JP6898254B2 - Aluminum alloy plate for can body and its manufacturing method - Google Patents

Aluminum alloy plate for can body and its manufacturing method Download PDF

Info

Publication number
JP6898254B2
JP6898254B2 JP2017558189A JP2017558189A JP6898254B2 JP 6898254 B2 JP6898254 B2 JP 6898254B2 JP 2017558189 A JP2017558189 A JP 2017558189A JP 2017558189 A JP2017558189 A JP 2017558189A JP 6898254 B2 JP6898254 B2 JP 6898254B2
Authority
JP
Japan
Prior art keywords
plate
rolling
hot
less
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017558189A
Other languages
Japanese (ja)
Other versions
JPWO2017110869A1 (en
Inventor
信吾 岩村
信吾 岩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Publication of JPWO2017110869A1 publication Critical patent/JPWO2017110869A1/en
Application granted granted Critical
Publication of JP6898254B2 publication Critical patent/JP6898254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Conductive Materials (AREA)
  • Continuous Casting (AREA)

Description

本発明は、缶ボディ用アルミニウム合金板及びその製造方法に係り、特に、缶ボディの製造時に優れた特性を発揮し得るアルミニウム合金板と、その有効な製造方法に関するものである。 The present invention relates to an aluminum alloy plate for a can body and a method for producing the same, and more particularly to an aluminum alloy plate capable of exhibiting excellent characteristics during the production of the can body and an effective production method thereof.

従来から、缶ボディ用アルミニウム(Al)合金板は、よく知られているように、Al合金鋳塊に均質化処理、熱間圧延及び冷間圧延を施して、製造されてきている。そして、この缶ボディ用Al合金板に対して、必要に応じて脱脂洗浄、塗油等が施された後、更にカップ成形、DI成形、トリミング、洗浄、乾燥、塗装、焼付け、ネッキング及びフランジ加工等の工程を経て、飲料用等の缶ボディが製造されているのである。 Conventionally, aluminum (Al) alloy plates for can bodies have been manufactured by subjecting an Al alloy ingot to homogenization treatment, hot rolling and cold rolling, as is well known. Then, after the Al alloy plate for the can body is subjected to degreasing cleaning, oiling, etc. as necessary, further cup forming, DI forming, trimming, cleaning, drying, painting, baking, necking and flange processing are performed. The can body for beverages and the like is manufactured through the processes such as.

ところで、飲料用等の缶ボディは、使用に耐え得る缶体強度を有していることが必要とされているのであるが、上述した塗装後の焼付けの工程(以下、塗装焼付け工程という)において、缶体強度は大きく低下するようになるのである。このため、そのような缶体強度の低下防止に関して、各種の提案が為されてきており、例えば、以下の如き技術が明らかにされている。 By the way, a can body for beverages and the like is required to have a can body strength that can withstand use, but in the above-mentioned post-painting baking step (hereinafter referred to as a painting baking step). , The strength of the can body will be greatly reduced. Therefore, various proposals have been made for preventing such a decrease in the strength of the can body, and for example, the following techniques have been clarified.

すなわち、特開2012−92431号公報(特許文献1)には、特定の合金組成からなるボトル缶用Al合金冷間圧延板であって、板組織中のα相として代表される重心直径が1μm未満の分散粒子を少なくすると共に、Al6(Fe,Mn) 系金属間化合物であるβ相と、Al−Fe−Mn−Si系金属間化合物であるα相との存在割合を、かかるβ相のX線回折ピークの最大高さ:Hβ とα相のX線回折ピークの最大高さ:Hα との比:Hβ/Hαにおいて、0.50以上として、熱間圧延板の板幅方向の再結晶率を均一化することにより、板幅方向の耳率のばらつきを小さくし得ることが、明らかにされている。That is, Japanese Patent Application Laid-Open No. 2012-92431 (Patent Document 1) states that an Al alloy cold-rolled plate for bottle cans having a specific alloy composition has a center of gravity diameter of 1 μm represented by the α phase in the plate structure. The number of dispersed particles less than that is reduced, and the abundance ratio of the β phase, which is an Al 6 (Fe, Mn) intermetallic compound, and the α phase, which is an Al-Fe-Mn-Si intermetallic compound, is determined by the β phase. Maximum height of X-ray diffraction peak: Maximum height of X-ray diffraction peak of α phase: Ratio to Hα: 0.50 or more in Hβ / Hα, recrystallization of hot rolled plate in plate width direction It has been clarified that the variation in the ear ratio in the plate width direction can be reduced by making the crystal ratio uniform.

また、特開2011−202273号公報(特許文献2)においては、特定の合金組成からなるボトル缶用Al合金冷間圧延板であって、板組織中のFeとMnとの固溶量を規制することによって、熱間圧延板における再結晶の核生成サイトとなる比較的大きな分散粒子の個数密度を増加せしめ、熱間圧延板での板幅方向の中央部側の、特に板厚中心部の再結晶を促進せしめ、熱間圧延板の板幅方向の再結晶率を均一化し、ひいては板幅方向の耳率のばらつきを小さくすることが、開示されている。 Further, in Japanese Patent Application Laid-Open No. 2011-202273 (Patent Document 2), it is an Al alloy cold-rolled plate for bottle cans having a specific alloy composition, and the solid solution amount of Fe and Mn in the plate structure is regulated. By doing so, the number density of relatively large dispersed particles that serve as nucleation sites for recrystallization in the hot-rolled plate is increased, and the central portion in the plate width direction of the hot-rolled plate, especially the central portion of the plate thickness. It is disclosed that the recrystallization is promoted, the recrystallization rate in the plate width direction of the hot-rolled plate is made uniform, and the variation in the ear ratio in the plate width direction is reduced.

一方、近年、環境保護の観点から、飲料缶ボディの製造において、使用済み飲料缶(UBC:Used Beverage Can)の再生塊をリサイクル利用することが重要な課題となっている。更に、材料使用量を削減するために、缶体の薄肉軽量化も進められている。しかして、UBCの再生塊には、SiやFe等が混入することが多いために、UBCの再生塊をリサイクル使用すると、得られるAl合金鋳塊にSiやFeが高濃度に含まれるようになるのである。その場合、Al合金鋳塊の加熱処理時に、SiがMnやFeと金属間化合物を形成し、Mn固溶量の減少をもたらすこととなる。その結果、Al合金板の耐熱軟化性が低下して、塗装焼付け工程における缶体強度の低下が一層顕著となる問題を惹起する。また、塗装焼付け工程における強度低下を考慮して、Al合金板の初期強度を高くした場合においては、缶体の薄肉軽量化によって缶壁部の板厚が薄くなる程、DI成形時に胴切れを起こし易くなる問題がある。従って、UBCの再生塊をリサイクル利用して、飲料缶ボディを製造する場合において、その使用量を制限し、新地金を加えて、Siの含有量を調整する必要があった。 On the other hand, in recent years, from the viewpoint of environmental protection, it has become an important issue to recycle recycled lumps of used beverage cans (UBC: Used Beverage Can) in the production of beverage can bodies. Furthermore, in order to reduce the amount of material used, the can body is being made thinner and lighter. However, since Si, Fe, etc. are often mixed in the regenerated ingot of UBC, when the regenerated ingot of UBC is recycled and used, the obtained Al alloy ingot contains Si and Fe in a high concentration. It becomes. In that case, during the heat treatment of the Al alloy ingot, Si forms an intermetallic compound with Mn or Fe, resulting in a decrease in the amount of Mn solid solution. As a result, the heat-resistant softening property of the Al alloy plate is lowered, which causes a problem that the can body strength is further lowered in the coating baking step. In addition, when the initial strength of the Al alloy plate is increased in consideration of the decrease in strength in the painting and baking process, the thinner the plate thickness of the can wall portion due to the thinner and lighter can body, the more the body breaks during DI molding. There is a problem that it is easy to wake up. Therefore, when the recycled lump of UBC is recycled to produce a beverage can body, it is necessary to limit the amount used and add new metal to adjust the Si content.

なお、特許文献1には、1μm未満の析出粒子(α相)の発生を抑制することが開示されており、また特許文献2には、FeとMnの固溶量のみを規定して、熱間圧延時の再結晶を促進せしめ、耳率のみを制御することが開示されているのであるが、そこでは、缶体強度と耳率を両立させるものではなく、しかもFe,Mn,Siの固溶量並びに冷間圧延中の微細な析出粒子(α相)に着目するものではなかったのである。 In addition, Patent Document 1 discloses that the generation of precipitated particles (α phase) of less than 1 μm is suppressed, and Patent Document 2 defines only the solid solution amount of Fe and Mn and heats them. It is disclosed that recrystallization during interrolling is promoted and only the ear ratio is controlled, but it does not achieve both the can body strength and the ear ratio, and the solid solution of Fe, Mn, and Si. We did not pay attention to the amount of dissolved particles and the fine precipitated particles (α phase) during cold rolling.

特開2012−92431号公報Japanese Unexamined Patent Publication No. 2012-92431 特開2011−202273号公報Japanese Unexamined Patent Publication No. 2011-202273

ここにおいて、本発明は、上述の如き事情を背景にして為されたものであって、その解決課題とするところは、缶ボディ用として優れた特性を有するAl合金板とその製造方法を提供することにあり、また、Al合金の冷間圧延板中のFe,Mn,Siの固溶量並びに冷間圧延中の微細な析出粒子(α相)を最適化することにより、缶体強度の低下、特に胴切れ等の問題に影響する熱処理後の缶体強度の低下を、効果的に抑制し得る缶ボディ用Al合金板及びその製造方法を提供することにある。 Here, the present invention has been made in the context of the above circumstances, and the problem to be solved thereof is to provide an Al alloy plate having excellent characteristics for a can body and a method for manufacturing the same. In addition, the strength of the can body is reduced by optimizing the amount of solid dissolved Fe, Mn, and Si in the cold-rolled plate of the Al alloy and the fine precipitated particles (α phase) during cold rolling. An object of the present invention is to provide an Al alloy plate for a can body and a method for producing the same, which can effectively suppress a decrease in the strength of the can body after heat treatment, which affects a problem such as a broken body.

そして、本発明にあっては、上述の如き課題を解決するために、質量基準にて、Mn:0.7〜1.3%、Mg:0.8〜1.5%、Fe:0.25〜0.6%、Si:0.25〜0.50%、Cu:0.10〜0.30%、Zn:0.25%以下、Ti:0.10%以下及びB:0.05%以下を含有し、残部がAlと不可避的不純物からなるAl合金を材質とする熱間圧延板を用いて得られた冷間圧延板からなる板材であって、該熱間圧延板における、固溶Mn量が0.25質量%以上、固溶Fe量が0.02質量%以上及び固溶Si量が0.07質量%以上であり、且つ導電率が30.0〜40.0%IACSであり、該冷間圧延板における、圧延方向の引張強さ(TS)が280〜320MPaであり、205℃×10分の熱処理後の圧延方向の引張強さ(ABTS)が270〜310MPaであると共に、前記圧延方向の引張強さ(TS)と205℃×10分の熱処理後の圧延方向の耐力(ABYS)との差が50MPa以下であることを特徴とする缶ボディ用Al合金板を、その要旨とするものである。 Then, in the present invention, in order to solve the above-mentioned problems, Mn: 0.7 to 1.3%, Mg: 0.8 to 1.5%, Fe: 0. 25-0.6%, Si: 0.25-0.50%, Cu: 0.10-0.30%, Zn: 0.25% or less, Ti: 0.10% or less and B: 0.05 A plate material made of a cold-rolled plate obtained by using a hot-rolled plate containing% or less and the balance of which is an Al alloy made of Al and unavoidable impurities, and is hard in the hot-rolled plate. The amount of dissolved Mn is 0.25% by mass or more, the amount of solid-dissolved Fe is 0.02% by mass or more, the amount of solid-dissolved Si is 0.07% by mass or more, and the conductivity is 30.0 to 40.0% IACS. The tensile strength (TS) in the rolling direction of the cold rolled plate is 280 to 320 MPa, and the tensile strength (ABTS) in the rolling direction after heat treatment at 205 ° C. × 10 minutes is 270 to 310 MPa. At the same time, an Al alloy plate for a can body, characterized in that the difference between the tensile strength (TS) in the rolling direction and the strength (ABYS) in the rolling direction after heat treatment at 205 ° C. for 10 minutes is 50 MPa or less. This is the gist.

