JP2008190008A - Manufacturing method of hot-rolled steel sheet having excellent aging resistance - Google Patents

Manufacturing method of hot-rolled steel sheet having excellent aging resistance Download PDF

Info

Publication number
JP2008190008A
JP2008190008A JP2007026830A JP2007026830A JP2008190008A JP 2008190008 A JP2008190008 A JP 2008190008A JP 2007026830 A JP2007026830 A JP 2007026830A JP 2007026830 A JP2007026830 A JP 2007026830A JP 2008190008 A JP2008190008 A JP 2008190008A
Authority
JP
Japan
Prior art keywords
hot
steel sheet
less
rolled steel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007026830A
Other languages
Japanese (ja)
Inventor
Teruki Hayashida
輝樹 林田
Masahiro Obara
昌弘 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007026830A priority Critical patent/JP2008190008A/en
Publication of JP2008190008A publication Critical patent/JP2008190008A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot-rolled steel sheet having excellent workability and excellent aging resistance, which is used for automobiles, household appliances, building materials or the like. <P>SOLUTION: A steel strip having the composition consisting of, by mass, 0.04-0.25% C, 0.001-0.5% Si, 0.05-1.5% Mn, ≤0.09% P, ≤0.015%S, 0.01-0.08% Al, 0.0005-0.015% N, and the balance Fe with inevitable impurities is subjected to the hot rolling. Thereafter, the steel strip is cooled to the temperature below 400°C at the average cooling rate of ≥60°C/s, wound and cooled, and further subjected to the cold rolling of the elongation of 0.1-1.0% by using a roll having the diameter to satisfy inequality (1), t/R≥0.0055, where t denotes the plate thickness and R denotes the diameter of the roll. Thus, the hot-rolled steel plate having the excellent aging resistance can be obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は時効による材質劣化の少ない耐時効性に優れた熱延鋼板の製造方法に関し、特に、自動車、家庭電化製品、建材等に使用される加工性が良好で耐時効性に優れた熱延鋼板の製造方法に関するものである。   The present invention relates to a method for producing a hot-rolled steel sheet excellent in aging resistance with little material deterioration due to aging, and in particular, hot-rolling with good workability and excellent aging resistance used for automobiles, home appliances, building materials, etc. The present invention relates to a method for manufacturing a steel sheet.

複雑な形状に加工されて使用される薄鋼板には、高い延性が要求され、なおかつ延性のバラツキの少ないことが求められる。しかしながら、鋼中の固溶Cや固溶Nが可動転位の周囲へ集積し、可動転位の移動が困難になる、いわゆる時効が生じると延性が低下してしまう。時効は室温でも起こり、鋼中の固溶Cや固溶Nが多い場合には、わずか数ヶ月の間に、延性が低下する。したがって、時間経過とともに延性が劣化するという問題があるために、製造後の長期保管が困難であると共に、ユーザーの数ヶ月後の使用時に及んでその必要な材質を維持することは困難となる。一方、熱延鋼板の製造は、熱間圧延によって製造された鋼板をコイル状に巻き取り、常温付近まで放冷する製造工程によって行われており、コイル内部と外周部等で冷却温度履歴が異なるため、製造後に残留する鋼板中の固溶Cや固溶Nなどの量が鋼板の長手方向で異なってしまう。その結果、鋼板中の固溶Cや固溶Nなどが転位の中に集まる時効による延性の低下度合いも異なったものとなり易く、材質バラツキの原因となる。特に、自動車用に使用される、成形時には比較的低強度で加工がし易く、塗装後の焼付けによって強度上昇を高めたBH(Bake Hardning)鋼板では、鋼板中のC、Nの固溶量が多いため、この時効現象が顕著になり、延性低下および延性バラツキのため、製品の性能が低下する大きな原因になっている。   A thin steel plate used after being processed into a complicated shape is required to have high ductility and to have little variation in ductility. However, when so-called aging occurs in which solid solution C or solid solution N in steel accumulates around movable dislocations and it becomes difficult to move the movable dislocations, ductility decreases. Aging also occurs at room temperature, and when there is a large amount of solute C or solute N in the steel, the ductility decreases in just a few months. Therefore, since there is a problem that ductility deteriorates with the passage of time, it is difficult to store for a long time after manufacture, and it is difficult to maintain the necessary materials for use after several months by the user. On the other hand, hot-rolled steel sheets are manufactured by a manufacturing process in which a steel sheet manufactured by hot rolling is wound into a coil shape and allowed to cool to near room temperature, and the cooling temperature history differs between the inside of the coil and the outer periphery. For this reason, the amount of solid solution C, solid solution N, etc. in the steel sheet remaining after manufacture differs in the longitudinal direction of the steel sheet. As a result, the degree of decrease in ductility due to aging in which solute C, solute N, etc. in the steel sheet gathers in the dislocations tends to be different, which causes variations in material. In particular, the BH (Bake Harding) steel sheet, which is used for automobiles and has a relatively low strength during molding and is easy to process and has increased strength by baking after painting, has a solid solution amount of C and N in the steel sheet. Therefore, this aging phenomenon becomes remarkable, and this is a major cause of deterioration of product performance due to a decrease in ductility and a variation in ductility.

この様な背景から、時効による延性の低下が少なく、かつ延性バラツキが小さい熱延鋼板が求められている。   From such a background, there is a demand for a hot-rolled steel sheet that has a small decrease in ductility due to aging and a small variation in ductility.

時効による延性の低下を防止する技術としては種々提案されており、鋼成分によって耐時効性を改善するものとしては、例えば、質量%で、C=0.0001〜0.20%、Si=2.0%以下、Mn=3.0%以下、P=0.15%以下、S=0.015%以下、Al=0.20%以下、N=0.001〜0.10%、及び、0.52Al/N<10を満たすようにAlとN含有し、かつ、Cr、Mo、Vのうち1種または2種以上を、それぞれ、Cr=2.5%以下、Mo=1.0%以下、V=0.1%以下、及び、(Cr+3.5Mo+39V))≧0.1を満たすように含有し、残部Fe及び不可避的不純物からなる塗装焼付硬化性能と耐常温時効性に優れた熱延鋼板がある(例えば、特許文献1参照)。しかし、鋼成分を調整するだけでは、時効による熱延鋼板長手方向での延性低下のバラツキを克服することは技術的に困難であるとともに、添加元素によるコストアップの問題がある。   Various techniques have been proposed for preventing the deterioration of ductility due to aging. Examples of techniques for improving the aging resistance depending on steel components include, for example, mass%, C = 0.0001 to 0.20%, and Si = 2. 0.0% or less, Mn = 3.0% or less, P = 0.15% or less, S = 0.015% or less, Al = 0.20% or less, N = 0.001 to 0.10%, and Al and N are contained so as to satisfy 0.52Al / N <10, and one or more of Cr, Mo, and V are respectively Cr = 2.5% or less, Mo = 1.0% Hereinafter, V = 0.1% or less, and (Cr + 3.5Mo + 39V)) ≧ 0.1, heat that is excellent in paint bake-hardening performance and room temperature aging resistance composed of the remaining Fe and inevitable impurities There is a rolled steel sheet (for example, refer to Patent Document 1). However, it is technically difficult to overcome the variation in ductility degradation in the longitudinal direction of the hot-rolled steel sheet due to aging only by adjusting the steel components, and there is a problem of cost increase due to the additive element.

