JP2002212691A - Method for producing aluminum alloy sheet material for can body having excellent barrel cutting resistance - Google Patents

Method for producing aluminum alloy sheet material for can body having excellent barrel cutting resistance

Info

Publication number
JP2002212691A
JP2002212691A JP2001011816A JP2001011816A JP2002212691A JP 2002212691 A JP2002212691 A JP 2002212691A JP 2001011816 A JP2001011816 A JP 2001011816A JP 2001011816 A JP2001011816 A JP 2001011816A JP 2002212691 A JP2002212691 A JP 2002212691A
Authority
JP
Japan
Prior art keywords
rolling
temperature
cold rolling
aluminum alloy
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001011816A
Other languages
Japanese (ja)
Other versions
JP4011293B2 (en
Inventor
Hiroshi Saito
洋 齊藤
Mitsuru Saito
充 齊藤
Toshihiro Harada
俊宏 原田
Koichi Ohori
紘一 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2001011816A priority Critical patent/JP4011293B2/en
Publication of JP2002212691A publication Critical patent/JP2002212691A/en
Application granted granted Critical
Publication of JP4011293B2 publication Critical patent/JP4011293B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an aluminum alloy sheet material which has excellent barrel cutting resistance. SOLUTION: An aluminum alloy ingot is subjected to homogenizing treatment. In a hot rolling stage, the temperature of a coil after the hot rolling is controlled to 400 to 500 deg.C, and the recrystallization rate of the coil is controlled to 70 to 100%. The coil is cold-rolled, and is annealed in a first process annealing stage. The coil is cold-rolled at a draft in the range of 10 to 25% in a second cold rolling stage, and is annealed in a second process annealing stage. In a final cold rolling stage, cold rolling is performed for one pass so that the draft is controlled in the range of 45 to 70%, and the temperature of the coil on coiling after the cold rolling is controlled to 90 to 140 deg.C. After the completion of the coiling, the coil is held to <90 deg.C for 1 to 10 hr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001 】[0001]

【発明の属する技術分野】本発明は、耐胴切れ性に優れ
た缶ボディ用アルミニウム合金板材の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum alloy sheet for a can body having excellent resistance to body breakage.

【0002 】[0002]

【従来の技術】缶入り飲料などの需要増大に伴い、最近
ではその容器として好適なアルミニウム基合金製のいわ
ゆるDI(Deep drawing & Ironing)缶が大量に生産さ
れるようになっている。このアルミニウム基合金製DI
缶の本体の一般的な製造方法としては、アルミニウム基
合金板を多段に深絞り加工し、さらにしごき加工を行っ
て缶本体を成形し、焼付け塗装後に、ネック加工などを
行う。ここで使用するアルミニウム基合金板には、製缶
後の十分な強度と、多段深絞りやしごき加工、ネック加
工などに耐える成形性とが共に要求される。
2. Description of the Related Art With an increase in demand for canned beverages and the like, recently, so-called DI (Deep drawing & Ironing) cans made of an aluminum-based alloy suitable for the containers have been mass-produced. This DI made of aluminum base alloy
As a general manufacturing method of the main body of the can, an aluminum-based alloy plate is deep-drawn in multiple steps, further ironed to form the can main body, and after baking coating, neck processing and the like are performed. The aluminum-based alloy plate used here is required to have both sufficient strength after can making and formability to withstand multi-stage deep drawing, ironing, necking, and the like.

【0003 】一般に、深絞り用アルミニウム基合金と
しては、Al-Mn-Mg系の、例えば米国アルミニウム
協会標準(A.A)3004合金などが広く用いられて
いる。この合金から深絞り用アルミニウム基合金板を製
造するには、(a)先ずこの合金の鋳塊を熱間圧延し、
次に(b)冷間圧延して適度な板厚の板材とし、この冷
間圧延後の板材に(c)中間焼鈍を施し、さらに要求さ
れる強度に応じて(d)冷間圧延による硬化処理が行わ
れる。
In general, as an aluminum-based alloy for deep drawing, an Al-Mn-Mg-based alloy such as the American Aluminum Association Standard (AA) 3004 alloy is widely used. In order to manufacture an aluminum-based alloy plate for deep drawing from this alloy, (a) first, an ingot of this alloy is hot-rolled,
Next, (b) cold rolling is performed to obtain a sheet having an appropriate thickness. The sheet after the cold rolling is subjected to (c) intermediate annealing, and further (d) hardening by cold rolling according to required strength. Processing is performed.

【0004 】この深絞り成形用アルミニウム基合金板
の製造工程において、板材の強度を向上させるためには
前記(d)の冷間圧延における冷間圧延率を高くする必
要がある。しかし冷間圧延度を上げると、いわゆる圧延
集合組織が発達し、塑性変形に際して異方性が顕著に現
れるようになり、深絞り成形したときの板材の圧延方向
に応じて成形した缶本体の上縁の高さが山谷状に変化す
る現象が起こる。この山谷状に変形した部分は通常、
「耳」と呼ばれている。深絞り成形後の缶体は、次いで
しごき加工を行った後に、蓋部材を取付けるために開口
部を水平に切断し缶高を揃えるトリム加工が行われる。
このトリム加工の際には耳も除去されるので、耳の高さ
が高いと、除去するべき板材の量割合(以下「耳率」と
いう)が増大し、歩留まりが低下して製造コストが上昇
するという問題があった。そこで、低耳率となる板材が
求められている。
[0004] In the production process of the aluminum-base alloy sheet for deep drawing, in order to improve the strength of the sheet material, it is necessary to increase the cold rolling ratio in the cold rolling (d). However, when the degree of cold rolling is increased, a so-called rolling texture develops, and anisotropy appears remarkably during plastic deformation, and the top of the can body formed according to the rolling direction of the sheet material when deep drawing is performed. A phenomenon occurs in which the height of the edge changes in a valley-like manner. This part that has been deformed into a mountain valley is usually
They are called "ears". The can body after deep drawing is then ironed, and then trimmed to cut the opening horizontally to make the can height uniform in order to attach a lid member.
Ears are also removed during this trimming process, so if the height of the ears is high, the amount of plate material to be removed (hereinafter referred to as "ear ratio") increases, the yield decreases, and the manufacturing cost increases. There was a problem of doing. Therefore, a plate material having a low ear ratio is required.

【0005 】一般にアルミニウム基合金板を冷間圧延
すると、圧延方向に対して45〜60゜の方向に耳(以
下、45°耳と略称する。)の山となる圧延集合組織が
発達する傾向がある。そこで、耳率を低下させるために
は圧延集合組織の発達を抑制する必要がある。これは冷
間圧延前の板材における再結晶集合組織の生成状態を制
御することによって達成できることがわかっている。即
ち、一般的には冷間圧延以前に、0-90゜の方向に深
絞り耳を生じるような「立方体方位」と呼ばれる再結晶
集合組織を発達させる方法が用いられる。立方体方位組
織が発達すると0-90゜方向の耳を生じることになる
が、その後の冷間圧延によってこの方向の耳はあまり発
達せず、一方、45゜耳を生成する圧延集合組織の発達
も抑制され、結果として開口部周縁における耳の山が均
一化されることになる。この方法によって、圧延度80
%以上の冷間圧延の後に僅かな0-90゜耳と45゜耳
とが混在する低耳性板材が得られるようになった。
In general, when an aluminum-based alloy sheet is cold-rolled, a rolled texture having peaks (hereinafter, abbreviated as 45 ° ears) in the direction of 45 to 60 ° with respect to the rolling direction tends to develop. is there. Therefore, in order to reduce the ear ratio, it is necessary to suppress the development of the rolling texture. It has been found that this can be achieved by controlling the state of formation of the recrystallized texture in the sheet material before cold rolling. That is, a method of developing a recrystallized texture called “cubic orientation” that generally produces a deep drawing ear in the direction of 0-90 ° before cold rolling is used. The development of the cubic orientation gives rise to ears in the 0-90 ° direction, but the subsequent cold rolling does not develop the ears in this direction much, while the development of the rolled texture to produce the 45 ° ears also occurs. It is suppressed, and as a result, the peak of the ear at the periphery of the opening is made uniform. By this method, the degree of rolling 80
%, After low-temperature cold rolling, a low-ear plate material in which a few 0-90 ° ears and 45 ° ears coexist is obtained.

【0006 】前記の立方体方位の再結晶集合組織を発
達させる具体的な方法としては、熱間圧延時の諸条件を
調節し、熱間圧延後に巻き取ったコイルが冷却するまで
の間、あるいは巻き取ったコイルを焼鈍する際に生じる
再結晶を制御する方法(特開平5−125500号公
報)が知られている。この方法では、前記(b)の冷間
圧延、または(b)の冷間圧延と(c)の中間焼鈍とを
行わず、再結晶した熱間圧延板に前記(d)の冷間圧延
を施す。現在、DI缶用として主に用いられている板材
の厚さは約0.3mm程度であるので、この方法を適用
して最終の冷間圧延率を80〜90%とする場合には、
熱間圧延により板厚が1.5〜3mmとなるように圧延
する必要がある。そこで、普通、リバース式熱間圧延機
を用いて圧延した後にさらにタンデム式の仕上用熱間圧
延機または圧延機の両側にコイル巻取り装置を装備した
リバース式熱間仕上圧延機を用いて圧延する方法が用い
られる。しかしこれらの熱間仕上圧延機は大規模でかつ
高価であり、これらを用いることによる製造コストの面
で負担が大きい。更に、缶用素材の薄肉化に伴い、圧延
ロールやパス間での温度低下の影響が大きくなり、適切
な熱間圧延条件を維持するためには設備能力を更に増大
させる必要があって一層コストが嵩む傾向にあった。
As a specific method of developing the recrystallized texture of the cubic orientation, various conditions during hot rolling are adjusted, and the coil wound after hot rolling is cooled until the coil is cooled, or is wound. There is known a method of controlling recrystallization generated when annealing a coil taken (Japanese Patent Laid-Open No. 5-125500). In this method, the cold rolling of (d) is performed on the recrystallized hot rolled sheet without performing the cold rolling of (b) or the cold rolling of (b) and the intermediate annealing of (c). Apply. At present, the thickness of the plate material mainly used for DI cans is about 0.3 mm, so if this method is applied and the final cold rolling reduction is 80 to 90%,
It is necessary to perform hot rolling so that the thickness becomes 1.5 to 3 mm. Therefore, usually, after rolling using a reverse type hot rolling mill, further rolling using a tandem type finishing hot rolling mill or a reverse type hot finishing mill equipped with coil winding devices on both sides of the rolling mill. Is used. However, these hot finishing mills are large-scale and expensive, and use of these hot rolls imposes a heavy burden on production costs. Furthermore, as the thickness of the material for cans becomes thinner, the effect of the temperature drop between the rolling rolls and passes increases, and it is necessary to further increase the equipment capacity in order to maintain appropriate hot rolling conditions. Tended to increase.

【0007 】そこで、熱間圧延の全工程にシングルミ
ルのリバース式熱間粗圧延機のみを用いる方法が検討さ
れた。しかしこの粗圧延機を用いて薄肉の板材を製造し
ようとすると、パス間での温度低下が著しく、熱間圧延
板の再結晶を制御するための熱間圧延条件を維持するこ
とがきわめて困難になる。この問題を解決する手段とし
て、アルミニウム基合金に時効硬化性を与える元素を添
加し、前記(b)の冷間圧延後、前記(c)の中間焼鈍
を比較的高温で行うことにより溶体化し、前記(d)の
冷間圧延の圧延度を小さくしても十分な強度が得られる
方法が提案された(特公昭60−35424号公報)。
Therefore, a method of using only a single-mill reverse hot rough rolling mill in all the steps of hot rolling was studied. However, when attempting to produce thin-walled sheet material using this rough rolling mill, the temperature drop between passes is remarkable, and it is extremely difficult to maintain hot rolling conditions for controlling recrystallization of a hot-rolled sheet. Become. As a means for solving this problem, an element that imparts age hardening to the aluminum-based alloy is added, and after the cold rolling of the above (b), the intermediate annealing of the above (c) is performed at a relatively high temperature to form a solution, A method has been proposed in which sufficient strength can be obtained even if the rolling degree of the cold rolling in the above (d) is reduced (Japanese Patent Publication No. 60-35424).

【0008 】この方法によれば、DI缶本体を成形し
た後の焼付け塗装の加熱により析出硬化するので、焼付
け時の加熱による軟化が抑制され、冷間圧延率を小さく
しても十分な強度が得られるようになった。従って、前
記(c)の中間焼鈍の後に立方体集合組織が十分発達し
ていなくても冷間圧延の圧延率を小さくできるので圧延
集合組織の発達も軽度となり、耳率が比較的低い実用レ
ベルのDI缶が得られるようになった。この方法は、仕
上用熱間圧延機を用いた場合よりも耳率が若干高く、従
ってトリム量も多くなるのではあるが、設備費が高価な
仕上用の熱間圧延機を用いずに適用できるので、結果的
に有利な方法となっている。
According to this method, precipitation hardening is performed by heating the baking coating after the DI can body is formed, so that softening due to heating during baking is suppressed, and sufficient strength is obtained even if the cold rolling reduction is reduced. Can now be obtained. Therefore, even if the cubic texture is not sufficiently developed after the intermediate annealing in the above (c), the rolling reduction of the cold rolling can be reduced, so that the development of the rolled texture becomes light and the ear ratio is relatively low. DI cans are now available. This method has a slightly higher ear ratio than when a finishing hot rolling mill is used, and therefore has a larger trim amount, but can be applied without using a finishing hot rolling mill, which requires expensive equipment costs. The result is an advantageous method.

【0009 】しかし、最近、経済的およびデザイン的
な要求からDI缶における蓋部材の直径を小さくする要
求が高まり、このため缶ボディ材のネック部分の縮径率
が増大するようになってきた。ところが、このネック部
分の縮径率を増大させると、このネック部分の成形工程
においても深絞り成形の場合と同様に素材の異方性によ
り開口部において缶高が変化し耳が発生するという新た
な問題が生じている。このネック成形によって生じる開
口部の高さ変動部を以下に「ネック耳」と称することに
する。缶本体の開口部は、ネック成形を行った後にフラ
ンジ成形され、このフランジが蓋部材との巻き締めに使
われるのであるが、ネック耳が大きいとフランジ幅が方
向により異なったり、ネック部分の形状が方向により変
化するなどの問題が起こり、加工工程が煩雑になると共
に、外観上にも悪影響が現れるおそれがある。そこで、
ネック成形時の縮径率を大きくしてもネック耳が生じに
くい深絞り成形用アルミニウム基合金板が求められてい
た。
However, recently, demands for reducing the diameter of the lid member of the DI can have increased due to economical and design requirements, which has led to an increase in the diameter reduction rate of the neck portion of the can body material. However, when the diameter reduction ratio of the neck portion is increased, the height of the can is changed at the opening due to the anisotropy of the material in the forming process of the neck portion as in the case of the deep drawing forming. Problems have arisen. The height variation of the opening caused by the neck forming is hereinafter referred to as “neck ear”. The opening of the can body is flanged after the neck is formed, and this flange is used for tightening with the lid member.If the neck ear is large, the flange width differs depending on the direction or the shape of the neck part However, there arises a problem that the shape varies depending on the direction, so that the processing steps are complicated and there is a possibility that an adverse effect may appear on the appearance. Therefore,
There has been a demand for an aluminum-based alloy plate for deep drawing which hardly causes a neck ear even when the diameter reduction ratio during neck forming is increased.