また、本発明にあっては、質量基準にて、Mn:0.7〜1.3%、Mg:0.8〜1.5%、Fe:0.25〜0.6%、Si:0.25〜0.50%、Cu:0.10〜0.30%、Zn:0.25%以下、Ti:0.10%以下及びB:0.05%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金を材質とする熱間圧延板であって、0.25質量%以上の固溶Mn量と、0.02質量%以上の固溶Fe量と、0.07質量%以上の固溶Si量とを含有し、且つ30.0〜40.0%IACSの導電率を有していることを特徴とする缶ボディ用アルミニウム合金熱間圧延板をも、その要旨とするものである。 Further, in the present invention, based on mass, Mn: 0.7 to 1.3%, Mg: 0.8 to 1.5%, Fe: 0.25 to 0.6%, Si: 0. .25 to 0.50%, Cu: 0.10 to 0.30%, Zn: 0.25% or less, Ti: 0.10% or less and B: 0.05% or less, and the balance is Al. A hot-rolled plate made of an aluminum alloy composed of unavoidable impurities, having a solid-dissolved Mn amount of 0.25% by mass or more, a solid-dissolved Fe amount of 0.02% by mass or more, and 0.07% by mass. An aluminum alloy hot-rolled plate for a can body, which contains the above amount of solid-dissolved Si and has a conductivity of 30.0 to 40.0% IACS, is also a gist thereof. It is a thing.

さらに、本発明にあっては、質量基準にて、Mn:0.7〜1.3%、Mg:0.8〜1.5%、Fe:0.25〜0.6%、Si:0.25〜0.50%、Cu:0.10〜0.30%、Zn:0.25%以下、Ti:0.10%以下及びB:0.05%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金を材質とする板材であって、圧延方向の引張強さ(TS)が280〜320MPaであり、205℃×10分の熱処理後の圧延方向の引張強さ(ABTS)が270〜310MPaであると共に、前記圧延方向の引張強さ(TS)と205℃×10分の熱処理後の圧延方向の耐力(ABYS)との差が50MPa以下であることを特徴とする缶ボディ用アルミニウム合金板をも、その要旨とするものである。 Further, in the present invention, based on mass, Mn: 0.7 to 1.3%, Mg: 0.8 to 1.5%, Fe: 0.25 to 0.6%, Si: 0. .25 to 0.50%, Cu: 0.10 to 0.30%, Zn: 0.25% or less, Ti: 0.10% or less and B: 0.05% or less, and the balance is Al A plate made of an aluminum alloy composed of unavoidable impurities, the tensile strength (TS) in the rolling direction is 280 to 320 MPa, and the tensile strength (ABTS) in the rolling direction after heat treatment at 205 ° C. × 10 minutes. Is 270 to 310 MPa, and the difference between the tensile strength (TS) in the rolling direction and the strength (ABYS) in the rolling direction after heat treatment at 205 ° C. for 10 minutes is 50 MPa or less. The aluminum alloy plate for rolling is also the gist.

なお、かかる本発明に従う缶ボディ用Al合金板は、有利には、28.4%IACS〜39.8%IACSの導電率を有している。 The Al alloy plate for a can body according to the present invention advantageously has a conductivity of 28.4% IACS to 39.8% IACS.

そして、上記の如き本発明に従う缶ボディ用Al合金板を製造するために、(a)質量基準にて、Mn:0.7〜1.3%、Mg:0.8〜1.5%、Fe:0.25〜0.6%、Si:0.25〜0.50%、Cu:0.10〜0.30%、Zn:0.25%以下、Ti:0.10%以下及びB:0.05%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金を材質とするアルミニウム合金鋳塊を準備する工程と、(b)かかるアルミニウム合金鋳塊を用いて、熱間圧延を実施し、固溶Mn量が0.25質量%以上、固溶Fe量が0.02質量%以上及び固溶Si量が0.07質量%以上であり、且つ導電率が30.0〜40.0%IACSである熱間圧延板材を得る工程と、(c)該熱間圧延板材を冷間圧延して、圧延方向の引張強さ(TS)が280〜320MPaであり、205℃×10分の熱処理後の圧延方向の引張強さ(ABTS)が270〜310MPaであると共に、前記圧延方向の引張強さ(TS)と205℃×10分の熱処理後の圧延方向の耐力(ABYS)との差が50MPa以下である冷間圧延板材を形成する工程とを含む製造方法が、有利に採用されるのである。 Then, in order to manufacture an Al alloy plate for a can body according to the present invention as described above, (a) based on mass, Mn: 0.7 to 1.3%, Mg: 0.8 to 1.5%, Fe: 0.25 to 0.6%, Si: 0.25 to 0.50%, Cu: 0.10 to 0.30%, Zn: 0.25% or less, Ti: 0.10% or less and B : Hot rolling using the step of preparing an aluminum alloy ingot containing 0.05% or less and the balance being Al and unavoidable impurities as a material, and (b) such an aluminum alloy ingot. The amount of solid-rolled Mn is 0.25 mass% or more, the amount of solid-rolled Fe is 0.02 mass% or more, the amount of solid-rolled Si is 0.07 mass% or more, and the conductivity is 30.0 to 30.0 to The step of obtaining a hot-rolled plate material having 40.0% IACS and (c) cold-rolling the hot-rolled plate material, the tensile strength (TS) in the rolling direction is 280 to 320 MPa, and 205 ° C. × The tensile strength (ABTS) in the rolling direction after the heat treatment for 10 minutes is 270 to 310 MPa, and the tensile strength (TS) in the rolling direction and the strength in the rolling direction (ABYS) after the heat treatment at 205 ° C. × 10 minutes. A manufacturing method including a step of forming a cold-rolled plate material having a difference of 50 MPa or less from the above is advantageously adopted.

また、本発明にあっては、上述の如き缶ボディ用Al合金板を有利に製造するために、質量基準にて、Mn:0.7〜1.3%、Mg:0.8〜1.5%、Fe:0.25〜0.6%、Si:0.25〜0.50%、Cu:0.10〜0.30%、Zn:0.25%以下、Ti:0.10%以下及びB:0.05%以下を含有し、残部がAlと不可避的不純物からなるAl合金を材質とするAl合金鋳塊を面削した後、30〜120℃/時間の昇温速度で550〜620℃の範囲内の均質化処理温度(T)まで加熱昇温せしめ、そして該均質化処理温度(T)において、(145−0.24T)時間以上の間、保持することにより、均質化処理を施し、次いでかかる均質化処理の終了後、直ちに、又は10〜90℃/時間の冷却速度で、500℃を下回ることのない熱間圧延開始温度まで冷却した後、出側温度:430〜550℃となるように熱間粗圧延を実施して、板厚:20〜40mmの板材を形成せしめ、続いて出側温度:300〜390℃となるように熱間仕上圧延を行って、板厚:1.5〜4.0mmの板材とした後、総加工度が75%以上且つ最終パスの定常部の平均圧延速度が700〜1600m/分となるように冷間圧延を行って、0.2〜1.0mmの板厚とすることを特徴とする缶ボディ用Al合金板の製造方法を、その要旨とするものである。 Further, in the present invention, in order to advantageously produce the Al alloy plate for a can body as described above, Mn: 0.7 to 1.3% and Mg: 0.8 to 1. 5%, Fe: 0.25 to 0.6%, Si: 0.25 to 0.50%, Cu: 0.10 to 0.30%, Zn: 0.25% or less, Ti: 0.10% The following and B: After chamfering an Al alloy ingot made of an Al alloy containing 0.05% or less and the balance being Al and unavoidable impurities, 550 at a heating rate of 30 to 120 ° C./hour. Homogenization by heating to a homogenization treatment temperature (T) within the range of ~ 620 ° C. and holding at the homogenization treatment temperature (T) for (145-0.24T) hours or longer. After the treatment and then immediately after the completion of the homogenization treatment or at a cooling rate of 10 to 90 ° C./hour, after cooling to a hot rolling start temperature not lower than 500 ° C., the exit temperature: 430- Hot rough rolling is performed so that the temperature is 550 ° C. to form a plate material having a plate thickness of 20 to 40 mm, and then hot finish rolling is performed so that the output side temperature is 300 to 390 ° C. After making a plate material with a thickness of 1.5 to 4.0 mm, cold rolling is performed so that the total workability is 75% or more and the average rolling speed of the stationary portion of the final pass is 700 to 1600 m / min, and the thickness is 0. The gist thereof is a method for manufacturing an Al alloy plate for a can body, which is characterized by having a plate thickness of 2 to 1.0 mm.

なお、かかる本発明に従う缶ボディ用Al合金板の製造方法の好ましい態様の一つにあっては、前記熱間仕上圧延にて得られる板材の導電率(S1)と前記冷間圧延にて得られる板材の導電率(S2)との差(S1−S2)が、0.2〜1.6%IACSであるように調整されることとなる。 In one of the preferred embodiments of the method for producing an Al alloy plate for a can body according to the present invention, the conductivity (S1) of the plate material obtained by the hot finish rolling and the cold rolling can be obtained. The difference (S1-S2) from the conductivity (S2) of the plate material to be rolled is adjusted to be 0.2 to 1.6% IACS.

また、本発明に従う缶ボディ用アルミニウム合金板の製造方法の好ましい他の態様にあっては、前記均質化処理の施されたAl合金鋳塊に対する走査型電子顕微鏡写真において、直径:0.1μm〜1μmの粒子の面積率が、3.5%以上となるように、構成されることとなる。 Further, in another preferred embodiment of the method for producing an aluminum alloy plate for a can body according to the present invention, in the scanning electron micrograph of the homogenized Al alloy ingot, the diameter: 0.1 μm to It is configured so that the area ratio of 1 μm particles is 3.5% or more.

さらに、本発明にあっては、上記した缶ボディ用アルミニウム合金板からなることを特徴とする飲料缶ボディをも、その対象とするものである。 Further, the present invention also covers a beverage can body characterized by being made of the above-mentioned aluminum alloy plate for a can body.

なお、そのような本発明に従う飲料缶ボディの好ましい態様の一つにおいては、所定の塗装焼付け処理が、上記した缶ボディ用アルミニウム合金板に対して施されている。 In one of such preferred embodiments of the beverage can body according to the present invention, a predetermined coating and baking treatment is applied to the above-mentioned aluminum alloy plate for the can body.