また、時効による材質劣化を少なくするため、焼鈍後に調質圧延を施す技術が冷延鋼板については知られている。例えば、焼鈍された板厚1.0mm以下の鋼板を調質圧延する際に、鋼板の板厚(t)と調質圧延機のワークロール径(2R)の比が2R/t≦350なる関係を満足するようにする冷延鋼板の調質圧延方法が提案されている(例えば、特許文献2参照)。   Moreover, in order to reduce the material deterioration by aging, the technique which performs temper rolling after annealing is known about the cold-rolled steel plate. For example, when the annealed steel sheet having a thickness of 1.0 mm or less is temper-rolled, the relationship that the ratio of the steel sheet thickness (t) to the temper rolling mill work roll diameter (2R) is 2R / t ≦ 350. There has been proposed a temper rolling method for cold-rolled steel sheets that satisfies the above requirements (see, for example, Patent Document 2).

しかし、この方法は冷延鋼板に関するもので、冷延鋼板の場合は、連続焼鈍を行うことによって、鋼板の長手方向で固溶Cや固溶Nの量のバラツキが少なくなるもので、かつ、板厚も1.0mm以下と薄いものにしか顕著な効果が見出されていないものであるから、連続焼鈍を施さない板厚の厚い熱延鋼板にそのままこの技術を適用することはできない。   However, this method relates to a cold-rolled steel sheet, and in the case of a cold-rolled steel sheet, by performing continuous annealing, there is less variation in the amount of solute C or solute N in the longitudinal direction of the steel sheet, and Since the plate thickness is only 1.0 mm or less, a remarkable effect has only been found. Therefore, this technique cannot be applied as it is to a thick hot-rolled steel plate that is not subjected to continuous annealing.

また、熱延鋼板に調質圧延を施す技術として、例えば、質量%で、C:0.030〜0.100%、Si:0.05〜1.0%、Mn:0.10〜1.00、S:0.015%以下、Al:0.025〜0.100%、N:0.0015〜0.0150%、残部Fe及び不可避不純物を含有する鋼を、1200℃以上に加熱し、Ar3点+30℃以上、950℃以下の温度で仕上げ圧延を行い、その後3秒以内に30℃/s以上の冷却速度で500℃以下まで冷却し、400〜500℃で巻き取ることにより熱延鋼板とし、その後、該熱延鋼板を酸洗し、0.4〜1.0%の圧下率で調質圧延する、焼付け硬化性に優れた熱延鋼板の製造方法が提案されている(例えば、特許文献3参照)。   Moreover, as a technique which performs temper rolling to a hot-rolled steel sheet, for example, in mass%, C: 0.030 to 0.100%, Si: 0.05 to 1.0%, Mn: 0.10 to 1. 00, S: 0.015% or less, Al: 0.025 to 0.100%, N: 0.0015 to 0.0150%, the steel containing the balance Fe and inevitable impurities is heated to 1200 ° C or higher, Hot rolled steel sheet by finishing rolling at a temperature of Ar3 point + 30 ° C. or more and 950 ° C. or less, then cooling to 500 ° C. or less at a cooling rate of 30 ° C./s within 3 seconds, and winding at 400 to 500 ° C. Then, pickling the hot-rolled steel sheet, temper rolling at a rolling reduction of 0.4 to 1.0%, a method for producing a hot-rolled steel sheet excellent in bake hardenability has been proposed (for example, (See Patent Document 3).

しかし、この技術は、熱延鋼板の焼付け硬化性を向上させることを目的としたものであって、時効による延性の低下の抑制を目的とするものではなく、むしろ耐常温時効性が劣化する。   However, this technique is intended to improve the bake hardenability of the hot-rolled steel sheet, and is not intended to suppress the decrease in ductility due to aging, but rather the room temperature aging resistance deteriorates.

この様な背景から、時効による延性の低下が少ない熱延鋼板が求められているのが実情である。   From such a background, it is the actual situation that a hot-rolled steel sheet with a small decrease in ductility due to aging is required.

特開2002−53933号公報JP 2002-53933 A 特開昭59−73104号公報JP 59-73104 A 特開平1−180917号公報Japanese Patent Laid-Open No. 1-180917

そこで、本発明は、上記実情に鑑み、熱延鋼板の成分に特殊な元素を必ずしも添加せずに、熱間圧延工程および熱間圧延後の後工程で、鋼板に可動転位を増加させ、鋼板に固溶Cや固溶Nが存在し時効によって可動転位へ集積しても、加工時に容易に移動できる可動転位を残留させることにより、時効による延性の低下を少なくした加工性が良好で耐時効性に優れた熱延鋼板の製造方法を提供することを課題とするものである。   Therefore, in view of the above circumstances, the present invention does not necessarily add a special element to the components of the hot-rolled steel sheet, and increases the number of movable dislocations in the steel sheet in the hot-rolling process and the post-process after hot rolling. Even when solid solution C or solid solution N is present and accumulates on movable dislocations due to aging, by leaving movable dislocations that can be easily moved during processing, workability with reduced deterioration in ductility due to aging is good and aging resistance An object of the present invention is to provide a method for producing a hot-rolled steel sheet having excellent properties.

本発明者は、熱延鋼板の成分に特殊な元素を必ずしも添加しなくても耐時効性に優れた熱延鋼板を製造する方法について鋭意研究をし、その結果、熱延鋼板中に可動転位を多く存在させることで、固溶Cや固溶Nが存在し、時効によってその固溶C、Nが可動転位へ集積しても、加工時に容易に移動できる可動転位を残留させておければ、時効による延性の低下が抑制できることを見出した。可動転位を増加させる方法としては、熱間圧延後の冷却条件を制御することで可動転位を増加させ、そして、冷却後に小径ロールによるスキンパス圧延を行うことで可動転位がさらに増加することを見出して本発明を完成した。   The present inventor has earnestly studied about a method for producing a hot-rolled steel sheet having excellent aging resistance without necessarily adding a special element to the components of the hot-rolled steel sheet. As long as there is solid solution C or solid solution N, even if the solid solution C or N accumulates on the movable dislocation by aging, it is necessary to leave a movable dislocation that can easily move during processing. The present inventors have found that a decrease in ductility due to aging can be suppressed. As a method of increasing the movable dislocation, we found that the movable dislocation was increased by controlling the cooling conditions after hot rolling, and that the movable dislocation was further increased by performing skin pass rolling with a small diameter roll after cooling. The present invention has been completed.

本発明の要旨は、以下のとおりである。   The gist of the present invention is as follows.