【0010 】このような背景から本発明者らは、特開
平10−330898号(特願平9−142791号)
においてシングルミルの粗圧延・仕上圧延兼用のリバー
ス式熱間圧延機を用い、深絞り成形時やネック成形時に
ネック耳が生じにくい深絞り成形用アルミニウム合金板
の製造方法について特許出願している。この特許出願に
係る技術によれば、均熱工程と熱間圧延工程と第一冷間
圧延工程と第一中間焼鈍工程と第二冷間圧延工程と第二
中間焼鈍工程と第三中間焼鈍工程と最終冷間圧延工程と
を順次施してアルミニウム基合金板を製造する際に、特
に、熱間圧延終了温度を280〜350℃の範囲内と
し、引き続き60〜90%の第一冷間圧延を施し、25
0〜280℃の温度範囲において2〜24時間の第一中
間焼鈍を施すことが要件とされていた。
[0010] From such a background, the present inventors have disclosed Japanese Patent Application Laid-Open No. Hei 10-330898 (Japanese Patent Application No. 9-142791).
A patent application has been filed for a method for producing an aluminum alloy sheet for deep drawing using a single-mill reverse-type hot rolling mill for both rough rolling and finish rolling, which hardly causes neck ears during deep drawing or neck forming. According to the technology according to this patent application, a soaking step, a hot rolling step, a first cold rolling step, a first intermediate annealing step, a second cold rolling step, a second intermediate annealing step, and a third intermediate annealing step And the final cold rolling step in order to produce an aluminum-based alloy sheet, in particular, the hot rolling end temperature is in the range of 280 to 350 ° C., and then the first cold rolling of 60 to 90% is performed. Alms, 25
It was required to perform the first intermediate annealing for 2 to 24 hours in a temperature range of 0 to 280 ° C.

【0011 】[0011]

【発明が解決しようとする課題】前記熱間圧延終了温度
を280〜350℃とするのは、熱間圧延後再結晶しな
いようにするためであるが、引き続き行われる第一冷間
圧延での加工硬化が大きく、60%以上の高い圧延率の
冷間圧延を行う過程で、アルミニウム基合金板の両サイ
ドにクラックが発生しやすく、クラックを除去するため
に両サイドをトリム(除去)する必要があり、歩留まり
が低下する問題があった。そこで本発明者らは、前述の
製造条件の見直しを行うことで熱間終了温度を280〜
350℃の範囲より高温にしても、深絞り成形時やネッ
ク成形時に耳が生じ難い製造条件を見い出し、従って第
一冷間圧延でのクラックの発生も抑制される条件を見い
出し、先に特開2000−26946号(特願平10−
197867号)あるいは特開2000−26945号
(特願平10−197866号)として特許出願した。
The hot rolling end temperature is set to 280 to 350 ° C. in order to prevent recrystallization after hot rolling, Cracks are likely to occur on both sides of the aluminum-based alloy plate in the process of performing cold rolling with high work hardening and a high rolling rate of 60% or more, and it is necessary to trim both sides to remove cracks. There was a problem that the yield was reduced. Therefore, the present inventors reviewed the above-described manufacturing conditions to increase the hot end temperature from 280 to 280.
Even when the temperature is higher than the range of 350 ° C., a production condition in which ears are hardly formed during deep drawing or neck molding is found, and therefore, a condition in which the occurrence of cracks in the first cold rolling is suppressed is found. 2000-26946 (Japanese Patent Application No. 10-
197867) or Japanese Patent Application Laid-Open No. 2000-26945 (Japanese Patent Application No. 10-197866).

【0012 】また、前述の第一中間焼鈍は、第一冷間
圧延加工して加工硬化したコイルを半軟化の状態まで焼
鈍するための工程であるが、どの程度まで軟化させるか
により耳率が変化するため、耳率のばらつきを小さくす
るためには、加熱温度や時間を厳格に管理する必要があ
るので、この加熱温度や時間の管理を緩和できるような
製造条件について研究し、その結果について先の特開2
000−26946号あるいは特開2000−2694
5号として特許出願した。更に、第一中間焼鈍は通常バ
ッチ式と称される焼鈍炉で行ない、ここではアルミニウ
ム基合金板をコイル状に巻き付けてコイルの状態で炉内
に搬入して焼鈍を行うが、バッチ式焼鈍炉では、このコ
イルの幅や条件によって加熱速度が異なるために、即
ち、コイル重量が異なると温度を一定に管理できないた
めに、同一の加熱温度と時間にするためにはコイルの寸
法に応じて炉の操業条件を変更する必要があり、コイル
の寸法管理が繁雑な問題があった。即ち、多数のコイル
を同時に同一炉に搬入して処理する場合に、大きさの異
なるコイル毎に加熱、冷却条件が異なってしまう問題が
あるので、全てのコイルの寸法を同一にする必要があっ
た。
The above-mentioned first intermediate annealing is a process for annealing the coil, which has been hardened by the first cold rolling process, to a semi-softened state. The ear ratio depends on the degree of softening. In order to reduce the variation in ear ratio, it is necessary to strictly control the heating temperature and time.Therefore, research was conducted on manufacturing conditions that could ease the control of the heating temperature and time, and the results were determined. JP 2
000-26946 or JP-A-2000-2694
A patent application was filed as No. 5. Further, the first intermediate annealing is usually performed in an annealing furnace called a batch type. Here, an aluminum-based alloy plate is wound in a coil shape, and is carried into a furnace in a coil state to perform annealing. Since the heating rate differs depending on the width and conditions of the coil, that is, if the coil weight is different, the temperature cannot be controlled uniformly, so that the same heating temperature and time are required for the furnace according to the dimensions of the coil. It was necessary to change the operating conditions, and there was a problem that the dimensional control of the coil was complicated. That is, when a large number of coils are simultaneously loaded into the same furnace for processing, there is a problem that heating and cooling conditions differ for each coil having a different size. Therefore, it is necessary to make the dimensions of all coils the same. Was.

【0013 】このため、製造するコイルの寸法に応じ
て別々に焼鈍を行う必要があり、生産時期の調整のため
に中間製品の在庫量が増大してしまう問題があり、この
ような問題に対処する技術についても先の特開2000
−26946号、特開2000−26945号において
特許出願した。これらの特許出願において提供した技術
によって、先の耳率等の問題を解消することはできるよ
うになったが、前述の特許出願に係る技術によって得ら
れたアルミニウム合金板材について、DI缶への適用を
更に詳細に検討したところ、しごき加工を受けた場合に
胴切れ性の問題を生じやすい傾向を有することが判明し
た。
[0013] For this reason, it is necessary to separately perform annealing according to the dimensions of the coil to be manufactured, and there is a problem that the inventory of intermediate products increases due to adjustment of the production time. Japanese Patent Laid-Open Publication 2000
-26946 and JP-A-2000-26945. The technology provided in these patent applications has made it possible to solve the aforementioned problems such as ear ratios, but the application of the aluminum alloy plate material obtained by the technology according to the aforementioned patent application to DI cans Was examined in more detail, and it was found that when ironing was performed, there was a tendency that a problem of cut-out easily occurred.

【0014 】即ち、本発明者らの研究によれば、アル
ミニウム合金素材の製造プロセスと耐胴切れとの関係に
おいて、アルミニウム合金素材強度が高くなると、胴切
れ性を生じ易くなる傾向にあるが、アルミニウム合金素
材強度または製缶後の缶強度が同一な場合であっても、
アルミニウム合金素材の最終冷間圧延率が高くなる程、
耐胴切れ性が劣化するとの結論に至った。また、最終冷
間圧延時に加工発熱によってアルミニウム合金素材が加
熱され、素材温度が上昇するが、最終冷間圧延後に巻き
取ったアルミニウム合金素材コイルの温度が高すぎる
と、耐胴切れ性が著しく劣化することが判明した。更
に、通常、アルミニウム合金素材の異方性と耐胴切れ性
についての直接的な相関関係はないと考えられるが、成
形条件に異常がある場合、耳が高い素材は、耳の先端部
が切れ易く、切れた破片が胴切れやボトム割れの原因と
なる場合が考えられる。
That is, according to the study of the present inventors, in the relationship between the manufacturing process of the aluminum alloy material and the breakage resistance, as the strength of the aluminum alloy material increases, the cutout tends to occur easily. Even if aluminum alloy material strength or can strength after can making is the same,
The higher the final cold rolling rate of the aluminum alloy material,
It was concluded that the cut-out resistance deteriorated. In addition, although the aluminum alloy material is heated by the heat generated during the final cold rolling and the material temperature rises, if the temperature of the aluminum alloy material coil wound after the final cold rolling is too high, the body breakage resistance is significantly deteriorated. It turned out to be. Furthermore, it is generally thought that there is no direct correlation between the anisotropy of aluminum alloy material and cut-out resistance. It is easy to think that the broken pieces may cause a body cut or a bottom crack.

【0015 】また、最近では、アルミニウム合金板材
にポリエチレン・テレフタレートなどの樹脂フィルムを
プレコートした積層材を用い、缶体を製造する方法がと
られる場合があり、この場合、成形により表面が梨地状
になるが、均一な梨地状表面が得られ難いという問題が
あるので、アルミニウム合金素材としては、均一で微細
な結晶粒組織のものが望まれている。以上の如き背景か
ら本発明者らは、この種缶ボディ用アルミニウム合金素
材において、均一で微細な結晶粒を有し、最終冷間圧延
率が低く、かつ、低い異方性のものが得られ、耐胴切れ
性に優れる製造方法について研究するとともに、アルミ
缶のボトムしわ性などの問題も兼ね合わせた研究を行っ
た結果として本願発明に到達した。
Recently, a method of manufacturing a can body using a laminated material obtained by pre-coating a resin film of polyethylene terephthalate or the like on an aluminum alloy plate material has been used in some cases. In this case, the surface is formed into a satin shape by molding. However, since there is a problem that it is difficult to obtain a uniform satin-like surface, a uniform and fine grain structure is desired as an aluminum alloy material. From the above background, the present inventors have obtained an aluminum alloy material for a seed can body having uniform and fine crystal grains, a low final cold rolling reduction, and low anisotropy. As a result of studying a manufacturing method which is excellent in cut-out resistance and also conducting a study combining problems such as bottom wrinkling of an aluminum can, the present invention has been achieved.

【0016 】本発明は前記の課題を解決するためにな
されたものであって、その目的は、素材強度の高いもの
を歩留まり低下を引き起こす事なく製造することがで
き、耐胴切れ性に優れ、均一な梨地状表面を得ることが
でき、異方性も少なく、耳率の低減を実現できる上に、
ボトムしわ性の問題も解消することができる耐胴切れ性
に優れた缶ボディ用アルミニウム合金板材の製造方法を
提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to manufacture a material having a high material strength without lowering the yield, and to have excellent cut-out resistance. A uniform satin-like surface can be obtained, anisotropy is reduced, and the ear ratio can be reduced.
An object of the present invention is to provide a method for producing an aluminum alloy sheet for a can body having excellent body breakage resistance, which can also solve the problem of bottom wrinkling.

【0017 】[0017]

【課題を解決するための手段】前記の課題を解決するた
めに本発明は、Mg:0.9〜1.7重量%、Mn:0.
8〜1.2重量%、Fe:0.30〜0.55重量%、S
i:0.25〜0.45重量%、Cu:0.20〜0.4重
量%、Zn:0.05〜0.4重量%、Ti:0.02〜
0.2重量%含有し、残部が不可避不純物とAlからな
るアルミニウム合金を溶製し、半連続鋳造して得た鋳塊
を熱間圧延及び冷間圧延を施してアルミニウム合金板材
を製造するに際し、順次、 均熱工程において、前記アルミニウム合金鋳塊を、5
60〜610℃の範囲で、6〜24時間均質化処理し、 熱間圧延工程において、前記の均質化されたアルミニ
ウム合金鋳塊を熱間圧延して板材を形成するに際し、熱
間圧延後、巻き取ったコイル状の板材の温度を400〜
500℃とし、その後に冷却したコイル状の板材の再結
晶率を70〜100%とし、 第一冷間圧延工程において、前記熱間圧延終了後の板
材を、圧下率が75〜95%の範囲内となるように冷間
圧延し、 第一中間焼鈍工程において、連続焼鈍装置を用いて1
0〜200℃/sの範囲の加熱速度で280〜380℃
の温度範囲まで加熱し、この温度範囲で1〜30秒間保
持し、次いで10〜200℃/sの範囲の冷却速度で冷
却して焼鈍し、 第二冷間圧延工程において、前記第一中間焼鈍後の板
材を、圧下率が10〜25%の範囲内となるように冷間
圧延し、 第二中間焼鈍工程において、連続焼鈍装置を用いて1
0〜200℃/sの範囲の加熱速度で450〜610℃
の温度範囲まで加熱し、この温度範囲で1〜30秒間保
持し、次いで10〜200℃/sの範囲の冷却速度で冷
却して焼鈍し、次いで、 最終冷間圧延工程において、圧下率が45〜70%の
範囲となり、冷間圧延後巻き取ったコイル状の板材の温
度が90℃以上、140℃以下となる様に1パスの冷間
圧延を施し、かつ、巻き取り完了後巻き取ったコイル状
の板材が90℃未満になるまで1〜10時間保持するこ
とを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a method for producing Mg: 0.9 to 1.7% by weight and Mn: 0.1% by weight.
8 to 1.2% by weight, Fe: 0.30 to 0.55% by weight, S
i: 0.25 to 0.45 wt%, Cu: 0.20 to 0.4 wt%, Zn: 0.05 to 0.4 wt%, Ti: 0.02 to
An aluminum alloy containing 0.2% by weight, with the balance being an inevitable impurity and Al, is melted, and the ingot obtained by semi-continuous casting is subjected to hot rolling and cold rolling to produce an aluminum alloy sheet material. In the soaking step, the aluminum alloy ingot is
In the range of 60 to 610 ° C., homogenization treatment is performed for 6 to 24 hours. In a hot rolling step, when the homogenized aluminum alloy ingot is hot-rolled to form a sheet material, after hot rolling, When the temperature of the coiled plate material is 400 to
500 ° C., after which the recrystallized rate of the coiled sheet material cooled is set to 70 to 100%. In the first cold rolling step, the sheet material after the completion of the hot rolling is reduced in a range of 75 to 95%. Cold-rolled so as to be inside, and in the first intermediate annealing step, 1
280-380 ° C at a heating rate in the range of 0-200 ° C / s
, Held at this temperature range for 1 to 30 seconds, then cooled and annealed at a cooling rate in the range of 10 to 200 ° C / s, in the second cold rolling step, the first intermediate annealing The subsequent sheet material is cold-rolled so that the rolling reduction is in the range of 10 to 25%. In the second intermediate annealing step, 1
450-610 ° C at a heating rate in the range of 0-200 ° C / s
, Held at this temperature range for 1 to 30 seconds, then cooled and annealed at a cooling rate in the range of 10 to 200 ° C./s, and then, in the final cold rolling step, a reduction of 45%. After the cold rolling, the coiled sheet material was subjected to one-pass cold rolling so that the temperature of the coiled sheet material became 90 ° C. or more and 140 ° C. or less, and was wound after the winding was completed. It is characterized in that the coil-shaped plate material is held for 1 to 10 hours until it becomes lower than 90 ° C.

