する加熱工程と、
前記加熱工程後のスラブを、熱延仕上げ温度820〜930℃の条件で熱間圧延する熱間圧延工程と、
前記熱間圧延工程で得られた熱延板を巻取り温度640℃以下にて巻取る巻取り工程と、
前記巻取り工程後の熱延板を酸洗する酸洗工程と、
前記酸洗後の熱延板を圧延率85%以上の条件で一次冷間圧延する一次冷間圧延工程と、
前記一次冷間圧延工程で得られた冷延板を、焼鈍温度620℃以上690℃以下の条件で連続焼鈍する連続焼鈍工程と、
前記連続焼鈍工程で得られた焼鈍板を、圧延率6〜20%の条件で二次冷間圧延する二次冷間圧延工程とを有することを特徴とする2ピース缶用鋼板の製造方法。
It is a manufacturing method of the steel plate for 2 piece cans of Claim 1,
A heating step of heating the slab at a heating temperature of 1130 ° C. or higher;
A hot rolling step in which the slab after the heating step is hot rolled under conditions of a hot rolling finishing temperature of 820 to 930 ° C;
A winding step of winding the hot-rolled sheet obtained in the hot rolling step at a winding temperature of 640 ° C. or less;
Pickling process of pickling hot-rolled sheet after the winding process;
A primary cold rolling step of primary cold rolling the hot-rolled sheet after pickling under a condition of a rolling rate of 85% or more;
A continuous annealing step of continuously annealing the cold-rolled sheet obtained in the primary cold rolling step under conditions of an annealing temperature of 620 ° C. or more and 690 ° C. or less;
A method for producing a steel plate for a two-piece can, comprising: a secondary cold rolling step of subjecting the annealed plate obtained in the continuous annealing step to secondary cold rolling under a condition of a rolling rate of 6 to 20%.
JP2016504242A 2014-10-28 2015-09-18 Steel plate for 2-piece can and manufacturing method thereof Active JP6274302B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014218967 2014-10-28
JP2014218967 2014-10-28
PCT/JP2015/004784 WO2016067514A1 (en) 2014-10-28 2015-09-18 Steel sheet for two-piece can and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JPWO2016067514A1 JPWO2016067514A1 (en) 2017-04-27
JP6274302B2 true JP6274302B2 (en) 2018-02-07

Family

ID=55856884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016504242A Active JP6274302B2 (en) 2014-10-28 2015-09-18 Steel plate for 2-piece can and manufacturing method thereof

Country Status (8)