(1)質量%で、
C:0.04〜0.25%、
Si:0.001〜0.5%、
Mn:0.05〜1.5%、
P:0.09%以下、
S:0.015%以下、
Al:0.01〜0.08%、
N:0.0005〜0.015%
を含有し、残部Fe及び不可避的不純物から成る成分の鋼片を熱間圧延し、その後、平均冷却速度60℃/s以上で400℃未満まで冷却した後巻き取って冷却し、さらに下記式(1)を満足する直径のロールを用いて伸び率0.1〜1.0%の冷間圧延を行うことを特徴とする耐時効性の優れた熱延鋼板の製造方法。
t/R≧0.0055・・・・・(1)
(ここで、tは板厚、Rはロール直径)
(1) In mass%,
C: 0.04 to 0.25%,
Si: 0.001 to 0.5%,
Mn: 0.05 to 1.5%,
P: 0.09% or less,
S: 0.015% or less,
Al: 0.01 to 0.08%,
N: 0.0005 to 0.015%
The steel slab of the component which consists of remainder Fe and an unavoidable impurity is hot-rolled, and after cooling to less than 400 degreeC by average cooling rate 60 degreeC / s or more, it winds up and cools, and also the following formula ( A method for producing a hot-rolled steel sheet having excellent aging resistance, characterized by performing cold rolling with an elongation of 0.1 to 1.0% using a roll having a diameter satisfying 1).
t / R ≧ 0.0055 (1)
(Where t is the plate thickness and R is the roll diameter)

(2) 前記鋼板が、さらに質量%で、
Cr:2.5%以下、
Mo:1.0%以下、
V:0.1%以下
の1種または2種以上を合計量で0.1%以上を含有することを特徴とする上記(1)記載の耐時効性の優れた熱延鋼板の製造方法。
(2) The steel sheet is further mass%,
Cr: 2.5% or less,
Mo: 1.0% or less,
V: The method for producing a hot-rolled steel sheet having excellent aging resistance according to the above (1), wherein one or two or more of 0.1% or less is contained in a total amount of 0.1% or more.

(3) 前記鋼板が、さらに質量%で、
Ca:0.0002〜0.01%、
Zr:0.001〜0.10%、
REM:0.0005〜0.10%
の一種または二種以上を含有することを特徴とする上記(1)または(2)記載の耐時効性の優れた熱延鋼板の製造方法。
(3) The steel sheet is further mass%,
Ca: 0.0002 to 0.01%,
Zr: 0.001 to 0.10%,
REM: 0.0005 to 0.10%
A method for producing a hot-rolled steel sheet having excellent aging resistance according to the above (1) or (2), which comprises one or more of the following.

本発明によれば、熱延鋼板製造後の長期保管によっても、時効による延性の低下を少なくした耐時効性に優れた熱延鋼板を得ることが出来る。しかも、熱延鋼板の成分として高価な元素を使用しなくても耐時効性を付与することが出来、さらに、熱延鋼板全体にバラツキなしに耐時効性を付与することが出来るという顕著な効果を奏するものである。   ADVANTAGE OF THE INVENTION According to this invention, the hot-rolled steel plate excellent in the aging resistance which reduced the fall of the ductility by aging can be obtained also by long-term storage after manufacture of a hot-rolled steel plate. Moreover, it is possible to impart aging resistance without using an expensive element as a component of the hot-rolled steel sheet, and further, it is possible to impart aging resistance to the entire hot-rolled steel sheet without variation. It plays.

以下本発明を詳細に説明する。   The present invention will be described in detail below.

鋼板の成形加工は、鋼板中に可動転位が存在することによって、可能となるもので、可動転位が少なければ延性(成形性)が劣ることとなる。時効による伸び等の延性の低下は、熱延鋼板中に存在する固溶Cや固溶Nが時間の経過と共に可動転位に集積し、可動転位を移動させなくして、移動可能な可動転位が減少することに起因するものである。   The forming process of the steel sheet is made possible by the presence of movable dislocations in the steel sheet. If there are few movable dislocations, the ductility (formability) will be inferior. The decrease in ductility such as elongation due to aging is due to the fact that solute C and solute N present in hot-rolled steel sheets accumulate on movable dislocations over time, and movable dislocations are reduced without moving movable dislocations. Is due to

そこで、本発明者は、熱延鋼板の時効による延性の低下を少なくするために、熱延鋼板中に存在する可動転位に着目し、熱延鋼板中に可動転位を多く存在させれば、固溶Cや固溶Nが時間の経過と共に可動転位に集積しても、移動可能な可動転位がまだ多く残存しているため時効による延性の低下を少なくすることができると考え、特殊な添加元素を添加しなくても、板厚の厚い1.2〜6.5mm程度の熱延鋼板についての時効での延性低下を防止すべく、熱延鋼板に可動転位を増加させることについて鋭意研究を行った。   In view of this, the present inventor paid attention to the movable dislocations present in the hot-rolled steel sheet in order to reduce the decrease in ductility due to aging of the hot-rolled steel sheet. A special additive element is considered to be able to reduce the decrease in ductility due to aging because even if dissolved C or solute N accumulates in movable dislocations over time, many movable dislocations still remain. In order to prevent the deterioration of ductility due to aging of hot-rolled steel sheets with a thick plate thickness of about 1.2 to 6.5 mm even without the addition of steel, intensive research has been conducted on increasing movable dislocations in hot-rolled steel sheets. It was.

その結果、熱延鋼板の組成、板厚、熱延後の冷却条件、巻き取り条件、スキンパス圧延の条件を特定の範囲とする事で、熱延鋼板に可動転位を増加させることが出来、時効による延性の低下を大幅に低下でき、コイル長手方向でも延性低下量のバラツキの少ない耐時効性に優れた熱延鋼板を製造できることを見出して、本発明を完成した。   As a result, it is possible to increase the number of movable dislocations in the hot-rolled steel sheet by setting the composition of the hot-rolled steel sheet, sheet thickness, cooling conditions after hot-rolling, winding conditions, and skin pass rolling conditions to a specific range. The present invention has been completed by finding that a hot-rolled steel sheet excellent in aging resistance can be produced with a significant decrease in ductility, and with little variation in the amount of reduced ductility even in the longitudinal direction of the coil.

本発明においては、以下のa.〜c.の条件が重要である。
a.鋼成分としてのC、Si、Mn、P、S、Al、N等を特定範囲内の含有量とする。
b.熱延後に平均冷却速度60℃/s以上の冷却速度で400℃未満、好ましくは300℃以下の温度まで冷却してコイルに巻き取る。
c.下記式(1)の条件でスキンパス圧延を行う。
In the present invention, the following a. ~ C. The conditions are important.
a. C, Si, Mn, P, S, Al, N, and the like as steel components are included in a specific range.
b. After hot rolling, the steel is cooled to an average cooling rate of 60 ° C./s or higher and a temperature of less than 400 ° C., preferably 300 ° C. or lower, and wound on a coil.
c. Skin pass rolling is performed under the condition of the following formula (1).

スキンパスロール直径と板厚との関係が、
t/R≧0.0055・・・・・・・(1)
(ただし、tは板厚、Rはスキンパスロールの直径)を満たすようにして、冷間で伸び率0.1〜1.0%の圧延を行う。
The relationship between the skin pass roll diameter and the plate thickness is
t / R ≧ 0.0055 (1)
(Where t is the thickness of the plate and R is the diameter of the skin pass roll), and cold rolling is performed at an elongation of 0.1 to 1.0%.

まず、本発明の鋼成分および成分範囲を限定した理由について説明する。   First, the reason why the steel component and the component range of the present invention are limited will be described.