【0018 】熱間圧延時の仕上温度を、本発明者らが
先に提供した特許出願技術より高い400〜500℃と
することで、再結晶率を70〜100%の高い範囲とす
ることができ、このため、第一冷間圧延で75〜95%
と高い圧下率の冷間圧延を行ってもサイドクラックの発
生が防止できる。また、特に、第二中間焼鈍の加熱速度
を高くし、保持温度を高くすることにより、再結晶粒の
粗大化が防止でき、比較的微細な均一結晶粒が得られ
る。
By setting the finishing temperature at the time of hot rolling to 400 to 500 ° C., which is higher than the patent application technology previously provided by the present inventors, the recrystallization rate can be set to a high range of 70 to 100%. 75% to 95% in the first cold rolling
Thus, even if cold rolling is performed at a high rolling reduction, the occurrence of side cracks can be prevented. In particular, by increasing the heating rate of the second intermediate annealing and increasing the holding temperature, coarsening of recrystallized grains can be prevented, and relatively fine uniform crystal grains can be obtained.

【0019 】熱間圧延の仕上温度が高いこと、およ
び、第二中間焼鈍の加熱速度が高く、保持温度が高いこ
とは、第二中間焼鈍時に生じる立方体方位粒の量を低下
させる。しかし、第一冷間圧延率を75〜95%と高く
し、第二冷間圧延率を10〜25%の最適な範囲に限定
することにより、第二中間焼鈍後に必要かつ充分な立方
体方位粒を生成させることができる。第二中間焼鈍後の
板材を深絞り成形すると、わずかな0-90°耳を生じ
る。この状態の板材に、最終冷間圧延工程が施される
と、最終冷間圧延工程の圧下率が45〜70%と比較的
低いので、圧延集合組織の発達もそれほど大きくなく、
結果的に45°耳と0-90°耳のバランスの取れた、
換言すると、低耳率の板材が得られる。更に、最終冷間
圧延工程において、圧下率45〜70%と低い範囲と
し、冷間圧延後のコイル状の板材の温度を90℃以上、
140℃以下となるように1パスの冷間圧延を施し、か
つ、巻取り完了後のコイル状の板材の温度を90℃以上
で1〜10時間保持することにより、耐胴切れ性が優れ
た板材が得られる。
The high finishing temperature of the hot rolling, and the high heating rate of the second intermediate annealing and the high holding temperature reduce the amount of cubic grains generated during the second intermediate annealing. However, by increasing the first cold rolling reduction to 75 to 95% and limiting the second cold rolling reduction to an optimal range of 10 to 25%, the necessary and sufficient cubic grain orientation after the second intermediate annealing is obtained. Can be generated. When the sheet material after the second intermediate annealing is deep drawn, a slight 0-90 ° ear is generated. When the final cold rolling step is performed on the sheet material in this state, the rolling reduction of the final cold rolling step is relatively low at 45 to 70%, so that the development of the rolling texture is not so large.
As a result, the 45 ° ear and 0-90 ° ear were balanced,
In other words, a plate material with a low ear ratio can be obtained. Furthermore, in the final cold rolling step, the rolling reduction is set to a low range of 45 to 70%, and the temperature of the coiled sheet material after the cold rolling is 90 ° C. or more.
By performing one-pass cold rolling so as to be 140 ° C. or less, and maintaining the temperature of the coiled sheet material after completion of winding at 90 ° C. or more for 1 to 10 hours, the body breaking resistance was excellent. A plate material is obtained.

【0020 】[0020]

【発明の実施の形態】以下、本発明の実施の形態を詳し
く説明する。本発明の耐胴切れ性に優れた缶ボディ用ア
ルミニウム合金板材の製造方法は、基本的に、アルミニ
ウム合金の鋳塊を基材とし、それぞれ後に説明する特定
の条件に設定された次の各工程、 均熱工程、熱間圧延工程、第一冷間圧延工程、
第一中間焼鈍工程、第二冷間圧延工程、第二中間焼
鈍工程、最終冷間圧延工程を順次経由することにより
構成される。
Embodiments of the present invention will be described below in detail. The method for producing an aluminum alloy sheet material for a can body having excellent body breaking resistance according to the present invention is basically based on an ingot of an aluminum alloy as a base material, and each of the following steps set under specific conditions described later. , Soaking process, hot rolling process, first cold rolling process,
It is constituted by sequentially passing through a first intermediate annealing step, a second cold rolling step, a second intermediate annealing step, and a final cold rolling step.

【0021 】本発明に係る製造方法によれば、熱間圧
延工程の全工程にシングルミルのリバース式熱間粗圧延
機のみを用いることが可能となる。そして、強度と成形
性とが両立したアルミニウム合金板材が得られ、例えば
DI缶などの深絞り缶を製造する板材として用いるとき
耳率を従来の板材に比べて低減でき、ネック縮径率を大
きくしたDI缶を成形する際にもネック耳が減少し、缶
体の変形を防止し歩留りを向上させることができ、耐胴
切れ性に優れた缶ボディ用アルミニウム合金板材を得る
ことが可能となる。
According to the manufacturing method of the present invention, it is possible to use only a single-mill reverse hot rough rolling mill in all of the hot rolling steps. Then, an aluminum alloy plate material having both strength and formability can be obtained. For example, when used as a plate material for manufacturing a deep drawing can such as a DI can, the ear ratio can be reduced as compared with the conventional plate material, and the neck diameter reduction ratio is increased. Also, when forming a DI can, the neck ears are reduced, the deformation of the can body can be prevented, the yield can be improved, and an aluminum alloy sheet material for a can body having excellent cut-out resistance can be obtained. .

【0022 】本発明に係る製造方法に用いるアルミニ
ウム合金として、Alを基本成分とし、これに、Mg:
0.9〜1.7重量%、Mn:0.8〜1.2重量%、F
e:0.30〜0.55重量%、Si:0.25〜0.45
重量%、Cu:0.20〜0.4重量%、Zn:0.05
〜0.4重量%、Ti:0.02〜0.2重量%を含み、
他は不可避不純物を含有するアルミニウム合金を用いる
必要がある。なお、本発明において、元素の含有量を範
囲で示す場合に用いる〜の記号は、以上、以下を示すも
のとする。よって、特に記載しない限り、0.9〜1.7
重量%と標記したものは、その元素を0.9重量%以
上、1.7重量%以下含有する組成であることを意味す
る。また、先のアルミニウム合金の基本的な組成自体は
特殊なものではなく、現在大量に用いられている種々の
アルミニウム缶用合金の組成の範囲内のものであるか
ら、本発明の製造方法はリサイクルされたアルミニウム
缶を原料として経済的にかつ効率よく本発明のアルミニ
ウム合金板材を製造するのに適している。
As an aluminum alloy used in the production method according to the present invention, Al is used as a basic component.
0.9 to 1.7% by weight, Mn: 0.8 to 1.2% by weight, F
e: 0.30 to 0.55% by weight, Si: 0.25 to 0.45
% By weight, Cu: 0.20 to 0.4% by weight, Zn: 0.05
00.4% by weight, Ti: 0.02 to 0.2% by weight,
Others require the use of an aluminum alloy containing unavoidable impurities. In the present invention, the symbols “-” used when the content of an element is indicated in a range are as follows. Therefore, unless otherwise stated, 0.9 to 1.7.
What is indicated as "% by weight" means that the composition contains the element in an amount of 0.9% by weight or more and 1.7% by weight or less. In addition, the basic composition itself of the above aluminum alloy is not special, and is within the range of the composition of various aluminum can alloys that are currently used in large quantities. It is suitable for economically and efficiently producing the aluminum alloy sheet of the present invention using the prepared aluminum can as a raw material.

【0023 】前記合金成分のうちのSiは、同時に含
有するMgと化合物を形成し易く、固溶硬化作用、分散
硬化作用および析出硬化作用を有する他、Al、Mn、
Feなどと化合物を形成し、しごき成形時のダイスに対
する焼付きを防止する効果がある。その含有量は、0.
25重量%未満では所望の潤滑特性を確保することがで
きず、また0.45重量%を越えると加工性が劣化して
不都合である。Feは、結晶の微細化およびしごき成形
時のダイスに対する焼付きを防止する効果がある。その
含有量は、0.3重量%未満では所望の効果が得られ
ず、0.55重量%を越えると加工性を劣化させる。
Si in the alloy component is liable to form a compound with Mg contained simultaneously, and has a solid solution hardening action, a dispersion hardening action, and a precipitation hardening action.
It forms a compound with Fe and the like, and has the effect of preventing seizure on a die during ironing. Its content is 0.
If the amount is less than 25% by weight, desired lubricating properties cannot be ensured. If the amount exceeds 0.45% by weight, workability is deteriorated, which is disadvantageous. Fe has an effect of miniaturizing the crystal and preventing seizure on a die during ironing. If the content is less than 0.3% by weight, the desired effect cannot be obtained, and if it exceeds 0.55% by weight, the workability is deteriorated.

【0024 】Cuは、Mgと化合物を形成し易く、固
溶硬化、分散硬化および析出硬化に寄与する。その含有
量は、0.20重量%未満では所望の効果が得られず、
0.4重量%を越えると加工性を劣化させる。Mnは、
Fe、Si、Alなどと化合物を形成し易く、晶出相お
よび分散相となって分散硬化作用を現すと共にしごき成
形時のダイスに対する焼付きを防止する効果がある。そ
の含有量は、0.8重量%未満では所望の硬化特性が得
られず、1.2重量%を越えると加工性が劣化する。ま
た、Mgは、固溶体強化作用を有し、圧延による加工硬
化性を高めるとともに、前記Siや後記のCuと共存す
ることによって分散硬化と析出硬化作用を現す。その含
有量は、0.9重量%未満では所望の効果が得られず、
1.7重量%を越えると加工性を劣化させるようにな
る。
Cu easily forms a compound with Mg and contributes to solid solution hardening, dispersion hardening and precipitation hardening. If the content is less than 0.20% by weight, the desired effect cannot be obtained.
If it exceeds 0.4% by weight, the workability is deteriorated. Mn is
The compound easily forms a compound with Fe, Si, Al, etc., has a crystallized phase and a dispersed phase, exhibits a dispersion hardening effect, and has an effect of preventing seizure on a die during ironing. If the content is less than 0.8% by weight, the desired curing properties cannot be obtained, and if it exceeds 1.2% by weight, the workability deteriorates. In addition, Mg has a solid solution strengthening action, enhances work hardenability by rolling, and exhibits a dispersion hardening action and a precipitation hardening action by coexisting with Si and Cu described later. If the content is less than 0.9% by weight, the desired effect cannot be obtained.
If it exceeds 1.7% by weight, the workability will be deteriorated.

【0025 】ZnはMg、Si、Cuの析出物を微細
化する作用を有する。その含有量は、0.05重量%未
満では所望の効果が得られず、0.4重量%を越えると
加工性と耐食性を劣化させる。Tiは、結晶粒を微細化
して加工性を改善する効果がある。ただし、その含有量
は0.2重量%を越えると粗大な化合物を生成し、逆に
加工性を劣化させ、0.02重量%未満では効果がほと
んど得られない。
Zn has a function of miniaturizing precipitates of Mg, Si and Cu. If the content is less than 0.05% by weight, the desired effect cannot be obtained, and if it exceeds 0.4% by weight, the workability and the corrosion resistance deteriorate. Ti has the effect of making crystal grains finer and improving workability. However, if the content exceeds 0.2% by weight, a coarse compound is formed, and conversely, processability is deteriorated. If the content is less than 0.02% by weight, almost no effect is obtained.

【0026 】前記のアルミニウム合金から本発明のア
ルミニウム基合金板を製造するに際しては、先ず、常法
に従って本発明組成のアルミニウム合金溶湯から鋳塊を
鋳造するが、鋳造に先立ち、アルミニウム合金を溶製し
た際に、水素ガスや酸化物などの介在物を除去し、好ま
しくは半連続鋳造法により鋳塊を得る。このときの凝固
速度は通常、5〜20℃/秒とされる。鋳塊の寸法は、
例えば1.5m×0.5m×4〜5mである。次に面削を
行い、鋳塊の表面を1〜25mm程度研削して、表面が
平滑化された面削体を作成する。
In manufacturing the aluminum-based alloy sheet of the present invention from the above-mentioned aluminum alloy, first, an ingot is cast from a molten aluminum alloy of the composition of the present invention according to a conventional method. At this time, inclusions such as hydrogen gas and oxides are removed, and an ingot is obtained preferably by a semi-continuous casting method. The solidification rate at this time is usually 5 to 20 ° C./sec. The dimensions of the ingot are
For example, it is 1.5 m × 0.5 m × 4 to 5 m. Next, the surface of the ingot is ground by grinding by about 1 to 25 mm to create a flat body having a smooth surface.

【0027 】この面削体は、次に本発明のの均熱工
程に送られる。このの均熱工程は一般に、溶湯の凝固
によって生じたミクロ偏析の均質化、過飽和固溶元素の
析出、凝固によって形成された準安定相の平衡相への転
移などのために行われる。このの均熱工程において
は、均質化温度を560〜610℃の範囲内とすること
が重要である。均質化温度が560℃未満では、第二
中間焼鈍の効果が得られず、熱間圧延工程や第一の冷間
圧延工程においてクラックが発生し易く、最終板材の耳
率が高くなる。また、均質化温度が610℃を越える
と、鋳塊が溶融するおそれがある。
The chamfer is then sent to the soaking step of the present invention. This soaking step is generally performed to homogenize microsegregation caused by solidification of the molten metal, precipitate supersaturated solid solution elements, and transfer a metastable phase formed by solidification to an equilibrium phase. In the soaking process, it is important that the homogenization temperature be in the range of 560 to 610 ° C. If the homogenization temperature is lower than 560 ° C., the effect of the second intermediate annealing cannot be obtained, cracks are likely to occur in the hot rolling step and the first cold rolling step, and the ear ratio of the final sheet material increases. If the homogenization temperature exceeds 610 ° C., the ingot may be melted.

【0028 】また、前記のの均熱工程において、面
削体は100℃/時以下の加熱速度で均質化温度まで加
熱することが好ましい。加熱速度が100℃/時を越え
ると、部分的に溶融を生じる惧れがある。しかし加熱速
度は、遅すぎると生産効率が低下する。以上の観点から
均熱工程の好ましい加熱速度は、10〜100℃/時の
範囲内である。
In the above soaking step, it is preferable to heat the chamfered body to a homogenizing temperature at a heating rate of 100 ° C./hour or less. If the heating rate exceeds 100 ° C./hour, there is a possibility that partial melting may occur. However, if the heating rate is too slow, the production efficiency decreases. From the above viewpoint, the preferable heating rate in the soaking step is in the range of 10 to 100 ° C./hour.