Country Link
US (1) US20170306436A1 (en)
JP (1) JP6274302B2 (en)
KR (1) KR101989712B1 (en)
CN (1) CN107002190B (en)
MY (1) MY178159A (en)
PH (1) PH12017500433A1 (en)
TW (1) TWI604067B (en)
WO (1) WO2016067514A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY173780A (en) * 2015-03-31 2020-02-20 Jfe Steel Corp Steel sheet for can and method for manufacturing the same
WO2018180404A1 (en) * 2017-03-27 2018-10-04 Jfeスチール株式会社 Steel sheet for two-piece can and production method therefor
CN110494581B (en) 2017-03-27 2021-07-09 杰富意钢铁株式会社 Two-piece steel sheet for can and method for producing same
CN109722604B (en) * 2017-10-30 2021-02-19 宝山钢铁股份有限公司 Tin plate for two-piece spray can and manufacturing method thereof
CN109266828A (en) * 2018-11-09 2019-01-25 唐山不锈钢有限责任公司 DRD-8 shallowly rushes two-piece can hot rolled strip and its production method
CN111748729A (en) * 2019-03-27 2020-10-09 宝山钢铁股份有限公司 Steel sheet for lid manufacture having excellent sealing properties and internal pressure resistance, and method for producing same
WO2020203470A1 (en) * 2019-03-29 2020-10-08 Jfeスチール株式会社 Steel plate for can and method for manufacturing same
CN110699608B (en) * 2019-10-10 2020-11-27 柳州钢铁股份有限公司 Low-cost cold-rolled high-strength steel for goods shelves
WO2021167023A1 (en) * 2020-02-21 2021-08-26 Jfeスチール株式会社 Sheet steel and method for manufacturing sheet steel
CN112301272B (en) * 2020-09-28 2022-04-19 首钢集团有限公司 High-yield steel for one-time cold rolling cover unpacking and preparation method thereof
CN113667892B (en) * 2021-08-02 2022-11-22 山东钢铁集团日照有限公司 Economical low-temperature continuous annealing cold-rolled high-strength steel strip and production method thereof
CN115341155B (en) * 2022-10-17 2023-02-24 江苏省沙钢钢铁研究院有限公司 Tin plate and manufacturing method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3140929B2 (en) 1994-02-07 2001-03-05 東洋鋼鈑株式会社 Resin-coated steel sheet for dry drawing and ironing can
JP3464521B2 (en) * 1994-03-23 2003-11-10 新日本製鐵株式会社 Fine-grained hot-rolled steel sheet and method for producing the same
JP2937788B2 (en) 1995-01-13 1999-08-23 東洋鋼鈑株式会社 Manufacturing method of resin-coated steel sheet for dry drawing and ironing can
JPH09184018A (en) * 1995-12-28 1997-07-15 Kawasaki Steel Corp Manufacture of high strength steel sheet for vessel, reduced in inplane anisotroty
JP3407531B2 (en) * 1996-03-14 2003-05-19 日本鋼管株式会社 Method for producing ultra-thin steel sheet for two-piece can with small in-plane anisotropy
JP3852210B2 (en) * 1997-08-18 2006-11-29 Jfeスチール株式会社 Steel plate for modified 3-piece can and manufacturing method thereof
JP4193228B2 (en) * 1998-04-08 2008-12-10 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
JP3682683B2 (en) * 1998-09-11 2005-08-10 Jfeスチール株式会社 Method for producing steel plate for two-piece can with excellent in-plane anisotropic uniformity in coil
JP3770009B2 (en) * 1999-11-09 2006-04-26 Jfeスチール株式会社 2-piece steel plate with excellent flange workability
JP2003183738A (en) * 2001-12-13 2003-07-03 Jfe Engineering Kk Method for manufacturing steel sheet for thinning deep- drawn and ironed can, superior in strength and workability
JP4630268B2 (en) * 2006-12-28 2011-02-09 新日本製鐵株式会社 Steel plate for profile can
JP5162924B2 (en) * 2007-02-28 2013-03-13 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
JP5135868B2 (en) * 2007-04-26 2013-02-06 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
JP4943244B2 (en) * 2007-06-27 2012-05-30 新日本製鐵株式会社 Steel sheet for ultra-thin containers
KR20130045948A (en) * 2008-04-03 2013-05-06 제이에프이 스틸 가부시키가이샤 High-strength steel plate for a can and method for manufacturing said high-strength steel plate
JP5803660B2 (en) * 2011-12-26 2015-11-04 Jfeスチール株式会社 High-strength, high-formability steel plate for cans and method for producing the same

Also Published As

Publication number Publication date
MY178159A (en) 2020-10-06
TW201632636A (en) 2016-09-16
CN107002190A (en) 2017-08-01
PH12017500433B1 (en) 2017-07-31
TWI604067B (en) 2017-11-01
WO2016067514A1 (en) 2016-05-06
PH12017500433A1 (en) 2017-07-31
US20170306436A1 (en) 2017-10-26
KR20170063744A (en) 2017-06-08
CN107002190B (en) 2019-03-05
KR101989712B1 (en) 2019-06-14
JPWO2016067514A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6274302B2 (en) Steel plate for 2-piece can and manufacturing method thereof
JP5135868B2 (en) Steel plate for can and manufacturing method thereof
JP6455640B1 (en) Steel plate for 2-piece can and manufacturing method thereof
JP5907315B1 (en) High strength steel plate and manufacturing method thereof
JP6048618B2 (en) Steel plate for cans and method for producing steel plate for cans
JP5939368B1 (en) Steel plate for can and manufacturing method thereof
WO2016157878A1 (en) Steel sheet for cans and method for manufacturing steel sheet for cans
TWI531666B (en) Fat iron type stainless steel and its manufacturing method
JP6455639B1 (en) Steel plate for 2-piece can and manufacturing method thereof
JP5803660B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JP5929739B2 (en) Steel plate for aerosol can bottom and manufacturing method thereof
JP5655839B2 (en) Hot-rolled steel sheet used as a base material for steel sheet for can and manufacturing method thereof
JP6108044B2 (en) Steel plate for can lid and manufacturing method thereof
WO2020203052A1 (en) Steel sheet for can, and method for manufacturing same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20170925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171225

R150 Certificate of patent or registration of utility model

Ref document number: 6274302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250