C:0.04〜0.25%
Cは、鋼の強度を増加させるに必要な安価な元素であり、含有量が0.04%未満ではその効果が乏しく、一方、0.25%を越えると延性の低下を招き、溶接性も低下させる。したがって、C含有量は0.04〜0.25%とした。
C: 0.04 to 0.25%
C is an inexpensive element necessary for increasing the strength of the steel, and if its content is less than 0.04%, its effect is poor. On the other hand, if it exceeds 0.25%, ductility is lowered and weldability is also reduced. Reduce. Therefore, the C content is set to 0.04 to 0.25%.

Si:0.001〜0.5%
Siは、固溶強化作用によって熱延鋼板の強度延性バランスを向上させる元素であり、0.001%以上必要であるが、0.5%を超えると強度が上昇しすぎて成形性の低下を招くので、上限を0.5%とした。
Si: 0.001 to 0.5%
Si is an element that improves the strength ductility balance of the hot-rolled steel sheet by a solid solution strengthening action, and is required to be 0.001% or more. However, if it exceeds 0.5%, the strength increases too much and the formability decreases. Therefore, the upper limit was made 0.5%.

Mn:0.05〜1.5%
Mnは、固溶強化元素として有用であり、MnSを形成し、熱延時のSの耳われを抑制したり、固溶Nに起因する常温時効を抑制する効果を奏するので、0.05%以上必要である。一方、添加量が1.5%を超えると強度が高くなりすぎて延性の低下や、溶融亜鉛めっきの密着性を阻害するので、上限を1.5%とした。
Mn: 0.05 to 1.5%
Mn is useful as a solid solution strengthening element, forms MnS, and suppresses cracking of S during hot rolling, and has an effect of suppressing normal temperature aging caused by solid solution N, so 0.05% or more is necessary. On the other hand, if the added amount exceeds 1.5%, the strength becomes too high and the ductility is deteriorated and the adhesiveness of the hot dip galvanizing is inhibited, so the upper limit was made 1.5%.

P:0.09%以下
Pは、製鋼上から不可避的に含有される元素であるが、強度を増加する作用があり、0.09%以下含有させることが出来る。0.009%を超えるとスポット溶接後の疲労強度が劣悪となったり、強度が増加しすぎてプレス加工時に面形状不良を引き起こすので上限を0.09%とした。
P: 0.09% or less P is an element that is inevitably contained from the viewpoint of steelmaking, but has an effect of increasing the strength, and can be contained by 0.09% or less. If it exceeds 0.009%, the fatigue strength after spot welding becomes poor, or the strength increases too much to cause surface shape defects during press working, so the upper limit was made 0.09%.

S:0.015%以下
Sは、Pと同様に製鋼上から不可避的に含有される元素であり、熱間割れの原因となったり、加工性を劣化させるので、0.015%を上限とした。
S: 0.015% or less S is an element that is inevitably contained from the steel making as with P, and causes hot cracking or deteriorates workability, so 0.015% is made the upper limit. did.

Al:0.01〜0.08%
Alは、脱酸剤として添加され、得られる熱延鋼板の延性を高める作用を有しており、その効果を発揮させるためには0.01%以上の添加が必要である。しかし、AlはNと結合してAlNを形成し、BH性を低下させるので上限を0.08%とした。
Al: 0.01 to 0.08%
Al is added as a deoxidizer and has the effect of increasing the ductility of the resulting hot-rolled steel sheet, and it is necessary to add 0.01% or more in order to exert the effect. However, Al combines with N to form AlN and lowers the BH property, so the upper limit was made 0.08%.

N:0.0005〜0.015%
Nは、鋼板中に固溶させることにより、焼付け塗装処理により窒化物として析出しBH性を高める効果があり、その効果を確保するためには0.0005%以上のNを含有させることが必要であるが、Nが多すぎると時効による延性を劣化させるので0.015%を上限とした。
N: 0.0005 to 0.015%
N has the effect of increasing the BH property by solid-dissolving in the steel sheet, thereby precipitating as a nitride by baking coating treatment, and it is necessary to contain 0.0005% or more of N in order to ensure the effect. However, if N is too much, ductility due to aging deteriorates, so 0.015% was made the upper limit.

Cr:2.5%以下、Mo:1.0%以下、V:0.1%以下の1種または2種以上:合計量で0.1%以上
Cu、Ni、Crの一種または二種以上は、スクラップを製鋼原料として再利用することによって鋼板中に含有される元素である。これら成分は、鋼板の強度を増加させ、常温時効性を改善する作用があるが、コストの点かな積極的に添加する必要はなく、多くなり過ぎると加工性を劣化させるので夫々Cr:2.5%以下、Mo:1.0%以下、V:0.1%以下の範囲で、かつ、その一種または二種以上を合計量で0.1%以上含有しても本発明の効果を損なうものではない。
One or more of Cr: 2.5% or less, Mo: 1.0% or less, V: 0.1% or less: 0.1% or more in total amount One or more of Cu, Ni, and Cr Is an element contained in a steel sheet by reusing scrap as a steelmaking raw material. These components have the effect of increasing the strength of the steel sheet and improving the aging property at room temperature. However, it is not necessary to add them positively in terms of cost, and if the amount is too large, the workability deteriorates. Even if it contains 5% or less, Mo: 1.0% or less, V: 0.1% or less, and one or more of them in a total amount of 0.1% or more, the effect of the present invention is impaired. It is not a thing.

Ca:0.0002〜0.01%、Zr:0.001〜0.10%、REM:0.0005〜0.10%の一種または二種以上
Ca、Zr、REM(希土類元素)は、いずれも鋼中に形成されるMnSの形態制御に効果があり、熱延時の加工性の低下を抑制する効果のある元素であり、その効果のためには
Ca、Zr、REM(希土類元素)のそれぞれ0.0002%以上、0.001%以上、0.0005%以上が必要であるが、多くなりすぎると逆に加工性の劣化を引き起こすので、それぞれ0.01%、0.10%、0.10%を上限とした。
One or more of Ca: 0.0002 to 0.01%, Zr: 0.001 to 0.10%, REM: 0.0005 to 0.10% Ca, Zr, REM (rare earth element) Is an element that is effective in controlling the form of MnS formed in steel and has an effect of suppressing a decrease in workability during hot rolling. For this effect, each of Ca, Zr, and REM (rare earth elements) 0.0002% or more, 0.001% or more, and 0.0005% or more are necessary. However, if the amount is excessively increased, workability is deteriorated. Therefore, 0.01%, 0.10%, and. The upper limit was 10%.

次に、熱延条件について説明する。   Next, hot rolling conditions will be described.