【0029 】また前記のの均熱工程において、均質
化温度に保持する時間(均質化時間)は6時間以上とす
ることが好ましい。均質化時間が6時間未満では均質化
が十分に進行しない場合がある。しかし長すぎても効果
はなく生産効率が低下する。以上の観点から、好ましい
均質化時間は6〜24時間の範囲内である。このの均
熱工程は均質化時間が比較的長いので、通常、バッチ方
式で炉中に置くことで行われる。
In the above-mentioned soaking step, the time for maintaining the temperature at the homogenization temperature (homogenization time) is preferably 6 hours or more. If the homogenization time is less than 6 hours, homogenization may not proceed sufficiently. However, if it is too long, there is no effect and the production efficiency decreases. In view of the above, a preferable homogenization time is in the range of 6 to 24 hours. This soaking step is usually carried out in a furnace in a batch mode, since the homogenization time is relatively long.

【0030 】の熱間圧延工程は、前記の均質化され
たアルミニウム基合金鋳塊を熱間圧延して板材を形成す
るために行われる。本発明は、このの熱間圧延工程
を、シングルミルのリバース式熱間粗圧延機のみを用い
て行い得ることが1つの特長であり、効果である。この
シングルミルのリバース式熱間粗圧延機は、単基式の熱
圧延ロールの前後に受座が設けられ、この熱間圧延ロー
ルの間に鋳塊を往復繰り返し通過させることで次第に薄
板化することができ、従来から熱間粗圧延機として一般
に用いられている装置である。この装置を用いて圧延で
きるということは、タンデム式の仕上用熱間圧延機また
は両側にコイル巻取装置を配したリバース式熱間仕上圧
延機などの高価な熱間圧延機を用いなくとも圧延加工で
きることを意味し、設備の簡略化、製造コストの削減に
寄与する。
The hot rolling step is performed to hot-roll the homogenized aluminum-based alloy ingot to form a sheet material. The present invention has one advantage and effect that this hot rolling step can be performed using only a single-mill reverse hot rough rolling mill. This single-mill reverse hot rough rolling mill is provided with seats before and after a single-base hot rolling roll, and gradually thinner by repeatedly passing an ingot between the hot rolling rolls in a reciprocating manner. This is an apparatus generally used as a hot rough rolling mill. The ability to roll using this device means that rolling can be performed without using an expensive hot rolling mill such as a tandem type finishing hot rolling mill or a reverse type hot finishing rolling mill with coil winding devices on both sides. It means that it can be processed, which contributes to simplification of equipment and reduction of manufacturing costs.

【0031 】このの熱間圧延工程において、圧延終
了後にコイルとして巻き取られて冷却されたアルミニウ
ム板材の再結晶率として70〜100%の高い範囲とす
ることができる。再結晶率が70%未満であると、熱間
圧延工程後のアルミニウム合金板材が硬質となり、引き
続き行う冷間圧延時にクラックが生じ易くなる。再結晶
率を70%以上にするためには、熱間圧延最終パスの圧
下率および圧延速度を高くし、熱間圧延後、巻き取った
コイルの温度を高くする必要がある。圧下率および圧延
速度が低いと、再結晶を生じるのに充分な駆動力、すな
わち、加工エネルギーを蓄積させることができない。ま
た、巻き取った後のコイル温度が低いと(例えば400
℃未満であると)再結晶が充分に生じないので好ましく
ない。
In the hot rolling step, the recrystallization rate of the aluminum sheet material wound and cooled as a coil after the completion of the rolling can be set to a high range of 70 to 100%. If the recrystallization ratio is less than 70%, the aluminum alloy sheet material after the hot rolling step becomes hard, and cracks are likely to occur during the subsequent cold rolling. In order to increase the recrystallization rate to 70% or more, it is necessary to increase the rolling reduction and rolling speed in the final hot rolling pass, and to increase the temperature of the coil wound after hot rolling. When the rolling reduction and the rolling speed are low, it is not possible to accumulate a driving force sufficient to cause recrystallization, that is, working energy. Further, if the coil temperature after winding is low (for example, 400
If the temperature is lower than 0.degree. C., recrystallization does not sufficiently occur.

【0032 】例えば、本発明に係るプロセスにおい
て、第一の冷間圧延の圧下率を85%、第二の冷間圧延
の圧下率を20%、最終冷間圧延の圧下率を60%とす
る場合、最終冷間圧延後の板厚が0.3mmのアルミニ
ウム合金板材を製造するためには、冷間圧延後の板厚を
6.3mmとする必要がある。この場合、例えば、熱間
圧延最終パスの圧下率を約60%以上、圧延速度を約1
50m/分以上とすることで、巻取後のコイル状のアル
ミニウム合金板材の温度を約400℃以上とすることが
でき、再結晶率が70%以上のアルミニウム合金板材が
得られる。
For example, in the process according to the present invention, the first cold rolling reduction is 85%, the second cold rolling reduction is 20%, and the final cold rolling reduction is 60%. In this case, in order to manufacture an aluminum alloy sheet having a thickness of 0.3 mm after the final cold rolling, the thickness after the cold rolling needs to be 6.3 mm. In this case, for example, the rolling reduction of the final pass of hot rolling is about 60% or more, and the rolling speed is about 1%.
By setting it to 50 m / min or more, the temperature of the coiled aluminum alloy sheet after winding can be set to about 400 ° C. or more, and an aluminum alloy sheet having a recrystallization rate of 70% or more can be obtained.

【0033 】この熱間圧延時の板材の温度低下の原因
は、主としてクーラント(冷却材)により低温に維持さ
れた圧延ロールと板材との接触で熱を奪われたことによ
る。圧延時の圧延ロールとの接触部の接触面積と、接触
部の板材体積との比率は、圧延時の板厚が薄い程大きく
なるので、板材温度の低下が大きくなる。従って、最終
パス後の板材の板厚が薄い場合ほど、最終パスの圧下率
および圧延速度を高く設定し、加工蓄積エネルギーを高
くすることにより、低温でも再結晶を生じるようにする
必要がある。更に、圧延ロールとの接触時間を短くし、
コイル温度の低下を防止する必要がある。
The cause of the decrease in the temperature of the sheet during the hot rolling is mainly due to the fact that heat is taken away by the contact between the sheet and the rolling roll maintained at a low temperature by a coolant (coolant). The ratio of the contact area of the contact portion with the rolling roll at the time of rolling and the volume of the plate material at the contact portion increases as the thickness of the plate at the time of rolling decreases, so that the decrease in the temperature of the plate material increases. Therefore, as the thickness of the sheet material after the final pass becomes smaller, it is necessary to set the rolling reduction and the rolling speed of the final pass to be higher, and to increase the accumulated working energy so that recrystallization occurs even at a low temperature. Furthermore, shorten the contact time with the rolling roll,
It is necessary to prevent a drop in coil temperature.

【0034 】例えば、シングルミルのリバース式熱間
粗圧延機を用いた一例では、熱間圧延最終パスの圧下率
を50〜75%、圧延速度を150〜250m/分、熱
間圧延後の板厚を5〜10mm、巻き取ったコイルの温
度を400〜500℃とすることが可能であり、これに
より70〜100%の再結晶率が得られる。ここで再結
晶率をこのように高い範囲とすると、再結晶率が70%
未満の場合と比べ、第二中間焼鈍時に再結晶した際に生
じる立方体方位粒は少なくなる。しかし、最終冷間圧延
工程において、圧下率を低い範囲(圧下率45〜70
%)に設定しているので、最終冷間圧延での圧延集合組
織の発達が少なく、最終的に得られる板材では0-90
°耳と45°耳との発達がバランスした低耳化が達成さ
れる。なお、巻き取ったコイル温度を500℃超にして
も第一冷間圧延時のクラックの発生はそれ以上改善され
ず、コイルが冷却されるまでの間に表面酸化が生じるの
で上限温度は500℃以下とすることが好ましい。
For example, in an example using a single-mill reverse hot rough rolling mill, the reduction rate of the final hot rolling pass is 50 to 75%, the rolling speed is 150 to 250 m / min, and the sheet after hot rolling is performed. It is possible to make the thickness 5-10 mm and the temperature of the wound coil 400-500 ° C., thereby obtaining a recrystallization rate of 70-100%. Here, when the recrystallization ratio is set in such a high range, the recrystallization ratio is 70%.
As compared with the case of less than, the number of cubic orientation grains generated when recrystallized during the second intermediate annealing is reduced. However, in the final cold rolling step, the rolling reduction is set in a low range (45 to 70).
%), The development of the rolling texture in the final cold rolling is small, and the finally obtained sheet material is 0 to 90%.
A low ear is achieved in which the development of the ° ear and the 45 ° ear is balanced. Note that even if the coil temperature of the wound coil exceeds 500 ° C., the occurrence of cracks during the first cold rolling is not further improved, and surface oxidation occurs until the coil is cooled. It is preferable to set the following.

【0035 】前記の熱間圧延工程において、圧延開
始温度は500℃以上とすることが好ましい。圧延開始
温度が500℃未満では、圧延荷重が大となり所要パス
数が増加し効率が低下すると共に、前記の熱間圧延終了
直後の許容温度範囲を維持することが困難になる。最終
パスの開始温度は400℃以上とすることが好ましい。
また、再結晶率は巻取後のコイルの冷却速度にも依存す
ると考えられるが、圧延後にコイル状に巻き取られたア
ルミニウム合金板材をファン空冷により強制的に冷却し
ても、充分な再結晶率(70〜100%)が得られる。
In the hot rolling step, the rolling start temperature is preferably set to 500 ° C. or higher. If the rolling start temperature is lower than 500 ° C., the rolling load increases, the number of required passes increases, the efficiency decreases, and it becomes difficult to maintain the allowable temperature range immediately after the end of the hot rolling. The starting temperature of the final pass is preferably set to 400 ° C. or higher.
The recrystallization rate is also considered to depend on the cooling rate of the coil after winding.However, even if the aluminum alloy sheet rolled into a coil after rolling is forcibly cooled by air cooling with a fan, sufficient recrystallization can be achieved. Rate (70-100%) is obtained.

【0036 】前記の第一冷間圧延工程においては、
前記の熱間圧延工程終了後の冷却した板材を、圧延率が
75〜95%の範囲内となるように冷間圧延する。この
工程における圧延率が75%未満では耳率が大となる。
圧延率は、高いほど後述するの第二中間焼鈍工程にお
いて0-90゜耳となる立方体方位組織が多く生成す
る。ただし圧延率が95%を越えると、板材端部に生じ
るクラックの防止が困難となり、圧延中に破断を生じる
おそれがある。この破断を防止するために、端部をトリ
ム加工すると、歩留まりが著しく低下し、生産コストが
著しく増加する。以上の観点から、第一冷間圧延工程に
おける圧延率を75〜95%の範囲内とすることが好ま
しい。
In the first cold rolling step,
The cooled sheet material after the completion of the hot rolling step is cold-rolled so that the rolling ratio is in the range of 75 to 95%. If the rolling ratio in this step is less than 75%, the ear ratio becomes large.
The higher the rolling reduction, the more cubic orientation structures having 0-90 ° ears are generated in the second intermediate annealing step described later. However, when the rolling ratio exceeds 95%, it is difficult to prevent cracks generated at the end of the sheet material, and there is a possibility that a break may occur during rolling. If the end is trimmed in order to prevent the breakage, the yield is significantly reduced and the production cost is significantly increased. From the above viewpoints, it is preferable that the rolling reduction in the first cold rolling step is in the range of 75 to 95%.

【0037 】前記の第一中間焼鈍工程は、前記冷間
圧延後の板材に対し、図1に基本構成を示す連続焼鈍装
置を用いて加熱速度10〜200℃/sの範囲(10℃
/s以上、200℃/s以下の範囲)で加熱し、保持温
度280〜380℃の範囲(280℃以上、380℃以
下の範囲)に1〜30s(1s以上、30s以下)保持
し、冷却速度10〜200℃/sの範囲(10℃以上、
200℃以下の範囲)で冷却することが好ましい。
In the first intermediate annealing step, the cold-rolled sheet material is heated at a heating rate of 10 to 200 ° C./s (10 ° C./s) using a continuous annealing apparatus whose basic structure is shown in FIG.
/ S and 200 ° C / s or less), hold for 1-30s (1s or more and 30s or less) at a holding temperature of 280-380 ° C (280 ° C or more and 380 ° C or less), and cool. Speed range from 10 to 200 ° C / s (10 ° C or higher,
It is preferable to cool at a temperature of 200 ° C. or less.

【0038 】図1に連続焼鈍装置(Continuous Anneal
ing Line:略称CAL)の基本構成例を示すが、この例
の連続焼鈍装置Aは、供給ロール1から長尺のアルミニ
ウム合金の板材2を引き出して緩衝装置3を介して数1
0m〜100m程度の長い炉本体4に供給し、この炉本
体4内で移動中に前記の条件で焼鈍し、焼鈍後に炉本体
4から引き出し、緩衝装置6を介して巻取ロール7に巻
き取ることができる装置である。この連続焼鈍装置Aに
よれば、炉本体4を通過するアルミニウム合金の板材2
を連続単体処理できるために、バッチ式の焼鈍炉よりも
より正確な加熱条件と冷却条件で焼鈍処理を行うことが
できる。そして、連続焼鈍装置Aならば、アルミニウム
基合金の板材2を供給ロール1に巻き付けた状態のコイ
ルの幅や径が異なっても、換言するとアルミニウム合金
の板材2の幅や厚さ、処理するべき長さが異なっていて
も、製造したい順番に焼鈍処理できるために、同一の大
きさのコイルのみを焼鈍炉に搬入して焼鈍していたバッ
チ式の焼鈍炉の場合に比べて中間在庫の増加を抑えるこ
とができる。
FIG. 1 shows a continuous annealing apparatus (Continuous Anneal).
In the continuous annealing apparatus A of this example, a long aluminum alloy plate 2 is drawn out from a supply roll 1 and is fed through a shock absorber 3 through a shock absorber 3.
The raw material is supplied to the furnace main body 4 having a length of about 0 m to 100 m, annealed under the above conditions while moving in the furnace main body 4, pulled out from the furnace main body 4 after annealing, and wound up on the take-up roll 7 via the buffer device 6. A device that can According to the continuous annealing apparatus A, the aluminum alloy plate 2 passing through the furnace body 4
Can be subjected to continuous simple treatment, so that the annealing treatment can be performed under more accurate heating and cooling conditions than in a batch type annealing furnace. Then, in the case of the continuous annealing apparatus A, even if the width and the diameter of the coil in a state where the aluminum-based alloy plate 2 is wound around the supply roll 1 are different, in other words, the width and the thickness of the aluminum alloy plate 2 should be treated. Even if the lengths are different, since the annealing process can be performed in the order of production, the intermediate stock increases compared to the batch type annealing furnace where only coils of the same size are carried into the annealing furnace and annealed. Can be suppressed.