従って、このような本発明に従う構成とされた缶ボディ用Al合金板にあっては、それを与える、特定の合金組成からなるAl合金の熱間圧延板材中のFe,Mn,Siの固溶量、並びにかかる熱間圧延板材の冷間圧延中に析出する微細な析出粒子(α相)が最適化されていることにより、優れた成形性を確保しつつ、高い耐熱軟化特性が付与され、更に熱処理後においても、優れた缶体強度を発揮し得るものであって、これにより、缶ボディ用材料として有利に用いられ得ることとなったのである。 Therefore, in the case of such an Al alloy plate for a can body having a configuration according to the present invention, the solid dissolution of Fe, Mn, and Si in the hot-rolled plate material of the Al alloy having a specific alloy composition gives it. By optimizing the amount and the fine precipitated particles (α phase) that precipitate during the cold rolling of the hot-rolled sheet metal, high heat-resistant softening characteristics are imparted while ensuring excellent moldability. Further, even after the heat treatment, excellent can body strength can be exhibited, which makes it possible to be advantageously used as a material for a can body.

また、本発明に従う缶ボディ用Al合金板の製造方法によれば、上述の如き成形性と熱処理後の缶体強度の両立等の優れた特性を有する缶ボディ用Al合金板が、工業的に有利に製造され得るのである。 Further, according to the method for producing an Al alloy plate for a can body according to the present invention, an Al alloy plate for a can body having excellent characteristics such as both moldability and heat treatment strength as described above can be industrially produced. It can be manufactured advantageously.

合金組成の異なる2つのAl合金材料に対して、150℃の温度で圧縮加工を施した際における導電率の変化量を示すグラフである。It is a graph which shows the amount of change of the conductivity when compression processing was performed on two Al alloy materials having different alloy compositions at a temperature of 150 degreeC.

先ず、本発明に従う缶ボディ用Al合金板を与えるAl合金は、Mn:0.7〜1.3%(質量基準、以下同じ)、Mg:0.8〜1.5%、Fe:0.25〜0.6%、Si:0.25〜0.50%、Cu:0.10〜0.30%、Zn:0.25%以下、Ti:0.10%以下及びB:0.05%以下を含有し、残部がAlと不可避的不純物からなる合金組成を有するものであって、それら合金成分の限定理由は、以下の通りである。 First, the Al alloys that give the Al alloy plate for the can body according to the present invention are Mn: 0.7 to 1.3% (mass standard, the same applies hereinafter), Mg: 0.8 to 1.5%, Fe: 0. 25-0.6%, Si: 0.25-0.50%, Cu: 0.10-0.30%, Zn: 0.25% or less, Ti: 0.10% or less and B: 0.05 It has an alloy composition containing% or less and the balance being Al and unavoidable impurities, and the reasons for limiting these alloy components are as follows.

[Mn:0.7〜1.3%]
Mn(マンガン)は、本発明に従うAl合金板において、基本となる合金元素であり、強度を増加させる他、特に、固溶状態で耐熱軟化性の向上に寄与する。また、製造工程中に、不可避的に含まれる不純物元素でもあるFe及びSiと、α相化合物(Al−Mn−Fe−Si系)を形成する。この金属間化合物の粒子は極めて高硬度であり、成形時の素材と成形型との焼付きを防止して、容器の表面性状を向上させる働きがある。このMnの含有量が0.7%未満であると、それらの効果が充分に発現され得ず、また1.3%を超えるようになると、強度が高くなり過ぎる問題を惹起する。なお、このMnの好ましい含有量は、0.8〜1.2%である。
[Mn: 0.7 to 1.3%]
Mn (manganese) is a basic alloying element in an Al alloy plate according to the present invention, and in addition to increasing the strength, it contributes to the improvement of heat-resistant softening property in a solid solution state. Further, during the manufacturing process, an α-phase compound (Al-Mn-Fe-Si system) is formed with Fe and Si, which are unavoidably contained impurity elements. The particles of the intermetallic compound have extremely high hardness, and have a function of preventing seizure between the material and the molding die at the time of molding and improving the surface texture of the container. If the Mn content is less than 0.7%, those effects cannot be sufficiently exhibited, and if it exceeds 1.3%, the strength becomes too high, which causes a problem. The preferable content of Mn is 0.8 to 1.2%.

[Mg:0.8〜1.5%]
Mg(マグネシウム)は、Alに固溶することで、容器の強度の増加に寄与する成分である。このMgの含有量が0.8%未満となると、最終製品に必要な強度を得ることが難しくなる問題があり、また1.5%を超えるようになると、缶体強度が高くなり過ぎるために、成形性が損なわれる問題を惹起する。なお、このMgの好ましい含有量は、1.0〜1.3%である。
[Mg: 0.8 to 1.5%]
Mg (magnesium) is a component that contributes to an increase in the strength of the container by being dissolved in Al. If the Mg content is less than 0.8%, there is a problem that it becomes difficult to obtain the strength required for the final product, and if it exceeds 1.5%, the can body strength becomes too high. , Causes a problem that the moldability is impaired. The preferable content of this Mg is 1.0 to 1.3%.

[Fe:0.25〜0.6%]
Fe(鉄)は、鋳造時に、Mnと共に、Al6(Mn,Fe) 相化合物やα相化合物(Al−Mn−Fe−Si系)を形成し、またAl−Fe−Si系化合物を形成し、そしてそれら金属間化合物の固体潤滑作用により、成形時における素材と成形型との焼付きを防止する成分である。このFeの含有量が0.25%未満となると、それら金属間化合物の数が少なくなり、DI成形時にダイスに凝着して、表面性状が低下する問題を惹起する。一方、このFeの含有量が0.6%を超えるようになると、Al−Fe−Mn系の金属間化合物が過剰に形成されるようになり、それが割れの起点となるために、成形性が損なわれる問題を生じる。なお、このFeの好ましい含有量は、0.30〜0.50%である。
[Fe: 0.25 to 0.6%]
Fe (iron) forms an Al 6 (Mn, Fe) phase compound or an α phase compound (Al-Mn-Fe-Si system) together with Mn at the time of casting, and also forms an Al-Fe-Si system compound. , And the solid lubricating action of these intermetallic compounds is a component that prevents seizure between the material and the molding die during molding. When the Fe content is less than 0.25%, the number of these intermetallic compounds decreases, which causes a problem that the surface texture deteriorates due to adhesion to the die during DI molding. On the other hand, when the Fe content exceeds 0.6%, an Al-Fe-Mn-based intermetallic compound is excessively formed, which becomes a starting point of cracking, and thus is formable. Causes a problem of being impaired. The preferable content of Fe is 0.30 to 0.50%.

[Si:0.25〜0.50%]
Si(珪素)は、上記したMn及び/又はFeと共に、固体潤滑作用を有するα相化合物(Al−Mn−Fe−Si系)やAl−Fe−Si系化合物を形成して、成形時におけるダイスへの凝着を防止する効果を有する。この効果は、Siの含有量が0.25%未満では充分でなく、またSiの含有量が0.50%を超えるようになると、Al−Mn−Fe−Si系の金属間化合物が過剰に形成されて、それが割れの起点となって、成形性が損なわれ、更に固溶Mn量が減少して、耐熱軟化性が低下する問題を生じる。なお、このSiの好ましい含有量は、0.30〜0.40%である。
[Si: 0.25 to 0.50%]
Si (silicon) forms an α-phase compound (Al-Mn-Fe-Si system) or an Al-Fe-Si system compound having a solid lubricating action together with the above-mentioned Mn and / or Fe, and is a die at the time of molding. It has the effect of preventing adhesion to. This effect is not sufficient when the Si content is less than 0.25%, and when the Si content exceeds 0.50%, the Al-Mn-Fe-Si-based intermetallic compound becomes excessive. When it is formed, it becomes the starting point of cracking, the moldability is impaired, the amount of solid solution Mn is further reduced, and there is a problem that the heat-resistant softening property is lowered. The preferable content of Si is 0.30 to 0.40%.

[Cu:0.10〜0.30%]
Cu(銅)は、塗装焼付け工程において、Al−Cu−Mg系の金属間化合物を形成して、析出せしめ、塗装焼付け工程における強度低下を抑制乃至は阻止する効果を発揮する。この効果は、Cuの含有量が0.10%未満では、充分に得られず、逆に0.30%を超えるようになると、成形加工時の加工硬化性が大きくなり、成形性が低下する問題を惹起する。なお、このCuの好ましい含有量は、0.15〜0.25%である。
[Cu: 0.10 to 0.30%]
Cu (copper) forms an Al—Cu—Mg-based intermetallic compound in the coating baking step and precipitates it, and exerts an effect of suppressing or preventing a decrease in strength in the coating baking step. This effect cannot be sufficiently obtained when the Cu content is less than 0.10%, and conversely, when it exceeds 0.30%, the work hardening during molding increases and the moldability deteriorates. Cause problems. The preferable content of this Cu is 0.15 to 0.25%.

[Zn:0.25%以下]
Zn(亜鉛)は、成形性を向上させる成分ではあるが、その含有量が多くなると、高コストとなることに加え、粗大な金属間化合物を形成して、成形性を損なう問題を惹起するようになる。従って、Znの含有量は、0.25%以下となるように、調整されることとなる。なお、このZnの好ましい含有量は、0.05〜0.20%である。
[Zn: 0.25% or less]
Zn (zinc) is a component that improves moldability, but when its content is high, in addition to high cost, it causes a problem of forming a coarse intermetallic compound and impairing moldability. become. Therefore, the Zn content is adjusted to be 0.25% or less. The preferable content of Zn is 0.05 to 0.20%.

[Ti:0.10%以下及びB:0.05%以下]
Ti(チタン)及びB(ホウ素)は、鋳造組織を微細化して、鋳造時に生成する晶出物の分散形態及び結晶粒組織を均一化する機能を有している。しかしながら、Tiの含有量が0.10%を超えたり、Bの含有量が0.05%を超えたりすると、粗大な金属間化合物が生成して、成形性が低下するようになる。なお、これらTi及びBの好ましい含有量は、それぞれ、0.03%以下及び0.04%以下である。
[Ti: 0.10% or less and B: 0.05% or less]
Ti (titanium) and B (boron) have a function of refining the cast structure and homogenizing the dispersed form and grain structure of the crystals produced during casting. However, if the Ti content exceeds 0.10% or the B content exceeds 0.05%, coarse intermetallic compounds are formed and the moldability is lowered. The preferable contents of Ti and B are 0.03% or less and 0.04% or less, respectively.

[Al+不可避的不純物:残部]
本発明に従う缶ボディ用Al合金板の材質であるAl合金は、上記した合金成分に加えて、残部が、Al(アルミニウム)と、不可避的不純物、即ち上記した合金成分以外の元素にて、構成されるものである。なお、そのような不可避的不純物は、板特性が悪化しないように、その含有量は少ない程好ましく、一般に、JIS規格等にて規定されているAl合金の各元素の上限値程度以下の含有量とされることとなる。そして、そのような不可避的不純物となる各元素の合計含有量は、一般に、0.15%以下、好ましくは0.10%以下である。
[Al + unavoidable impurities: balance]
The Al alloy, which is the material of the Al alloy plate for a can body according to the present invention, is composed of Al (aluminum) and unavoidable impurities, that is, elements other than the above alloy components, in addition to the above alloy components. Is to be done. The content of such unavoidable impurities is preferably as small as possible so as not to deteriorate the plate characteristics, and generally, the content is not more than the upper limit of each element of the Al alloy specified in JIS standards and the like. Will be. The total content of each element that becomes such an unavoidable impurity is generally 0.15% or less, preferably 0.10% or less.