熱延は、鋼材を加熱炉でAr3点以上の温度に加熱し、加熱炉から抽出した鋼材を、常法通りに熱延して鋼板とする。仕上げ圧延後の鋼板は、ROT冷却で平均冷却速度60℃/s以上で400℃未満に冷却する。この冷却中にγ相(オーステナイト)からα相(フェライト)への変態が生じ、体積変化により鋼板中に可動転位が発生する。発生した可動転位は、高温であるほど消滅が速いので、速い冷却速度で低温域に到達するまで冷却することで、発生した可動転位を消滅させることなく残留させることが可能となる。可動転位を消滅させることがない速い冷却速度としては、平均冷却速度が60℃/s以上が必要である。   In hot rolling, a steel material is heated to a temperature of Ar3 or higher in a heating furnace, and the steel material extracted from the heating furnace is hot-rolled as usual to obtain a steel plate. The steel sheet after finish rolling is cooled to less than 400 ° C. at an average cooling rate of 60 ° C./s or more by ROT cooling. During this cooling, transformation from the γ phase (austenite) to the α phase (ferrite) occurs, and movable dislocations occur in the steel sheet due to the volume change. The generated movable dislocations disappear faster as the temperature is higher. Therefore, the generated movable dislocations can be left without disappearing by cooling to a low temperature region at a high cooling rate. As a fast cooling rate that does not eliminate movable dislocations, an average cooling rate of 60 ° C./s or more is required.

また、温度が低下して400℃未満となると可動転位の消滅は少なくなるので、ROT冷却での平均冷却速度60℃/s以上の冷却は、400℃未満の温度域に到達するまで行う。300℃以下まで冷却すると更に好ましい。なお、400℃未満の温度まで冷却してコイルに巻き取れば、その温度から室温までの冷却においてコイル内部と外周部の冷却速度の違いによる材質への影響は小さく、コイル長手方向の材質バラツキの抑制にも効果的である。   In addition, since the disappearance of movable dislocations decreases when the temperature falls below 400 ° C., cooling at an average cooling rate of 60 ° C./s or more in ROT cooling is performed until a temperature range below 400 ° C. is reached. More preferably, it is cooled to 300 ° C. or lower. If the coil is cooled to a temperature of less than 400 ° C. and wound on the coil, the cooling from the temperature to room temperature has little effect on the material due to the difference in the cooling rate inside and outside the coil, and there is no material variation in the coil longitudinal direction. It is also effective for suppression.

したがって、本発明ではγ域での仕上げ圧延後の鋼板の冷却は、平均冷却速度を60℃/s以上の急冷とし、その冷却到達温度を400℃未満とした。   Therefore, in the present invention, the cooling of the steel sheet after finish rolling in the γ region is performed by rapidly cooling the average cooling rate at 60 ° C./s or more, and the cooling arrival temperature is less than 400 ° C.

なお、ここで「平均冷却速度」とは、ROT冷却設備の途中に温度計測などのため冷却ゾーンがない領域がある場合にはこの部分では空冷されてしまうので、冷却設備入側から冷却設備出側までの平均冷却速度を意味する。   Here, the “average cooling rate” means that if there is an area where there is no cooling zone due to temperature measurement or the like in the middle of the ROT cooling equipment, the air is cooled in this part. Mean cooling rate to the side.

この様な熱延冷却条件によって、熱延鋼板全体に可動転位をあらかじめ形成しておくことが本発明においては重要である。   It is important in the present invention to previously form movable dislocations in the entire hot-rolled steel sheet under such hot-rolled cooling conditions.

なお、鋼板中に形成した可動転位は、鋼板を焼鈍により一旦α域で高温に保持した場合には減少してしまう。このため、冷延鋼板を焼鈍した焼鈍板では、鋼板中に多くの可動転位は得られないのである。   In addition, the movable dislocation formed in the steel sheet decreases when the steel sheet is once held at a high temperature in the α region by annealing. For this reason, many movable dislocations cannot be obtained in the steel sheet when the cold-rolled steel sheet is annealed.

次いで、熱延冷却後のスキンパス圧延(冷間圧延)条件について説明する。   Next, skin pass rolling (cold rolling) conditions after hot rolling cooling will be described.

スキンパス圧延は、通常、圧延の最終工程で行われるもので、きわめて少ない伸び率となる圧延を意味し、鋼板の板形状を平滑面に矯正したり、表面粗度を調整する目的のために実施されるが、この目的以外にも、例えば、成形に際して鋼板に降伏点が現れると、その応力に達した部分に生じるストレッチャーストレインの模様を防止するために、行うことがある。   Skin pass rolling is usually performed in the final rolling process, meaning rolling with extremely low elongation, and is performed for the purpose of correcting the plate shape of a steel plate to a smooth surface or adjusting the surface roughness. However, in addition to this purpose, for example, when a yield point appears in a steel sheet during forming, it may be performed to prevent a stretcher strain pattern that occurs in a portion that has reached the stress.

本発明は、スキンパス圧延によって、時効による伸び等の延性低下を防止することを目的とするものである。ところが、スキンパス圧延の伸び率を高くするのに伴い、特に1%を超えるとスキンパス圧延直後の伸びそのものが低下するため、時効による伸び低下が防止できても、全体としては伸びの低下が防止できないこととなる。   An object of the present invention is to prevent ductility deterioration such as elongation due to aging by skin pass rolling. However, as the elongation rate of the skin pass rolling is increased, especially when it exceeds 1%, the elongation immediately after the skin pass rolling is lowered. Therefore, even if the elongation reduction due to aging can be prevented, the overall decrease in elongation cannot be prevented. It will be.

そこで、本発明者は1%以下の低い伸び率のスキンパス圧延で、如何に時効による伸び低下を防止できるかについて詳細に検討した。その結果、前述した熱延板製造時に可動転位を生成させた上で、小径ロールを用いたスキンパス圧延を行えば、小さな伸び率のスキンパス圧延でも、時効による伸び(延性)低下を防止できることを見出した。   Therefore, the present inventor has examined in detail how the reduction in elongation due to aging can be prevented by skin pass rolling with a low elongation of 1% or less. As a result, it has been found that, by generating movable dislocations during the production of the hot-rolled sheet described above and performing skin pass rolling using a small-diameter roll, it is possible to prevent elongation (ductility) deterioration due to aging even with skin pass rolling with a small elongation rate. It was.

具体的には、(1)熱延板製造時の60℃/s以上の冷却速度の冷却によって、鋼板内全体に可動転位を形成させ、(2)400℃未満の低い温度で巻き取ることによって、形成された可動転位を消滅させないで、(3)スキンパス圧延時に小径ロールで圧延することによって、鋼板中にさらに可動転位を増加させることができる。可動転位の数を増加させることによって、固溶C、固溶Nが可動転位に集積しても、加工時に移動できる可動転位を多く残存させているので、鋼板の時効による延性の低下を減少させることが出来るのである。   Specifically, (1) by forming a movable dislocation throughout the steel sheet by cooling at a cooling rate of 60 ° C./s or higher when manufacturing a hot-rolled sheet, and (2) winding at a low temperature of less than 400 ° C. The movable dislocations can be further increased in the steel sheet by rolling with a small diameter roll at the time of skin pass rolling without eliminating the formed movable dislocations. By increasing the number of movable dislocations, even if solid solution C and solid solution N accumulate in the movable dislocations, a large number of movable dislocations that can move during processing remain, thereby reducing the reduction in ductility due to the aging of the steel sheet. It can be done.