【0039 】この焼鈍工程は、アルミニウム基合金板
材を半軟化状態にもたらすものであって、焼鈍後の耐
力;YS(Yield strength)を100〜250MPaの
範囲、より好ましくは130〜200MPaの範囲とす
ることが好ましい。この範囲の耐力は、焼鈍温度と時間
を適切に組み合わせることによって達成できるが、焼鈍
温度を高くし、短時間で焼鈍した方が、後述の第二中間
焼鈍後に立方体方位粒がより多く得られる。このため
に、加熱速度を10℃/s以上と高くし、280℃以上
の高温に急速に加熱し、30s以下の短時間で適切な範
囲まで軟化させる。このような条件で、耐力がこの範囲
になるように焼鈍するならば、後述の第二中間焼鈍後に
0-90゜耳となる立方体方位組織が目的を満足するた
めに適量生成する。焼鈍温度が280℃未満または保持
時間が1s未満では十分な軟化が得られず結果的に耳率
が高くなる。焼鈍温度が380℃を越えまたは保持時間
が30sを越えると軟化が過剰となって耳率が高くな
る。
This annealing step brings the aluminum base alloy sheet material into a semi-softened state, and sets the YS (Yield strength) after annealing in the range of 100 to 250 MPa, more preferably in the range of 130 to 200 MPa. Is preferred. The yield strength in this range can be achieved by appropriately combining the annealing temperature and time. However, when the annealing temperature is increased and annealing is performed in a short time, more cubic grains are obtained after the second intermediate annealing described below. For this purpose, the heating rate is as high as 10 ° C./s or more, the material is rapidly heated to a high temperature of 280 ° C. or more, and softened to an appropriate range in a short time of 30 s or less. Under such conditions, if annealing is performed so that the proof stress is within this range, a cubic orientation structure having a 0-90 ° ear after the second intermediate annealing described below is generated in an appropriate amount to satisfy the purpose. If the annealing temperature is less than 280 ° C. or the holding time is less than 1 s, sufficient softening cannot be obtained, resulting in a high ear ratio. If the annealing temperature exceeds 380 ° C. or the holding time exceeds 30 s, the softening becomes excessive and the ear rate increases.

【0040 】前記の第二冷間圧延工程は、前記の
第一中間焼鈍後の板材に対し、圧下率10〜25%の範
囲内となるように冷間圧延する工程である。実際上、圧
下率を15%以上、22%未満の範囲とすることが好ま
しい。
The second cold rolling step is a step of performing cold rolling on the sheet material after the first intermediate annealing so that the rolling reduction is within a range of 10 to 25%. In practice, it is preferable that the rolling reduction is in the range of 15% or more and less than 22%.

【0041 】前記の第二中間焼鈍工程は、前記の
第二冷間圧延工程を経た板材を、焼鈍温度が450〜6
10℃の範囲内、焼鈍時間が1〜30秒間の範囲内で焼
鈍する工程である。この工程は、前記からの工程を
順次施した板材を十分に再結晶させ、適量の立方体方位
組織を発達させ、0〜90゜耳が発生する軟質材を得る
工程である。この工程は、焼鈍時間が短時間であるの
で、先に説明した連続焼鈍装置を用いて行うことが好ま
しい。この第二中間焼鈍工程では、焼鈍温度を低くし、
長時間かけて再結晶させた方が、再結晶で得られる立方
体方位粒の量が多くなる。しかしながら、前記〜の
工程を前述の条件で実施し、かつ、後述の様にの最終
冷間圧延工程の圧下率を45〜70%と低い値と設定し
ているので、低温で長時間かけて再結晶させると、立方
体方位粒が過剰となり好ましくない。したがって、加熱
速度を10℃/s以上とし、450℃以上に加熱して、
短時間で再結晶を完了させる。また、450℃以上に加
熱することで、Si、Cu、Mgなどが溶体化されるた
め、加工硬化性が増加し、析出硬化性が付与されるため
に、最終冷間圧延工程の圧下率を45〜70%と低い値
としても、充分な材料強度が得られる。溶体化効果を高
めるためには、加熱温度を高くし、保持時間を長くする
ことが好ましいが、加熱温度が高すぎると、板の破断が
生じ易いので、加熱温度の上限は610℃とした。加熱
時間を長くするためには、連続焼鈍炉の炉長を長くする
か、板の通板スピードを遅くする必要があり、いずれも
生産コストを増加する要因となる。そこで、上限は60
秒とした。また、冷却速度が遅すぎても、生産性が低下
するため、下限を10℃/sとした。また、加熱/冷却
速度が200℃/sを超えると、板材に歪が発生し易く
なる。
In the second intermediate annealing step, the sheet material having undergone the second cold rolling step is subjected to an annealing temperature of 450-6.
This is a step of annealing within a range of 10 ° C. and an annealing time within a range of 1 to 30 seconds. This step is a step of sufficiently recrystallizing the plate material that has been subjected to the above-described steps in order to develop an appropriate amount of cubic orientation structure, and to obtain a soft material having 0-90 ° ears. Since the annealing time is short in this step, it is preferable to use the continuous annealing apparatus described above. In this second intermediate annealing step, the annealing temperature is lowered,
When the recrystallization is performed for a long time, the amount of cubic grains obtained by the recrystallization increases. However, since the steps (1) to (3) are performed under the above-described conditions, and the rolling reduction in the final cold rolling step as described later is set to a low value of 45 to 70%, it takes a long time at a low temperature. Recrystallization undesirably results in excessive cubic grains. Therefore, the heating rate is set to 10 ° C./s or more, and heated to 450 ° C. or more,
Complete recrystallization in a short time. In addition, by heating to 450 ° C. or more, Si, Cu, Mg, and the like are solutionized, work hardenability increases, and precipitation hardenability is imparted, so that the rolling reduction in the final cold rolling step is reduced. Even with a low value of 45 to 70%, sufficient material strength can be obtained. In order to enhance the solution effect, it is preferable to increase the heating temperature and lengthen the holding time. However, if the heating temperature is too high, the plate is likely to break, so the upper limit of the heating temperature was 610 ° C. In order to lengthen the heating time, it is necessary to lengthen the furnace length of the continuous annealing furnace or to slow down the plate passing speed, both of which are factors that increase the production cost. So the upper limit is 60
Seconds. Further, even if the cooling rate is too slow, the productivity is reduced, so the lower limit was set to 10 ° C./s. On the other hand, if the heating / cooling rate exceeds 200 ° C./s, distortion tends to occur in the plate material.

【0042 】前記の最終冷間圧延工程では、前記
の第二中間焼鈍後の板材を、所定の板厚となるように、
圧延率が45〜70%の範囲内で1パスで冷間圧延し、
かつ巻き取ったコイル温度が90〜140℃となるよう
にする。ここでの1パスとは、シングルスタンド冷間圧
延機で1回で圧延することで行うこともでき、2スタン
ド以上の圧延機を並べたタンデム式圧延機にて1回で圧
延することで行うこともできる。更に、巻取り完了後、
コイル温度が90℃未満になるまで1〜10時間保持さ
れるようにする。この工程における圧下率が45%未満
では、ネック成形時に座屈やしわが生じ易くなる。圧下
率が70%を越えると、耳率が高くなり、耐胴切れ性が
劣化する。また、巻き取ったコイル温度が90℃未満の
場合や、90℃以上の場合でも巻取完了後1時間以内
に、90℃未満まで冷却された場合には、板材の加工硬
化性が低すぎるため、深絞りや再絞り成形時やボトム成
形時にしわが発生し易い。一方、巻き取ったコイルの温
度が140℃を越える場合、および90℃未満になるま
での時間が10時間を越える場合は、耐胴切れ性が著し
く劣化することとなる。
In the final cold rolling step, the sheet material after the second intermediate annealing is made to have a predetermined thickness.
Cold rolling is performed in one pass within a rolling ratio of 45 to 70%,
The temperature of the wound coil is set to 90 to 140 ° C. One pass here can be performed by rolling once in a single-stand cold rolling mill, or by performing rolling once in a tandem-type rolling mill in which two or more rolling mills are arranged. You can also. Furthermore, after winding is completed,
Hold for 1 to 10 hours until the coil temperature is less than 90C. If the rolling reduction in this step is less than 45%, buckling and wrinkling are likely to occur during neck molding. If the rolling reduction exceeds 70%, the ear ratio increases and the cut-out resistance deteriorates. In addition, when the coil temperature is less than 90 ° C., or even when the coil temperature is 90 ° C. or more, if it is cooled to less than 90 ° C. within one hour after completion of winding, the work hardenability of the plate material is too low. In addition, wrinkles are likely to occur during deep drawing, redraw forming or bottom forming. On the other hand, when the temperature of the wound coil exceeds 140 ° C., and when the time until the coil becomes less than 90 ° C. exceeds 10 hours, the body breakage resistance is significantly deteriorated.

【0043 】一般に冷間圧延を行うと、加えられた加
工仕事が熱に変換され、圧延加工中の材料温度が高くな
る。一方、圧延加工中の材料は接触しているロールやク
ーラントに熱を奪われ、冷却される。通常、圧下率が高
くなるほど、前者の発熱量が大きくなるが、発熱量は圧
延速度に大きく依存しない。後者の冷却量は、圧延速度
が高い程、小さくなる。従って、冷間圧延工程において
圧下率が高く、圧延速度が速いほど圧延中の材料温度が
高くなる。圧下率45〜70%の最終冷間圧延は、シン
グルスタンドの冷間圧延機で行ってもタンデム式の多段
圧延機で行っても良いが、上述した如く1パスで行う必
要がある。冷却圧延を2パスで圧延する場合、1パス目
の圧延でコイル温度が増加するが、通常は、ほぼ常温ま
でコイル温度が低下した後に、2パス目の圧延を行う。
この場合、1パス目の圧延後、コイルが冷却されるまで
の間に時効硬化が生じ、2パス目の圧延の際に強度が著
しく高くなる。更に、2パス目の圧下量が低くなるた
め、圧延後の温度を90℃以上にすることが困難にな
る。結果として、深絞りや再絞り成形時にしわが生じ易
くなる。2パス目の圧延を1パス目の圧延直後に行う方
法も考えられるが、コイルが長い場合、パス間の保持時
間が数分以上になるために、前記の第一の問題が完全に
は回避できない。また、圧延後はコイル内の温度差が最
も大きい状態であり、温度が高いままで均一な板厚にす
ることは困難である。
In general, when cold rolling is performed, the applied processing work is converted into heat, and the material temperature during rolling is increased. On the other hand, the material being rolled is deprived of heat by the contacting rolls and coolant, and is cooled. Normally, the higher the rolling reduction, the larger the calorific value of the former, but the calorific value does not largely depend on the rolling speed. The latter cooling amount decreases as the rolling speed increases. Therefore, the higher the rolling reduction and the higher the rolling speed in the cold rolling process, the higher the material temperature during rolling. The final cold rolling at a rolling reduction of 45 to 70% may be performed by a single-stand cold rolling mill or a tandem-type multi-high rolling mill, but must be performed in one pass as described above. When the cold rolling is performed in two passes, the coil temperature increases in the first pass, but usually the second pass is performed after the coil temperature has decreased to almost room temperature.
In this case, after the rolling in the first pass, age hardening occurs before the coil is cooled, and the strength is significantly increased during the rolling in the second pass. Furthermore, since the rolling reduction in the second pass is low, it is difficult to raise the temperature after rolling to 90 ° C. or higher. As a result, wrinkles are likely to occur during deep drawing or redraw forming. A method in which the second pass rolling is performed immediately after the first pass rolling is also conceivable. However, when the coil is long, the holding time between passes becomes several minutes or more, so that the first problem is completely avoided. Can not. Further, after rolling, the temperature difference in the coil is the largest, and it is difficult to obtain a uniform thickness with the temperature kept high.

【0044 】1パスで圧延する場合、巻取後のコイル
温度を所定の範囲にするためには、圧延速度を適切な範
囲に設定する必要がある。また、圧下率が低い場合は、
発熱量が小さいので、圧延前のコイル温度を高くすると
ともに、圧延中の冷却を生じ難くする必要がある。一
方、圧下率が高い場合は、発熱量が大きいので冷却を十
分に行う必要がある。以上の工程を経た後に板材は所定
の板厚の本発明のアルミニウム合金板材としてコイルに
巻き取られ製品化される。
When rolling in one pass, it is necessary to set the rolling speed in an appropriate range in order to keep the coil temperature after winding in a predetermined range. If the rolling reduction is low,
Since the calorific value is small, it is necessary to increase the coil temperature before rolling and make it difficult to cool during rolling. On the other hand, when the rolling reduction is high, the amount of heat generated is large, so that it is necessary to sufficiently cool down. After the above steps, the plate is wound into a coil and commercialized as an aluminum alloy plate of the present invention having a predetermined thickness.

【0045 】以上説明の順に、の均熱工程との熱
間圧延工程との第一冷間圧延工程との第一中間焼鈍
工程との第二冷間圧延工程との第二中間焼鈍工程、
及び、の最終冷間圧延工程を施してアルミニウム合金
板材を製造することにより、図2に示すようにアルミ缶
を製造するためにカップ8とした場合に、耳率の少ない
ものを得ることができる。なお、図2においてカップ底
のアルミニウム合金板の圧延方向を矢印で記載したが、
この圧延方向を基準として、カップ8の周方向の位置を
表す。このカップ8の上部(筒体を構成するアルミニウ
ム基合金板ではサイド部)に〇印で示した箇所に生成さ
れるものが0-90゜耳であり、前述の工程のうち、
の第二中間焼鈍後には0-90°位置にわずかな耳が生
じるようにし、の最終冷間圧延により0-90°位置
に生じる耳が更に小さくなり、一方冷間圧延を行うこと
により×印で示した45゜位置にも耳が生じるようにな
るが、0-90°と45°のいずれの位置にもバランス
した小さな耳を生じる低耳材が得られる。本発明の製造
方法によれば、このアルミニウム合金のサイド部、即
ち、アルミニウ基合金板材を筒状に加工したものにあっ
ては筒体開口部側に現れる0-90°耳と45°耳のバ
ランスを取ることができる結果、耳率を低く抑えること
ができる。
In the order described above, a soaking step, a hot rolling step, a first cold rolling step, a first intermediate annealing step, a second cold rolling step, and a second intermediate annealing step,
By performing the final cold rolling step of (1) and (2) to produce an aluminum alloy sheet, when the cup 8 is used to produce an aluminum can as shown in FIG. . In FIG. 2, the rolling direction of the aluminum alloy plate at the bottom of the cup is indicated by an arrow,
The position in the circumferential direction of the cup 8 is represented based on the rolling direction. The 0-90 ears are formed at the locations indicated by the 〇 marks on the upper portion of the cup 8 (the side portions in the case of the aluminum-based alloy plate constituting the cylindrical body).
After the second intermediate annealing, slight ears are generated at the 0-90 ° position, and the ears generated at the 0-90 ° position are further reduced by the final cold rolling. Although ears are also generated at the 45 ° position indicated by, a low ear material that produces small ears balanced at both the 0-90 ° and 45 ° positions is obtained. According to the manufacturing method of the present invention, in the side portion of this aluminum alloy, that is, in the case where the aluminum-based alloy plate is processed into a cylindrical shape, the 0-90 ° ear and the 45 ° ear appearing on the opening side of the cylindrical body. As a result, the ear ratio can be kept low.