そして、かくの如き合金組成のAl合金を材質とする、本発明に従うAl合金板にあっては、熱間圧延後(冷間圧延前)の固溶Mn量が0.25質量%以上、固溶Fe量が0.02質量%以上、及び固溶Si量が0.07質量%以上であり、且つ導電率が30.0〜40.0%IACSとなるように構成され、これによって、高い耐熱軟化性を示すものとなる。それら元素の固溶量が多くなると、後述するように、冷間圧延によって、Mn,Fe,Siからなる化合物粒子が微細に形成されるようになるのである。また、それら元素の熱間圧延板における固溶量は、それぞれの元素のAl合金中の含有量によって制限を受け、それら元素の固溶量によって実現される最大の導電率は、40.0%IACSであり、更に、添加元素が最大限固溶した場合であっても、導電率は、30.0%IACS以上となる。なお、それら元素の固溶量が、上記で規定された下限値よりも少なくなると、塗装焼付け工程において、強度が著しく低下するようになる。 In the case of an Al alloy plate according to the present invention, which is made of an Al alloy having such an alloy composition, the solid solution Mn amount after hot rolling (before cold rolling) is 0.25% by mass or more, and is solid. The amount of dissolved Fe is 0.02% by mass or more, the amount of solid solution Si is 0.07% by mass or more, and the conductivity is 30.0 to 40.0% IACS, which is high. It exhibits heat resistance and softness. When the amount of solid solution of these elements increases, as will be described later, the compound particles composed of Mn, Fe, and Si are finely formed by cold rolling. Further, the solid solution amount of these elements in the hot rolled plate is limited by the content of each element in the Al alloy, and the maximum conductivity realized by the solid solution amount of these elements is 40.0%. It is IACS, and even when the additive element is dissolved to the maximum, the conductivity is 30.0% IACS or more. If the solid solution amount of these elements is less than the lower limit value defined above, the strength will be significantly reduced in the coating baking step.

また、本発明に従うAl合金板は、元板特性として、その圧延方向の引張強さ(TS)が280〜320MPaである特性を有している。かかる引張強さ(TS)が280MPaよりも小さくなると、そのようなAl合金板を用いて製造される缶体の強度が不足する問題があり、また320MPaを超えるようになると、DI成形が困難となる問題が生じる。更に、本発明に従うAl合金板は、その205℃×10分の熱処理後の圧延方向の引張強さ(ABTS)が270〜310MPaである特性を有している。この熱処理後の圧延方向の引張強さ(ABTS)が270MPaよりも小さくなると、缶体強度が不足する問題があり、一方310MPaを超えるようになると、DI成形が困難となる問題を惹起する。加えて、本発明に従うAl合金板は、その圧延方向の引張強さ(TS)と205℃×10分の熱処理後の圧延方向の耐力(ABYS)の差(TS−ABYS)が50MPaを超えないように、調整されており、これによって、Al合金板の成形性と、そのようなAl合金板を用いて得られる缶体の熱処理後の缶体強度とを有利に両立せしめることが可能となったのである。 Further, the Al alloy plate according to the present invention has a characteristic that the tensile strength (TS) in the rolling direction is 280 to 320 MPa as the original plate characteristic. If the tensile strength (TS) is smaller than 280 MPa, there is a problem that the strength of the can body manufactured by using such an Al alloy plate is insufficient, and if it exceeds 320 MPa, DI molding becomes difficult. Problem arises. Further, the Al alloy plate according to the present invention has a characteristic that the tensile strength (ABTS) in the rolling direction after the heat treatment at 205 ° C. × 10 minutes is 270 to 310 MPa. If the tensile strength (ABTS) in the rolling direction after the heat treatment is smaller than 270 MPa, there is a problem that the strength of the can body is insufficient, while if it exceeds 310 MPa, it causes a problem that DI molding becomes difficult. In addition, in the Al alloy plate according to the present invention, the difference (TS-ABYS) between the tensile strength (TS) in the rolling direction and the strength (ABYS) in the rolling direction after heat treatment at 205 ° C. × 10 minutes does not exceed 50 MPa. As described above, it is possible to advantageously balance the moldability of the Al alloy plate and the strength of the can body after heat treatment obtained by using such an Al alloy plate. It was.

ところで、かくの如き本発明に従うAl合金板を製造するに際しては、先ず、前述の如きAl合金組成を与える材料を溶解し、Al合金溶湯とした後、公知の鋳造手法、例えばDC鋳造法によって、Al合金鋳塊が造塊される。なお、そのようなAl合金鋳塊は、本発明にて規定される、Mn,Mg,Fe,Si,Cu,Zn,Ti及びBの含有量からなる合金組成を有するものである。 By the way, in producing such an Al alloy plate according to the present invention, first, a material giving an Al alloy composition as described above is melted to form an Al alloy molten metal, and then a known casting method, for example, a DC casting method is used. An Al alloy ingot is ingot. Such an Al alloy ingot has an alloy composition having the contents of Mn, Mg, Fe, Si, Cu, Zn, Ti and B specified in the present invention.

次に、かかるAl合金鋳塊には、従来と同様な面削が施された後、本発明に従うAl合金板の特性を得るべく、特定の均質化処理が施されることとなる。即ち、そのような均質化処理は、面削の施されたAl合金鋳塊を、30〜120℃/時間の昇温速度において、550〜620℃の範囲内の均質化処理温度(T:℃)まで加熱昇温せしめ、そして、かかる均質化処理温度(T)において、(145−0.24T)時間(Hr)以上の間、保持することにより、実施されることとなるのである。なお、かかる昇温速度が30℃/時間よりも遅くなると、装置の占有時間が長くなり、製造コストが増加し、また120℃/時間よりも早くなると、微細な粒子が多量に形成されて、強度が高くなり過ぎ、成形性が悪化する問題がある。また、均質化処理温度(T)が550℃よりも低くなると、均質化処理の効果が充分に得られず、一方、620℃以上となると、材料が部分溶融して、成形性が著しく低下する問題を惹起する。この均質化処理は、Al合金鋳塊に存在する元素の偏析を解消して、均一な組織とする他、粗大なα相化合物を析出させて、成形時の焼付きを防止する働きを発揮させる特徴も有している。そして、この均質化処理の保持時間を(145−0.24T)時間以上とすることにより、その処理されたAl合金鋳塊の断面組織について、走査型電子顕微鏡を用いて倍率:100倍〜20000倍で観察した写真において、直径:0.1μm〜1μmの粒子の面積率が3.5%以上となり、これによって焼付き防止効果が得られ、且つ有効な耐熱軟化性を得るために必要なMn,Fe,Siの固溶量を確保することが出来る状態となる。なお、この均質化処理の保持時間の上限としては、生産性等の観点から、一般に、30時間以下、好ましくは20時間以下が有利に採用されることとなる。 Next, the Al alloy ingot is subjected to the same surface milling as before, and then subjected to a specific homogenization treatment in order to obtain the characteristics of the Al alloy plate according to the present invention. That is, in such a homogenization treatment, the surface-ground Al alloy ingot is homogenized at a homogenization treatment temperature (T: ° C.) in the range of 550 to 620 ° C. at a heating rate of 30 to 120 ° C./hour. ), And the homogenization treatment temperature (T) is maintained for (145-0.24 T) hours (Hr) or more. If the heating rate is slower than 30 ° C./hour, the occupancy time of the apparatus becomes long, the manufacturing cost increases, and if it is faster than 120 ° C./hour, a large amount of fine particles are formed. There is a problem that the strength becomes too high and the moldability deteriorates. Further, when the homogenization treatment temperature (T) is lower than 550 ° C., the effect of the homogenization treatment cannot be sufficiently obtained, while when the temperature is 620 ° C. or higher, the material is partially melted and the moldability is significantly lowered. Cause problems. This homogenization treatment eliminates segregation of elements present in the ingot Al alloy to give a uniform structure, and also precipitates a coarse α-phase compound to prevent seizure during molding. It also has features. Then, by setting the holding time of this homogenization treatment to (145-0.24T) hours or more, the cross-sectional structure of the treated Al alloy ingot is subjected to a magnification of 100 times to 20000 using a scanning electron microscope. In the photograph observed at a magnification, the area ratio of the particles having a diameter of 0.1 μm to 1 μm is 3.5% or more, which provides an anti-seizure effect and Mn required for obtaining effective heat-resistant softening property. , Fe and Si are in a state where the solid solution amount can be secured. As the upper limit of the holding time of this homogenization treatment, generally, 30 hours or less, preferably 20 hours or less is preferably adopted from the viewpoint of productivity and the like.

そして、上記した均質化処理の終了後、Al合金鋳塊は、そのまま(直ちに)、熱間圧延に供される他、10〜90℃/時間の冷却速度で、500℃を下回ることのない(500℃以上の)熱間圧延開始温度まで冷却された後、熱間圧延を施すようにすることも可能である。なお、Al合金鋳塊に対して冷却が施される場合において、その冷却速度が10℃/時間よりも小さい(遅い)場合、或いは500℃よりも低い温度まで冷却した場合には、その冷却工程中において、Mn,Fe,Siが析出して、それら元素の固溶量が低下するようになり、これによって、後の冷間圧延時のMn,Fe,Siからなる微細粒子の析出が不十分となって、耐熱軟化性が低下する問題を生じる。また、かかる冷却速度が90℃/時間よりも大きい(速い)場合においては、Al合金鋳塊内の温度分布が不均一となり、最終製品の特性が不安定となる問題がある。 After the above homogenization treatment is completed, the Al alloy ingot is subjected to hot rolling as it is (immediately), and at a cooling rate of 10 to 90 ° C./hour, it does not fall below 500 ° C. ( It is also possible to perform hot rolling after cooling to the hot rolling start temperature (500 ° C. or higher). When the Al alloy ingot is cooled, if the cooling rate is smaller (slower) than 10 ° C./hour, or if it is cooled to a temperature lower than 500 ° C., the cooling step. In the inside, Mn, Fe, and Si are precipitated, and the amount of solid dissolved elements thereof is reduced. As a result, the precipitation of fine particles composed of Mn, Fe, and Si during the subsequent cold rolling is insufficient. As a result, there is a problem that the heat-resistant softness is lowered. Further, when the cooling rate is larger (faster) than 90 ° C./hour, there is a problem that the temperature distribution in the Al alloy ingot becomes non-uniform and the characteristics of the final product become unstable.