スキンパス圧延では、ロール径に関係なく、伸び率を増加させると、可動転位数を増加させることが出来る。しかし、小径ロールを用いてスキンパス圧延すると、大径ロールと同じ伸び率であっても、鋼板の表面近傍の可動転位の数の増加が多くなるため、大径ロールに比べて可動転位数が増加する。   In skin pass rolling, the number of movable dislocations can be increased by increasing the elongation regardless of the roll diameter. However, when skin pass rolling is performed using a small-diameter roll, the number of movable dislocations near the surface of the steel sheet increases even if the elongation rate is the same as that of the large-diameter roll. To do.

図1、図2を参酌してスキンパス圧延におけるスキンパスロール径の影響による可動転移の数の増加を説明する。図1は、小径ロールによるスキンパス圧延での可動転位の数の増加の状態を説明するためのイメージ図で、図2は、大径ロールによるスキンパス圧延での可動転位の数の増加の状態を説明するためのイメージ図である。   An increase in the number of movable transitions due to the influence of the skin pass roll diameter in skin pass rolling will be described with reference to FIGS. FIG. 1 is an image diagram for explaining the state of increase in the number of movable dislocations in skin pass rolling with a small diameter roll, and FIG. 2 explains the state of increase in the number of movable dislocations in skin pass rolling with a large diameter roll. It is an image figure for.

図1に示すように、小径ロール1による鋼板2のスキンパス圧延では、鋼板表面近傍3に可動転位が細かく均一に多数導入される。これは、ロールの圧縮方向ではなく、鋼板の流れ方向に応力が作用して、鋼板近傍の剪断歪が大きくなって、鋼板表面近傍3に密度が細かくて均一な可動転位5が多数導入されるからである。しかし、鋼板内部4では、剪断歪は少なくなるので密度の粗い可動転位6が導入されるものと考えられる。一方、図2に示すように、大径ロール7による鋼板2のスキンパス圧延では、小径ロールのように鋼板表面近傍の剪断歪は大きくならないので、鋼板中に可動転位が入って行き、鋼板表面近傍、内部共に密度の粗い可動転位6が導入されることになるものと考えられる。   As shown in FIG. 1, in the skin pass rolling of the steel plate 2 by the small diameter roll 1, many movable dislocations are introduced finely and uniformly in the vicinity 3 of the steel plate surface. This is because stress acts not in the compression direction of the roll but in the flow direction of the steel sheet, the shear strain in the vicinity of the steel sheet increases, and a large number of movable dislocations 5 having a small density and uniform density are introduced in the vicinity 3 of the steel sheet surface. Because. However, since the shear strain is reduced in the steel plate inside 4, it is considered that the movable dislocation 6 having a coarse density is introduced. On the other hand, as shown in FIG. 2, in the skin pass rolling of the steel plate 2 with the large diameter roll 7, the shear strain in the vicinity of the steel plate surface does not increase as in the small diameter roll. It is considered that the movable dislocation 6 having a low density is introduced inside.

小径ロールと大径ロールとのスキンパス圧延を比較すると、鋼板の内部では可動転位の状態に差はないが、小径ロールの場合には、大径ロールよりも鋼板表面近傍に可動転位が多く入るので、全体としては、小径ロールでスキンパス圧延した方が大径ロールよりも可動転位の数が多く入ることとなる。   When comparing the skin pass rolling between the small diameter roll and the large diameter roll, there is no difference in the state of movable dislocation inside the steel sheet, but in the case of the small diameter roll, there are more movable dislocations near the steel sheet surface than the large diameter roll. As a whole, skin pass rolling with a small-diameter roll has more movable dislocations than a large-diameter roll.

そこで、時効による伸びの低下が抑制できるスキンパスロール径を明らかにするために試験を行った。組成が質量%で、0.06%C−0.004%Si−0.21%Mn−0.006%P−0.004%S−0.045%Al−0.0035%N−残部Feの鋼片をγ域の仕上げ温度となるように熱間圧延し、板厚(t)1.8〜3.4mmの鋼板とした。次いで、ROT冷却で冷却条件として、冷却速度85℃/sで冷却して、300℃でコイルに巻き取った。ついで、それぞれのコイルを巻き戻して、直径(R)250mm、300mm、360mm、400mm、600mmの何れかのロールを用いて伸び率0.5%のスキンパス圧延を実施した。延性の調査は、スキンパス圧延直後、および常温で6ヶ月保持した鋼板それぞれの幅1/4位置から圧延方向に平行にJIS5号試験片を加工して、JIS Z 2241記載の試験方法に従って引張試験を行い、破断伸びを測定した。スキンパス圧延直後の引張試験の破断伸び値から6ヶ月保持した後の引張試験の破断伸び値を引いた値を延性低下代として算出し、板厚やロール径との関係を整理した。   Therefore, a test was conducted to clarify the skin pass roll diameter capable of suppressing the decrease in elongation due to aging. 0.06% C-0.004% Si-0.21% Mn-0.006% P-0.004% S-0.045% Al-0.0035% N-balance Fe The steel piece was hot-rolled to a finishing temperature in the γ region to obtain a steel plate having a thickness (t) of 1.8 to 3.4 mm. Subsequently, as a cooling condition by ROT cooling, it was cooled at a cooling rate of 85 ° C./s and wound around a coil at 300 ° C. Next, each coil was unwound, and skin pass rolling with an elongation of 0.5% was performed using any roll having a diameter (R) of 250 mm, 300 mm, 360 mm, 400 mm, and 600 mm. The ductility investigation was conducted by processing a JIS No. 5 test piece in parallel with the rolling direction immediately after skin pass rolling and at a width of 1/4 position of each steel plate held at room temperature for 6 months, and conducting a tensile test according to the test method described in JIS Z 2241. And the elongation at break was measured. A value obtained by subtracting the breaking elongation value of the tensile test after holding for 6 months from the breaking elongation value of the tensile test immediately after skin pass rolling was calculated as the ductility reduction margin, and the relationship with the plate thickness and roll diameter was arranged.

時効による延性低下を抑制する効果が得られるスキンパス圧延のロール径を調査したところ、鋼板の板厚が厚いほどロール径上限が大きくなり、板厚(t)とロール径(R)の比t/Rと6ヶ月経過後の延性低下代(伸び低下代(%))には、図3に示すような関係が得られた。即ち、下記式(1)を満たせば、時効による延性低下を抑制する効果が得られることがわかった。
t/R≧0.0055・・・・・(1)
(ここで、tは板厚、Rはロール直径)
なお、t/Rが0.0055未満となると、鋼板表面近傍に密度が細かくて均一な可動転位が多数導入されないために、延性低下の抑制効果が得られないと考えられる。
As a result of investigating the roll diameter of skin pass rolling, which has the effect of suppressing ductility deterioration due to aging, the upper limit of the roll diameter increases as the plate thickness of the steel plate increases, and the ratio of the plate thickness (t) to the roll diameter (R) t / The relationship as shown in FIG. 3 was obtained between R and the ductility reduction allowance after 6 months (elongation reduction allowance (%)). That is, it has been found that if the following formula (1) is satisfied, an effect of suppressing a decrease in ductility due to aging can be obtained.
t / R ≧ 0.0055 (1)
(Where t is the plate thickness and R is the roll diameter)
When t / R is less than 0.0055, it is considered that a large density of uniform dislocations is not introduced near the surface of the steel sheet, so that the effect of suppressing the reduction in ductility cannot be obtained.