【0046 】[0046]

【実施例】次に、本発明を実施例に基づき更に詳しく説
明する。以下の実施例および比較例において、原料のア
ルミニウム合金として以下の表1に示す2種類の組成の
ものを、それぞれ合金A,Bとして用いた。
Next, the present invention will be described in more detail with reference to examples. In the following Examples and Comparative Examples, aluminum alloys having two compositions shown in Table 1 below were used as alloys A and B, respectively, as raw materials.

【0047 】[0047]

【表1】 [Table 1]

【0048 】前記のそれぞれの合金の溶湯を、常法に
より、脱ガス、介在物除去を行い、それから半連続鋳造
により重量6t、厚さ550mmの鋳塊を鋳造し、1
2.5mmの面削を行い面削鋳塊の試料を作製した。こ
の試料のそれぞれについて、以下の表2に示す条件で、
順次、均熱工程、熱間圧延工程、第一冷間圧延工
程、第一中間焼鈍工程、第二冷間圧延工程、第二
中間焼鈍工程、最終冷間圧延工程を施し、缶ボディ用
アルミニウム合金板材を製造した。表記以外の各工程の
条件は全試料共通に下記の通りとした。
The molten metal of each of the above alloys is degassed and inclusions are removed by a conventional method, and then an ingot having a weight of 6 t and a thickness of 550 mm is cast by semi-continuous casting.
A 2.5 mm facing was cut to produce a sample of the facing ingot. For each of the samples, under the conditions shown in Table 2 below:
The soaking process, the hot rolling process, the first cold rolling process, the first intermediate annealing process, the second cold rolling process, the second intermediate annealing process, and the final cold rolling process are sequentially performed to obtain an aluminum alloy for a can body. Plate material was manufactured. Conditions of each step other than the notation were as follows for all samples.

【0049 】均熱工程:加熱速度は平均50℃/
時、均質化温度は570℃±3℃とし、この温度範囲に
8〜10時間保持して均質化を行った。 熱間圧延工程:実施例1〜3及び比較例1〜11につ
いては、前記の圧延最終パスの開始温度は450℃〜5
00℃、圧下量は62%とした。後述の表2に示す「熱
延巻取後のコイル温度」は最終パス終了後のコイルに巻
き取った直後のアルミニウム合金板材の温度であり、こ
れは圧延速度により調節した(圧延速度が遅いほど仕上
げ温度が低くなる。)なお、熱間圧延終了後、コイル状
に巻き取る直前に板幅方向両端に発生したサイドクラッ
クを除去するため、各20mm両端部をトリムした。比
較例12〜15については、熱間粗圧延機を用いて、2
8mmまで圧延後、4タンデム式熱間圧延機で仕上圧延
した。
Soaking step: heating rate is 50 ° C./average
At this time, the homogenization temperature was 570 ° C. ± 3 ° C., and the homogenization was carried out by keeping the temperature in this temperature range for 8 to 10 hours. Hot rolling step: For Examples 1 to 3 and Comparative Examples 1 to 11, the starting temperature of the final rolling pass is 450 ° C to 5 ° C.
At 00 ° C., the rolling reduction was 62%. The "coil temperature after hot rolling and winding" shown in Table 2 below is the temperature of the aluminum alloy sheet immediately after winding on the coil after the final pass, and was adjusted by the rolling speed (the lower the rolling speed, the lower the rolling speed). After the completion of hot rolling, immediately before winding into a coil, trimming was performed at both ends of each 20 mm in order to remove side cracks generated at both ends in the sheet width direction. For Comparative Examples 12 to 15, using a hot rough rolling mill,
After rolling to 8 mm, it was finish-rolled by a 4-tandem hot rolling mill.

【0050 】第一中間焼鈍工程:長さ15mの炉本
体を備えたフローティング式連続焼鈍装置を用い、30
℃〜280℃までの平均加熱速度約20℃/sで加熱し
た。材料の最高到達温度、及び280℃以上に保持され
た時間は、後述の表2に示す通りである。最高到達温度
から、70℃になるまでの平均冷却速度は約30℃/s
に設定した。ただし、比較例14、15ではバッチ式焼
鈍炉を用い、(焼鈍温度−100)℃から(焼鈍温度−
10)℃までの平均加熱速度を14〜17℃/時間
(0.0039〜0.0047℃/s)とし、保持温度、
保持時間を後述の表2に示す条件とし、冷却は実体温度
(アルミニウム合金板材のコイル自体の温度)が250
℃となるまでは炉冷とし、以降は大気中で冷却した。な
お、この第一中間焼鈍工程の直前に試料のサイドクラッ
クを除去するために、試料の幅方向両端部の各20mm
の部分をトリムした。
First intermediate annealing step: A floating type continuous annealing apparatus equipped with a furnace body having a length of 15 m was used for 30 minutes.
Heating was performed at an average heating rate of about 20 ° C./s from about 0 ° C. to 280 ° C. The maximum attainable temperature of the material and the time of keeping the temperature at 280 ° C. or higher are as shown in Table 2 below. The average cooling rate from the ultimate temperature to 70 ° C is about 30 ° C / s
Set to. However, in Comparative Examples 14 and 15, a batch-type annealing furnace was used, and the annealing temperature was from (annealing temperature-100) .degree.
10) The average heating rate to 14 ° C. is 14 to 17 ° C./hour (0.0039 to 0.0047 ° C./s),
The holding time was set to the condition shown in Table 2 below, and the cooling was performed at the actual temperature (temperature of the coil itself of the aluminum alloy sheet) of 250.
The furnace was cooled until the temperature reached ℃, and thereafter cooled in the atmosphere. In addition, in order to remove the side crack of the sample immediately before the first intermediate annealing step, each of the 20 mm at both ends in the width direction of the sample was removed.
Part was trimmed.

【0051 】第二中間焼鈍工程:フローティング式
連続焼鈍炉を用い、常温から(焼鈍温度−100℃)ま
での平均加熱速度は30〜100℃/秒とした。後述す
る表2、表3の「温度」は焼鈍最高到達温度を示し、
「時間」は(最高到達温度−100)℃から焼鈍最高到
達温度に達するまでの時間(秒)を示す。冷却速度は、
焼鈍最高到達温度から70℃までの平均で、約100℃
/秒とした。ただし、比較例9では、バッチ式焼鈍炉を
用い、(焼鈍温度−100)℃から焼鈍温度までの平均
加熱速度を14〜17℃/時間(0.0039〜0.00
47℃/s)とし、保持温度、保持時間を後述の表2に
示す条件とし、冷却は実体温度(アルミニウム合金板材
のコイル自体の温度)が250℃となるまでは炉冷と
し、以降は大気中で冷却した。比較例9では、第二中間
焼鈍を行った後、前記と同様の方法でフローティング式
連続焼鈍炉を用いた第3中間焼鈍を行った。また、比較
例10、11では、バッチ式焼鈍炉を用い、(焼鈍温度
−100)℃から焼鈍温度までの平均加熱速度を14〜
17℃/時間(0.0039〜0.0047℃/s)と
し、表2に示す温度まで加熱し、表2に示す時間保持
後、さらに同一炉中で第3焼鈍温度まで、14〜17℃
/時間の加熱速度で加熱し、同時間保持後、実体温度が
250℃となるまでは炉冷し、以降は大気中で冷却し
た。
Second intermediate annealing step: A floating type continuous annealing furnace was used, and the average heating rate from normal temperature to (annealing temperature-100 ° C) was 30 to 100 ° C / sec. “Temperature” in Tables 2 and 3 described below indicates the maximum annealing temperature.
“Time” indicates a time (second) from (maximum ultimate temperature−100) ° C. to the maximum annealing temperature. The cooling rate is
On average from the highest annealing temperature to 70 ° C, about 100 ° C
/ Sec. However, in Comparative Example 9, the batch type annealing furnace was used, and the average heating rate from (annealing temperature −100) ° C. to the annealing temperature was 14 to 17 ° C./hour (0.0039 to 0.000).
47 ° C./s), the holding temperature and the holding time are set to the conditions shown in Table 2 below, and the furnace is cooled until the actual temperature (the temperature of the coil itself of the aluminum alloy sheet) reaches 250 ° C. Cooled in. In Comparative Example 9, after performing the second intermediate annealing, the third intermediate annealing using a floating continuous annealing furnace was performed in the same manner as described above. In Comparative Examples 10 and 11, a batch-type annealing furnace was used, and the average heating rate from (annealing temperature −100) ° C. to the annealing temperature was 14 to
17 ° C./hour (0.0039 to 0.0047 ° C./s), heating to the temperature shown in Table 2, holding for the time shown in Table 2, and further in the same furnace to the third annealing temperature, 14 to 17 ° C.
After heating at a heating rate of / hour and holding the same time, the furnace was cooled until the actual temperature reached 250 ° C., and thereafter, it was cooled in the atmosphere.

【0052 】最終冷間圧延工程:表2の「最終圧下
率」によって、板厚0.30mmのアルミニウム合金板
材を製造した。実施例及び比較例1〜8では、1パスで
最終冷間圧延を行った。比較例9〜15では、最終冷間
圧延を2パスで行った。最終パス巻き取り完了直後のコ
イル温度を後述の表2に示す。また、巻き取り後、90
℃以下まで冷却されるのに要した時間も表2に示す。コ
イルの冷却はファン空冷としたが、実施例2と比較例8
では、最終冷間圧延終了後、表2の時間経過後、スリッ
ターで巻き替えを行い、巻き替え時に強制空冷して90
℃以下に冷却した。また、比較例11、13、15は、
それぞれ比較例10、12、14と同一の工程で製造し
た材料を、最終冷間圧延後に145℃で2時間、安定化
焼鈍したものである。
Final cold rolling step: An aluminum alloy sheet having a thickness of 0.30 mm was manufactured according to the “final rolling reduction” shown in Table 2. In Examples and Comparative Examples 1 to 8, final cold rolling was performed in one pass. In Comparative Examples 9 to 15, the final cold rolling was performed in two passes. The coil temperature immediately after the completion of the final pass winding is shown in Table 2 below. After winding, 90
Table 2 also shows the time required for cooling to below ° C. The cooling of the coil was performed by air cooling with a fan.
Then, after the end of the final cold rolling, after the elapse of the time shown in Table 2, rewinding was performed by a slitter, and forced air cooling was performed at the time of rewinding.
It cooled to below ° C. Comparative Examples 11, 13, and 15
The materials manufactured in the same process as Comparative Examples 10, 12, and 14 were subjected to stabilized annealing at 145 ° C. for 2 hours after final cold rolling.

【0053 】以上の試験の結果得られたアルミニウム
合金板材の断面結晶粒組織を観察した結果、以下の表2
に、符号A、B、Cで分類して表示した。Aで示すもの
は、やや延伸した極微細粒組織であり、Bで示すもの
は、やや延伸した微結晶粒組織であり、Cで示すものは
極めて延伸した粗大粒組織であることを示す。次に、前
記のアルミニウム合金板材を焼付け塗装時の焼付け条件
に相当する210℃で10分間加熱を行った後、JIS
5号引張試験片に加工し、JIS B7771に従って
0.2%耐力を求め、表2に示した。また、前記のアル
ミニウム合金板材を用いて、350cc飲料缶のDI加
工を行った。DI加工後、缶の上端に生じた耳高さを測
定した結果を表2に示す。更に、深絞り加工および再絞
り加工のみを行い、しごき成形およびボトム成形を省い
た再絞り缶を採取し、底部と缶壁との間の傾斜部分の凹
凸の状況を調べ、ボトムしわ評価の代用とし、その測定
結果を表2と表3に示した。
As a result of observing the cross-sectional grain structure of the aluminum alloy sheet obtained as a result of the above test, the following Table 2 was obtained.
Are classified by A, B, and C and displayed. A indicates a slightly stretched ultrafine grain structure, B indicates a slightly stretched microcrystalline grain structure, and C indicates an extremely stretched coarse grain structure. Next, after heating the above-mentioned aluminum alloy plate at 210 ° C. for 10 minutes corresponding to the baking conditions at the time of baking coating, JIS
A No. 5 tensile test piece was processed, and a 0.2% proof stress was determined in accordance with JIS B7771. Further, DI processing of a 350 cc beverage can was performed using the above aluminum alloy plate material. Table 2 shows the measurement results of the ear height generated at the upper end of the can after DI processing. In addition, only deep drawing and redrawing are performed, and redrawing cans are sampled without ironing and bottom forming, and the state of unevenness on the inclined portion between the bottom and the can wall is examined. Table 2 and Table 3 show the measurement results.

【0054 】次に、DI加工時の第2しごき加工率を
下げ、代りに第3しごき加工率を高めることにより胴切
れを生じやすくして耐胴切れ性について評価した。しご
き率の設定は、比較例11の素材を用いて予備試験を行
い、胴切れ発生率が約1%になるように設定した。本試
験では、20種類の材料を順次変更して胴切れ発生率を
調べた。材料の変更は、同一材料で胴切れが3回生じる
か、あるいは、成形数が約2000缶に達した時点で行
った。この様なサイクルを3回実施し、胴切れ発生率が
0%の試料では約6000缶の成形を行った。胴切れ発
生率が最も高かった試料では総成形数は約1000缶で
ある。
Next, the second ironing rate at the time of DI processing was lowered, and instead the third ironing rate was increased, whereby the body was easily cut off and the cut-out resistance was evaluated. The ironing rate was set by performing a preliminary test using the material of Comparative Example 11 so that the rate of occurrence of body breakage was about 1%. In this test, 20 types of materials were sequentially changed to examine the rate of occurrence of body breakage. The material was changed when the same material was cut three times with the same material or when the number of moldings reached about 2,000 cans. Such a cycle was performed three times, and about 6000 cans were formed for a sample having a body breakage rate of 0%. In the sample with the highest body breakage rate, the total number of moldings was about 1000 cans.

【0055 】[0055]

【表2】 [Table 2]

【0056 】[0056]

【表3】 [Table 3]

【0057 】表2、3に示す結果から、熱間圧延工程
における巻取後のコイル温度が400〜500℃である
ことが好ましく、冷却後の再結晶率は70〜100%の
範囲であることが好ましく、最終冷間圧延後の圧下率が
45〜70%の範囲であることが好ましく、その後に巻
き取ったコイルの温度が90℃以上、140℃以下であ
ることが好ましく、1パスの冷間圧延であることが好ま
しく、巻取直後のコイル温度が90℃以下になるまで1
時間以上保持することが好ましいことが明らかになっ
た。即ち、比較例1の試料は、第一中間焼鈍の温度を本
発明上限の380℃よりも高い520℃とし、第二冷間
圧延工程と第二中間焼鈍工程を省略した試料、即ち本発
明の第一中間焼鈍である半軟化焼鈍を行わず、直接、再
結晶化焼鈍を行った場合であるが、微細な再結晶が得ら
れ、ボトムしわ、胴切れを発生しないが、耳高さが高く
なった。
From the results shown in Tables 2 and 3, the coil temperature after winding in the hot rolling step is preferably 400 to 500 ° C., and the recrystallization rate after cooling is in the range of 70 to 100%. The rolling reduction after the final cold rolling is preferably in the range of 45 to 70%, and the temperature of the coil wound thereafter is preferably 90 ° C. or more and 140 ° C. or less, and one-pass cold rolling is preferably performed. It is preferable that the coil temperature is 90 ° C. or less immediately after winding.
It became clear that it is preferable to hold for more than an hour. That is, in the sample of Comparative Example 1, the temperature of the first intermediate annealing was set to 520 ° C. higher than the upper limit of 380 ° C. of the present invention, and the sample in which the second cold rolling step and the second intermediate annealing step were omitted, that is, the sample of the present invention. This is the case where the semi-softening annealing which is the first intermediate annealing is not performed, and the recrystallization annealing is directly performed, but fine recrystallization is obtained, and the bottom wrinkles do not occur, but the ear height is high. became.