本発明において、Al合金鋳塊に対する熱間圧延は、従来と同様に熱間粗圧延と熱間仕上圧延とを組み合わせて実施され、熱間仕上圧延終了後の板厚が1.5〜4.0mmとなる板材を形成することとなるが、そこにおいて、熱間粗圧延は、上記した均質化処理されたままのAl合金鋳塊又は所定の温度まで冷却されたAl合金鋳塊に対して、出側温度(熱間粗圧延終了時の材料温度)が430〜550℃となるように実施されて、板厚が20〜40mmの板材が形成されることとなる。そこで、かかる出側温度が430℃よりも低くなると、熱間粗圧延に続く熱間仕上圧延の出側温度が低めに外れる問題が生じ、また出側温度が550℃を超えるようになると、熱間圧延中に粗大な再結晶粒が生じて、成形性を損なう恐れがある。また、この熱間粗圧延にて得られる板材の厚さが20mmより薄くなると、続く熱間仕上圧延での加工度が不足し、熱間仕上圧延後に有効な再結晶組織を得ることが出来なくなる恐れがあり、一方、その厚さが40mmを超えるようになると、熱間仕上圧延での加工度が大きくなり過ぎて、DI成形時の異方性が強くなる問題が惹起されるようになる。 In the present invention, hot rolling on an Al alloy ingot is carried out by combining hot rough rolling and hot finish rolling as in the conventional case, and the plate thickness after completion of hot finish rolling is 1.5 to 4. A plate material having a thickness of 0 mm is formed, in which hot rough rolling is performed on the Al alloy ingot which has been homogenized as described above or the Al alloy ingot cooled to a predetermined temperature. The output side temperature (material temperature at the end of hot rough rolling) is set to 430 to 550 ° C., so that a plate material having a plate thickness of 20 to 40 mm is formed. Therefore, when the output side temperature is lower than 430 ° C., there arises a problem that the output side temperature of the hot finish rolling following the hot rough rolling deviates to a lower level, and when the output side temperature exceeds 550 ° C., heat is generated. Coarse recrystallized grains may be generated during interrolling, which may impair moldability. Further, if the thickness of the plate material obtained by this hot rough rolling is thinner than 20 mm, the degree of workability in the subsequent hot finish rolling becomes insufficient, and an effective recrystallization structure cannot be obtained after the hot finish rolling. On the other hand, if the thickness exceeds 40 mm, the degree of workability in hot finish rolling becomes too large, which causes a problem that the anisotropy during DI molding becomes strong.

さらに、かかる熱間粗圧延に続く熱間仕上圧延においては、出側温度(熱間仕上圧延終了時の材料温度)が300〜390℃となるようにして、公知の圧延操作が実施され、板厚が1.5〜4.0mmの板材が形成されることとなる。この熱間仕上圧延では、得られた板材のコイル巻取り後の冷却中に再結晶組織に調整することが重要である。かかる熱間仕上圧延の出側温度が300℃よりも低くなると、再結晶組織の形成が不充分となり、異方性が強くなったり、製品の強度が高くなり過ぎる問題が惹起される。なお、この出側温度が390℃を超えるようになると、再結晶粒が粗大となり、DI成形性を損なう恐れがある。また、板厚が1.5mmよりも薄くなると、その後の冷間圧延工程での加工度が不足して、強度が低くなり、逆に4.0mmより厚くなり過ぎると、冷間圧延工程での加工度が高くなり、強度が高くなり過ぎる問題を生じる。そして、この熱間仕上圧延によって、前記固溶Mn,Fe,Si量が確保され得るようになっている。 Further, in the hot finish rolling following the hot rough rolling, a known rolling operation is carried out so that the output side temperature (material temperature at the end of the hot finish rolling) is 300 to 390 ° C. A plate material having a thickness of 1.5 to 4.0 mm is formed. In this hot finish rolling, it is important to adjust the recrystallized structure during cooling after winding the coil of the obtained plate material. When the temperature at the exit side of such hot finish rolling is lower than 300 ° C., the formation of a recrystallized structure becomes insufficient, causing problems such as anisotropy becoming stronger and the strength of the product becoming too high. If the outlet temperature exceeds 390 ° C., the recrystallized grains become coarse and the DI moldability may be impaired. Further, if the plate thickness is thinner than 1.5 mm, the degree of processing in the subsequent cold rolling process is insufficient and the strength is lowered, and conversely, if the plate thickness is too thicker than 4.0 mm, the degree of processing in the cold rolling process is insufficient. The degree of processing becomes high, which causes a problem that the strength becomes too high. Then, by this hot finish rolling, the amounts of the solid solution Mn, Fe, and Si can be secured.

そして、上述の如くして得られた熱間圧延板には、更に冷間圧延が施されることとなるが、本発明にあっては、かかる冷間圧延の総加工度が75%以上で且つ最終パスの定常部の平均圧延速度が700〜1600m/分となるように、冷間圧延を実施して、0.2〜1.0mmの板厚のAl合金板が形成されるのである。なお、その冷間圧延は、従来と同様な手法に従って実施されるものであるが、その際、冷間圧延の総加工度が75%よりも低くなると、或いは定常部の平均圧延速度が1600m/分よりも大きくなると、Mn系化合物粒子の析出が充分でなく、耐熱軟化性が低下する恐れがある。また、かかる定常部の平均圧延速度が700m/分よりも小さい場合には、生産性が著しく低下する問題がある。更に、そこで得られるAl合金板の板厚が0.2mmよりも薄くなると、缶体強度を確保することが困難となる問題があり、一方、板厚が1.0mmよりも厚くなると、重量が重くなり、飲料缶として不適となる。 Then, the hot-rolled plate obtained as described above is further subjected to cold rolling, but in the present invention, the total workability of such cold rolling is 75% or more. Moreover, cold rolling is carried out so that the average rolling speed of the stationary portion of the final pass is 700 to 1600 m / min, and an Al alloy plate having a plate thickness of 0.2 to 1.0 mm is formed. The cold rolling is carried out according to the same method as the conventional method, but at that time, when the total workability of the cold rolling is lower than 75%, or the average rolling speed of the stationary portion is 1600 m / If it is larger than the amount, the precipitation of Mn-based compound particles is not sufficient, and the heat-resistant softening property may decrease. Further, when the average rolling speed of the stationary portion is smaller than 700 m / min, there is a problem that the productivity is remarkably lowered. Further, if the thickness of the Al alloy plate obtained there is thinner than 0.2 mm, there is a problem that it becomes difficult to secure the strength of the can body, while if the plate thickness is thicker than 1.0 mm, the weight becomes heavy. It becomes heavy and unsuitable as a beverage can.

さらに、本発明にあっては、前記した熱間仕上圧延にて得られる板材(熱間圧延板)の導電率(S1)と上記の冷間圧延にて得られる板材(冷間圧延板)の導電率(S2)との差(S1−S2)が、0.2〜1.6%IACSとなるように、換言すれば冷間圧延板の導電率が28.4%IACS〜39.8%IACSの範囲内となるように、目的とするAl合金板を製造することが好ましい。固溶Mnが十分に存在すると、Mn,Fe,Siからなる化合物粒子が、冷間加工により誘起されて微細に析出し、耐熱軟化性が向上せしめられ得ることとなるのである。因みに、図1には、Mnの含有量の異なるAl合金からなる二つの試験片について、それぞれ冷間圧延を模擬した150℃での圧縮試験前後の導電率の差を調べた結果が示されているが、そこでは、Mnを含むAl合金からなる試験片では、冷間加工で導電率が増加しているのに対して、Mnを添加していないAl合金からなる試験片では、冷間加工による導電率の変化は殆ど認められないのであって、このことは、冷間加工によりMn系化合物粒子が析出していることを裏付けるものである。そして、基本的に、冷間圧延では、加工歪により導電率が下がるものの、Mn系の化合物粒子の析出により、導電率は増加するようになるところから、全体として、導電率の低下量は0.2〜1.6%IACSの範囲内となるのである。なお、そのような導電率の低下量が0.2%IACSよりも小さくなると、冷間加工度が不足して、強度不足の問題を惹起し、一方、1.6%IACSよりも大きくなると、冷間圧延にて誘起されるMn,Fe,Si系の析出粒子が不足し、耐熱軟化性の改善が充分でない問題を惹起することとなる。 Further, in the present invention, the conductivity (S1) of the plate material (hot rolled plate) obtained by the hot finish rolling described above and the plate material (cold rolled plate) obtained by the cold rolling described above In other words, the conductivity of the cold rolled plate is 28.4% IACS to 39.8% so that the difference (S1-S2) from the conductivity (S2) is 0.2 to 1.6% IACS. It is preferable to manufacture the target Al alloy plate so as to be within the range of IACS. When the solid solution Mn is sufficiently present, the compound particles composed of Mn, Fe, and Si are induced by cold working and finely precipitated, so that the heat-resistant softening property can be improved. Incidentally, FIG. 1 shows the results of examining the difference in conductivity between two test pieces made of Al alloys having different Mn contents before and after the compression test at 150 ° C., which simulates cold rolling. However, there, the conductivity of the test piece made of Al alloy containing Mn is increased by cold rolling, whereas the test piece made of Al alloy not added Mn is cold-rolled. Almost no change in conductivity due to the above is observed, which confirms that Mn-based compound particles are precipitated by cold rolling. Basically, in cold rolling, although the conductivity decreases due to processing strain, the conductivity increases due to the precipitation of Mn-based compound particles, so that the amount of decrease in conductivity is 0 as a whole. It is within the range of 2 to 1.6% IACS. If the amount of such decrease in conductivity is smaller than 0.2% IACS, the degree of cold working is insufficient, causing a problem of insufficient strength. On the other hand, if it is larger than 1.6% IACS, The amount of Mn, Fe, and Si-based precipitated particles induced by cold rolling is insufficient, which causes a problem that the heat-resistant softening property is not sufficiently improved.

そして、かくの如くして得られた本発明に従うAl合金板は、従来と同様にして、必要な加工が施されて、目的とする缶ボディが形成され、Al系飲料缶等として有利に用いられることとなる。例えば、本発明に従うAl合金板には、必要に応じて脱脂洗浄や塗油等が施され、更に、カップ成形、DI成形、トリミング、洗浄、乾燥、塗装、焼付け、ネッキング及びフランジ加工の工程を経て、飲料缶ボディ(缶胴体)とされ、これに缶蓋(缶エンド)を取り付けることにより、目的とするAl系飲料缶が有利に製造されることとなるのである。 Then, the Al alloy plate according to the present invention thus obtained is subjected to necessary processing as in the conventional case to form a target can body, and is advantageously used as an Al-based beverage can or the like. Will be. For example, the Al alloy plate according to the present invention is subjected to degreasing cleaning, oiling and the like as necessary, and further, cup forming, DI forming, trimming, cleaning, drying, painting, baking, necking and flange processing are performed. After that, it is made into a beverage can body (can body), and by attaching a can lid (can end) to the body, the target Al-based beverage can can be advantageously manufactured.

以下に、本発明の代表的な実施例を示し、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。また、本発明には、以下の実施例の他にも、更には上記した具体的記述以外にも、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々なる変更、修正、改良等を加え得るものであることが、理解されるべきである。 Representative examples of the present invention will be shown below to clarify the present invention more concretely, but the present invention is not subject to any restrictions by the description of such examples. Needless to say. Further, in addition to the following examples, various modifications and modifications to the present invention are made based on the knowledge of those skilled in the art, as long as the gist of the present invention is not deviated from the specific description described above. It should be understood that improvements can be made.