スキンパス圧延後の鋼板の表裏面を研削して調査したところ、表面から板厚内部1/4まで研削すると(1)式を満たすロールの効果が発揮されなくなることから、小径ロールを用いることにより特に表面から板厚内部1/4の間の転位数の増大が寄与しているものと考えられる。   When the front and back surfaces of the steel plate after skin pass rolling were ground and investigated, the effect of the roll satisfying the formula (1) is not exhibited when grinding from the surface to the inner thickness of the plate thickness. It is considered that the increase in the number of dislocations between the surface and the inner 1/4 of the plate thickness contributes.

熱延鋼板の板厚は、1.2〜6.5mm程度が通常であるので、スキンパス圧延に必要なロール直径の上限もその板厚に応じ決められる。ただし、ロール直径が180mm未満になるとロール剛性の不足が生じるため、鋼板の幅方向の伸び率のバラツキが生じやすくなり好ましくない。したがって、t/Rは0.036以下が好ましい。   Since the sheet thickness of the hot-rolled steel sheet is usually about 1.2 to 6.5 mm, the upper limit of the roll diameter necessary for skin pass rolling is also determined according to the sheet thickness. However, when the roll diameter is less than 180 mm, the roll rigidity is insufficient, and therefore, variation in the elongation in the width direction of the steel sheet is likely to occur, which is not preferable. Therefore, t / R is preferably 0.036 or less.

なお、スキンパス圧延の伸び率の下限を0.1%としたのは、0.1%未満ではスキンパス圧延による可動転位が極めて少なく、効果が発揮されないからである。   The reason why the lower limit of the elongation rate of skin pass rolling is set to 0.1% is that if it is less than 0.1%, there are very few movable dislocations due to skin pass rolling, and the effect is not exhibited.

可動転位を多数生成させることによって、コイル長手方向での固溶C量や固溶N量の違いによる材質バラツキも改善できる。   By generating a large number of movable dislocations, material variations due to differences in the amount of solute C and the amount of solute N in the coil longitudinal direction can be improved.

以下実施例に基づいて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

表1に示す組成を有するA〜Tの鋼は、転炉で溶製して、連続鋳造法により250mm厚のスラブとした。これらのスラブを加熱炉で1150〜1235℃の温度で加熱後、抽出し、熱間圧延を実施した。熱間圧延はγ域で熱間仕上げ圧延を行い、2.0〜4.5mm厚の鋼板に圧延した。引き続き、表2に示すように、ROT平均冷却速度45〜92℃/sで300〜550℃迄急冷し、コイルに巻き取り、室温まで空冷した。   The steels A to T having the composition shown in Table 1 were melted in a converter and made into a slab having a thickness of 250 mm by a continuous casting method. These slabs were heated in a heating furnace at a temperature of 1150 to 1235 ° C., extracted, and hot-rolled. In the hot rolling, hot finish rolling was performed in the γ region, and the steel sheet was rolled to a thickness of 2.0 to 4.5 mm. Subsequently, as shown in Table 2, it was rapidly cooled to 300 to 550 ° C. at an ROT average cooling rate of 45 to 92 ° C./s, wound around a coil, and air cooled to room temperature.

その後、コイルを解きながら、表2に示す各条件でスキンパス圧延を実施した。そして、スキンパス圧延直後の熱延鋼板のコイル内部及びコイル外周部について、製造直後及び常温で6ヶ月経過後にそれぞれの幅1/4位置から圧延方向に平行にJIS5号試験片を加工して、JIS Z 2241記載の試験方法に従って引張試験を行い、破断伸びを測定した。その結果は、表3に示すとおりであった。   Thereafter, skin pass rolling was performed under the conditions shown in Table 2 while unwinding the coil. And about the coil inside and coil outer peripheral part of a hot-rolled steel plate immediately after skin pass rolling, a JIS No. 5 test piece was processed in parallel to the rolling direction from the 1/4 position of each width immediately after production and after 6 months at room temperature, A tensile test was performed according to the test method described in Z2241, and the elongation at break was measured. The results were as shown in Table 3.

本発明に沿うものは、発明例1〜23であり、所定量の鋼成分を含有し、熱間圧延後60℃/s以上の冷却速度で400℃未満の温度まで冷却し巻き取った後室温まで空冷して、t/R≦0.0055、伸び率=0.1〜1.0%のスキンパス圧延を行った熱延鋼板であり、6ヶ月後の延性低下代も2.0%未満と良好であり、長手方向の材質バラツキ(コイル中心部の伸びとコイル外周部の伸びの差)も小さかった。   In accordance with the present invention are Invention Examples 1 to 23, containing a predetermined amount of steel components, cooled to a temperature of less than 400 ° C. at a cooling rate of 60 ° C./s or more after hot rolling, and wound up at room temperature. Is a hot-rolled steel sheet subjected to skin pass rolling with t / R ≦ 0.0055 and elongation = 0.1 to 1.0%, and the ductility reduction after 6 months is less than 2.0%. The material variation in the longitudinal direction (the difference between the elongation at the coil center and the elongation at the coil outer periphery) was also small.

比較例1〜3は、鋼成分が外れるものであり、C量あるいはN量が多すぎるために時効による延性低下が大きいとともに、長手方向の材質バラツキも大きかった。比較例4,5はROT冷却の冷却速度が遅すぎる場合であり、可動転位の生成が十分でないために時効による延性の低下が大きいとともに、長手方向の材質バラツキも大きかった。比較例6,7はROT冷却後の巻取り温度が高過ぎる場合であり、急冷によって発生した可動転位が消滅するために時効による延性低下が大きいとともに、長手方向の材質バラツキも大きかった。比較例8,9はt/Rが小さすぎる場合であり、スキンパスによる可動転位の生成が十分でないために時効による延性低下が大きいとともに、長手方向の材質バラツキも大きかった。比較例10,11はスキンパス圧延の伸び率が小さすぎる場合であり、スキンパスによる可動転位の生成が十分でないために時効による延性低下が大きいとともに、長手方向の材質バラツキも大きかった。   In Comparative Examples 1 to 3, the steel component was removed, and since the amount of C or N was too large, the ductility deterioration due to aging was large, and the material variation in the longitudinal direction was also large. Comparative examples 4 and 5 were cases where the cooling rate of ROT cooling was too slow. Since the generation of movable dislocations was not sufficient, the ductility was greatly reduced due to aging, and the material variation in the longitudinal direction was also large. In Comparative Examples 6 and 7, the coiling temperature after ROT cooling was too high, and the movable dislocations generated by the rapid cooling disappeared, so the ductility decreased due to aging and the material variation in the longitudinal direction was large. Comparative Examples 8 and 9 were cases where t / R was too small. Since the generation of movable dislocations by skin passes was not sufficient, the ductility deterioration due to aging was large, and the material variation in the longitudinal direction was also large. Comparative Examples 10 and 11 were cases where the elongation rate of skin pass rolling was too small. Since the generation of movable dislocations by the skin pass was not sufficient, the ductility deterioration due to aging was large, and the material variation in the longitudinal direction was also large.