【0058 】比較例2の試料は、第一中間焼鈍の温度
を本発明下限の280℃よりも低い270℃とし、第一
中間焼鈍の時間を0にした試料であるが、微細な再結晶
が得られ、ボトムしわ、胴切れを発生しないが、耳が高
くなった。比較例3の試料は、第一中間焼鈍の温度を本
発明上限の380℃よりも高い390℃とし、第二中間
焼鈍工程と第二中間焼鈍工程を行った試料であるが、微
細な再結晶が得られ、ボトムしわ、胴切れを発生しない
が、耳が高くなった。比較例4の試料は、第二冷間圧延
工程の圧下率を本発明上限の25%よりも大きい30%
とした試料、即ち、圧下率が高すぎる試料であるが、微
細な再結晶が得られ、ボトムしわ、胴切れを発生しない
が、耳高さが高くなった。比較例5の試料は、巻取後の
コイル温度を400℃未満の380℃とし、熱間圧延後
の再結晶率を70%未満の60%としたものであり、熱
間圧延後巻取直後のコイル温度が低すぎ、冷却後の再結
晶率が低すぎる場合であるが、第一冷間圧延途中に板材
が破断し、圧延を継続できなかった。
The sample of Comparative Example 2 was a sample in which the temperature of the first intermediate annealing was set to 270 ° C., which is lower than the lower limit of 280 ° C. of the present invention, and the time of the first intermediate annealing was set to 0. Obtained, no bottom wrinkles, no cuts, but ears were raised. The sample of Comparative Example 3 was a sample in which the temperature of the first intermediate annealing was set to 390 ° C. higher than the upper limit of 380 ° C. of the present invention, and the second intermediate annealing step and the second intermediate annealing step were performed. No bottom wrinkles or cuts were observed, but the ears were raised. In the sample of Comparative Example 4, the rolling reduction in the second cold rolling step was 30%, which was larger than the upper limit of 25% of the present invention.
Although the sample was a sample having an excessively high rolling reduction, fine recrystallization was obtained, and bottom wrinkles and cuts were not generated, but the ear height was high. In the sample of Comparative Example 5, the coil temperature after winding was set to 380 ° C lower than 400 ° C, the recrystallization rate after hot rolling was set to 60% lower than 70%, and immediately after winding after hot rolling. In this case, the coil temperature was too low, and the recrystallization rate after cooling was too low. However, the sheet material was broken during the first cold rolling, and the rolling could not be continued.

【0059 】比較例6の試料は、最終冷間圧延後の巻
き取ったコイルの温度が低すぎる場合で、微細な再結晶
粒が得られ、耳高さが低く、胴切れを発生しないが、ボ
トムしわを生じ易く、伸びも低かった。比較例7の試料
は、最終冷間圧延後の巻取直後のコイル温度を本発明の
上限140℃よりも高くした試料であるが、微細な再結
晶粒が得られ、ボトムしわを発生しにくく、耳高さが低
いが、胴切れを発生した。比較例8の試料は、最終冷間
圧延後のコイル温度が90℃以下になるまでの時間が短
すぎる場合で、微細な再結晶粒が得られ、耳高さが低
く、胴切れを発生しないが、ボトムしわを生じた。比較
例9の試料は、本発明者らが先に特許出願している特開
2000−26946号に開示の技術による製造方法に
おいて3段階の中間焼鈍を行う技術に沿うもの(第三中
間焼鈍を施し、最終冷間圧延時の圧下率を本発明上限の
70%を越える72.7%とした試料)であるが、耳高
さは低いものの、結晶粒が粗大でボトムしわを生じ易
く、胴切れが発生した。
In the sample of Comparative Example 6, when the temperature of the coil wound after the final cold rolling was too low, fine recrystallized grains were obtained, the ear height was low, and no breakage occurred. Bottom wrinkles were likely to occur and elongation was low. The sample of Comparative Example 7 was a sample in which the coil temperature immediately after winding after the final cold rolling was higher than the upper limit of 140 ° C. of the present invention, but fine recrystallized grains were obtained and bottom wrinkles were hardly generated. However, the ear height was low, but the body was cut off. In the sample of Comparative Example 8, when the time required for the coil temperature after the final cold rolling to be 90 ° C. or less was too short, fine recrystallized grains were obtained, the ear height was low, and no breakage occurred. But wrinkled at the bottom. The sample of Comparative Example 9 conforms to the technique of performing three-stage intermediate annealing in the manufacturing method according to the technique disclosed in Japanese Patent Application Laid-Open No. 2000-26946, to which the present inventors have previously applied for a patent (the third intermediate annealing is performed). And the rolling reduction at the time of final cold rolling was set to 72.7%, which exceeds the upper limit of 70% of the present invention), but the ear height was low, but the crystal grains were coarse and the bottom wrinkles were easily generated. A cut has occurred.

【0060 】比較例10の試料は、本発明者らが先に
特許出願している特開2000−26946号に開示の
技術による製造方法において3段階の中間焼鈍を行う技
術に沿うもの(第一冷間圧延工程の圧下率を本発明下限
の75%よりも低い66.2%とし、第三中間焼鈍工程
を施し、圧下率を本発明上限の70%を越える85%と
した試料)であるが、耳高さは低いものの、結晶粒が粗
大で強度が低く、ボトムしわを生じ易く、胴切れが発生
した。比較例11の試料は比較例10で得た材料に安定
化焼鈍(145℃×2時間)を施した試料であり、ボト
ムしわを生じないようにすることはできるものの、胴切
れが発生した。比較例12〜15の試料は、タンデム式
熱間仕上圧延機を用いて、素材を製造した場合である。
比較例12、13の試料は、熱間仕上圧延後に連続式焼
鈍炉にて焼鈍した例、比較例14、15の試料は、バッ
チ式焼鈍炉で焼鈍した試料であり、その後に最終板厚ま
で冷間圧延した場合の例である。
The sample of Comparative Example 10 conforms to the technique of performing three-stage intermediate annealing in the production method according to the technique disclosed in Japanese Patent Application Laid-Open No. 2000-26946, to which the present inventors have previously applied for a patent (first example). A sample in which the rolling reduction in the cold rolling step is 66.2%, which is lower than the lower limit of 75% of the present invention, and the third intermediate annealing step is performed, and the rolling reduction is 85%, which exceeds the upper limit of 70% in the present invention). However, although the ear height was low, the crystal grains were coarse and the strength was low, the bottom wrinkles were easily generated, and the body was broken. The sample of Comparative Example 11 was a sample obtained by subjecting the material obtained in Comparative Example 10 to stabilizing annealing (145 ° C. × 2 hours), and although it was possible to prevent bottom wrinkles from occurring, the body was cut off. The samples of Comparative Examples 12 to 15 are cases where the raw material was manufactured using a tandem hot finishing mill.
The samples of Comparative Examples 12 and 13 are examples of annealing in a continuous annealing furnace after hot finish rolling, and the samples of Comparative Examples 14 and 15 are samples annealed in a batch annealing furnace. This is an example in the case of cold rolling.

【0061 】比較例12、13は、巻取後のコイル温
度を低く、第一冷間圧延の圧下率を0として第二中間圧
延を略し、最終冷間圧延の圧下率を85%とした試料で
あるが、いずれも耳率は低いものの、結晶粒が粗大であ
り、一方でボトムしわが発生し、胴切れは両方で発生し
た。比較例14、15は再結晶化率を0として、第一冷
間圧延の圧下率を0とし、第二冷間圧延と第二中間焼鈍
を略した試料であるが、一方でボトムしわが発生し両方
で胴切れが発生した。また、安定化焼鈍を行っていない
場合、ボトムしわを生じやすく、安定化焼鈍を行うとボ
トムしわは改善されるが、胴切れを更に生じやすくなる
傾向にある。更に、熱間圧延後にバッチ式の焼鈍を行っ
たものは、強度が低いことも明らかになった。
In Comparative Examples 12 and 13, the coil temperature after winding was low, the rolling reduction in the first cold rolling was set to 0, the second intermediate rolling was omitted, and the rolling reduction in the final cold rolling was 85%. Although the ear ratio was low in each case, the crystal grains were coarse, while wrinkles were formed on the bottom, and the body was cut off on both sides. Comparative Examples 14 and 15 are samples in which the recrystallization rate is set to 0, the rolling reduction in the first cold rolling is set to 0, and the second cold rolling and the second intermediate annealing are omitted. Then, both sides broke. Further, when the stabilized annealing is not performed, the bottom wrinkle is easily generated. When the stabilized annealing is performed, the bottom wrinkle is improved, but the body tends to be more easily cut. Furthermore, it was also revealed that the sample subjected to batch annealing after hot rolling had low strength.

【0062 】比較例16は、最終冷間圧延工程の圧下
率が42.3%と本発明範囲の下限より低い場合であ
る。微細な結晶粒が得られ、耳高さが低く、ボトムしわ
や胴切れを発生しない。表2に示した口辺ネック部耐力
は、成形したDI缶の上端開口部をトリムして耳を除去
後、印刷・塗装後の焼付け条件に相当する加熱条件(2
10℃で10分間)で加熱し、さらに、口辺部の径を
3.4%縮径するネック成形を施し、ネック形成された
部位から切り出した試験片を引張試験して求めた耐力値
である。実施例1〜5では、口辺ネック部耐力が278
〜283MPaであるのに対し、比較例16では、29
1MPaと高い値を示す。ネック部の耐力が高いとネッ
クしわの発生率が高くなる。比較例17は最終冷間圧延
巻取後、コイルが90℃未満になるまでの時間が15時
間と本発明の上限を越える場合であるが、微細な結晶粒
が得られ、耳高さが低く、ボトムしわを発生しないが、
胴切れ発生率が高い。
Comparative Example 16 is a case where the rolling reduction in the final cold rolling step is 42.3%, which is lower than the lower limit of the range of the present invention. Fine crystal grains can be obtained, ear height is low, and bottom wrinkles and body breaks do not occur. The mouth neck proof stress shown in Table 2 was obtained by trimming the upper end opening of the molded DI can and removing the ears, and then heating conditions (2) corresponding to the baking conditions after printing and painting.
(10 ° C. for 10 minutes), and further, neck forming was performed to reduce the diameter of the mouth portion by 3.4%, and the tensile strength of the test piece cut out from the neck formed portion was determined by a tensile test. is there. In Examples 1 to 5, the mouth neck proof stress was 278.
283 MPa, whereas in Comparative Example 16, 29
It shows a high value of 1 MPa. The higher the yield strength of the neck portion, the higher the occurrence rate of neck wrinkles. Comparative Example 17 is a case in which the time until the coil becomes less than 90 ° C. after the final cold rolling winding is 15 hours, which exceeds the upper limit of the present invention, but fine crystal grains are obtained and ear height is low. Does not cause bottom wrinkles,
High breakage rate.

【0063 】次に、表3の伸びは、製造された板材
を、JIS5号試験片に加工し、圧延方向に引張速度2
0mm/分で引張試験した場合の伸びを示す。これら表
3に示す伸びの値から、本発明に係る製造方法による試
料であれば、5%未満、望ましくは4%未満になるが、
比較例のものでは1.9〜5.2の範囲で大小の値にばら
つくことが明らかである。表3に示す本発明試料の特性
から、最終冷間圧延後の伸びが20t%(tは板厚m
m、今回の試験では0.3mmを示す)以下、好ましく
は、15t%以下であると好ましいことが判明した。即
ち、伸びが高すぎると、耐胴切れ性が悪化し、伸びが低
いとカップ成形時にカップ口部にしわを生じやすいが、
本発明試料では最終圧延加工率が低いので、しわは生じ
難くなる。
Next, the elongation shown in Table 3 was obtained by processing the manufactured plate material into a JIS No. 5 test piece, and applying a tensile speed of 2 in the rolling direction.
It shows the elongation when subjected to a tensile test at 0 mm / min. From the elongation values shown in Table 3, if the sample is produced by the production method according to the present invention, the value is less than 5%, preferably less than 4%.
In the case of the comparative example, it is apparent that the value varies in the range of 1.9 to 5.2. From the characteristics of the sample of the present invention shown in Table 3, the elongation after the final cold rolling is 20 t% (t is the thickness m
m, which shows 0.3 mm in this test), preferably 15 t% or less. That is, if the elongation is too high, the body breaking resistance is deteriorated, and if the elongation is low, wrinkles are likely to occur in the cup mouth during cup molding,
Since the sample of the present invention has a low final rolling rate, wrinkles hardly occur.

【0064 】[0064]

【発明の効果】本発明の耐胴切れ性に優れた缶ボディ用
アルミニウム基合金板の製造方法は、アルミニウム基合
金鋳塊を、均熱工程において均質化処理し、熱間圧
延工程において熱間圧延終了時の板材の温度を400〜
500℃となるように再結晶率70〜100%となるよ
うに熱間圧延し、第一冷間圧延工程において圧延率が
75〜95%となるように冷間圧延し、第一中間焼鈍
工程において連続焼鈍装置を用いて280〜380℃で
1〜30sの範囲内で焼鈍し、第二冷間圧延工程にお
いて圧延率が10〜25%となるように冷間圧延し、
第二中間焼鈍工程において450〜600℃、1〜30
秒の範囲内で焼鈍し、最終冷間圧延工程において圧延
率45〜70%の範囲内となるように冷間圧延する製造
方法であるので、熱間圧延工程の全工程においてシング
ルミルのリバース式熱間粗圧延機のみを用いて、深絞り
成形時に耳率を大幅に低減できるばかりでなく、製缶時
にネックの縮径率を大きくしてもネック耳が生じにく
い、胴切れ性にも優れたアルミニウム合金板材を製造す
ることができ、DI缶などを製造する際の製造コストを
低減しかつ歩留まりを大幅に向上させることができる。
The method of the present invention for producing an aluminum-based alloy plate for a can body having excellent body breaking resistance comprises the steps of: homogenizing an aluminum-based alloy ingot in a soaking process; The temperature of the sheet material at the end of rolling is 400 to
Hot rolling so as to have a recrystallization rate of 70 to 100% so as to be 500 ° C., cold rolling so that the rolling rate is 75 to 95% in a first cold rolling step, and a first intermediate annealing step In a range of 1 to 30 s at 280 to 380 ° C. using a continuous annealing device, and cold-rolled in a second cold-rolling step so that a rolling reduction is 10 to 25%;
450-600 ° C, 1-30 in the second intermediate annealing step
Seconds, and the final cold rolling step is a cold-rolling production method in which the rolling ratio falls within the range of 45 to 70%. Using only a hot rough rolling mill, not only can the ear ratio be greatly reduced during deep drawing, but even if the diameter reduction ratio of the neck is increased during can-making, neck ears are less likely to occur, and it has excellent body cutting properties. Aluminum alloy sheet material can be manufactured, the manufacturing cost for manufacturing DI cans and the like can be reduced, and the yield can be greatly improved.