なお、以下の実施例及び比較例において、得られたAl合金板(元板:冷間圧延板)又はその中間製品である熱間圧延板から作製された試験材については、以下の手法に従って、測定乃至は評価した。
(1)元板の圧延方向の引張強さ(TS)
実施例及び比較例において得られた、それぞれのAl合金板(元板)から、その圧延方向において、JIS 5号試験材を作製し、JIS−Z−2241に従って引張試験を実施することにより、圧延方向の引張強さ(TS)を測定した。
(2)205℃×10分間の熱処理後の圧延方向における引張強さ(ABTS)と耐力(ABYS)
それぞれのAl合金板(元板)からなる試験材に対して、塗装焼付け工程相当の熱処理(205℃×10分間)を施した後、上記(1)と同様にして引張試験を実施し、かかる熱処理後の試験材における圧延方向での引張強さ(ABTS)と耐力(ABYS)を、それぞれ測定した。
(3)Si、Fe及びMn固溶量の測定(フェノール溶解法)
実施例及び比較例においてそれぞれ得られた熱間仕上圧延後の熱間圧延板から切り出した小片サンプルを、170℃のフェノールに浸漬することにより、Al合金中のマトリックス成分を溶解せしめた後、ベンジルアルコールを添加して、その溶液を液体状態に保ちつつ、0.1μmの孔径を有するフィルターを用いてろ過を行う。そして、そのフィルター上に捕捉された析出物を、塩酸・フッ酸混合液にて溶解し、その得られた溶解液を希釈した液を用いて、ICP(Inductively Coupled Plasma)発光分光分析を行うことにより、析出Mn,Fe,Si量を求めた。また、固溶Mn,Fe,Si量は、鋳塊中の含有量から、上記析出量を差し引くことにより、求めた。
(4)導電率
熱間仕上圧延後の板材(熱間圧延板)及び冷間圧延後の板材(元板:冷間圧延板)に対して、それぞれ、導電率測定器(フェルスター社製SIGMATEST2.069)を用いて、周波数:960kHzにおいて測定し、n=3の平均値を求めた。なお、試験材の板厚が1mm未満の場合には、総厚が1mm以上となるように試験材(板)を重ね合わせて、測定に供した。
(5)製缶性評価
実施例及び比較例で得られた各種Al合金板(元板)について、それぞれ、通常の製缶手法に従って、しごき率66%にて、カップ成形及びDI成形を行い、更にトリミングの後、従来と同様な塗装焼付けを実施して、製缶の可否を確認した。また、かかる製缶操作における缶壁の焼付き状況についても、目視評価した。
In the following Examples and Comparative Examples, the test material produced from the obtained Al alloy plate (original plate: cold-rolled plate) or its intermediate product, the hot-rolled plate, was prepared according to the following method. Measured or evaluated.
(1) Tensile strength (TS) of the original plate in the rolling direction
From each of the Al alloy plates (original plates) obtained in Examples and Comparative Examples, JIS No. 5 test material was prepared in the rolling direction, and rolling was performed by performing a tensile test in accordance with JIS-Z-2241. The tensile strength (TS) in the direction was measured.
(2) Tensile strength (ABTS) and proof stress (ABYS) in the rolling direction after heat treatment at 205 ° C. for 10 minutes.
The test material made of each Al alloy plate (original plate) is subjected to a heat treatment (205 ° C. × 10 minutes) equivalent to the coating baking process, and then a tensile test is carried out in the same manner as in (1) above. The tensile strength (ABTS) and proof stress (ABYS) of the test material after the heat treatment in the rolling direction were measured, respectively.
(3) Measurement of solid solution amount of Si, Fe and Mn (phenol dissolution method)
Small piece samples cut out from the hot-rolled plate after hot-finish rolling obtained in Examples and Comparative Examples were immersed in phenol at 170 ° C. to dissolve the matrix components in the Al alloy, and then benzyl. Alcohol is added to keep the solution in a liquid state, and filtration is performed using a filter having a pore size of 0.1 μm. Then, the precipitate captured on the filter is dissolved in a mixed solution of hydrochloric acid and hydrofluoric acid, and the obtained solution is diluted to perform ICP (Inductively Coupled Plasma) emission spectroscopic analysis. The amount of precipitated Mn, Fe, and Si was determined by The amount of solid solution Mn, Fe, and Si was determined by subtracting the above-mentioned precipitation amount from the content in the ingot.
(4) Conductivity For the plate material after hot finish rolling (hot rolled plate) and the plate material after cold rolling (original plate: cold rolled plate), the conductivity measuring instrument (SIGMATEST2 manufactured by Felster Co., Ltd.), respectively. Using .069), the measurement was performed at a frequency of 960 kHz, and the average value of n = 3 was obtained. When the plate thickness of the test material was less than 1 mm, the test materials (plates) were overlapped so that the total thickness was 1 mm or more and used for measurement.
(5) Evaluation of can-making property The various Al alloy plates (original plates) obtained in Examples and Comparative Examples were cup-molded and DI-molded at an ironing rate of 66% according to a normal can-making method, respectively. After further trimming, the same paint baking as before was carried out to confirm whether or not the can could be made. In addition, the seizure condition of the can wall in the can manufacturing operation was also visually evaluated.

−実施例1−
先ず、下記表1に示される合金成分組成を有する各種のAl合金:A1〜A10を、常法に従って溶製した後、半連続鋳造法により、それぞれ、Al合金鋳塊を造塊した。次いで、この得られたAl合金鋳塊に対して、従来と同様に面削を施した後、空気炉を用いて、40℃/時間の昇温速度にて、600℃の温度まで加熱、昇温せしめ、引き続き600℃の温度で10時間の均質化処理を施した。なお、本発明で規定される(145−0.24T)時間以上の値は、1時間以上となり、上記の10時間の均質化処理は、その条件を充分に満たしている。
− Example 1-
First, various Al alloys A1 to A10 having the alloy composition shown in Table 1 below were melted according to a conventional method, and then ingots of Al alloys were ingot by a semi-continuous casting method. Next, the obtained Al alloy ingot was face-cut in the same manner as in the conventional case, and then heated and raised to a temperature of 600 ° C. at a heating rate of 40 ° C./hour using an air furnace. It was warmed and subsequently homogenized at a temperature of 600 ° C. for 10 hours. The value of (145-0.24T) hours or more specified in the present invention is 1 hour or more, and the above-mentioned 10-hour homogenization treatment sufficiently satisfies the condition.

次いで、かかる均質化処理の後、そのまま(直ちに)、熱間圧延に供し、先ず、出側温度が460〜510℃の範囲となるように、板厚が28mmとなるまで、リバース式圧延機を用いて、従来と同様な熱間粗圧延を実施し、次いで、出側温度が300〜330℃の温度となるように、板厚が2.2mmとなるまで、熱間仕上圧延を、4スタンドのタンデム式圧延機を用いて、従来と同様な手法によって実施した。最後に、3パスの冷間圧延を行い、0.28mmの板厚のAl合金板を製造した。この冷間圧延工程における総加工度は、87.3%であった。また、このとき、最終パスの平均圧延速度は900〜1100m/分の範囲とした。なお、冷間圧延における最終パスの出側温度は、145〜155℃であった。 Then, after such homogenization treatment, it is subjected to hot rolling as it is (immediately), and first, a reverse rolling mill is operated until the plate thickness becomes 28 mm so that the output side temperature is in the range of 460 to 510 ° C. Using, hot rough rolling similar to the conventional one is carried out, and then hot finish rolling is carried out at 4 stands until the plate thickness becomes 2.2 mm so that the output side temperature becomes a temperature of 300 to 330 ° C. It was carried out by the same method as before using the tandem rolling mill of. Finally, cold rolling was performed for 3 passes to produce an Al alloy plate having a plate thickness of 0.28 mm. The total workability in this cold rolling process was 87.3%. At this time, the average rolling speed of the final pass was set in the range of 900 to 1100 m / min. The temperature at the exit side of the final pass in cold rolling was 145 to 155 ° C.

上記の各工程で得られたA1〜A10のAl合金からなる各種の板材のそれぞれについて、試験材(A1〜A10)を作製し、上記した評価法に従って、それぞれの性能評価を行い、その結果を、下記表2に示した。なお、下記表2においては、熱間圧延板の導電率(S1)と冷間圧延板の導電率(S2)との差(S1−S2)が、冷間圧延における導電率低下量として示されている。 Test materials (A1 to A10) were prepared for each of the various plate materials made of A1 to A10 Al alloys obtained in each of the above steps, and their performance was evaluated according to the above-mentioned evaluation method. , Shown in Table 2 below. In Table 2 below, the difference (S1-S2) between the conductivity of the hot-rolled plate (S1) and the conductivity of the cold-rolled plate (S2) is shown as the amount of decrease in conductivity in cold rolling. ing.

Figure 0006898254
Figure 0006898254

Figure 0006898254
Figure 0006898254

かかる表1及び表2の結果より明らかなように、A1〜A10のAl合金からなる板材は、何れも、塗装焼付け工程を通過していない状態での圧延方向の引張強さ(TS)が高過ぎず、それらの製缶性は良好であった。また、それらA1〜A10のAl合金板(試験材)は、熱処理した後の圧延方向での引張強さ(ABTS)が高く、耐熱軟化性においても、優れていることを認めた。 As is clear from the results in Tables 1 and 2, all the plate materials made of Al alloys A1 to A10 have high tensile strength (TS) in the rolling direction in a state where they have not passed the coating baking step. Not too much, their can-making properties were good. Further, it was confirmed that the Al alloy plates (test materials) of A1 to A10 have high tensile strength (ABTS) in the rolling direction after heat treatment and are also excellent in heat resistance and softness.

−比較例1−
下記表3に示される各種の合金成分組成において、上記実施例1と同様な条件下において、B1〜B13の各種Al合金からなる板材を製造した。そして、それらAl合金板材の製造工程において得られた試験材(B1〜B13)について、その特性を、上記と同様にして評価し、その結果を、下記表4に示した。
-Comparative example 1-
In the various alloy composition compositions shown in Table 3 below, plate materials made of various Al alloys B1 to B13 were produced under the same conditions as in Example 1 above. Then, the characteristics of the test materials (B1 to B13) obtained in the manufacturing process of these Al alloy plates were evaluated in the same manner as described above, and the results are shown in Table 4 below.

Figure 0006898254
Figure 0006898254

Figure 0006898254
Figure 0006898254

かかる表3及び表4の結果より明らかなように、B1試験材は、Mnの添加量が不足したため、固溶Mn量が規定範囲より少なくなり、冷間圧延時の析出が不足して導電率が大きく低下した。その結果として、塗装焼付け処理時の強度低下量が大きく、缶体強度が不足した。また、B2試験材にあっては、Mnの添加量が過多であり、元板の強度が高くなり過ぎたために、製缶時に破断する問題を惹起した。更に、B3試験材は、Mgの添加量が不足したため、元板、塗装焼付け後の強度が不足した。B4試験材においては、Mgの添加量が過多であるところから、元板の強度が高くなり過ぎ、そのために、製缶時に破断する問題が惹起された。B5試験材では、Feの添加量が不足したため、粗大な金属間化合物が不足し、製缶後に表面荒れが惹起された。また、固溶Fe量が不足し、冷間圧延時の析出が不足したため、塗装焼付け時に大きく強度が低下した。 As is clear from the results in Tables 3 and 4, the amount of Mn added to the B1 test material was insufficient, so that the amount of solid solution Mn was less than the specified range, and the precipitation during cold rolling was insufficient, resulting in conductivity. Has dropped significantly. As a result, the amount of decrease in strength during the coating baking process was large, and the strength of the can body was insufficient. Further, in the B2 test material, the amount of Mn added was too large, and the strength of the base plate became too high, which caused a problem of breakage during can making. Further, in the B3 test material, the amount of Mg added was insufficient, so that the strength of the base plate and the paint after baking was insufficient. In the B4 test material, since the amount of Mg added was excessive, the strength of the base plate became too high, which caused a problem of breakage during can making. In the B5 test material, since the amount of Fe added was insufficient, the coarse intermetallic compound was insufficient, and surface roughness was caused after can making. In addition, the amount of solid solution Fe was insufficient, and the precipitation during cold rolling was insufficient, so that the strength was greatly reduced during coating baking.