Figure 2008190008
Figure 2008190008

Figure 2008190008
Figure 2008190008

Figure 2008190008
Figure 2008190008

小径ロールによるスキンパス圧延での可動転位の数の増加の状態を説明するためTo explain the state of increase in the number of movable dislocations in skin pass rolling with small diameter rolls

のイメージ図である。
大径ロールによるスキンパス圧延での可動転位の数の増加の状態を説明するためのイメージ図である。 板厚とスキンパス圧延ロール径の比(t/R)と6ヵ月後の延性低下代との関係を示した図である。
FIG.
It is an image figure for demonstrating the state of the increase in the number of the movable dislocations by the skin pass rolling by a large diameter roll. It is the figure which showed the relationship between ratio (t / R) of a plate | board thickness and a skin pass rolling roll diameter, and the ductility fall allowance after six months.

符号の説明Explanation of symbols

1小径ロール
2鋼板
3鋼板表面近傍
4内部
5密度が細かくて均一な可動転位
6密度の粗い可動転位
7大径ロール
1 small diameter roll 2 steel plate 3 steel plate surface vicinity 4 inside 5 density is fine and uniform movable dislocation 6 density coarse movable dislocation 7 large diameter roll

Claims (3)

質量%で、
C:0.04〜0.25%、
Si:0.001〜0.5%、
Mn:0.05〜1.5%、
P:0.09%以下、
S:0.015%以下、
Al:0.01〜0.08%、
N:0.0005〜0.015%
を含有し、残部Fe及び不可避的不純物から成る成分の鋼片を熱間圧延し、その後、平均冷却速度60℃/s以上で400℃未満まで冷却した後巻き取って冷却し、さらに下記式(1)を満足する直径のロールを用いて伸び率0.1〜1.0%の冷間圧延を行うことを特徴とする耐時効性の優れた熱延鋼板の製造方法。
t/R≧0.0055・・・・・(1)
(ここで、tは板厚、Rはロール直径)
% By mass
C: 0.04 to 0.25%,
Si: 0.001 to 0.5%,
Mn: 0.05 to 1.5%,
P: 0.09% or less,
S: 0.015% or less,
Al: 0.01 to 0.08%,
N: 0.0005 to 0.015%
The steel slab of the component which consists of remainder Fe and an unavoidable impurity is hot-rolled, and after cooling to less than 400 degreeC by average cooling rate 60 degreeC / s or more, it winds up and cools, and also the following formula ( A method for producing a hot-rolled steel sheet having excellent aging resistance, characterized by performing cold rolling with an elongation of 0.1 to 1.0% using a roll having a diameter satisfying 1).
t / R ≧ 0.0055 (1)
(Where t is the plate thickness and R is the roll diameter)
前記鋼板が、さらに質量%で、
Cr:2.5%以下、
Mo:1.0%以下、
V:0.1%以下
の1種または2種以上を合計量で0.1%以上を含有することを特徴とする請求項1に記載の耐時効性の優れた熱延鋼板の製造方法。
The steel sheet is further mass%,
Cr: 2.5% or less,
Mo: 1.0% or less,
The method for producing a hot-rolled steel sheet having excellent aging resistance according to claim 1, wherein V: 0.1% or less of one type or two or more types is contained in a total amount of 0.1% or more.
前記鋼板が、さらに質量%で、
Ca:0.0002〜0.01%、
Zr:0.001〜0.10%、
REM:0.0005〜0.10%
の1種または2種以上を含有することを特徴とする請求項1または2に記載の耐時効性の優れた熱延鋼板の製造方法。
The steel sheet is further mass%,
Ca: 0.0002 to 0.01%,
Zr: 0.001 to 0.10%,
REM: 0.0005 to 0.10%
1 or 2 types or more of these are contained, The manufacturing method of the hot-rolled steel plate excellent in the aging resistance of Claim 1 or 2 characterized by the above-mentioned.
JP2007026830A 2007-02-06 2007-02-06 Manufacturing method of hot-rolled steel sheet having excellent aging resistance Withdrawn JP2008190008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007026830A JP2008190008A (en) 2007-02-06 2007-02-06 Manufacturing method of hot-rolled steel sheet having excellent aging resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007026830A JP2008190008A (en) 2007-02-06 2007-02-06 Manufacturing method of hot-rolled steel sheet having excellent aging resistance

Publications (1)

Publication Number Publication Date
JP2008190008A true JP2008190008A (en) 2008-08-21

Family

ID=39750374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007026830A Withdrawn JP2008190008A (en) 2007-02-06 2007-02-06 Manufacturing method of hot-rolled steel sheet having excellent aging resistance

Country Status (1)

Country Link
JP (1) JP2008190008A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201774A (en) * 2013-04-02 2014-10-27 Jfeスチール株式会社 Method of manufacturing high carbon hot rolled steel sheet for cold rolling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201774A (en) * 2013-04-02 2014-10-27 Jfeスチール株式会社 Method of manufacturing high carbon hot rolled steel sheet for cold rolling

Similar Documents

Publication Publication Date Title
EP2465961B1 (en) High-strength steel sheets and processes for production of the same
JP4640130B2 (en) High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
KR101580749B1 (en) High-strength cold-rolled steel sheet with excellent stretch flangeability and precision punchability, and process for producing same
JP6179461B2 (en) Manufacturing method of high-strength steel sheet
JP5983896B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP5162924B2 (en) Steel plate for can and manufacturing method thereof
KR101607041B1 (en) Method for producing high-strength cold-rolled steel sheet having excellent anti-aging property and bake hardening property
US20200291499A1 (en) High-strength galvanized steel sheet and method for manufacturing same
WO2001023625A1 (en) Sheet steel and method for producing sheet steel
JP5817671B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP6079726B2 (en) Manufacturing method of high-strength steel sheet
JP6294197B2 (en) Hot rolled steel sheet and manufacturing method thereof
JP5381154B2 (en) Cold-rolled steel sheet excellent in strength-ductility balance after press working and paint baking and method for producing the same
JP2018016873A (en) High strength and high processability cold-rolled steel sheet coil with small variation of strength in coil and manufacturing method thereof
JP4192857B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5310920B2 (en) High strength cold-rolled steel sheet with excellent aging resistance and seizure hardening
JP2004052071A (en) High tensile strength cold rolled steel sheet with composite structure having excellent stretch flanging property, strength-ductility balance and strain age hardenability, and method of producing the same
WO2021005971A1 (en) Hot rolled steel sheet
CN111315907B (en) Steel plate
JP4273646B2 (en) High-strength thin steel sheet with excellent workability and manufacturing method thereof
JP5655839B2 (en) Hot-rolled steel sheet used as a base material for steel sheet for can and manufacturing method thereof
JP3516747B2 (en) Manufacturing method of cold-rolled steel sheet for non-aging deep drawing at room temperature with excellent material uniformity and surface quality in the coil longitudinal direction
JP2008190008A (en) Manufacturing method of hot-rolled steel sheet having excellent aging resistance
RU2379361C1 (en) Method of cold-rolled sheet products manufacturing for enameling
KR20210079720A (en) Alloyed hot dip galvanized steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406