【0065 】次に、熱間圧延時の仕上温度を400〜
500℃と高い範囲とし、再結晶率を70〜100%の
高い率とし、第二中間焼鈍時に450℃以上の高温に1
0℃/s以上の高速で加熱し、再結晶させることによ
り、第二中間焼鈍時に生じる立方体方位粒の量を抑制
し、一方、第一冷間圧延率を75〜95%と高くし、第
二冷間圧延率を10〜25%の最適な範囲に限定するこ
とにより、第二中間焼鈍時に生じる立方体方位粒を増加
させ、結果として、第二中間焼鈍後に必要かつ充分な立
方体方位粒の量を適量生成させ、最終冷間圧延の圧下率
を45〜70%と低くすることにより、最終的に45°
耳と0-90°耳のバランスがとれた低耳率の板材を提
供できる。
Next, the finishing temperature at the time of hot rolling is set to 400-400.
The range is as high as 500 ° C., the recrystallization rate is as high as 70 to 100%, and the high temperature of 450 ° C. or higher during the second intermediate annealing is 1%.
By heating at a high speed of 0 ° C./s or more and recrystallizing, the amount of cubic orientation grains generated during the second intermediate annealing is suppressed, while the first cold rolling reduction is increased to 75 to 95%. (2) By limiting the cold rolling reduction to the optimal range of 10 to 25%, the cubic grain orientation generated during the second intermediate annealing is increased, and as a result, the amount of cubic grain orientation required and sufficient after the second intermediate annealing is increased. By reducing the final cold rolling reduction rate to 45 to 70%, so that 45 °
It is possible to provide a low-ear-rate plate material in which the ear and the 0-90 ° ear are balanced.

【0066 】さらに、最終冷間圧延工程において、圧
下率を45〜70%の低い範囲とし、冷間圧延後のコイ
ル状の板材の温度を90℃以上、140℃以下となるよ
うに1パスの冷間圧延を施し、かつ、巻き取り完了後の
コイル状の板材を90℃以上で1〜10時間保持するこ
とにより、DI成形時にしわや破断を生じにくくできる
効果がある。
Further, in the final cold rolling step, the rolling reduction is set to a low range of 45 to 70%, and the temperature of the coiled sheet material after the cold rolling is adjusted to 90 ° C. or more and 140 ° C. or less in one pass. By performing cold rolling and holding the coiled sheet material after completion of winding at 90 ° C. or higher for 1 to 10 hours, there is an effect that wrinkles and breakage are less likely to occur during DI molding.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明製造方法の実施に用いる連続焼鈍装置
の一例を示す概略構成図。
FIG. 1 is a schematic configuration diagram showing an example of a continuous annealing apparatus used for carrying out the manufacturing method of the present invention.

【図2】 本発明製造方法で得られたアルミニウム基合
金板を加工して得られるアルミ缶用筒体の斜視図。
FIG. 2 is a perspective view of an aluminum can cylinder obtained by processing an aluminum-based alloy plate obtained by the production method of the present invention.

【符号の説明】[Explanation of symbols]

A・・・連続焼鈍装置、1・・・供給ロール、2・・・アルミニ
ウム基合金板材、3、6・・・緩衝装置、4・・・炉本体、7
・・・巻取ロール、8・・・筒体。
A: continuous annealing device, 1: supply roll, 2: aluminum base alloy plate, 3, 6: buffer device, 4: furnace body, 7
... winding roll, 8 ... tubular body.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 673 C22F 1/00 673 683 683 685 685Z 691 691B 691C 691A 692 692A 692B 694 694A (72)発明者 原田 俊宏 静岡県裾野市平松85番地 三菱アルミニウ ム株式会社技術開発センター内 (72)発明者 大堀 紘一 静岡県裾野市平松85番地 三菱アルミニウ ム株式会社技術開発センター内────────────────────────────────────────────────── ─── of the front page continued (51) Int.Cl. 7 identification mark FI theme Court Bu (reference) C22F 1/00 673 C22F 1/00 673 683 683 685 685Z 691 691B 691C 691A 692 692A 692B 694 694A (72) invention Person: Toshihiro Harada 85, Hiramatsu, Susono-shi, Shizuoka Prefecture Inside the Technology Development Center of Mitsubishi Aluminum Co., Ltd. (72) Inventor Koichi Ohori 85-Hiramatsu, Susono-shi, Shizuoka Prefecture, Technology Development Center of Mitsubishi Aluminum Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Mg:0.9〜1.7重量%、Mn:0.
8〜1.2重量%、Fe:0.30〜0.55重量%、S
i:0.25〜0.45重量%、Cu:0.20〜0.4重
量%、Zn:0.05〜0.4重量%、Ti:0.02〜
0.2重量%含有し、残部が不可避不純物とAlからな
るアルミニウム合金を溶製し、半連続鋳造して得た鋳塊
を、熱間圧延及び冷間圧延を施してアルミニウム合金板
材を製造するに際して、順次、 均熱工程において、前記アルミニウム合金鋳塊を、5
60〜610℃の範囲で、6〜24時間均質化処理し、 熱間圧延工程において、前記の均質化されたアルミニ
ウム合金鋳塊を熱間圧延して板材を形成するに際し、熱
間圧延後、巻き取ったコイル状の板材の温度を400〜
500℃とし、その後に冷却したコイル状の板材の再結
晶率を70〜100%とし、 第一冷間圧延工程において、前記熱間圧延終了後の板
材を、圧下率が75〜95%の範囲内となるように冷間
圧延し、 第一中間焼鈍工程において、連続焼鈍装置を用いて1
0〜200℃/sの範囲の加熱速度で280〜380℃
の温度範囲まで加熱し、この温度範囲で1〜30秒間保
持し、次いで10〜200℃/sの範囲の冷却速度で冷
却して焼鈍し、 第二冷間圧延工程において、前記第一中間焼鈍後の板
材を、圧下率が10〜25%の範囲内となるように冷間
圧延し、 第二中間焼鈍工程において、連続焼鈍装置を用いて1
0〜200℃/sの範囲の加熱速度で450〜610℃
の温度範囲まで加熱し、この温度範囲で1〜30秒間保
持し、次いで10〜200℃/sの範囲の冷却速度で冷
却して焼鈍し、次いで、 最終冷間圧延工程において、圧下率が45〜70%の
範囲となり、冷間圧延後巻き取ったコイル状の板材の温
度が90℃以上、140℃以下となる様に1パスの冷間
圧延を施し、かつ、巻き取り完了後巻き取ったコイル状
の板材が90℃未満になるまで1〜10時間保持するこ
とを特徴とする耐胴切れ性に優れた缶ボディ用アルミニ
ウム合金板材の製造方法。
1. Mg: 0.9 to 1.7% by weight, Mn: 0.9% by weight.
8 to 1.2% by weight, Fe: 0.30 to 0.55% by weight, S
i: 0.25 to 0.45 wt%, Cu: 0.20 to 0.4 wt%, Zn: 0.05 to 0.4 wt%, Ti: 0.02 to
An aluminum alloy containing 0.2% by weight, the remainder being an aluminum alloy consisting of unavoidable impurities and Al, is subjected to hot rolling and cold rolling to produce an ingot obtained by semi-continuous casting to produce an aluminum alloy sheet. At this time, in the soaking step, the aluminum alloy ingot is
In the range of 60 to 610 ° C., homogenization treatment is performed for 6 to 24 hours. In a hot rolling step, when the homogenized aluminum alloy ingot is hot-rolled to form a sheet material, after hot rolling, When the temperature of the coiled plate material is 400 to
500 ° C., after which the recrystallized rate of the coiled sheet material cooled is set to 70 to 100%. In the first cold rolling step, the sheet material after the completion of the hot rolling is reduced in a range of 75 to 95%. Cold-rolled so as to be inside, and in the first intermediate annealing step, 1
280-380 ° C at a heating rate in the range of 0-200 ° C / s
, Held at this temperature range for 1 to 30 seconds, then cooled and annealed at a cooling rate in the range of 10 to 200 ° C / s, in the second cold rolling step, the first intermediate annealing The subsequent sheet material is cold-rolled so that the rolling reduction is in the range of 10 to 25%. In the second intermediate annealing step, 1
450-610 ° C at a heating rate in the range of 0-200 ° C / s
, Held at this temperature range for 1 to 30 seconds, then cooled and annealed at a cooling rate in the range of 10 to 200 ° C./s, and then, in the final cold rolling step, a reduction of 45%. After the cold rolling, the coiled sheet material was subjected to one-pass cold rolling so that the temperature of the coiled sheet material became 90 ° C. or more and 140 ° C. or less, and was wound after the winding was completed. A method for producing an aluminum alloy sheet material for a can body having excellent cut-out resistance, wherein the coil-shaped sheet material is held for 1 to 10 hours until the temperature thereof becomes lower than 90 ° C.
JP2001011816A 2001-01-19 2001-01-19 Method for producing aluminum alloy sheet material for can body having excellent resistance to torsion Expired - Lifetime JP4011293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001011816A JP4011293B2 (en) 2001-01-19 2001-01-19 Method for producing aluminum alloy sheet material for can body having excellent resistance to torsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001011816A JP4011293B2 (en) 2001-01-19 2001-01-19 Method for producing aluminum alloy sheet material for can body having excellent resistance to torsion

Publications (2)

Publication Number Publication Date
JP2002212691A true JP2002212691A (en) 2002-07-31
JP4011293B2 JP4011293B2 (en) 2007-11-21

Family

ID=18878906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001011816A Expired - Lifetime JP4011293B2 (en) 2001-01-19 2001-01-19 Method for producing aluminum alloy sheet material for can body having excellent resistance to torsion

Country Status (1)

Country Link
JP (1) JP4011293B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6802197B2 (en) 2002-01-09 2004-10-12 Barrera Maria Eugenia Process for manufacturing a high strength container, particularly an aerosol container, and the container obtained through such process
JP2008057019A (en) * 2006-09-01 2008-03-13 Universal Seikan Kk Aluminum alloy sheet for drink can and container using the same
JP2014084473A (en) * 2012-10-19 2014-05-12 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body and production method thereof
JP2015055009A (en) * 2013-09-13 2015-03-23 三菱アルミニウム株式会社 Method for producing aluminum alloy sheet for can body excellent in resistance to pinhole fracture and aluminum alloy sheet for can body
CN105127212A (en) * 2015-09-29 2015-12-09 无锡贺邦金属制品有限公司 Machining method of 5083 aluminum alloy
JP5841646B1 (en) * 2014-09-10 2016-01-13 株式会社神戸製鋼所 Aluminum alloy plate for can body
CN114875254A (en) * 2022-03-26 2022-08-09 河南中孚高精铝材有限公司 Production method of coiled material for aluminum alloy R0PP bottle cap
CN115151675A (en) * 2020-03-03 2022-10-04 希腊金属研究中心公司 Method and apparatus for manufacturing aluminum can panels

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6802197B2 (en) 2002-01-09 2004-10-12 Barrera Maria Eugenia Process for manufacturing a high strength container, particularly an aerosol container, and the container obtained through such process
JP2008057019A (en) * 2006-09-01 2008-03-13 Universal Seikan Kk Aluminum alloy sheet for drink can and container using the same
JP2014084473A (en) * 2012-10-19 2014-05-12 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body and production method thereof
JP2015055009A (en) * 2013-09-13 2015-03-23 三菱アルミニウム株式会社 Method for producing aluminum alloy sheet for can body excellent in resistance to pinhole fracture and aluminum alloy sheet for can body
JP5841646B1 (en) * 2014-09-10 2016-01-13 株式会社神戸製鋼所 Aluminum alloy plate for can body
WO2016039215A1 (en) * 2014-09-10 2016-03-17 株式会社神戸製鋼所 Aluminum alloy sheet for can body
CN106661681A (en) * 2014-09-10 2017-05-10 株式会社神户制钢所 Aluminum alloy sheet for can body
CN105127212A (en) * 2015-09-29 2015-12-09 无锡贺邦金属制品有限公司 Machining method of 5083 aluminum alloy
CN115151675A (en) * 2020-03-03 2022-10-04 希腊金属研究中心公司 Method and apparatus for manufacturing aluminum can panels
CN114875254A (en) * 2022-03-26 2022-08-09 河南中孚高精铝材有限公司 Production method of coiled material for aluminum alloy R0PP bottle cap

Also Published As

Publication number Publication date
JP4011293B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
JP4019082B2 (en) Aluminum alloy plate for bottle cans with excellent high temperature characteristics
JP3913260B1 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent neck formability
JP5818457B2 (en) Method for producing aluminum alloy plate for can body with low ear rate and method for producing aluminum alloy plate for bottle-type beverage can with low ear rate
JP4019083B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JPH11181558A (en) Production of aluminum alloy sheet for low and positive pressure can body
JP6850635B2 (en) A method for manufacturing an aluminum alloy plate for beverage cans, which has excellent bottom moldability and bottom strength.
JP2004137601A (en) Method for continuously producing cast aluminum sheet
JP6718701B2 (en) Method for producing aluminum alloy sheet for beverage can body excellent in anisotropy and neck formability, and for bottle can body excellent in anisotropy and bottle neck formability
JP3600022B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JP2006291326A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2002212691A (en) Method for producing aluminum alloy sheet material for can body having excellent barrel cutting resistance
JP2007270281A (en) Aluminum alloy sheet for bottle type beverage can and its production method
JP3868839B2 (en) Method for producing aluminum alloy plate for bottle-type beverage can
JP6611338B2 (en) Method for producing aluminum alloy plate for thin-walled beverage can excellent in formability and anisotropy
JP6684568B2 (en) Method for producing aluminum alloy plate for beverage can body or beverage bottle can body excellent in anisotropy and neck formability
JP2016020531A (en) Method for manufacturing aluminum alloy sheet for can body excellent in di moldability, neck moldability and ear ratio
JP2004263253A (en) Aluminum alloy hard sheet for can barrel, and production method therefor
JPH10121177A (en) Aluminum alloy sheet excellent in high speed ironing formability for di can drum and manufacture therefor
JPH07305131A (en) Aluminum alloy sheet for super plastic forming capable of cold preforming and its production
JP4771726B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JPH10330897A (en) Production of aluminum base alloy sheet for deep drawing
EP1141433A2 (en) High strength aluminium alloy sheet and process
JP2005076041A (en) Method for manufacturing hard aluminum alloy sheet for can body
JP3600021B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JP5080150B2 (en) Manufacturing method of aluminum alloy plate for high-strength cap with excellent openability and ear rate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070905

R150 Certificate of patent or registration of utility model

Ref document number: 4011293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term