そして、B6試験材にあっては、Feの添加量が過多であるため、粗大な金属間化合物が形成されて、製缶時に破断する問題を惹起した。またB7試験材は、Siの添加量が不足し、冷間圧延時の析出が不足したため、塗装焼付け時の強度低下が大きく、缶体強度が不足した。B8試験材は、Siの添加量が過多であり、粗大な金属間化合物が過剰に形成されて、製缶時に破断する問題を惹起した。また、B9試験材は、Cuの添加量が不足しており、そのために塗装焼付け処理時の析出強化が不足することとなったため、塗装焼付けによる強度低下が大きく、缶体強度が不足した。更に、B10の試験材にあっては、Cuの添加量が過多であるために、元板強度が高くなり過ぎ、製缶時に破断する問題を惹起した。加えて、B11、B12及びB13の試験材にあっては、それぞれ、Zn,Ti,Bの添加量が過多であって、そのために粗大な金属間化合物粒子が過剰に形成されて、製缶時に破断する問題が惹起された。 Then, in the B6 test material, since the amount of Fe added was excessive, a coarse intermetallic compound was formed, causing a problem of breakage during can making. Further, in the B7 test material, the amount of Si added was insufficient and the precipitation during cold rolling was insufficient, so that the strength at the time of coating baking was significantly reduced and the can body strength was insufficient. In the B8 test material, the amount of Si added was excessive, and coarse intermetallic compounds were excessively formed, causing a problem of breakage during can making. Further, in the B9 test material, the amount of Cu added was insufficient, and therefore the precipitation strengthening during the coating baking treatment was insufficient, so that the strength was greatly reduced by the coating baking and the can body strength was insufficient. Further, in the test material of B10, since the amount of Cu added is excessive, the strength of the original plate becomes too high, causing a problem of breakage during can making. In addition, in the test materials of B11, B12, and B13, the amounts of Zn, Ti, and B added were excessive, respectively, and as a result, coarse intermetallic compound particles were excessively formed during can manufacturing. The problem of breaking was raised.

−実施例2−
実施例1におけるA9試験材を与える合金成分組成(Al合金:A9)を採用して、下記表5に示される各種製造条件下において、C1〜C13の各種Al合金板材を、それぞれ製造した。なお、かかる表5に示されていない基本的な製造条件は、実施例1と同様とした。そして、その製造工程において得られたC1〜C13の各種のAl合金板材を用いて、それぞれ試験材(C1〜C13)を作製し、上記の実施例と同様の評価を行って、その結果を、下記表6に示した。
− Example 2-
By adopting the alloy component composition (Al alloy: A9) that gives the A9 test material in Example 1, various Al alloy plates of C1 to C13 were produced under various production conditions shown in Table 5 below. The basic manufacturing conditions not shown in Table 5 were the same as in Example 1. Then, test materials (C1 to C13) were prepared by using various Al alloy plates of C1 to C13 obtained in the manufacturing process, and the same evaluations as in the above Examples were performed, and the results were obtained. It is shown in Table 6 below.

Figure 0006898254
Figure 0006898254

Figure 0006898254
Figure 0006898254

かかる表5及び表6の結果から明らかなように、C1〜C13のAl合金板材(試験材)は、それぞれ、塗装焼付けが施されていない状態下における圧延方向の引張強さ(TS)が高過ぎず、適切な値とされているところから、何れも、製缶性が良好となるものであった。 As is clear from the results in Tables 5 and 6, the Al alloy plates (test materials) of C1 to C13 each have a high tensile strength (TS) in the rolling direction under the state where the coating and baking are not applied. Not too much, and the values were set appropriately, all of them had good can-making properties.

−比較例2−
実施例1におけるAl合金:A9の合金成分組成を採用して、下記表7に示される各種製造条件下において、D1〜D9の各種Al合金板材を製造した。なお、かかる表7に記載のない製造条件は、実施例1の場合と同様とした。そして、それらD1〜D9のAl合金板材(冷間圧延板)からなる試験材(D1〜D9)について、その板材特性を評価し、その結果を、下記表8に示した。
-Comparative example 2-
By adopting the alloy component composition of Al alloy: A9 in Example 1, various Al alloy plates of D1 to D9 were produced under various production conditions shown in Table 7 below. The manufacturing conditions not shown in Table 7 were the same as in Example 1. Then, the characteristics of the test materials (D1 to D9) made of the Al alloy plate materials (cold rolled plates) of D1 to D9 were evaluated, and the results are shown in Table 8 below.

Figure 0006898254
Figure 0006898254

Figure 0006898254
Figure 0006898254

かかる表7及び表8の結果より明らかなように、D1試験材は、均質化処理に際しての昇温速度が速いために、昇温中に、微細なMn,Fe,Si系粒子が形成されて、強度が増加し、製缶時において破断する問題を惹起した。また、D2試験材にあっては、均質化処理における保持温度が低いために、均質化効果が充分でなく、組織が不均一となって、製缶時に破断する問題があり、一方、均質化処理における保持温度が高過ぎるD3試験材にあっては、共晶融解を起した組織となり、組織が不均一となって、製缶時に破断する問題が惹起された。更に、D4試験材にあっては、均質化処理における保持時間が(145−0.24T)よりも短い時間であったために、個体潤滑効果を示す円相当径で、0.1〜1.0μmのMn,Fe,Si系化合物粒子の形成が不充分となり、製缶後の表面に焼き付きが生じた。 As is clear from the results in Tables 7 and 8, since the temperature rise rate of the D1 test material during the homogenization treatment is high, fine Mn, Fe, and Si particles are formed during the temperature rise. , The strength increased, causing the problem of breaking during can making. Further, in the D2 test material, since the holding temperature in the homogenization treatment is low, the homogenization effect is not sufficient, the structure becomes non-uniform, and there is a problem that the material breaks during can making. On the other hand, homogenization In the D3 test material in which the holding temperature in the treatment was too high, the structure was eutectic-melted, the structure became non-uniform, and the problem of breakage during can making was caused. Further, in the D4 test material, since the holding time in the homogenization treatment was shorter than (145-0.24T), the equivalent circle diameter showing the solid lubrication effect was 0.1 to 1.0 μm. The formation of Mn, Fe, and Si compound particles was insufficient, and seizure occurred on the surface after can making.

また、D5試験材にあっては、熱間圧延(熱延)開始温度までの冷却速度が小さいために、冷却中において析出が進み、Mn,Fe,Siの固溶量が減少して、冷延(冷間圧延)時においてMn,Fe,Si系微細粒子の析出が不充分となって、耐熱軟化性が低下したものとなり、一方、熱延開始温度までの冷却速度が大きいD6試験材にあっては、鋳塊内部の温度が不均一となって、材料組織にバラツキが生じ、製缶時に破断する問題を惹起した。加えて、D7試験材においては、熱延開始温度が低いために、熱延開始温度まで冷却する過程で析出が進んで、Mn,Fe,Siの固溶量が減少し、冷延時のMn,Fe,Si系微細粒子の析出が不十分となって、耐熱軟化性が低下し、その結果、塗装焼付け後の缶体強度が不足した。 Further, in the D5 test material, since the cooling rate up to the hot rolling (hot rolling) start temperature is small, precipitation proceeds during cooling, and the amount of solid dissolved Mn, Fe, Si decreases, and the material is cooled. During rolling (cold rolling), the precipitation of Mn, Fe, Si-based fine particles became insufficient, resulting in reduced heat-resistant softness, while the D6 test material had a high cooling rate to the hot rolling start temperature. In that case, the temperature inside the ingot became non-uniform, causing variations in the material structure and causing a problem of breakage during can making. In addition, in the D7 test material, since the hot rolling start temperature is low, precipitation progresses in the process of cooling to the hot rolling start temperature, and the amount of solid dissolved Mn, Fe, Si decreases, and Mn, Mn, during cold rolling The precipitation of Fe and Si-based fine particles was insufficient, and the heat-resistant softening property was lowered. As a result, the strength of the can body after coating and baking was insufficient.

さらに、D8の試験材にあっては、冷間圧延における総加工度が不足しているため、強度が不足する問題を内在するものであった。加えて、D9試験材においては、冷間圧延工程における最終パスの圧延速度が速いために、冷間圧延中において、Mn,Fe,Si系微細粒子の析出が不十分となり、耐熱軟化性が低下する問題を惹起するものであった。 Further, the D8 test material has an inherent problem of insufficient strength because the total workability in cold rolling is insufficient. In addition, in the D9 test material, since the rolling speed of the final pass in the cold rolling process is high, the precipitation of Mn, Fe, Si-based fine particles becomes insufficient during cold rolling, and the heat-resistant softening property is lowered. It caused problems.

Claims (5)

質量基準にて、Mn:0.7〜1.3%、Mg:0.8〜1.5%、Fe:0.25〜0.6%、Si:0.25〜0.50%、Cu:0.10〜0.30%、Zn:0.25%以下、Ti:0.10%以下及びB:0.05%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金を材質とする熱間圧延板であって、0.25質量%以上の固溶Mn量と、0.02質量%以上の固溶Fe量と、0.07質量%以上の固溶Si量とを含有し、且つ30.0〜40.0%IACSの導電率を有していることを特徴とする缶ボディ用アルミニウム合金熱間圧延板。 Based on mass, Mn: 0.7 to 1.3%, Mg: 0.8 to 1.5%, Fe: 0.25 to 0.6%, Si: 0.25 to 0.50%, Cu : 0.10 to 0.30%, Zn: 0.25% or less, Ti: 0.10% or less and B: 0.05% or less, and the balance is made of an aluminum alloy composed of Al and unavoidable impurities. The hot-rolled plate contains 0.25% by mass or more of solid-dissolved Mn, 0.02% by mass or more of solid-dissolved Fe, and 0.07% by mass or more of solid-dissolved Si. An aluminum alloy hot-rolled plate for a can body, which is characterized by having a conductivity of 30.0 to 40.0% IACS. 質量基準にて、Mn:0.7〜1.3%、Mg:0.8〜1.5%、Fe:0.25〜0.6%、Si:0.25〜0.50%、Cu:0.10〜0.30%、Zn:0.25%以下、Ti:0.10%以下及びB:0.05%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金を材質とするAl合金鋳塊を面削した後、30〜120℃/時間の昇温速度で550〜620℃の範囲内の均質化処理温度(T)まで加熱昇温せしめ、そして該均質化処理温度(T)において、(145−0.24T)時間以上の間、保持することにより、均質化処理を施し、次いでかかる均質化処理の終了後、直ちに、又は10〜90℃/時間の冷却速度で、500℃を下回ることのない熱間圧延開始温度まで冷却した後、出側温度:430〜550℃となるように熱間粗圧延を実施して、板厚:20〜40mmの板材を形成せしめ、続いて出側温度:300〜390℃となるように熱間仕上圧延を行って、板厚:1.5〜4.0mmの板材とした後、総加工度が75%以上且つ最終パスの定常部の平均圧延速度が700〜1600m/分となるように冷間圧延を行って、0.2〜1.0mmの板厚とすることにより、圧延方向の引張強さ(TS)が280〜320MPaであり、205℃×10分の熱処理後の圧延方向の引張強さ(ABTS)が270〜310MPaであると共に、前記圧延方向の引張強さ(TS)と205℃×10分の熱処理後の圧延方向の耐力(ABYS)との差が50MPa以下であるアルミニウム合金板材を得ることを特徴とする缶ボディ用アルミニウム合金板の製造方法。 Based on mass, Mn: 0.7 to 1.3%, Mg: 0.8 to 1.5%, Fe: 0.25 to 0.6%, Si: 0.25 to 0.50%, Cu : 0.10 to 0.30%, Zn: 0.25% or less, Ti: 0.10% or less and B: 0.05% or less, and the balance is made of an aluminum alloy composed of Al and unavoidable impurities. After chamfering the Al alloy ingot to be rolled, the temperature is raised to the homogenization treatment temperature (T) within the range of 550 to 620 ° C. at a temperature rise rate of 30 to 120 ° C. In (T), homogenization treatment is performed by holding for (145-0.24T) hours or more, and then immediately after the completion of such homogenization treatment, or at a cooling rate of 10 to 90 ° C./hour. After cooling to a hot rolling start temperature that does not fall below 500 ° C, hot rough rolling is carried out so that the output side temperature is 430 to 550 ° C to form a plate material having a plate thickness of 20 to 40 mm. Then, hot finish rolling was performed so that the output side temperature was 300 to 390 ° C. to obtain a plate material having a plate thickness of 1.5 to 4.0 mm, and then the total workability was 75% or more and the final pass. Cold rolling is performed so that the average rolling speed of the stationary portion is 700 to 1600 m / min, and the plate thickness is 0.2 to 1.0 mm, so that the tensile strength (TS) in the rolling direction is 280 to 280 to 1. It is 320 MPa, and the tensile strength (ABTS) in the rolling direction after the heat treatment at 205 ° C. × 10 minutes is 270 to 310 MPa, and the tensile strength (TS) in the rolling direction and the tensile strength (TS) after the heat treatment at 205 ° C. × 10 minutes. A method for producing an aluminum alloy plate for a can body, which comprises obtaining an aluminum alloy plate material having a difference from the bearing capacity (ABYS) in the rolling direction of 50 MPa or less. 前記アルミニウム合金板材の導電率が、28.4%IACS〜39.8%IACSである請求項に記載の缶ボディ用アルミニウム合金板の製造方法 The method for producing an aluminum alloy plate for a can body according to claim 2 , wherein the aluminum alloy plate material has a conductivity of 28.4% IACS to 39.8% IACS. 前記熱間仕上圧延にて得られる板材の導電率(S1)と前記冷間圧延にて得られる板材の導電率(S2)との差(S1−S2)が、0.2〜1.6%IACSであることを特徴とする請求項2又は請求項3に記載の缶ボディ用アルミニウム合金板の製造方法。 The difference (S1-S2) between the conductivity (S1) of the plate material obtained by the hot finish rolling and the conductivity (S2) of the plate material obtained by the cold rolling is 0.2 to 1.6%. The method for producing an aluminum alloy plate for a can body according to claim 2 or 3, wherein the product is IACS. 前記均質化処理の施されたAl合金鋳塊に対する走査型電子顕微鏡写真において、直径:0.1μm〜1μmの粒子の面積率が、3.5%以上である請求項2乃至請求項4の何れか1項に記載の缶ボディ用アルミニウム合金板の製造方法。 Any of claims 2 to 4 in which the area ratio of particles having a diameter of 0.1 μm to 1 μm is 3.5% or more in the scanning electron micrograph of the homogenized Al alloy ingot. The method for manufacturing an aluminum alloy plate for a can body according to item 1.
JP2017558189A 2015-12-25 2016-12-21 Aluminum alloy plate for can body and its manufacturing method Active JP6898254B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015254746 2015-12-25
JP2015254746 2015-12-25
PCT/JP2016/088086 WO2017110869A1 (en) 2015-12-25 2016-12-21 Aluminum alloy sheet for can body, and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2017110869A1 JPWO2017110869A1 (en) 2018-10-11
JP6898254B2 true JP6898254B2 (en) 2021-07-07

Family

ID=59089456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017558189A Active JP6898254B2 (en) 2015-12-25 2016-12-21 Aluminum alloy plate for can body and its manufacturing method

Country Status (4)

Country Link
US (2) US20180282848A1 (en)
JP (1) JP6898254B2 (en)
CN (1) CN108368570B (en)
WO (1) WO2017110869A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020312A (en) * 2019-12-20 2020-04-17 山东南山铝业股份有限公司 Aluminum alloy strip for small-caliber unscrewing bottle and tank and production method thereof
CN113549794A (en) * 2021-09-22 2021-10-26 山东宏桥新型材料有限公司 Aluminum alloy tank produced by using waste aluminum alloy tank
CN116949321A (en) * 2022-04-19 2023-10-27 宝山钢铁股份有限公司 Aluminum alloy plate for tank body and manufacturing method thereof
CN117286376A (en) * 2023-11-27 2023-12-26 中国第一汽车股份有限公司 Variable yield strength aluminum alloy and preparation method and application thereof

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263954A (en) * 1986-05-08 1987-11-16 Nippon Light Metal Co Ltd Manufacture of heat-treatment-type aluminum alloy sheet for drawing
JPH0826428B2 (en) * 1987-08-21 1996-03-13 古河電気工業株式会社 Aluminum alloy plate material for forming
JPH07233456A (en) * 1994-02-23 1995-09-05 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet excellent in formability
JP2933501B2 (en) * 1995-03-01 1999-08-16 株式会社神戸製鋼所 Method for producing aluminum alloy sheet excellent in formability of DI can bottom
JPH08246060A (en) * 1995-03-10 1996-09-24 Kawasaki Steel Corp Production of steel sheet for can
JPH11181558A (en) * 1997-12-22 1999-07-06 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for low and positive pressure can body
JP3690784B2 (en) * 1999-03-03 2005-08-31 住友軽金属工業株式会社 Highly formable aluminum alloy sheet excellent in recyclability and manufacturing method thereof
FR2792001B1 (en) * 1999-04-12 2001-05-18 Pechiney Rhenalu PROCESS FOR MANUFACTURING TYPE 2024 ALUMINUM ALLOY SHAPED PARTS
US6908520B2 (en) * 1999-05-28 2005-06-21 The Furukawa Electric Co., Ltd. Aluminum alloy hollow material, aluminum alloy extruded pipe material for air conditioner piping and process for producing the same
US7485199B2 (en) * 2002-01-08 2009-02-03 Mitsubishi Materials Corporation Ni based alloy with excellent corrosion resistance to supercritical water environments containing inorganic acids
JP4001007B2 (en) * 2002-12-19 2007-10-31 日本軽金属株式会社 Aluminum alloy plate for rectangular cross-section battery container
JP2006037148A (en) * 2004-07-26 2006-02-09 Furukawa Sky Kk Aluminum alloy hard sheet for can barrel and its production method
JP4771726B2 (en) * 2005-03-31 2011-09-14 古河スカイ株式会社 Aluminum alloy plate for beverage can body and manufacturing method thereof
JP2006283113A (en) * 2005-03-31 2006-10-19 Furukawa Sky Kk Aluminum alloy sheet for drink can barrel, and method for producing the same
JP4791072B2 (en) * 2005-04-14 2011-10-12 古河スカイ株式会社 Aluminum alloy plate for beverage can body and manufacturing method thereof
JP4290165B2 (en) * 2005-06-22 2009-07-01 住友軽金属工業株式会社 Aluminum alloy plate for battery case and manufacturing method thereof
JP3913260B1 (en) * 2005-11-02 2007-05-09 株式会社神戸製鋼所 Aluminum alloy cold rolled sheet for bottle cans with excellent neck formability
JP5272714B2 (en) * 2008-12-24 2013-08-28 Jfeスチール株式会社 Manufacturing method of steel plate for can manufacturing
KR101306515B1 (en) * 2010-03-30 2013-09-09 가부시키가이샤 고베 세이코쇼 Aluminum alloy plate for battery case, and battery case
JP2012092431A (en) * 2010-09-30 2012-05-17 Kobe Steel Ltd Aluminum alloy cold-rolled sheet for bottle can
JP5670215B2 (en) * 2011-02-15 2015-02-18 株式会社Uacj Aluminum alloy plate for can body and manufacturing method thereof
CN103748245B (en) * 2011-07-12 2016-02-17 株式会社Uacj Lithium-ion battery shell aluminum alloy plate materials
JP5906113B2 (en) * 2012-03-27 2016-04-20 三菱アルミニウム株式会社 Extruded heat transfer tube for heat exchanger, heat exchanger, and method for producing extruded heat transfer tube for heat exchanger
JP6054658B2 (en) * 2012-07-06 2016-12-27 株式会社Uacj Aluminum alloy plate for can body and manufacturing method thereof
WO2014129385A1 (en) * 2013-02-25 2014-08-28 株式会社Uacj Aluminum alloy plate for can body and production method therefor
CN105537870A (en) * 2015-12-21 2016-05-04 山东南山铝业股份有限公司 Production method of 5052 aluminum alloy tank cover base material

Also Published As

Publication number Publication date
CN108368570B (en) 2021-02-12
US20180282848A1 (en) 2018-10-04
US20210292878A1 (en) 2021-09-23
JPWO2017110869A1 (en) 2018-10-11
CN108368570A (en) 2018-08-03
WO2017110869A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
US20210292878A1 (en) Aluminum alloy sheet for can body, and process for producing the same
JP2020514556A (en) Casting of recycled aluminum scrap
JP6054658B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP2013525608A (en) Damage-resistant aluminum material with hierarchical microstructure
JP4852754B2 (en) Magnesium alloy for drawing, press forming plate material made of the alloy, and method for producing the same
JP6336434B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP2015067857A (en) Al-Mg-Si-BASED ALUMINUM ALLOY SHEET FOR AUTOMOBILE PANEL AND MANUFACTURING METHOD THEREFOR
WO2015182748A1 (en) Method for manufacturing aluminum alloy member and aluminum alloy member using same
JP2003342657A (en) Hot-rolled aluminum plate and plate material using the same and used for can shell
JP4996853B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP4325126B2 (en) Aluminum alloy plate excellent in warm formability and manufacturing method thereof
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
JP2004244701A (en) Aluminum alloy cold rolled sheet for can barrel, and aluminum alloy hot rolled sheet to be used as the stock therefor
JP7414453B2 (en) Aluminum alloy material and its manufacturing method
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP2021143374A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JPH10121177A (en) Aluminum alloy sheet excellent in high speed ironing formability for di can drum and manufacture therefor
JP2004076155A (en) Aluminum alloy sheet having excellent seizure softening resistance
WO2016056240A1 (en) Superplastic-forming aluminium alloy plate and production method therefor
JP2002322530A (en) Aluminum foil for container and production method therefor
JP2006283112A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP6301175B2 (en) Aluminum alloy sheet with excellent formability and bake hardenability
JP6474582B2 (en) Aluminum alloy plate with excellent formability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210610

R150 Certificate of patent or registration of utility model

Ref document number: 6898254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150